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Abstract: A system of wavelet collocation upwind schemes is constructed for solving hyperbolic 

conservation laws based on a class of interpolation wavelets. The bias magnitude and symmetry 

factor are defined to depict the asymmetry of the adopted scaling basis function in wavelet theory. 

Effects of characteristics of the scaling functions on the schemes are explored based on numerical 

tests and Fourier analysis. The numerical results reveal that the stability of the constructed scheme 

is affected by the smoothness order, N, and the asymmetry of the scaling function. The dissipation 

analysis suggests that schemes with Neven have negative dissipation coefficients, leading to un-

stable behaviors. Only scaling functions with Nodd and bias magnitude of 1 can be used to con-

struct stable upwind schemes due to the non-negative dissipation coefficients. Resolution of the 

wavelet scheme tends to the spectral resolution as the order of accuracy of the scheme increases.   
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1. Introduction 

High-speed flows governed by hyperbolic conservation laws often contain steep 

gradient regions or even discontinuities, such as shock waves and contact discontinuities. 

Pirozzoli [1] pointed out that ideal numerical methods for such problems should be of 

high accuracy and free from numerical dissipation in smooth regions of the flows, and 

they can capture steep gradient regions and discontinuities robustly without significant 

spurious oscillations. The numerical methods for high-speed flows can be classified into 

two classes, one dealing with smooth flows and the other with shock waves. The central 

finite difference schemes with null dissipation error and spectral-like resolution are the 

ideal candidates for computations in smooth regions [2]. However, it is well known that 

the central discretization for smooth flows will induce severe spurious oscillations and 

lead to numerical instability in the presence of the discontinuities, where extra techniques 

are required to distinguish shocks [1]. Although artificial viscosity added near the dis-

continuities may help to suppress oscillations and stabilize calculations, it is quite diffi-

cult to introduce the corresponding appropriate numerical viscosity to suppress these 

oscillations successfully [3]. Hence, a preferable choice is to design schemes that can 

achieve stable solutions in the inviscid limit.  

The upwind method based on the philosophy that a stable numerical method should 

propagate the information along the directions of characteristic waves have been proven 

as a good choice [4, 5]. The upwind schemes can introduce the appropriate implicit nu-

merical viscosity to ensure the stability for solving hyperbolic conservation laws [6]. 

High-order upwind schemes have been widely investigated on numerical simulation of 

high-speed flows during last decades owing to their capability in obtaining satisfactory 

resolution and high-order accuracy [7]. The typical examples of these schemes include 

essentially non-oscillatory (ENO) schemes [8], weighted ENO (WENO) schemes [9], 
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multimoment constrained finite volume (MCV) methods [10], discontinuous Galerkin 

(DG) schemes [11], and dynamical wavelet Galerkin schemes [12], etc.  

Multiresolution analysis in wavelet theory provides an effective approach to capture 

the localized structures of functions both in physical and frequency domains, which is 

suitable for simulations of high-speed flows. Many wavelet-based numerical methods 

have been developed in computational fluid dynamics [13], which can be categorized 

into two types. The first one only embeds the wavelet multiresolution analysis into the 

traditional high-order schemes. The remainder is called a pure wavelet numerical 

method that uses the wavelets as a set of bases to discretize the PDEs. Vasilyev and the 

co-authors have conducted much pioneering work in wavelet-based numerical methods 

for computational fluid dynamics, which have been used successfully in solving Burgers 

Equation with viscosity [14], laminar flame–vortex interaction [15], homogeneous tur-

bulence problems [16] and supersonic channel flow [17]. 

 However, comparatively few works are dedicated for hyperbolic partial differential 

equations (PDEs). Wavelet methods coupled with the DG schemes [18], the finite differ-

ence WENO [19], and the FDM with artificial viscosity [6] are devised for the hyperbolic 

PDEs. These methods use the wavelets to detect the localized steep structures and im-

plement the adaptive or reconstruction process, but omit the merit of adaptive wavelet 

approximation on arbitrary finite domains. In the pure wavelet method framework, Re-

strepo and Leaf [20] firstly applied the classic wavelet Galerkin schemes with uniform 

nodes to solve hyperbolic equations and concluded that spurious oscillations would 

spread further away from the shock, leading to numerical instability, which was also 

encountered in other classic Galerkin schemes [21]. Recently, a dynamical wavelet Ga-

lerkin scheme was proposed by Pereira et al. [12] that overcomes the above drawback 

successfully by the energy dissipation introduced by a non-smooth projection operator. 

