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Abstract: A steel damper column is an energy-dissipating member that is suitable for reinforced 
concrete (RC) buildings and multistory housing. To assess the seismic performance of buildings 
with steel damper columns, the peak displacement of the whole building and the energy dissipation 
demand of the dampers must be evaluated. This article proposes an energy-based prediction 
procedure for the peak and cumulative response of an RC frame building with steel damper 
columns. The proposed procedure considers two energy-related seismic intensity parameters, 
namely the maximum momentary input energy and the total input energy. The peak displacement 
is predicted considering the energy balance during a half cycle of the structural response, using the 
maximum momentary input energy. The energy dissipation demand of the dampers is then 
predicted considering the energy balance during a whole response cycle using the total input 
energy. The local responses (e.g., peak drift, maximum plastic rotation of beams, maximum shear 
strain, and energy dissipation demand of dampers) are predicted using pushover analysis. 
Numerical analysis results for 8- and 16-story RC buildings show that the proposed prediction 
method achieves satisfactory accuracy. 

Keywords: reinforced concrete moment-resisting frame; steel damper column; peak response; 
cumulative response; passive control structure; momentary energy input; pushover analysis 

 

1. Introduction 

1.1. Background 

In earthquake-prone countries such as Japan, controlling the seismic damage suffered by a 
structure is an important issue in building design. Since the beginning of the 21st century, a dual 
system in which sacrificial members absorb the seismic energy prior to the beams and columns (e.g., 
the damage-tolerant structure proposed by Wada et al. [1]) has become a popular solution for creating 
structures with superior seismic performance. 

Steel damper columns [2] are energy-dissipating sacrificial members. They are suitable for 
reinforced concrete (RC) housing because they minimize the obstacles in architectural planning. The 
authors have previously investigated the application of steel damper columns to RC building 
structures [3–7]. The nonlinear seismic response of existing moment-resisting frames (MRFs) 
retrofitted with steel damper columns was first investigated [3,4], and then a simplified 
displacement-based seismic design procedure for RC MRFs with steel damper columns was 
presented [5]. The influence of the strength balance between the steel damper columns and the 
surrounding beams in RC MRFs on the nonlinear response has also been investigated [6]. The 
nonlinear response of RC MRFs with steel damper columns designed according to the simplified 
design procedure described in [5] subject to seismic sequences was recently examined [7]. 
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The peak deformation and cumulative hysteresis energy are essential parameters in assessing 
the seismic performance of members. The cumulative hysteresis energy is widely used to represent 
the low-cycle fatigue effect. For RC members, the Park–Ang damage model [8] defines the structural 
damage index as a linear combination of the damage caused by the peak displacement and 
cumulative hysteresis energy. In addition, the effect of low-cycle fatigue is essential in evaluating the 
damage suffered by steel dampers [9]. Therefore, to assess the seismic performance of RC buildings 
with steel damper columns, the peak displacement of the whole building and the cumulative energy 
dissipation demand must be evaluated. 

There have been many studies on the energy response of structures [10–31]. Energy-based 
seismic engineering was recently investigated by Benavent-Climent and Mollaioli [24]. The total 
input energy [10,11] is a seismic intensity parameter related to the cumulative energy. Several studies 
have investigated the total input energy spectra [12–16], whereas other studies have focused on 
predicting the structural damage to frame buildings via nonlinear static (pushover) analysis [17–19]. 
Specifically, Fajfar and Gaspersic proposed a procedure for evaluating the seismic damage of RC 
MRFs based on the N2 method [17]: in their procedure, the Park–Ang damage index of each member 
is evaluated in terms of a dimensionless energy parameter γ  proposed by Fajfar [20]. D’Ambrisi 

and Mezzi have proposed an energy-based method of nonlinear static analysis for predicting the 
peak response of a planar RC MRF [21]; however, the cumulative energy of members cannot be 
evaluated using their method. Ucar has derived the theoretical formulation of energy input to multi-
degree-of-freedom systems based on modal contributions [22]. Yalçın et al. proposed an energy-
based design approach for RC ductile frame structures [23]. 

Inoue et al. proposed the maximum momentary input energy [25–27] as an intensity parameter 
related to the peak displacement. The prediction procedure for the nonlinear peak displacement of 
RC structures subjected to strong unidirectional ground motion has been verified by analytical [25] 
and experimental research [26,27]. In these studies, the peak displacement is predicted by equating 
the maximum momentary input energy and cumulative hysteresis energy during a half cycle of the 
structural response. The present authors investigated the relationship between the maximum 
momentary input energy and the total input energy of an elastic single degree-of-freedom (SDOF) 
model [28], and extended the concept of the momentary input energy to bidirectional horizontal 
excitation [29,30]. The bidirectional momentary input energy was then used to predict the peak 
response of an irregular base-isolated building subjected to bidirectional excitation [31]. 

The authors believe that the use of two energy-related seismic intensity parameters, namely the 
maximum momentary input energy and the total input energy, is optimal for evaluating the seismic 
performance of RC MRFs with steel damper columns. This is because the peak displacement can be 
predicted using the maximum momentary input energy, while the cumulative energy dissipation 
demand can be predicted using the total input energy. As shown in previous studies [28,30], both 
energy-related seismic intensity parameters can be accurately evaluated using a time-varying 
function of the momentary energy input. Therefore, the application of this function of momentary 
input energy to the seismic response evaluation of RC MRFs with steel damper columns represents 
a promising solution. 

1.2. Objectives 

Against the above background, the following questions are addressed in this article. 

• Is the time-varying function formulated in our previous study [28] applicable for predicting the 
seismic energy input to RC MRFs with steel damper columns? 

• Can the peak response of RC MRFs with steel damper columns be accurately estimated from the 
predicted maximum momentary input energy? 

• After evaluating the total input energy to the whole building, how can the cumulative strain 
energy of each member be evaluated? Is pushover analysis applicable in determining the 
distribution of the cumulative strain energy? 

The present article proposes a nonlinear static procedure for predicting the seismic demand of 
regular RC ductile MRFs with steel damper columns. Unlike the procedure investigated in previous 
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studies [3,4], the proposed approach predicts both the peak and cumulative responses. The updated 
procedure enables the implementation of a time-varying function of the momentary energy input 
[28]. The maximum momentary input energy and the total input energy are predicted from this time-
varying function. The peak response of the building is then predicted from the maximum momentary 
input energy considering the energy balance during a half cycle of the structural response, while the 
cumulative response is predicted from the total input energy considering the energy balance during 
a whole seismic event.  

In this study, it is assumed that the building oscillates predominantly in the first mode; the 
influence of higher modal responses is not considered for the simplicity of discussion. Several studies 
have applied pushover analysis to planar frames considering higher-mode responses [32–39]. 
However, the application of multimodal pushover analysis is beyond the scope of the current study. 
Ucar has shown that most of the input energy comes from the fundamental mode and the 
contribution of higher modes is generally small [22]. Therefore, in this study, the cumulative energy 
dissipation demand of RC MRFs with steel damper columns is predicted based only on the 
fundamental modal response. Because this study is focused on the seismic response of RC MRFs with 
steel damper columns, we do not consider the capability of the presented procedure for a bare RC 
MRF or an RC MRF with buckling-restrained braces. 

The remainder of this article is organized as follows. Section 2 outlines the proposed procedure, 
before Section 3 presents two RC MRFs with steel damper columns and introduces the ground 
acceleration data used in the nonlinear time-history analysis. The predictions of seismic demand are 
validated in Section 4. Section 5 discusses the applicability of the time-varying function of the 
momentary energy input for predicting the energy response and analyzes the relationship between 
the peak equivalent displacement and the maximum momentary input energy of the first modal 
response. The conclusions to this study and future directions for research are discussed in Section 6. 

2. Description of the Proposed Procedure 

Figure 1 shows the outline of the proposed procedure.  
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Figure 1. Outline of the proposed procedure. 

In this procedure, the following assumptions are made. 

• The building oscillates predominantly in the first mode. 
• All RC MRFs are designed according to the strong-column/weak-beam concept, except at the 

foundation level beam and in the case of the steel damper columns installed in an RC frame. In 
the latter case, at the joints between an RC beam and a steel damper column, the RC beam is 
designed to be sufficiently stronger than the yield strength of the steel damper column 
considering strain hardening. Sufficient shear reinforcement of all RC members is provided to 
prevent premature shear failure. The failure of beam–column joints is not considered, as it is 
assumed that sufficient reinforcement is provided. 

• The hysteresis behavior of RC members is assumed to follow the stiffness-degrading rule, which 
is typical in the case of ductile RC members dominated by flexural behavior. The influences of 
pinching behavior [40] and stiffness degradation after yielding as a result of cyclic loading are 
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neglected. In addition, the hysteresis behavior of the damper panel is assumed to be elastic–
perfectly-plastic. The influence of the strain-hardening effect observed in low-yield-strength 
steel is not considered. 

The proposed procedure consists of three stages. In the first stage, the properties of the 
equivalent SDOF model are calculated using the pushover analysis results of the building model. The 
peak and cumulative responses of the equivalent SDOF model are then evaluated. In this stage, the 

maximum momentary input energy per unit mass ( * *
1 max 1E MΔ ) and the cumulative input energy 

per unit mass ( * *
1 1I

E M ) are calculated based on the time-varying function of the momentary energy 

input, as formulated in our previous study [28]. The peak equivalent displacement of the first modal 

response ( *
1 maxD ) is evaluated using * *

1 max 1E MΔ . In the third stage, the local seismic demand of 

the building model is predicted using the peak and cumulative response of the equivalent SDOF 

model (e.g., *
1 maxD  and * *

1 1I
E M ) and the results of pushover analysis. 

2.1. Stage 1: Calculation of the Equivalent SDOF Model Properties 

2.1.1. Stage 1-1: Pushover Analysis of the Building Model 

Pushover analysis of the N -story frame building model is first carried out. The equivalent 

displacement and acceleration at loading step n  ( *
1n

D  and *
1n

A , respectively) are calculated from 

Equations (1) and (2), assuming that the displacement vector at loading step n  (
n
d ) is 

proportional to the first mode vector at loading step n  ( 1n
Γ

n 1
φ ): 

 * 1
1 *

1

n
n

n

D
M

Γ
= =

T T

n 1 n n n

T

n

φ M d d M d

d M1
,  (1)

 * 1
1 *

1

n
n

n

A
M

Γ
= =

T T

n 1 n R n n R

T

n

φ f d f

d M1
,  (2)

( )
2

*
1 1n n

M = Γ =

T

nT

n 1 T

n n

d M1
φ M1

d M d
, (3)

{ }1

T

n n N
y y=

n
d  , (4)

{ }1

T

n R n RN
f f=

n R
f  , (5)

1 0

0
N

m

m

 
 

=  
  

M  , (6)

{ }1 1
T

=1  . (7)

In Equations (1)–(7), 
j

m  is the mass of the j th floor and 
n R
f  is the restoring force vector at 

step n . The contribution of the RC MRFs and steel damper columns to the equivalent acceleration at 

step n  ( *
1n f

A  and *
1n d

A , respectively) are calculated from 

 * 1
1 *

1

n
n f

n

A
M

Γ
= =

T T

n 1 n Rf n n Rf

T

n

φ f d f

d M1
,  (8) 
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 * 1
1 *

1

n
n d

n

A
M

Γ
= =

T T

n 1 n Rd n n Rd

T

n

φ f d f

d M1
,  (9) 

{ }1

T

n Rf n RfN
f f=

n Rf
f  , (10) 

{ }1

T

n Rd n RdN
f f=

n Rd
f  . (11) 

In Equations (8)–(11), 
n Rf
f  and 

n Rd
f  denote the restoring forces of the RC MRFs and steel 

damper columns, respectively. The restoring force vector 
n R
f  is equal to the sum of 

n Rf
f  and 

n Rd
f

, which are calculated from the shear forces of the RC columns and steel damper columns, 
respectively. 

For simplicity, the relationships between *
1n f

A , *
1n

D  and between *
1n d

A , *
1n

D are idealized 

by bilinear curves, where the “yield” point of the idealized *
1 f

A – *
1D  relationship is YF ( *

1yf
D , *

1yf
A

) and that of the idealized *
1d

A – *
1D  relationship is YD ( *

1yd
D , *

1yd
A ). 

2.1.2. Stage 1-2: Calculation of Capacity Curve of the Equivalent SDOF Model 

Next, the capacity curve of the equivalent SDOF model is calculated. In this procedure, the 

relation between the equivalent velocity of the maximum momentary input energy ( *
1E

V
Δ

) and the 

equivalent displacement *
1D  is referred to as the capacity curve. 

The energy dissipated in half a cycle per unit mass of the equivalent SDOF model ( * *
1 max 1E MΔ ) 

is calculated as 

* ** *
1 11 max 1

* * * *
1 1 1 1

n f n dn n D

n n n n

E EE E

M M M M

µ µ
Δ ΔΔ Δ

= + + . (12)

In Equation (12), * *
1 1n f n

E M
µ

Δ  and * *
1 1n d n

E M
µ

Δ  are the contributions from the hysteretic 

dissipated energies of the RC MRFs and steel damper columns, respectively, while * *
1 1n D n

E MΔ  is 

the contribution from viscous damping. 
The contribution from the hysteretic dissipated energy of the RC MRFs is calculated as 

 ( )
*

1 * *
1 1*

1

n f

yf yf F n f

n

E
A D f

M

µ
µ

Δ
= , (13)

 ( )
21

: 0 1
3

2
: 1 

3

n f n f

F n f

n f n f n f

f
µ µ

µ

µ µ µ


≤ ≤

= 
 − ≥


, (14)

* *
1 1n f n yf

D Dµ = . (15)

In Equations (13)–(15), 
n f
µ  is the global ductility of the RC MRFs. The contribution from the 

hysteretic dissipated energy of the steel damper columns is calculated as 

 ( )
*

1 * *
1 1*

1

n d

yd yd D n d

n

E
A D f

M

µ µ
Δ

= , (16)
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 ( )

21
: 0 1

3
1 5

9 12 : 1 
6

n d n d

D n d

n d n d

n d

f

µ µ

µ

µ µ
µ


≤ ≤


=    − + ≥   

, (17)

* *
1 1n d n yd

D Dµ = . (18)

In Equations (16)–(18), 
n d
µ  is the global ductility of the steel damper columns. The 

contribution from viscous damping is calculated as 

*
1 1 * *1

1 1*
1 11

7

6
f n fn D

n f n

fn

hE
A D

M

π ω

ω

Δ
= , (19)

* *
1 1 1n f n f n

A Dω = , (20)

where 1 f
h  is the viscous damping ratio of the RC MRFs of the first modal response in the elastic 

range. The formulation of Equations (12)–(20) is described in Appendix A. 

The equivalent velocity of the maximum momentary input energy corresponding to *
1n

D  (
*

1n E
V

Δ
) is calculated as 

* * *
1 1 max 12

n E n n
V E M

Δ
= Δ . (21)

The effective period of the first modal response at step n  ( 1n eff
T ) is calculated as 

*
1 max

1 *
1

4 7
2

6
n

n eff

n E

D
T

V

πβ
π

Δ

+
= , (22)

where β  is the complex damping ratio of the equivalent linear system considered for the calculation 

of the 
ΔE

V  and 
I

V  spectra. The formulation of Equation (22) is described in Appendix B. 

2.2. Stage 2: Prediction of the Seismic Demand of the Overall Building 

The schemes for predicting the peak and cumulative responses of the equivalent SDOF model 
are shown in Figure 2.  
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Figure 2. Schemes for the prediction of the peak and cumulative responses of the equivalent SDOF 
model: (a) capacity curve; (b) demand curve; (c) prediction of the peak equivalent displacement; (d) 
prediction of the cumulative input energy. 

The capacity curve obtained in stage 1 is shown in Figure 2(a): the secant slope of the capacity 

curve at point n ( *
1n

D , *
1n E

V
Δ

) corresponds to the effective period of the equivalent SDOF model (

1n eff
T ). The demand curve ( ( )E

V T
Δ

– ( )D T  relationship) shown in Figure 2(b) is calculated in stages 

2-1 and 2-2. The peak response point P ( *
1 maxD , *

1E
V

Δ
) is at the intersection of the capacity and 

demand curves, as shown in Figure 2(c). The velocity of the cumulative input energy in the equivalent 

SDOF model ( *
1I

V ) is obtained from the 
I

V  spectrum calculated in stage 2-1 and the effective 

period, corresponding to point P ( 1eff
T ), as shown in Figure 2(d). 

2.2.1. Stage 2-1: Calculation of 
ΔE

V  and 
I

V  Spectra 

The 
ΔE

V  and 
I

V  spectra are calculated from the time-varying function proposed in our 

previous study [28]. A discrete time history of the ground motion ( ( )g
a t ), defined within the range 

0,
d

t   , can be expressed as  

( ) ( )exp
G

G

k N

g k k
k N

a t c i tω
=

=−

=  , (23)

where 
k

c  and 
k

ω ( = 2
d

k tπ ) are the complex Fourier coefficients of the ground motion and the 

circular frequency of the k th harmonic, and i  is the imaginary unit. The coefficient 0c  is assumed 

to be zero. For a given natural period T  and complex damping ratio β , the displacement and 

velocity transfer function of the equivalent linear system is calculated as 
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( )
( )

( ) ( )2 2 2
0 0

1
,

2 sgnD k V k k D k

k k

H i H i i H i
i

ω ω ω ω
ω ω βω ω

= =
− +

. (24) 

( )
1 : 0

sgn
1 : 0

k

k

k

ω
ω

ω

 >
= 

− <
. (25) 

In Equation (24), 0ω  ( 2 Tπ= ) is the natural circular frequency of the equivalent linear system. 