The collocation methods are more efficient compared with the wavelet Galerkin ones. 

Although adaptive wavelet collocation methods are developed for solving parabolic 

problems successfully based on symmetrical interpolation wavelet basis [14, 22, 23], no 

attempts are carried out to use the wavelet collocation method to construct the upwind 

schemes for the hyperbolic problems. The effects of the scaling function characteristics on 

the wavelet schemes have also been unexposed until now.  

Motivated by the idea of the upwind schemes, we have considered building asym-

metrical interpolation wavelets to achieve the upwind property, and proposed 

high-order wavelet collocation upwind schemes based on the asymmetrical interpolation 

wavelets and corresponding function approximation theory in our recent work [24]. The 

numerical results show that the order of accuracy of the wavelet schemes agrees with the 

expected ones. Unfortunately, this only provides information on the asymptotic conver-

gence rate to the exact solution, and nothing is known about the stability and resolution 

of the schemes. Dissipation and dispersion analysis can reveal more details of the 

schemes. Taylor expansion analysis [25] and Fourier analysis [26] are the two main 

methods in evaluating the dissipation and dispersion properties of the numerical 

schemes. For the former one, Taylor expansion of the equation is conducted to obtain the 

modified equation which represents the actual partial differential equation solved by 

numerical schemes, and a truncated version of the modified equation are applied to gain 

both dissipative and dispersive errors [25]. Fourier analysis method is on the basis of 

Fourier series and its derivative operator to examine the dissipative and dispersive 

properties of the equation, which can be implemented more conveniently and applied in 

more situations [26]. In addition, a numerical analysis method is proposed by Pirozzoli 

[27] to evaluate the dissipation and dispersion performance for the nonlinear high-order 

schemes for hyperbolic conservation laws.  

The goal of the present paper is to explore the effects of characteristics of the scaling 

functions on wavelet collocation upwind schemes by conducting numerical tests and the 

Fourier analysis on several wavelet upwind schemes. We obtain the dissipation and 

dispersion properties, and analyze the stability and resolution properties of these 

schemes. Then we provide a fundamental rule to construct stable, high-order and 
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high-resolution schemes and verify the outcome by conducting two typical numerical 

tests. 

The remainder of the paper is organized as follows. In section 2, we briefly introduce 

the wavelet approximation theory and wavelet collocation upwind schemes for uniform 

node distribution, and define the parameters to describe the asymmetry of the scaling 

function. Numerical experiments for the linear scalar equation and Fourier analysis on 

the schemes are carried out in Section 3. Finally, the main conclusion is summarized in 

section 4. 

2. Wavelet collocation upwind schemes 

In the present work, we consider one-dimensional scalar conservation laws to ana-

lyze the stability of the wavelet collocation upwind schemes: 

( )+ = 0
t x

u f u  (1) 

2.1. Wavelet approximation theory 

2.1.1. Preliminaries 

The Hilbert space 2( )L Ω  is defined as the collection of square integrable functions 

that satisfy 


 
2

( ) df x x , where Ω is any open subset of R [28]. The space is equipped 

with the inner product: 

( )


=   
2, : ( ) ( ) d for all  , ( ).f g f x g x x f g L Ω  (2) 

The corresponding 2( )L Ω -norm is defined by  

( ) ( )2

1/2
2

2

Ω Ω
( ) d for all  ( ).f f x x f= L

L Ω  (3) 

The definition of ( )L Ω -norm is expressed as 

( )



=
Ω

sup{ ( )}.
x

f f x
L

 (4) 

For any integer m ≥ 1, the space of all functions which are m times continuously differen-

tiable over Ω is denoted by ( )mC Ω .  