The duration of a half cycle of the response ( tΔ ) is calculated as  

( ) ( )
2 22 2

1 1

G GN N

D k k V k k
k k

t H i c H i cπ ω ω
= =

Δ =   . (26)

The time-varying function of the momentary energy input can then be calculated as 

 ( )
( )

1
*

,
1

1
exp

G

G

N

k k
k N

E t
E i t

t m
ω

−

Δ
=− +

Δ
=

Δ
 , (27)

( )
( ) ( ){ } ( )

( ){ }

1

2*
,

1

*
,

sin 2
: 0

2

2 Re : 0

: 0

G

G

N
k

V l V l k l l k
l kk

N

k V l l
l

k

t
H i H i c c k

t

E H i c k

E k

ω
ω ω

ω

ω

− − −
= +

Δ
=

Δ −

 Δ
+ − >

Δ


= =

 <




 . (28)

In Equation (28), the overbar indicates the complex conjugate. Note that the time-varying 
function in Equation (27) is shown in the middle of Figure 1. The momentary input energy per unit 
mass at time t  is calculated as 

( )  ( )2

2

1
t t

t t

E t E t
dt

m t m

+Δ

−Δ

Δ Δ
=

Δ . (29)

The maximum momentary input energy per unit mass ( maxE mΔ ) can be evaluated as the 

maximum value calculated by Equation (29) over the course of the seismic event. The total input 
energy per unit mass (

I
E m ) can be calculated as 

 ( ) *
,0

0

1dt

I
d

E tE
dt t E

m t m Δ

Δ
= =

Δ . (30)

The equivalent velocities of the maximum momentary input energy (
ΔE

V ) and the total input 

energy (
I

V ) are calculated as 

max2 , 2
E I I

V E m V E m
Δ

= Δ = . (31)

2.2.2. Stage 2-2: Calculation of Demand Curve 

The demand curve (Figure 2(b)) is calculated from the 
ΔE

V  spectrum as follows. The equivalent 

displacement of the equivalent linear system (natural period T , complex damping ratio β ) is 

calculated as 
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( ) ( )
6

4 7 2 E

T
D T V T

πβ π Δ
=

+
. (32)

2.2.3. Stage 2-3: Determination of the Peak and Cumulative Response of the Equivalent SDOF 
Model 

The peak response point P is shown in Figure 2(c): in this figure, the peak response point P (
*

1 maxD , *
1E

V
Δ

) is obtained as the intersection of the capacity curve and the demand curve. The 

effective period corresponding to point P is then calculated as 

*
1 max

1 *
1

4 7
2

6eff

E

D
T

V

πβ
π

Δ

+
= . (33)

2.2.4. Stage 2-4: Calculation of the Cumulative Energies of the Overall Building 

The equivalent velocity of the cumulative input energy of the first modal response ( *
1I

V ) is 

obtained from the 
I

V  spectrum as 

( )*
1 1I I eff

V V T= . (34)

The cumulative dissipated energy of the equivalent SDOF model is calculated as follows. The 
cumulative input energy of the first modal response per unit mass ( * *

1 1I
E M ) is calculated as 

*
*21

1* *
1 1

1
2

I
I

E M
V

M M

 
=   

 
, (35)

where *
1M  is the effective first modal mass corresponding to the peak response point and M  is 

the total mass. Note that * *
1 1I

E M  is factored by ( )*
1M M . This is because the total input energy 

of the whole building is greater than the cumulative input energy of the first modal response. 

Therefore, in this study, * *
1 1I

E M  is factored by the ratio ( )*
1M M  to give a conservative 

prediction of the cumulative dissipated energy. 
The cumulative strain energies of RC MRFs and steel damper columns are calculated as follows. 

The ductility factors of RC MRFs and steel damper columns (
f

µ  and 
d

µ , respectively) are given by 

* *
1 max 1f yf

D Dµ = , * *
1 max 1d yd

D Dµ = . (36)

Next, the dissipated strain energy of RC MRFs per unit mass under monotonic loading 
( * *

1 1S fm
E MΔ ) and under cyclic loading ( * *

1 1S fc
E MΔ ) are calculated as 

( )  ( )
* *

1 1* * * *
1 1 1 1* *

1 1

,S fm S fc

yf yf Fm f yf yf Fc f

E E
A D g A D g

M M
µ µ

Δ Δ
= = . (37)

( )
( )

0 : 0 1

1
2 1 : 1

2

f

Fm f

f f f

g

µ

µ
µ µ µ

 ≤ ≤


= 
− − >

. (38)

 ( )
0 : 0 1

4 3 : 1

f

Fc f

f f f f

g
µ

µ
µ µ µ µ

 ≤ ≤
= 

− + >
. (39)
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Similarly, the dissipated strain energy of the steel damper columns per unit mass under 
monotonic loading ( * *

1 1S dm
E MΔ ) and under cyclic loading ( * *

1 1S dc
E MΔ ) are calculated as 

( )  ( )
* *

* * * *1 1
1 1 1 1* *

1 1

,S dm S dc
yd yd Dm f yd yd Dc d

E E
A D g A D g

M M
µ µ

Δ Δ
= = . (40)

( )
( )

0 : 0 1

1
1 : 1

2

d

Dm d

d d

g

µ
µ

µ µ

 ≤ ≤


= 
− >

. (41)

 ( ) ( )
0 : 0 1

2 2 1 : 1
d

Dc d
d d d

g
µ

µ
µ µ µ

 ≤ ≤
= 

− + >
. (42)

The dissipated damping energy per unit mass over each cycle of the structural response 

( * *
1 1D c

E MΔ ) is calculated as 

( )
*

1* * *1
1 max 1 1 max 1 max*

1 11

2 peakn f
D c

f f

f

E
D h A D

M

ω
π

ω

Δ
= . (43)

* * * *
1 1 1 1 max 1 maxpeak peak peakn f n f n f

A D A Dω = =  (44)

In Equation (43), 
peak

n  is the loading step of pushover analysis, corresponding to the peak 

equivalent displacement *
1 maxD . The formulation of Equations (38)–(44) is given in Appendix C. 

From the energy balance of the cumulative energy in the whole seismic event, the equivalent 
number of cycles 

eq
n  is calculated as 

( ) ( ) ( ){ }
( ) ( ) ( )

* * * * * *
1 1 1 1 1 1

* * * * * *
1 1 1 1 1 1

I S fm S dm

eq

S fc S dc D c

E M E M E M
n

E M E M E M

− Δ + Δ
=

Δ + Δ + Δ
. (45)

From 
eq

n , the cumulative strain energies of RC MRFs and steel damper columns over the whole 

seismic event ( *
1S f

E  and *
1S d

E , respectively) are calculated as 

( )  ( ){ }* * * * * *
1 1 1 1 1 1S f S fm eq S fc yf yf Fm f eq Fc f

E E n E M A D g n gµ µ= Δ + ⋅Δ = + . (46)

( )  ( ){ }* * * * * *
1 1 1 1 1 1S d S dm eq S dc yd yd Dm d eq Dc d

E E n E M A D g n gµ µ= Δ + ⋅Δ = + . (47)

2.3. Stage 3: Prediction of the Local Seismic Demand of the Building Model  

2.3.1. Stage 3-1: Determination of Peak Local Seismic Demand 

Pushover analysis is applied until the equivalent displacement *
1n

D  reaches the peak 

equivalent displacement obtained in stage 2-3 ( *
1 maxD ). The peak local seismic demand (e.g., relative 

displacement, story drift, plastic rotation of member ends, strain energy of dampers) is obtained as a 

quantity corresponding to *
1 maxD . 

2.3.2. Stage 3-2: Calculation of Cumulative Response Demand of each Damper Column 

The cumulative strain energy of a damper panel ( ,Sd j
E ) is calculated as 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 January 2023                   doi:10.20944/preprints202301.0064.v1

https://doi.org/10.20944/preprints202301.0064.v1


 12 

 

*
, 0, 0, 1Sd j Sd j Sd j S d

j

E E E E
 

=   
 

 , (48)

 ( )γ µ=0, 0Sd j yDLj yDLj d j Dc dj
E Q h g , (49)

max,dj D j yDLj
µ γ γ= . (50)

In Equations (49) and (50), 
dj

µ , max,D j
γ , 

yDLj
γ , and 0d j

h  denote the ductility, peak shear strain, 

initial yield shear strain, and height of the j th damper panel, respectively. In this study, for 

simplicity, ,Sd j
E  is assumed to be proportional to the average dissipated strain energy under cyclic 

loading ( 0,Sd j
E ). 

The cumulative strain energy of a damper panel ( ,Sd j
E ) is normalized as follows for simplicity:  

γ
=

,

,
0

Sd j

Sd j

yDLj yDLj d j

E
NE

Q h
. (51)

In this version of the procedure, the cumulative response demand of each RC member is not 
calculated. Elwood et al. have studied the impact of prior shaking on the earthquake response and 
repair requirements of ductile RC MRFs [41]. They concluded that simple (or no) repairs are sufficient 
provided that the story drift did not exceed 2.0% because “cyclic loading up to 2% drift had a limited 
impact on the deformation capacity of column specimens with up to 0.1 axial load ratio” [41]. 
Therefore, for ductile RC members, the prediction of the peak response demand is sufficient unless 
the story drift exceeds 2.0%. 

3. Model Structures and Ground Motions 

3.1. Model Structures 

Figure 3 shows a simplified structural plan and elevation of the MRF building models with steel 
damper columns considered in this study. Eight- and 16-story building models are designed using 

the simplified procedure [5]. In the seismic design of these two frames, the displacement limit *
1 limit

D  

is assumed to be 1/75 of the equivalent height: *
1 limit

D  is 0.252 m for the 8-story model and 0.479 m 

for the 16-story model. Both models have the same structural plan. The unit mass per floor is assumed 
to be 1.2 t/m2. The story height is assumed to be 4.2 m for the first story and 3.2 m for upper stories. 
Details of the members are given in Appendix D. 

All MRFs are modeled as planar frames: the MRF with steel damper columns is modeled as in 
previous studies [5,7]. In this study, only half of the frame is modeled considering the symmetry of 
the structure. All RC members are modeled as elastic beams with nonlinear flexural springs at both 
ends. The steel damper columns are modeled as elastic columns with nonlinear damper panels in the 
middle. The beam–column joints are assumed to exhibit rigid behavior. For RC beam–RC column 
joints, it is assumed that proper reinforcement is provided to prevent premature failure. In addition, 
appropriate dimensions of the steel beam embedded in the RC beams and suitable reinforcement are 
assumed in the RC beam–damper column joints, to prevent premature failure until the damper 
panels reach their ultimate stage.  
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Figure 3. RC MRF building models with damper columns: (a) structural plan; (b) structural elevation 
of 8-story model; (c) structural elevation of 16-story model. 

The nonlinear behavior of the RC members and steel damper columns is modeled as in previous 
studies [5,7]. The envelope of the force–deformation relationship at the potential hinge of the RC 
members is modeled as a trilinear curve, considering the cracking and yielding of the section. The 
non-hinges of RC members are modeled as bilinear curves, considering only the cracking of the 
section. The behavior of the beam at the foundation level is assumed to be linearly elastic. The same 
hysteresis model (stiffness degradation model) is used for the flexural springs in the RC members. 
Pinching behavior is not considered in this study. The shear behavior of RC members is assumed to 
be linearly elastic. The axial force–moment interaction of the columns is not considered for simplicity. 
Similarly, the same hysteresis model (normal bilinear model neglecting the strain-hardening effect 
for pushover analysis, trilinear model with strain-hardening effect for nonlinear time-history 
analysis) is used for the damper panels. Details of the modeling can be found in previous studies 
[5,7]. For simplicity, the stiffness degradation of RC members after yielding under cyclic loading, 
which was considered in a previous study [7], is not considered in this paper. 
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Table 1 presents the natural periods of the first three modes in the initial stage for each model. 
The natural period of the 16-story model is longer than that of the 8-story model. 

Table 1. Natural period of the models at the initial stage. 

 8-story model 16-story model 

1e
T  (s) 0.5611 1.1163 

2 e
T  (s) 0.1869 0.3693 

3e
T  (s) 0.1053 0.2062 

In this study, the damping matrix is assumed to be proportional to the tangential stiffness of the 
RC MRFs. 

3.2. Ground Motions 

Two groups of artificial ground motions are generated. The target spectrum is the code-specific 
spectrum (soil condition: type-2 (normal)) of the Building Standard Law of Japan [42], defined as 

 ( )
( )

 + ≤


= < ≤
 >

24.8 45  m s : 0.16 s

12.0 : 0.16 s 0.864 s

12.0 0.864 : 0.864 s
p A

T T

S T T

T T

.  (52) 

The phase angle is given by a uniform random value. To consider the time-dependent amplitude 
of the ground motions, a Jenning-type envelope function ( ( )e t ) is assumed. In this study, two 

envelope functions are considered. In Art-L-00, the envelope function is set as in Equation (53), 
whereas in Art-S-00, the envelope function is set as in Equation (54). 

 ( )
( )

( ){ }

 ≤ ≤


= ≤ ≤


− − ≤ ≤

2
5 : 0 5 s

1 : 5 s 35 s

exp 0.027 35 : 35 s 120 s

t t

e t t

t t

,  (53) 

 ( )
( )

( ){ }

 ≤ ≤


= ≤ ≤


− − ≤ ≤

2
2.5 : 0 2.5 s

1 : 2.5 s 17.5 s

exp 0.054 17.5 : 17.5 s 60 s

t t

e t t

t t

.  (54) 

Figure 4 shows the time histories of the artificial ground accelerations of Art-L-00 and Art-S-00, 
respectively. 
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Figure 4. Time histories of the artificial ground acceleration: (a) Art-L-00; (b) Art-S-00. 

Eleven artificial ground motions are generated from Art-L-00 and Art-S-00 by shifting the phase 
angle. The generated artificial ground motion ( )φΔ 0,

g
a t  is expressed as 

( ) ( ){ }φ ω ω φ
=

=−

 Δ = − Δ 0 0, exp sgn
G

G

k N

g k k k
k N

a t c i t , (55)

where φΔ 0  is the constant used to shift the phase angle of all harmonics. As in previous studies 

[28,30,31], φΔ 0  varies from π 12  to π11 12  at intervals of π 12 . The generated artificial ground 

motions are numbered from 01 to 11 accordingly. A total of 2 × 12 = 24 artificial ground motions are 
used in this study. 

Figure 5 shows the elastic pseudo-acceleration spectra (damping ratio: 0.05) of the generated 
ground motions. As shown in this figure, the difference in ( )p A

S T  caused by changes in the phase 

angle is very limited. 

 

Figure 5. Pseudo-acceleration spectra of the artificial ground acceleration: (a) Art-L series; (b) Art-S 
series. 

3.3. Analysis Cases 

The following parameters are considered for the validation of the proposed procedure. 

• The complex damping ratio of the equivalent linear system ( β ): the complex damping ratio of 

the equivalent linear system is the key parameter in obtaining better predictions of the energy 
response. Therefore, three different values of β  are considered: 0.05, 0.10, and 0.15.  

• The viscous damping ratio of the first modal response of RC MRFs in the elastic range ( 1 f
h ): the 

accuracy of the cumulative energy depends on the viscous damping of the RC MRFs. Therefore, 
three different values of 1 f

h  are considered: 0.00, 0.03, and 0.05. 

4. Analysis Results 

In Section 4.1, the process of predicting the seismic demand of the overall building using the 
equivalent SDOF model is presented. The predicted results are then compared with the nonlinear 
time-history analysis results of frame models in Section 4.2. 

4.1. Prediction of the Seismic Demand of the Equivalent SDOF Model 

Figure 6 shows the capacity curve of the building models (stage 1 in Figure 1). The calculation 
results for the 8-story model are shown in Figure 6(a), whereas those for the 16-story model are shown 
in Figure 6(b). In this study, displacement-based mode-adaptive pushover analysis [43] is applied to 
obtain the relationship between the equivalent acceleration (whole building: *

1n
A , RC MRF: *

1n f
A , 
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and damper column: *
1n d

A ) and equivalent displacement *
1n

D . The *
1n f

A – *
1n

D  and *
1n d

A – *
1n

D  

relationships are idealized as bilinear curves following a previous study [7].  
The dissipated energy in a half cycle per unit mass of the equivalent SDOF model is calculated 

according to the procedure described in Section 2.1.2. The calculated results are shown in the middle 

part of Figure 6. The contribution of the RC MRFs ( * *
1 1n f n

E M
µ

Δ ) is calculated using Equations (13)

–(15). The contribution from the steel damper columns ( * *
1 1n d n

E M
µ

Δ ) is calculated using Equations 

(16)–(18). The contribution of viscous damping ( * *
1 1n D n

E MΔ ) is calculated from Equations (19) and 

(20). Note that the calculated * *
1 1n D n

E MΔ  depends on the viscous damping ratio of the first modal 

response of RC MRFs in the elastic range ( 1 f
h ): * *

1 1n D n
E MΔ  for 1 f

h  = 0.00 is not shown because 
* *

1 1n D n
E MΔ  is zero in this case. 

The calculated capacity curves ( *
1E

V
Δ

– *
1D  relationship) are shown at the bottom of Figure 6. In 

this figure, the difference in the capacity curves as 1 f
h  varies is almost negligible. 

 

Figure 6. Capacity curves of building models: (a) 8-story model; (b) 16-story model. 
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Figure 7 shows the calculated 
ΔE

V  spectrum and demand curve ( ( )E
V T

Δ
– ( )D T  relationship). 

The 
ΔE

V  spectrum calculated using the time-varying function in Equation (27) is independent of 

the phase shift φΔ 0 , as described in previous studies [28,30]. Figure 7(a) shows the results calculated 

from the Art-L series, whereas Figure 7(b) shows the results for the Art-S series. 
On the left of Figure 7(a), the calculated 

ΔE
V  spectrum is largest when β  = 0.05 and smallest 

when β  = 0.15. The demand curves are compared on the right of Figure 7(a). The three demand 

curves are almost identical when ( )E
V T

Δ
 is less than 0.9 m/s. Similar observations can be made for 

the Art-S series in Figure 7(b). 

 

Figure 7. Demand curve of input ground motions: (a) Art-L series; (b) Art-S series. 

Figure 8 shows the predicted peak response points for each model using the three demand 
curves. In this figure, the predicted results are presented for 1 f

h  = 0.05. As described in Section 2.2.3, 

the intersection of the capacity and demand curves is the predicted peak response point.  

In Figure 8(a), the largest equivalent displacement ( *
1 maxD ) occurs when β  = 0.05, while the 

smallest *
1 maxD  is obtained with β  = 0.15. Similar observations can be made in Figures 8(b)–8(d). 

Note that the difference in the predicted *
1 maxD  for the Art-L and Art-S series depends on the model: 

a comparison of Figure 8(a) and 8(c) indicates that the predicted *
1 maxD  for the Art-L series is larger 

than that for the Art-S series in the case of the 8-story model, while the opposite conclusion can be 
reached for the 16-story model. 
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Figure 8. Prediction of the peak response point ( 1 f
h  = 0.05): (a) 8-story model (Art-L series); (b) 16-

story model (Art-L series); (c) 8-story model (Art-S series); (d) 16-story model (Art-S series). 

Figure 9 shows the predicted equivalent velocity of the cumulative input energy for the first 
modal response. The predictions shown in this figure are for 1 f

h  = 0.05. The spectra for both 
ΔE

V  

and 
I

V  are shown. The vertical lines indicate the effective period ( 1eff
T ) at the predicted peak 

response point. The predicted equivalent velocity ( *
1I

V ) is obtained as the intersection of the 
I

V  

spectra and the vertical lines. 
A comparison of Figure 9(a) and 9(c) indicates that the predicted *

1I
V  for the Art-L series is 

larger than that for the Art-S series in the case of the 8-story model. The same conclusion can be 
obtained for the 16-story model by comparing Figure 9(b) and 9(d). 
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Figure 9. Prediction of the equivalent velocity of the cumulative input energy for the first modal 
response ( 1 f

h  = 0.05): (a) 8-story model (Art-L series); (b) 16-story model (Art-L series); (c) 8-story 

model (Art-S series); (d) 16-story model (Art-S series). 