2.1.2. Approximation of functions on a finite domain 

For general practical problems, Ω is a finite domain. We apply the boundary exten-

sion technique in our previous study based on the Lagrange interpolation to remove local 

errors induced by a loss of information outside the domain [29, 30]. For all functions in 
2( )L Ω , the modified wavelet approximation at the resolution level J can be written as 



=  ,
( ) ( ) ( ),

J

J k J k
k

P f x f x x  
(5) 

in which the modified wavelet basis is given by 

( )

( )

 







 = + 

= 





, , ,

,

( ) ( ) ( )

( ),

k

k

n

J k J k k n J n
n

n

k n J n
n

x x x x

x x
 (6) 

( )


=


−
 =

−


1

,n n i
k n

i k i
i n

x x
x

x x
 (7) 
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where 
k

 is the set of serial number n denoting the external point xn such that f (xn) is 

exactly all the Lagrange interpolations. In Equation (7) the set {
i

x , i = 1, 2, ,  } is the 

collection of selected Lagrange interpolation nodes inside the Ω for the external point xn 

and   = 
k k

k  with the coefficient ( )  1k

k k
x . Next we give two wavelet approxi-

mation theorems without proof which can be proved by using the approach as presented 

in the references [29, 31]. 

Theorem 2.1 For all f  2( ) ( )mL Ω C Ω , suppose that m is large enough and let 

  = ,
k k

min k , approximation errors in 2L -norm and L -norm can be estimated by  

( )

−− 
2 1,Ω

2 J

J L
P f f C

L
 (8) 

( )





−


− 

1,Ω
2 J

J
P f f C

L
 (9) 

where λ = min {N,}. Constants C1,L and C1,∞ are dependent on the regularity of the derivatives 

 f (n)(x) but independent of the resolution level J [29]. 

Theorem 2.2 For all f  2( ) ( )mL Ω C Ω , suppose that m is large enough and let 

  = ,
k k

min k , approximation errors of the first order derivative in 2L -norm and L -norm 

can be estimated by  

( )

− −− 
2

( 1)

2,

Ω

d d
2 ,

d d

J J

L

P f f
C

x x
L

 (10) 

( )





− −


−  ( 1)

2,

Ω

d d
2 ,

d d

J J
P f f

C
x x

L

 (11) 

where λ = min {N,}. Constants C2, L and C2, ∞ are dependent on the regularity of the derivatives  

f (n)(x) but independent of the resolution level J [29]. 

2.2. Wavelet collocation upwind scheme 

Inspired by the concept of the upwind scheme, we have proposed pure adaptive 

wavelet collocation upwind schemes to resolve hyperbolic conservation laws in our re-

cent research, which have been used in solving 1D hyperbolic conservation laws suc-

cessfully [24]. The upwind property is achieved by building a couple of asymmetrical 

wavelets. We can calculate the derivative based on the wavelet approximation: 



 = , , , ,
( ) ( ).

J

J l J k J k J l
k

u x u x  
(12) 

Owing to the interpolation property of the scaling functions, we can discretize the 

nonlinear terms in the conservative equations directly [32]: 

( ) ( )


=  , ,
( ) ( ),

J

J k J k
k

f u x f u x  (13) 

where f satisfies a uniform Lipschitz condition of order α with respect to u, α ≥ 1. We 

observe that decomposition coefficients of ( )f u  can be evaluated by computing value of 

( ),J k
f u  in a very high efficiency. 

To concentrate on the stability and resolution analysis of the wavelet schemes, only 

the linear scalar equation with a periodic boundary condition and  ( ) 0f u  is consid-

ered. We conduct spatial discretization at the resolution level J by the wavelet collocation 

upwind schemes in the uniform node distribution framework and obtain the following 

semi-discretized system: 
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( ) +


+  =  , ,

d ( , )
( , ) ( ) 0, , ,

d
J

J l

J k J k l
k

u x t
f u x t x k l

t
Ω  (14) 

where 
+


, ,

( )
J k

x  denotes the scaling function of the positive upwind wavelet. Then we 

can solve the above ordinary partial equations by the classic explicit fourth-order 

Runge–Kutta method for time integration. 

2.3. Asymmtrical wavelets 

The detailed procedures of constructing the asymmetrical wavelets can be found in 

the Appendix A. We establish a number of asymmetrical wavelets from N = 3 to N = 10 to 

examine the stability and resolution of these wavelet schemes. Here N describes the reg-

ularity of the scaling function and means that the corresponding scaling function can 

reproduce polynomials up to the degree (N – 1).  