4.2. Comparisons with the Time-History Analysis Results 

In this section, the predicted seismic demands are compared with the nonlinear time-history 
analysis results.  

4.2.1. Energy Demand of the Overall Building 

Figures 10 and 11 compare the predicted energy demand of the overall building with the 
nonlinear time-history analysis results. These figures show the mean nonlinear time-history analysis 
results. All quantities have been normalized by the total mass M . In addition, the total input energy 
is the sum of the cumulative strain energies of RC MRF and damper columns, and the cumulative 
energy of viscous damping. 

The following observations can be made for these figures. 
• For the 8-story model shown in Figure 10, the relationships between the predicted total input 

energies and the nonlinear time-history analysis results depend on the ground motion series and 
the value of β : the predicted total input energy with β  = 0.15 is unconservative for all cases. 

For the 16-story building model shown in Figure 11, the predicted total input energy agrees well 
with that obtained from the nonlinear time-history analysis results for all cases. 

• The predicted cumulative strain energy of the RC MRFs is larger than that obtained from the 
nonlinear time-history analysis results for both models. 
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• The predicted cumulative strain energy of the steel damper columns is close to that of the 
nonlinear time-history analysis results for both models. 

• The predicted cumulative energy of viscous damping is smaller than that of the nonlinear time-
history analysis results, except when 1 f

h  = 0.00. 

Therefore, we believe that the predicted energy demand of the whole building is acceptable, 
although the predicted cumulative energy of viscous damping is small. Considering the energy 
balance of the whole seismic event, smaller predicted values of the energy of viscous damping lead 
to larger (more conservative) predictions of the strain energy demands of RC MRFs and damper 
columns. In addition, the contribution of viscous damping to the whole energy response is small, as 
shown in Figures 10 and 11. Therefore, smaller predicted values of the viscous damping energy will 
not be critical. 

 

Figure 10. Prediction of the energy demand of the overall building (8-story model): (a) Art-L series; 
(b) Art-S series. 
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Figure 11. Prediction of the energy demand of the overall building (16-story model): (a) Art-L series; 
(b) Art-S series. 

4.2.2. Local Seismic Demand 

In this section, the following local response quantities are compared: (i) peak story drift, (ii) peak 
plastic rotation at the beam end, (iii) peak shear strain of the damper panels, and (iv) normalized 
cumulative strain energy of the damper panels. The mean, maximum, and minimum values of the 
nonlinear time-history analysis results for the 12 ground motions are compared with the predicted 
results. 

Figure 12 compares the predicted peak story drift with the nonlinear time-history analysis 
results for the Art-L and Art-S ground motion series. 

The following observations can be made for Figure 12. 

• For the 8-story model, the predicted peak drift with β  = 0.05 is larger than the mean of the 

nonlinear time-history analysis results, whereas the predicted peak drift with β  = 0.10 is 

slightly smaller than the mean of the nonlinear time-history analysis results. When β  = 0.15, 

the predicted peak drift is smaller than the mean of the nonlinear time-history analysis results. 
• For the 16-story model, the predicted peak story drift with β  = 0.10 is in good agreement with 

the nonlinear time-history analysis results below the mid-story level (7th or 8th story). However, 
the predicted peak story drift above this level is lower than the nonlinear time-history analysis 
results. This tendency is noticeable when 1 f

h  = 0.00. 
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Figure 12. Comparisons of the peak story drift: (a) 8-story model ( 1 f

h  = 0.00); (b) 16-story model ( 1 f
h  

= 0.00); (c) 8-story model ( 1 f
h  = 0.03); (d) 16-story model ( 1 f

h  = 0.03); (e) 8-story model ( 1 f
h  = 0.05); 

(f) 16-story model ( 1 f
h  = 0.05). 

Figure 13 compares the predicted peak plastic hinge rotation at the beam end (θ maxp
) with the 

nonlinear time-history analysis results. This figure shows θ maxp
 for the beam end at the right of 

column X2. 
The following observations can be made for Figure 13. 

• For the 8-story model, the predicted θ maxp
 with β  = 0.05 is slightly larger than the mean of 

the nonlinear time-history analysis results. The predicted θ maxp
 are unconservative when β  = 

0.10 or β  = 0.15. 

• For the 16-story model, the predicted θ maxp
 with β  = 0.05 is too conservative below the mid-

story level (7th or 8th story). The predicted θ maxp
 with β  = 0.10 agrees well with the mean of 

the nonlinear time-history analysis results below the mid-story level. For β  = 0.15, the 

predicted θ maxp
 is unconservative at all floors. 
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Figure 13. Comparisons of the peak plastic hinge rotation of the beam: (a) 8-story model ( 1 f
h  = 0.00); 

(b) 16-story model ( 1 f
h  = 0.00); (c) 8-story model ( 1 f

h  = 0.03); (d) 16-story model ( 1 f
h  = 0.03); (e) 8-

story model ( 1 f
h  = 0.05); (f) 16-story model ( 1 f

h  = 0.05). 

Figure 14 compares the predicted peak shear strain of the damper panels ( γ maxD
) with the 

nonlinear time-history analysis results. The following observations can be made for Figure 14. 

• For the 8-story model, the predicted γ maxD
 with β  = 0.05 is larger than the mean of the 

nonlinear time-history analysis results. The predicted γ maxD
 for the cases where β  = 0.10 and 

β  = 0.15 are closer to the mean of the nonlinear time-history analysis results. 

• For the 16-story model, the predicted γ maxD
 with β  = 0.05 is too conservative below the mid-

story level (9th or 10th story). The predicted γ maxD
 when β  = 0.10 is also conservative below 

the mid-story level, but is closer to the mean of the nonlinear time-history analysis results. The 
predicted γ maxD

 with β  = 0.15 is the closest to the mean of the nonlinear time-history analysis 

results. 
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Figure 14. Comparisons of the peak shear strain of the damper panels: (a) 8-story model ( 1 f
h  = 0.00); 

(b) 16-story model ( 1 f
h  = 0.00); (c) 8-story model ( 1 f

h  = 0.03); (d) 16-story model ( 1 f
h  = 0.03); (e) 8-

story model ( 1 f
h  = 0.05); (f) 16-story model ( 1 f

h  = 0.05). 

Figure 15 compares the predicted normalized cumulative strain energy of the damper panels (

Sd
NE ) with the nonlinear time-history analysis results. The following observations can be made for 

Figure 15. 

• For the 8-story model, the predicted 
Sd

NE  is larger than that of the nonlinear time-history 

analysis results above the 2nd story. However, the predicted 
Sd

NE  at the 1st story 

underestimates the nonlinear time-history analysis results. 
• For the 16-story building model, the predicted 

Sd
NE  is in good agreement with the nonlinear 

analysis results below the mid-story level (9th or 10th story). However, the predicted 
Sd

NE  

above the mid-story level underestimates the nonlinear time-history analysis results. This is 
noticeable when 1 f

h  = 0.00. 
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Figure 15. Comparisons of the normalized cumulative strain energy of the damper panels: (a) 8-story 
model ( 1 f

h  = 0.00); (b) 16-story model ( 1 f
h  = 0.00); (c) 8-story model ( 1 f

h  = 0.03); (d) 16-story model 

( 1 f
h  = 0.03); (e) 8-story model ( 1 f

h  = 0.05); (f) 16-story model ( 1 f
h  = 0.05). 

4.3. Summary of the Analysis Results 

This section has demonstrated the procedure for predicting the seismic demand of the 
equivalent SDOF model. The predicted seismic demands were then compared with the nonlinear 
time-history analysis results. The analysis results can be summarized as follows. 

• The accuracy of the predicted energy demand of the whole building is acceptable, although the 
predicted cumulative energy of viscous damping is small. 

• The accuracy of the predicted local peak seismic demands (story drift, plastic rotation of the 
beam end, and shear strain of the damper panels) is acceptable, although some quantities are 
unconservative. 

• The accuracy of the predicted cumulative energy strain energy demand of the damper panels is 
acceptable, although some values are unconservative. 

It is important to mention that the underestimations of the local seismic demand observed at 
some points occur because of higher modal responses: in this procedure, only the contribution of the 
first modal response is considered. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 January 2023                   doi:10.20944/preprints202301.0064.v1

https://doi.org/10.20944/preprints202301.0064.v1


 26 

 

5. Discussion 

The accuracy of the proposed procedure strongly relies on the prediction of the seismic demand 
of the equivalent SDOF model in stage 2 (Figure 1). In this section, the discussion focuses on (i) the 
applicability of the time-varying function of the momentary energy input for predicting the energy 
response and (ii) the relationship between the peak equivalent displacement and the maximum 
momentary input energy of the first modal response. The equivalent velocities of the maximum 
momentary input energy and the cumulative energy ( *

1E
V

Δ
 and *

1I
V ), and the peak equivalent 

displacement *
1 maxD , are calculated from the nonlinear time-history analysis results according to the 

procedure presented in a previous study [7]. 

5.1. Applicability of the Time-Varying Function of the Momentary Energy Input for Predicting the Energy 

Response 

Figure 16 shows the time-history and hysteresis of the first modal response of the 16-story model 
as an example. In this figure, the results obtained with 1 f

h  = 0.05 are shown for the Art-L-06 and Art-

L-11 ground accelerations. The dashed lines in Figure 16(b) indicate the predicted peak equivalent 

displacement ( *
1 maxD ) for three values of β . In Figure 16(c), η  is the ratio of the local peak 

equivalent displacement (in the positive and negative directions), defined as 

 ( ) ( )* *
1 max max 1 maxE E E

D t t D tη
Δ Δ Δ

= + Δ ,  (56)

where maxE
t

Δ
 and max maxE E

t t
Δ Δ

+ Δ  are the start and end times, respectively, of the half cycle when the 

maximum momentary input energy of the first modal response ( *
1 maxEΔ ) occurs. The time-history 

and the hysteresis loop during the half cycle (from maxE
t

Δ
 to max maxE E

t t
Δ Δ

+ Δ ) are denoted by the red 

curves. 
The following observations can be made for Figure 16. 

• Although the time-histories of ground accelerations are very similar, the time-histories of the 

equivalent displacement ( )*
1D t  are different. The equivalent displacement does not exceed the 

predicted *
1 maxD  in the case of Art-L-06, but does exceed the predicted *

1 maxD  in the case of 

Art-L-11.  
• The hysteresis loop is almost symmetric in the case of Art-L-06 (left of Figure 16(c)), but is 

notably asymmetric in the case of Art-L-11 (right of Figure 16(c)). The ratio η  is 1.086 for Art-
L-06 and 0.209 for Art-L-11. 

The results shown in Figure 16 imply that the difference in the peak equivalent displacement 
*

1 maxD  is caused by the asymmetry of the hysteresis loop, which is affected by the phase shift of the 

ground acceleration. 
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Figure 16. Time-history and hysteresis of the first modal response (16-story model, 1 f
h  = 0.05, Art-

L): (a) time-history of ground acceleration; (b) time-history of equivalent displacement of the first 
modal response; (c) hysteresis of the first modal response. 

The time-history of the momentary input energy of the first modal response per unit mass (
* *

1 1E MΔ ) is compared with that calculated from the time-varying function in Figure 17. In Figure 

17(a), the time-histories of the momentary input energy of the 16-story model ( 1 f
h  = 0.05, Art-L-06 

and Art-L-11) calculated from the nonlinear time-history analysis results are shown. In Figure 17(b), 
the time-histories calculated from the time-varying function in Equation (27) are shown for each 
assumed complex damping ratio β : in the calculation of Equation (27), the natural period T  is 

taken as the effective period of the first modal response corresponding to the predicted peak response 
point 

1eff
T . 
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Figure 17. Comparisons of the time-history of the momentary energy input of the first modal response 
(16-story model, Art-L): (a) momentary energy input obtained from the time-history analysis; (b) 
momentary energy input calculated using time-varying function. 

The following observations can be made for Figure 17. 

• The time-histories of the momentary input energy are very similar for Art-L-06 and Art-L-11, 

although * *
1 max 1E MΔ  is different, being larger for Art-L-11 than for Art-L-06. 

• The time-varying functions calculated assuming β = 0.05 (shown at the top of Figure 17(b)) are 

notably different from the nonlinear time-history analysis results shown in Figure 17(a): the 
variations in the time-varying functions are too large in comparison with the nonlinear time-
history analysis results. 

• The time-varying functions calculated assuming β = 0.10 and 0.15 (shown in the middle and 

bottom of Figure 17(b)) are closer to the nonlinear time-history analysis results than for β = 0.05. 

In addition, the value of * *
1 max 1E MΔ  calculated from the time-varying function is between the 

values of Art-L-06 and Art-L-11. The calculated * *
1 max 1E MΔ  for β = 0.10 is larger than that for 

β = 0.15. 

This result implies that the accuracy of the maximum momentary input energy from the time-
varying function strongly depends on the assumed complex damping ratio β . 

Figure 18 compares the 
E

V
Δ

 spectrum and the equivalent velocities of the maximum 

momentary input energy ( *
1E

V
Δ

) obtained from the nonlinear time-history analysis results. In this 
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figure, the effective period 
1eff

T  is calculated from Equation (33). In addition, the 
E

V
Δ

 spectrum is 

calculated using the time-varying function as described in Section 2.2.1. 
The following observations can be made for Figure 18. 

• In the case of β = 0.05 (shown at the top of Figure 18), the nonlinear time-history analysis results 

are below the 
E

V
Δ

 spectrum. 

• In the case of β = 0.10 (shown in the middle of Figure 18), the nonlinear time-history analysis 

results are in good agreement with the 
E

V
Δ

 spectrum. 

• In the case of β = 0.15 (shown at the bottom of Figure 18), some of the nonlinear time-history 

analysis results are above the 
E

V
Δ

 spectrum. 

The results shown in Figure 18 imply that the most suitable value of β  is 0.10 for the prediction 

of *
1E

V
Δ

 using the 
E

V
Δ

 spectrum. 

The 
I

V  spectrum and the equivalent velocities of the cumulative input energy of the first modal 

response ( *
1I

V ) obtained from the nonlinear time-history analysis results are compared in Figure 19. 

The 
I

V  spectrum shown in this figure is calculated using the time-varying function as described in 

Section 2.2.1. This figure confirms that the most suitable value for β  is 0.10. 

Therefore, the equivalent velocities of the maximum momentary input energy and the 
cumulative energy ( *

1E
V

Δ
 and *

1I
V ) can be accurately predicted using the time-varying function, an 

appropriate effective period 
1eff

T , and β  = 0.10. For the calculation of 
1eff

T , Equation (33) is 

suitable. 
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Figure 18. Comparisons of the ΔE
V  spectrum and Δ

*
1E

V  obtained from the time-history analysis: (a) 

Art-L series; (b) Art-S series. 
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Figure 19. Comparisons of the I
V  spectrum and *

1I
V  obtained from the time-history analysis: (a) 

Art-L series; (b) Art-S series. 

5.2. Relationship between Maximum Momentary Input Energy of the First Modal Response and the Peak 

Equivalent Displacement 

The relationship between the equivalent velocity of the maximum momentary input energy of 

the first modal response ( *
1E

V
Δ

) and the peak equivalent displacement *
1 maxD  is now examined by 

comparing the capacity curve ( *
1E

V
Δ

– *
1D  relationship) described in Section 2.1. Figures 20 and 21 

compare the capacity curve and the nonlinear time-history analysis results.  
The following observations can be made for these figures. 

• Most of the nonlinear history analysis results are slightly below the capacity curve. The scatter 
of the nonlinear time-history analysis results is noticeable in the case of the Art-S series for the 
8-story model and the Art-L series for the 16-story model. 

• In most cases, the predicted peak response point with β = 0.05 gives the most conservative 
*

1 maxD . The predicted *
1 maxD  with β = 0.10 is slightly unconservative, and the predicted *

1 maxD  

with β = 0.15 is unconservative. 
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Figure 20. Comparisons between the capacity curve and the Δ

*
1E

V  ‒ *
1 maxD  relationship obtained 

from the time-history analysis results (8-story model): (a) Art-L series; (b) Art-S series. 
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Figure 21. Comparisons between the capacity curve and the Δ

*
1E

V  ‒ *
1 maxD  relationship obtained 

from the time-history analysis results (16-story model): (a) Art-L series; (b) Art-S series. 

Therefore, for better predictions of the peak response, it is essential to calculate the capacity 
curve properly. Evaluating the dissipated energy during a half cycle of the structural response is very 
important, in addition to better predictions of the maximum momentary input energy. 

5.3. Summary of Discussions 

The above discussions can be summarized as follows. 

• The equivalent velocities of the maximum momentary input energy and the cumulative energy 
( *

1E
V

Δ
 and *

1I
V ) can be properly predicted using the time-varying function, an appropriate 

effective period 
1eff

T , and β  = 0.10. For the calculation of 
1eff

T , Equation (33) is suitable. 

• For better predictions of the peak response, the capacity curve should be properly calculated. It 
is also very important to evaluate the dissipated energy during a half cycle of the structural 
response, in addition to better predictions of the maximum momentary input energy. 
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6. Conclusions 

This article has proposed a nonlinear static procedure for predicting the seismic demand of 
regular RC ductile MRFs with steel damper columns. The main results and conclusions can be 
summarized as follows. 

• The time-varying function of the momentary energy input provides sufficiently accurate 
predictions of the maximum momentary input energy and the cumulative input energy of RC 
MRFs with steel damper columns. The time-history of the momentary input energy calculated 
using the time-varying function is close to the nonlinear time-history analysis results. An 
equation for calculating the effective period of the first modal response from the peak equivalent 
displacement and the equivalent velocity of the maximum momentary input energy has been 
developed. Based on the cases considered in this study, the recommended value of the complex 
damping ratio is 0.10.  

• The accuracy of the predicted local peak seismic demand (e.g., story drift, plastic rotation of the 
beam end, and shear strain of the damper panel) is acceptable, although some values are 
unconservative. 

• The accuracy of the predicted cumulative energy strain energy demand of the damper panel is 
acceptable, although some values are unconservative. 

• For better predictions of the peak response, the capacity curve must be properly calculated. It is 
also very important to evaluate the energy dissipated during a half cycle of the structural 
response, and to obtain better predictions of the maximum momentary input energy. 