For convenience of discussion, we define two parameters to depict the asymmetrical 

properties. We take the scaling functions with N = 6 and N = 7 as examples. The stencils 

for the scaling functions are shown in Figure 1. The bias magnitude of the stencil is de-

fined by the difference between the number of nodes on the left side of 
+1,J l

x  and that on 

the right side of 
+1,J l

x  as denoted by the BM. To evaluate the symmetry of the scaling 

function, we also use symmetry factor (SF) to evaluate the symmetry of the scaling func-

tion which can be calculated by  

=
IL

SF ,
IR

 (15) 

where IL is the length of the support interval on the left side of the zero point, and IR is 

the length of the support interval on the right side of the zero point. The scaling function 

is exactly symmetrical when SF = 1. We can provide an explicit formula to compute the SF 

base on the BM as follows: 

( )

( )

BM 1
SF .

BM 1

N

N

− +
=

+ −
 (16) 

It can be observed from Equation (16) that the SF approaches to 1 as N tends to infinity, 

which reveals that the symmetry of the scaling function is improved as N increases. For a 

specified N, the SF decreases with an increment in BM. The BM and SF of the scaling 

functions used in the present paper for analyzing the stability and resolution of the 

wavelet upwind schemes are listed in Table 1. We note that the BM has the same parity 

with the N. The SF with the Nodd is greater than that with the Neven when the BModd and 

Nodd are both smaller than the BMeven and Neven by one, respectively. Here the subscript 

represents the parity of the N. Some scaling functions are shown in Figure 2 as examples. 

  

(a)  (b) 

Figure 1. Example of stencils: (a) Stencil for asymmetrical wavelet with N = 6 and BM = 2; (b) Stencil 

for asymmetrical wavelet with N = 7 and BM = 1. 

Table 1. BM and SF for the scaling functions. 
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N 3 4 5 6 7 7 8 9 9 10 

BM 1 2 1 2 1 3 2 1 3 2 

SF 0.33 0.20 0.60 0.43 0.71 0.33 0.56 0.78 0.45 0.64 

 

  

(a)  (b) 

Figure 2. Examples of some asymmetrical scaling functions: (a) Scaling functions with N = 5 and N 

= 6; (b) Scaling functions with N = 7 and N = 8. 

3. Stability and resolution analysis of the wavelet upwind scheme 

In this section, we conduct two benchmark tests by applying different schemes from 

N = 3 to N = 10. Two kinds of norms are defined to evaluate numerical errors as follows: 

 


= −max   ,k

e n

kl k
e u u  (17) 

 
= −  
 


2

1

22

,k

e n

kl
k

e u u x  (18) 

where k

eu  is the exact solution and n

k
u  is the numerical one. 

Numerical examples are performed to the following one-dimensional linear scalar 

equation: 

+ =  −  ,0 1,1 ,
t x

u au x  (19) 

where a = 1. 

3.1. Advection of a sine wave 

At first, we verify the order of accuracy and explore the stability of the proposed 

schemes by refinement tests. A sine wave as the initial condition is presented as follows: 

=( ,0) sin( ) periodic.u x x  (20) 

The periodic boundary condition is addressed based on the extension method for peri-

odic functions proposed in our previous work [33]. 

The numerical errors are calculated at t = 2. BModd = 1 and BMeven = 2 are taken for the 

different schemes. Time steps are set small enough to remove the influence of time inte-

gration. Numerical errors and orders of accuracy for all schemes are shown in Table 2. It 

should be noted that the errors which are smaller than 5.0E-13 are removed from the ta-

ble since they approach to the machine precision of the double type. Theorem 2.2 show 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 January 2023                   doi:10.20944/preprints202301.0069.v1

https://doi.org/10.20944/preprints202301.0069.v1


 

that theoretical order of accuracy of the scheme is (N − 1) order. It can be seen that the 

orders of accuracy are consistent with the expected ones for the schemes that N are 

smaller than 8. Higher order schemes give the expected order of accuracy when the 

number of nodes is small. The N = 4 scheme is unstable even for this smooth wave evo-

lution in our tests. Therefore the result is absent from Table 2. 

Table 2. Numerical results for the sine wave advection. 