The main advantage of the proposed procedure is that both the peak and cumulative seismic 
demands of RC MRFs with steel damper columns can be predicted. In addition, as shown in previous 
studies [28,30], the time-varying function can be directly calculated from the Fourier amplitude and 
Fourier phase difference of ground motion. Therefore, the peak and cumulative seismic demands of 
RC MRFs with steel damper columns can be evaluated without knowing the time-history of ground 
motion. This means that researchers and analysts can eliminate otherwise unavoidable fluctuations 
from the nonlinear time-history analysis results. Note that the results and conclusions presented in 
this study are only valid for two RC MRFs with steel damper columns subjected to artificial ground 
motions. Therefore, apart from further verification using additional building models and ground 
motions, the following questions remain. 

• The ground motions used in this study are non-pulsive artificial ground accelerations. In the 
case of RC MRFs with damper columns subjected to near-fault pulsive ground motions, how 
accurate is the proposed procedure? Does it offer the same performance as in this study? 

• In this study, the cumulative strain energy was only evaluated for the damper columns. The 
influence of the cyclic loading on the damage to RC members may not be significant in the case 
of ductile RC members within a certain drift limit (e.g., less than 0.02 radians [41]). However, in 
the case of larger drift demands of RC members, the cumulative strain energy demand would 
be needed. How can the cumulative strain energy of RC members be evaluated in a simple 
manner? 

• Several studies on the capabilities of pushover analysis for planar frames [32–39] have shown 
that the contribution of higher modes is notable in the case of mid- to high-rise buildings. We 
believe that, according to the peak response, the proposed procedure can be applied in such 
cases without difficultly. However, there is room for discussion in terms of predicting the 
cumulative response of each member. How can the contribution of higher modal responses be 
considered for the prediction of the local cumulative response? 

• In the hysteresis of RC members, pinching behavior [40] is observed in cyclic loading tests. This 
behavior may affect the hysteretic energy dissipation of RC MRFs with damper columns. 
Specifically, the pinching behavior of RC beams surrounding damper columns may reduce the 
energy absorption of damper panel. Is this a negligible effect in predicting the seismic demand 
of ductile RC MRFs with damper columns? If not, how can the influence of pinching behavior 
be considered in modeling the hysteretic energy dissipation in a half cycle of the structural 
response? 
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• The response of RC MRFs with damper columns subjected to sequential ground motions has 
previously been investigated [7]. It is expected that the proposed procedure may be applicable 
for such sequential ground motions if the influence of prior damage to each member can be 
included when calculating the dissipated hysteretic energy during a half cycle of the structural 
response. How can models for the calculation of dissipated energies be extended to the case of 
sequential ground motions? 

The above questions will be investigated in subsequent studies. However, they do not constitute 
a comprehensive list of all the issues requiring further research. 
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Appendix A. Formulation of the Dissipated Energy in a Half Cycle 

The dissipated energy in a half cycle of the equivalent SDOF model is formulated as follows. 

Figure A1 shows simplified models for the calculation of the dissipated energy during a half cycle of 
the structural response. Here, * *

1 1f
E M

µ
Δ  and * *

1 1d
E M

µ
Δ  are the contributions of the hysteretic 

dissipated energies of RC MRFs and steel damper columns, respectively, while * *
1 1D

E MΔ  is the 

contribution of viscous damping. 
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Figure A1. Simplified models for calculation of the dissipated energy during a half cycle of the 
structural response: (a) contribution of RC MRFs; (b) contribution of steel damper columns; (c) 
contribution of viscous damping. 

Considering the energy balance of the first modal response in a half cycle of the structural 

response, the maximum momentary input energy per unit mass ( Δ * *
1 max 1E M ) is calculated as 

 ( ) ( ) ( ) ( )
* ** *

1 1* * * *1 max 1
1 max 1 max 1 max 1 max* * * *

1 1 1 1

, , , ,f d D
E EE E

D D D D
M M M M

µ µη η η η
Δ ΔΔ Δ

= + + ,  (A1)

( ) ( )
*

1 * * *
1 max 1 1*

1

, ,f

yf yf F f

E
D A D f

M

µ
η µ η

Δ
= , (A2)

( ) ( )
*

1 * * *
1 max 1 1*

1

, ,d

yd yd D d

E
D A D f

M

µ η µ η
Δ

= , (A3)

( ) ( )
*

2* * *1
1 max 1 max 1 max 1 max*

1

, 1
2

D
f f

E
D h A D

M

π
η η

Δ
= + . (A4)

In Equation (A1), η  is the ratio of displacements in the positive and negative directions. 

According to a previous study [7], ( )µ η,
F f

f  and ( )µ η,
D d

f  are calculated as  
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 ( )

( )

( ){ }
µ η µ

µ η µ ηµ µ η µ

µ ηµ µ µ η


− ≤ ≤




= − + ≥ ≤ ≤

 − ≥ ≤ ≤


2 2

2

1
1 : 0 1

2
1

, 1 : 1 and 0 1
2

: 1 and 1 1

f f

F f f f f f

f f f f

f ,  (A5)

 ( )

( )

( ){ }
( )

µ η µ

µ η µ ηµ µ η µ

η µ µ µ η


− ≤ ≤




= − + ≥ ≤ ≤


+ − ≥ ≤ ≤


2 2

2

1
1 : 0 1

2
1

, 1 : 1 and 0 1
2

1 2 : 1 and 1 1

d d

D d d d d d

d d d

f .  (A6)

In this study, the energy dissipation in a half cycle is simplified by calculating the average in the 

range η≤ ≤0 1 . The functions  ( )µ
F f

f  and  ( )µ
D d

f  are defined as 

  ( ) ( )µ µ η η= 
1

0

,
F f F f

f f d ,  (A7)

  ( ) ( )µ µ η η= 
1

0

,
D d D d

f f d .  (A8)

By substituting Equation (A5) into Equation (A7),  ( )µ
F f

f  is calculated as 

  ( ) ( )
µ µ

µ µ η η

µ µ µ


≤ ≤

= = 
 − ≥



2

1

0

1
: 0 1

3,
2

: 1 
3

f f

F f F f

f f f

f f d .  (A9)

Similarly,  ( )µ
D d

f  is calculated as 

  ( ) ( )
µ µ

µ µ η η

µ µ
µ


≤ ≤


= =    − + ≥    



2
1

0

1
: 0 1

3
,

1 5
9 12 : 1 

6

d d

D d D d

d d

d

f f d .  (A10) 

In addition, the average of the contribution from viscous damping is calculated as 

( )
1 *

* * *1
1 max 1 max 1 max 1 max*

0 1

7
,

6
D

f f

E
D d h A D

M

π
η η

Δ
= . (A11) 

Therefore, the maximum momentary input energy per unit mass ( Δ * *
1 max 1E M ) corresponding 

to the peak equivalent displacement ( *
1 maxD ) is calculated as 

 ( )  ( )  ( )
π

µ µ
Δ

= + +
*

* * * * * * *1 max
1 max 1 1 1 1 1 max 1 max 1 max*

1

7
6yf yf F f yd yd D d f f

E
D A D f A D f h A D

M
.  (A12) 

In the proposed procedure, the peak equivalent displacement ( *
1 maxD ) and the contribution of 

RC MRFs to the equivalent acceleration at the peak equivalent displacement ( *
1 maxf

A ) are replaced 
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by the values obtained from pushover analysis at step n  ( *
1n

D  and *
1n f

A , respectively). In addition, 

the damping ratio at the peak equivalent displacement ( 1 maxf
h ) is approximated as 

 
ω

ω
=

1

1 max 1
1 1

n f

f f

f

h h ,  (A13) 

 ω = * *
1 1 1n f n f n

A D .  (A14) 

In Equation (A13), ω1n f
 is the secant circular frequency of the first modal response at step n . 

Therefore, Equation (A12) can be rewritten as 

  ( )  ( )
*

1 1* * * * * *1 max
1 1 1 1 1 1*

1 11

7

6
f n fn

yf yf F n f yd yd D n d n f n

fn

hE
A D f A D f A D

M

π ω
µ µ

ω

Δ
= + + .  (A15) 

Appendix B. Formulation of the Effective Period 

The effective period of the equivalent linear SDOF model is formulated as follows. Figure A2 

shows a scheme of the linearization of the equivalent SDOF model. As shown in Figure A2(a), the 
nonlinear SDOF model is converted to the equivalent linear SDOF model.  

Let us consider the case in which the peak equivalent displacement of the nonlinear SDOF model 

is *
1 maxD  and the maximum momentary input energy per unit mass is Δ * *

1 max 1E M , as shown on 

the left of Figure A2(a). The effective period and damping of the corresponding linear SDOF model 

are 1eff
T  and β , respectively. The peak equivalent displacement of the linear SDOF model is *

1 maxD  

when the maximum momentary input energy per unit mass is the same as in the nonlinear SDOF 

model ( Δ * *
1 max 1E M ), as shown on the left of Figure A2(a).  