Method N1 l∞ error l∞ order l2 error l2 order 

N = 3   

(2nd order) 

32 8.00E−2 — 8.24E−2 — 

64 2.02E−2 1.99 2.05E−2 2.01 

128 5.05E−3 2.00 5.08E−3 2.01 

256 1.26E−3 2.00 1.27E−3 2.01 

512 3.15E−4 2.00 3.16E−4 2.00 

N = 5 

(4th order) 

32 1.84E−4 — 1.90E−4 — 

64 1.15E−5 4.01 1.16E−5 4.03 

128 7.15E−7 4.00 7.21E−7 4.01 

256 4.47E−8 4.00 4.49E−8 4.01 

512 2.79E−9 4.00 2.80E−9 4.00 

N = 6 

(5th order) 

32 3.78E−5 — 3.80E−5 — 

64 1.18E−6 4.99 1.19E−6 5.00 

128 3.71E−8 5.00 3.71E−8 5.00 

256 1.16E−9 5.00 1.16E−9 5.00 

512 3.64E−11 4.99 3.64E−11 4.99 

N = 7  

(6th order) 

32 1.02E−6 — 1.04E−6 — 

64 1.46E−8 6.12 1.48E−8 6.14 

128 1.71E−10 6.42 1.73E−10 6.42 

256 8.70E−13 7.61 8.75E−13 7.62 

N = 8 

(7th order) 

32 2.12E−7 — 2.13E−7 — 

64 1.64E−9 7.01 1.64E−9 7.02 

128 1.33E−11 6.95 1.33E−11 6.95 

N = 9 

(8th order) 

32 7.18E−9 — 7.38E−9 — 

64 2.27E−11 8.31 2.30E−11 8.33 

N = 10 

(9th order) 

32 1.45E−9 — 1.46E−9 — 

64 2.77E−12 9.03 2.77E−12 9.04 

To explore the effect of asymmetry of the scaling function on stability, we also 

compute the numerical results by respectively using the wavelet schemes with N = 7, N = 

9, and different BM values as shown in Table 3. It can be observed that the scheme with N 

= 7 and BM = 3 is unstable because the error increases significantly as J goes up to 8. We 

conclude that the scheme with the same N will be unstable when the asymmetry of the 

scaling function increases.    

Table 3. Numerical errors and order of accuracy for one-dimensional linear scalar equation. 

Method N1 l∞ error l∞ order l2 error l2 order 

N = 7 BM = 1  

(6th order) 

32 1.02E−6 — 1.04E−6 — 

64 1.46E−8 6.12 1.48E−8 6.14 
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128 1.71E−10 6.42 1.73E−10 6.42 

256 8.70E−13 7.61 8.75E−13 7.62 

N = 7 BM = 3  

(6th order) 

32 6.94E−6 — 7.13E−6 —  

64 1.10E−7 5.98  1.12E−7 6.00  

128 1.78E−9 5.95  1.79E−9 5.96  

256 4.20E−11 5.40  3.41E−11 5.72  

512 2.01E−6 -15.54  1.33E−6 -15.25  

N = 9 BM = 1 

(8th order) 

32 7.18E−9 — 7.38E−9 — 

64 2.27E−11 8.31  2.30E−11 8.33  

N = 9 BM = 3 

(8th order) 

32 3.79E−8 — 3.89E−8 — 

64 1.53E−10 7.95 1.56E−10 7.97 

128 8.73E−13 7.46 8.79E−13 7.47 

3.2. Advection of a square wave 

To validate the stability of the schemes to solve a jump discontinuity problem, we 

conduct the advection of a square wave which has the following initial distribution: 

 −  
= 


1 0.4 0.4,
( ,0) periodic.

0 otherwise,

x
u x  (21) 

The Fourier series of the square wave is the infinite superposition of sine and cosine 

waves, and contains all frequency components. Numerical results at t = 8 obtained by 

different wavelet schemes at the resolution level J = 8 are illustrated in Figure 3. It can be 

seen that spurious oscillations pollute numerical solutions near the jump discontinuities 

for almost all schemes. Figure 3b shows that the oscillations obtained by the scheme with 

N = 6 is gradually amplified in the positive direction, which indicates that the scheme is 

unstable for discontinuity problems. For all the schemes with specified parity of N, the 

length of the oscillation interval decreases with an increment in N. We continue to com-

pute the results at t = 32 as shown in Figure 4. The results for the scheme with N = 6 is 

divergent for long-term time integration, which is not depicted in the figure. Although 

this scheme is stable for the single sine wave advection, it behaves unstable for that of the 

waves with multiple or infinite frequencies. It can be observed that the schemes with 

Nodd confine spurious oscillations in the thinner region, and the amplitude of the os-

cillations attenuates rapidly. In addition, N = 7, BM = 3 and N = 9, BM = 3 schemes are 

unstable for the current problem. 

  

(a)  (b) 
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Figure 3. Advection of a square wave by the different schemes at t = 8, J = 8: (a) Nodd; (b) Neven. 

  

(a)  (b) 

Figure 4. Advection of a square wave by the different schemes at t = 32, J = 8: (a) Nodd; (b) 

Neven. 

3.3. Dissipation and dispersion analysis 

Although we can devise wavelet upwind schemes based on our proposed method, 

the above numerical tests suggest that some of the wavelet schemes are unstable even for 

the linear scalar advection problems. Therefore, it is crucial to investigate the dissipation 

and dispersion properties and provide an instruction to choose “good” wavelets for sta-

ble wavelet upwind schemes. 

We examine the dissipation and dispersion properties of the schemes base on the 

Fourier analysis method [2, 26]. Suppose that =( ) likx

l
u x e , then we can obtain the nu-

merical derivative: 

 =


,likx

x l

k
u e

x
 (22) 

where k  is the corrected wavenumber which is a complex variable and  = 1/ 2Jx . 

Therefore, k  can be rewritten as = +
r i

k k ik . The exact derivative is given by 

d
.

d
likx

l
u ike

x
=  (23) 

Comparing the above relation, we can obtain that kr = 0 and ki = kΔx for ideal numerical 

schemes. When conducting Fourier analysis on Equation (19), we can calculate the fol-

lowing numerical solution: 

( ) ( )( )− − 
=, ,l ir

ik x atk k xk at x

l
u x t e e  (24) 

where kr is the dissipation coefficient and ki is the dispersion coefficient. The exact solu-

tion for Equation (19) can be computed by 

( ) −
=

( ), lik x at

l
u x t e  (25) 

Then we can give the physical meaning of kr and ki. kr depicts the attenuation of the 

wave amplitude at t induced by the numerical error, and ki describes the change in 

propagation speed of the wave caused by the numerical method. It can be noted that the 

wave amplitude will be amplified over time if kr is a negative value. The corresponding 

scheme shows the instability when solving the advection problems. Therefore, kr for sta-
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ble numerical schemes should be non-negative. Here kΔx is defined as effective wave-

number and denoted by α. When ki / α > 1, the numerical wave will run faster than the 

exact one. And the numerical wave will fall behind the exact wave for ki / α < 1. We re-

mark that only the spectral method has the ideal dispersion property, which means that ki 

/α = 1. 

We compuate the dissipation coefficient of the different wavelet schemes as shown 

in Figure 5. For specified parity of N, it can be seen that kr decreases with the increase of 

N. kr of the scheme with Nodd is smaller than that with Neven, indicating that the 

wavelet upwind schemes with Nodd show better dissipation property. To seek the 

reason for the instability of several schemes, we analyze the kr for all the above schemes. 

We find that the negative kr exists for schemes with Neven. To clarify this fact, the lo-

cally enlarged version of the Figure 5b is illustrated in Figure 6. It can be observed that kr 

are all negative when α < 0.8. This suggests that the schemes with Neven will show a 

negative diffusion phenomenon when J is large enough, and the error will be amplified 

over time. This actually induces the instability of the wavelet schemes. We also find that 

the local extreme value approaches to 0 as N increases for Neven, which means that the 

negative diffusion process is weakened, and the stability of the schemes are improved. 

This explains that the numerical tests for the schemes with Neven in subsection 3.1 and 

3.2 are still stable. But for longer time integration and some α near the local extreme 

value, the results might be divergent.   

Based on the above analysis, we can conclude that only Nodd schemes provide the 

correct implicit viscosity for solving the hyperbolic conservation laws. However, numer-

cial tests in subsection 3.1 show that the scheme with N = 7 and BM = 3 is still unstable. As 

has been discussed, the asymmetry of the scaling function is another factor influencing 

the stability of the wavelet schemes. We further evaluate the dissipation coefficients of 

the schemes with N = 7, BM = 3 and N = 9, BM = 3 as shown in Figure 7. It can be found 

that kr is negative when α is smaller than the specified value. Therefore, the schemes with 

BM = 3 are unstable. Now we can achieve a basic instruction that Nodd, BM = 1 schemes 

are with non-negative dissipation coefficients and stable for hyperbolic conservation 

laws.  

  

(a)  (b) 

Figure 5. Dissipation analysis of different wavelet schemes: (a) Nodd; (b) Neven. 
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Figure 6. Locally enlarged version of dissipation analysis of Neven schemes. 