The ratio of the displacements in the positive and negative directions (η ) is assumed to be the 

same in both the nonlinear and equivalent linear SDOF models. From Figure A2(b) and A2(c), the 
energy balance in a half cycle of the structural response can be expressed as  

 ( ) ( )
π π

η η β
 Δ  
 = − + +     

2
*

2* 2 21 max
1 max*

11

1 2
1 1

2 2
eff

E
D

TM
.  (A16) 

As discussed in Appendix A, Equation (A16) can be simplified by calculating the average in the 
range η≤ ≤0 1 . On the right-hand side of Equation (A16),  

 ( ) ( )
π πβ

η η β η
  +

− + + = 
 

1

22

0

4 7
1 1

2 6
d .  (A17) 

Using Equation (A17), Equation (A16) can be simplified as 

 
πβ π Δ +

 =
 
 

2
*

* 21 max
1 max*

11

1 4 7 2
2 6

eff

E
D

TM
.  (A18) 

Therefore, the effective period 1eff
T  can be calculated from the equivalent velocity of the 

maximum momentary input energy of the equivalent SDOF model (
Δ

*
1E

V ) and the peak equivalent 

displacement *
1 maxD  as 

 
πβ

π
Δ

+
=

*
1 max

1 *
1

4 7
2

6eff

E

D
T

V
.  (A19) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 January 2023                   doi:10.20944/preprints202301.0064.v1

https://doi.org/10.20944/preprints202301.0064.v1


 39 

 

 

Figure A2. Scheme of the linearization of the equivalent SDOF model: (a) concept of the equivalent 
linearization; (b) contribution of the elastic strain energy; (c) contribution of the damping energy. 

Appendix C. Formulation of the Cumulative Dissipated Energy 

The cumulative dissipated energy of the equivalent SDOF model is formulated as follows. 

Figure A3 shows simplified models for calculating the cumulative dissipated energy during a whole 
seismic event. Here, * *

1 1S fm
E MΔ  and * *

1 1S fc
E MΔ  are the hysteretic dissipated energy of RC MRFs 

per unit mass under monotonic and cyclic loading, respectively. * *
1 1S dm

E MΔ  and * *
1 1S dc

E MΔ  are 

the hysteretic dissipated energy of damper columns per unit mass under monotonic and cyclic 

loading, respectively. * *
1 1D c

E MΔ  is the damping dissipated energy per unit mass over a cycle of 

the structural response. 
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Figure A3. Simplified models for calculation of the cumulative dissipated energy during a whole 
seismic event: (a) contribution of RC MRFs; (b) contribution of steel damper columns; (c) contribution 
of viscous damping. 

Given the peak equivalent displacement *
1 maxD , the dissipated strain energy of RC MRFs under 

monotonic loading per unit mass ( * *
1 1S fm

E MΔ ) can be calculated from the left of Figure A3(a) as 

 ( )
*

1 * *
1 1*

1

S fm

yf yf Fm f

E
A D g

M
µ

Δ
= ,  (A20) 

 ( )
( )

0 : 0 1

1
2 1 : 1

2

f

Fm f

f f f

g

µ

µ
µ µ µ

 ≤ ≤


= 
− − >

.  (A21) 
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Next, let us consider one loop of steady vibration (displacement amplitude: *
1 maxDγ , where 

0 1γ≤ ≤  is the amplitude ratio), as shown on the right of Figure A3(a). The function ( ),
Fc f

g µ γ  is 

calculated as 

 ( ) ( )
0 : 0 1 or 1

,
2 1 : 1 and 1

f f

Fc f

f f f f

g
µ γ µ

µ γ
γµ γµ µ γ µ

 ≤ ≤ ≤
= 

− > ≥
.  (A22) 

In this study, ( ),
Fc f

g µ γ  is simplified by calculating the average in the range 0 1γ≤ ≤ . The 

function  ( )F f
g µ  is defined as 

  ( ) ( )
1

0

,
Fc f Fc f

g g dµ µ γ γ=  .  (A23) 

Substituting Equation (A22) into Equation (A23),  ( )Fc f
g µ  is written as 

  ( )
0 : 0 1

4 3 : 1

f

Fc f

f f f f

g
µ

µ
µ µ µ µ

 ≤ ≤
= 

− + >
.  (A24) 

Therefore, the dissipated strain energy of RC MRFs under cyclic loading per unit mass (
* *

1 1S fc
E MΔ ) can be calculated as 

( )  ( )
*

1 * * *
1 max 1 1*

1

S fc

yf yf Fc f

E
D A D g

M
µ

Δ
= . (A25) 

Similar to RC MRFs, the dissipated strain energy of the damper columns under monotonic and 

cyclic loading per unit mass ( * *
1 1S dm

E MΔ  and * *
1 1S dc

E MΔ ) can be calculated from Figure A3(b) as 

 ( )
*

* *1
1 1*

1

S dm
yd yd Dm d

E
A D g

M
µ

Δ
= ,  (A26) 

( )
( )

0 : 0 1

1
1 : 1

2

d

Dm d

d d

g

µ
µ

µ µ

 ≤ ≤


= 
− >

 (A27) 

( )  ( )
*

* * *1
1 max 1 1*

1

S dc
yd yd Dc d

E
D A D g

M
µ

Δ
= , (A28) 

  ( ) ( )
1

0

,
Dc d Dc d

g g dµ µ γ γ=  .  (A29) 

From the right of Figure A3(b), ( ),
D d

g µ γ  is calculated as 

 ( ) ( )
0 : 0 1 or 1

,
4 1 : 1 and 1  

d d

Dc d
d d d

g
µ γ µ

µ γ
γµ µ γ µ

 ≤ ≤ ≤
= 

− > ≥
.  (A30) 

By substituting Equation (A30) into Equation (A29),  ( )Dc d
g µ  is written as 
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  ( ) ( )
0 : 0 1

2 2 1 : 1
d

Dc d
d d d

g
µ

µ
µ µ µ

 ≤ ≤
= 

− + >
.  (A31) 

Finally, the dissipated damping energy per unit mass over one cycle of the structural response 

( * *
1 1D c

E MΔ ) is calculated from Figure A3(c) and Equation (A13) as 

( )
*

1* * *1
1 max 1 1 max 1 max*

1 11

2 peakn f
D c

f f

f

E
D h A D

M

ω
π

ω

Δ
= , (A32) 

* * * *
1 1 1 1 max 1 maxpeak peak peakn f n f n f

A D A Dω = = . (A33) 

Appendix D. Model Properties 

The properties of the members of the two models analyzed in this study are now described. 
Table A1 presents the properties of sections at potential hinges of RC members in the 8-story model. 
Note that the cross-sections of all RC columns have dimensions of 800 mm × 800 mm, which are the 
same as those of the cross-section at the bottom of the first story. The cross-sections of the RC beams 
at the foundation level (Z0) have dimensions of 800 mm × 2900 mm. The yield strength of the 
longitudinal reinforcement is assumed to be 1.1 × 390 = 429 N/mm2. The assumed compressive 
strength of concrete is 45 N/mm2 for the stories 1–4, and 36 N/mm2 at and above the 5th story. 

Table A2 presents the properties of selected damper columns in the 8-story model. The initial 
normal yield stress of the steel used for the damper panels is assumed to be 205 N/mm2, whereas the 
normal yield stress after appreciable cyclic loading is assumed to be 300 N/mm2. 

Table A1. Sections at potential hinges of RC members for 8-story model. 

Member Location 
Width  

(mm) 

Depth 

(mm) 
Longitudinal Reinforcement 

 Z4 to Z8 500 900 5-D29 (Top and bottom) 
Beam Z2 to Z3 500 900 5-D32 (Top and bottom) 

 Z1 550 900 5-D35 (Top and bottom) 
Column 1st Story (Bottom) 800 800 16-D29 

Table A2. Steel damper columns for 8-story model. 

Story 

Yield Strength 
Panel  

Thickness 

(mm) 

Panel  

Height  

(mm) 

Panel  

Sectional 

Area  

(mm2) 

Column 

(mm × mm × mm × mm) 
QyDL  

(kN) 

QyDU  

(kN) 

6 to 8 438 641 6 600 3700 H-600 × 200 × 12 × 25 
4 to 5 626 916 9 600 5290 H-600 × 250 × 16 × 32 
1 to 3 755 1105 9 700 6380 H-700 × 300 × 16 × 28 

Table A3 presents the properties of sections at potential hinges of RC members in the 16-story 
model. Note that the cross-sections of all RC columns have dimensions of 900 mm × 900 mm, which 
are the same as those of the cross-section at the bottom of the first story. The cross-sections of the RC 
beams at the foundation level (Z0) have dimensions of 800 mm × 2900 mm. The yield strength of the 
longitudinal reinforcement is assumed to be 429 N/mm2. The assumed compressive strength of 
concrete is 60 N/mm2 for stories 1–5, 54 N/mm2 for stories 6–9, 45 N/mm2 for stories 10–12, and 36 
N/mm2 at and above the 13th story. 

Table A4 presents the properties of selected damper columns in the 16-story model. The 
properties of the steel used for the damper panel are the same as those for the 8-story model. 
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Table A3. Sections at potential hinges of RC members for 16-story model. 

Member Location 
Width 

(mm) 

Depth 

(mm) 
Longitudinal Reinforcement 

 Z7 to Z16 500 900 5-D29 (Top and bottom) 
Beam Z2 to Z6 500 900 5-D32 (Top and bottom) 

 Z1 550 900 5-D35 (Top and bottom) 
Column 1st Story (Bottom) 900 900 16-D35 

Table A4. Steel damper columns for 16-story model. 

Story 

Yield Strength 
Panel  

Thickness 

(mm) 

Panel  

Height  

(mm) 

Panel  

Sectional 

Area  

(mm2) 

Column 

(mm × mm × mm × mm) 
QyDL  

(kN) 

QyDU  

(kN) 

11 to 16 438 641 6 600 3700 H-600 × 200 × 12 × 25 
7 to 10 626 916 9 600 5290 H-600 × 250 × 16 × 32 
1 to 6 755 1105 9 700 6380 H-700 × 300 × 16 × 28 
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