 

Figure 7. Comparison of dissipation coefficients of N = 7 and N = 9 schemes. 

Then, we will explore the dispersion property related to the resolution of the 

schemes. For a specified wavelet scheme, an effective node number is defined by the 

point per wavelength abbreviated as PPW, which can be computed by the following re-

lation 

  


= = =
 

2 2
.PPW

x k x
 (26) 

The spectral method has the optimal resolution corresponding to α = π and PPW = 2. It 

can be seen from Equation (26) that PPW is inversely proportional to α. The length of the 

interval α that ki / α is approximately equal to 1 depicts the ability of the scheme to trace 

the wave accurately. We choose the interval of α that satisfies  − 1 / 5%
i

k  and 

1 / 2%ik −   to measure the maximum α which reflects the resolution of the schemes 

directly. The dispersion coefficients against α are plotted in Figure 8. It can be observed 

that N < 5 schemes have a large dispersion error and a low resolution. The maximum α 

that ki / α meets the tolerance relation increases with an increment in N for the specified 

parity. To clarify the resolution more clearly, we list the maximum α in a tolerance range 

in Table 4. It can be seen that the maximum α gradually tends to π as N increases, and the 

schemes with Neven behave better in resolution when N > 6. On the basis of the above 

analysis, we can obtain that the wavelets are more applicable to design the high-order 

schemes, and the scheme with larger N has the higher accuracy and better resolution. 
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(a)  (b) 

Figure 8. Dispersion coefficients against α in different wavelet schemes: (a) Nodd; (b) Neven. 

Table 4. The maximum α for different schemes. 

N 1 / 5%− 
i

k   1 / 2%− 
i

k   N 1 / 5%− 
i

k   1 / 2%− 
i

k   

3  0.397 0.247 4 0.639 0.500 

5 1.689 1.532 6 1.249 1.012 

7 1.742 1.547 8 2.190 1.423 

9 1.847 1.652 10 2.165 2.058 

Next, we conduct a numerical test with a smooth initial distribution to verify the 

theoretical analysis of the dissipation and dispersion performance. The test is the advec-

tion of a sine wave described in subsection 3.1 with u(x, 0) = sin (5πx) as the initial con-

dition. The PPW is approximately equal to 6 at the resolution level J = 4. The numerical 

results obtained by the schemes with Nodd and BM = 1 at t = 2 are shown in Figure 9. It 

can be seen that the higher order schemes show less dissipative, approach to the exact 

solution more accurately and reveal higher resolution for the wave. Therefore, the nu-

merical results are in accordance with the stability and resolution analysis. 

 

Figure 9. Numerical results by the schemes with Nodd and BM = 1 at t = 2, J = 4. 
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Finally, a numerical test of the advection of a multi-scale function is devised to show 

the capability of the wavelet schemes in recognizing smooth and discontinuous solutions 

in the high-speed flows. The initial condition consists of step functions, saw-tooth func-

tion, sine waves in different frequencies, which is shown as 

0.5 0.8 0.6

1.25 0.25 0.6 0.2

0.5 0.2 0.1

0.5(1 sin(40 )) 0.1 0.1,
( ,0)

0.5 0.1 0.2,

0.5 0.2sin(5 ( 0.2)) 0.2 0.6,

0.5 0.6 0.8,

0 otherwise

x

x x

x

x x
u x

x

x x

x





 −   −

− + −   −
 −   −


+ −  
= 

 
 + −  


 



, 

,

,

 (27) 

For this numerical test, we apply the adaptive wavelet upwind schemes proposed in 

our previous study [24]. The main idea of adaptive node generation is to recognize trou-

ble nodes based on the wavelet coefficients that are larger than a threshold parameter ε = 

1.0−5, and insert nodes in the adjacent zones near the trouble nodes. Moreover, an inte-

gration reconstruction method is designed based on the Lebesgue differentiation theo-

rem to suppress the spurious oscillations. We choose the basic resolution level J0 = 6, the 

maximum resolution level Jmax = 12, the same adaptive and reconstruction parameters for 

different schemes. The numerical results obtained by the adaptive wavelet schemes with 

Nodd and BM = 1 at t = 2 are compared with that of the classic fifth-order finite differ-

ence WENO scheme (WENO-5) proposed by Jiang and Shu [34] as illustrated in Figure 

10. It can be found that the higher order wavelet scheme can capture the discontinuities 

without spurious oscillations and distinguish different scale structures accurately with 

less nodes, which also verifies the better resolution of the higher order scheme. For the 

WENO-5 scheme, a uniform node distribution with N1 = 2048 is required to depict all the 

details of the solution. The nodes required in the adaptive wavelet upwind schemes are 

about half of the WENO-5 scheme, showing that the adaptive wavelet schemes with the 

integration reconstruction can capture discontinuities free from the numerical oscilla-

tions and distinguish complex solutions efficiently. 

  

(a)  (b) 
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(c) 

Figure 10. Numerical results by the schemes with Nodd and BM = 1 at t = 2 (J0 = 6, Jmax = 12): (a) N = 

5; (b) N = 7; (c) N = 9. 

5. Conclusions 

In the present paper, we construct a system of wavelet collocation upwind schemes 

and conduct linear advection tests and Fourier analysis to uncover the effects of the 

characteristics of scaling functions on stability and resolution of the constructed schemes. 

The convergence rates of the schemes are consistent with the expectation. The dissipation 

analysis suggests that one can apply scaling functions of the wavelets with Nodd, BM = 

1 to construct the high-order and stable upwind schemes for hyperbolic conservation 

laws. The higher order scheme has a better resolution which tends to the spectral resolu-

tion as N increases. Two typical numerical tests verify that the constructed wavelet col-

location upwind schemes have the desired properties and can be used to solve 

high-speed flows with multi-scale smooth structures and discontinuities in an efficient 

way. 
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Appendix A 

The auto correlation of Daubechies scaling functions [29, 35] and interpolation 

method [36] are the main techniques to devise scaling functions of interpolation wavelets. 

The interpolation method provides more freedom to construct symmetric and asymmet-

ric scaling functions. Therefore, we apply the interpolation method to devise the scaling 

functions of the interpolation wavelets. The procedure of building positive upwind 

wavelets is elaborated as follows: 

(1) Determine the smoothness parameter N. For an asymmetrical wavelet, N∈even 

or N∈odd is optional.  

(2) Select the BM and the node stencil. Specify N nodes uniformly distributed in VJ as 

the base and locate one node in WJ. The BM has the same parity with N. Several candi-

dates are allowed for the positive upwind wavelets with BM > 0.  

(3) Approximate ( ), 1,J k J l
x

+
 by (N – 1)th order Lagrange interpolation polynomial 

and calculate the filter coefficients. The following relation is derived: 

( )

( ) ( )

1 1

1 1

1

, , ,

, 1, , , , 1,

,

( ),

J k J k k k

kR

J k J l J k J k J k J l
k kL

x

x x L x

 

 
+ +

=

=

= 
 (A1) 

where 
1, 1

2 J

J k
x k=  and 1

1,
2 J

J l
x l +

+
= . On the basis of the refinement relation, 

( ) ( )
1 1

1

, 1, 1, 1,
.

J k J l l J l J l
l

x h x 
+ + +

=  (A2) 

Substituting (A2) into (A1), hl = δ0,l can be easily calculated when l  even. For l  odd, hl 

can be computed by 

1, ,

, 1,

, ,

( )= .
kR

J l J i

l J k J l
i kL J k J i
i k

x x
h L x

x x

+

+
=


−
=

−
  (A3) 

To compute the coefficients more efficiently, supposing that J = 0 and k = 0 can obtain 

0

/ 2
.

kR

l
i kL
i

l i
h

i=


−
=

−
  (A4) 

(4) Calculate the derivatives and integrals of the scaling function by algorithms 

proposed by Wang [37] and Chen et al. [38]. Applying the refinement relation and the 

cascade algorithm, the values of the scaling function, its derivatives and integrals at dy-

adic points at arbitrary refined resolution levels can be obtained. 

The filter coefficients of the negative upwind wavelets are of mirror symmetry with 

that of the corresponding positive upwind wavelets. Following the above steps, a desir-

able scaling function can be built. For the interpolation method, the Kronecker delta 

function is chosen as the dual scaling function [36]: 

( ), ,
.

J k J k
x x = −  (A5) 

Finally, the idea proposed by Donoho [35], which constructs a wavelet function from 

the scaling function, is followed: 

( ) (2 1),x x = −  

( )( )1

,
( ) 2 2 1 .J

J k
x x k  += − +  

(A6) 
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