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Article 
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Abstract: Protein phosphorylation and ADP-ribosylation (ADPr), as two types of post-translational 

modifications (PTM), are the process of adding phosphate group and ADP-ribose moieties to 

proteins, respectively. Although both PTM types can occur on many amino acid types, serine is the 

most common. Serine phosphorylation (pS), serine ADPr (SADPr), and their in situ crosstalks 

(pSADPr) play essential roles in biological processes. Although in silico classifiers have been 

developed for predicting pS and SADPr sites, the classifier for predicting pSADPr sites is 

unavailable. In this study, we developed classifiers to predict pSADPr sites. Specifically, we 

collected 3250 human pSADPr, 7520 SADPr, 151,227 pS and 80,096 unmodified serine sites. Based 

on them, we investigated the characteristics of pSADPr sites and constructed three classifiers to 

predict pSADPr sites from the pS dataset, the SADPr dataset and the protein sequences separately. 

We built and evaluated five deep-learning classifiers in ten-fold cross-validation and independent 

test datasets. Three of them (e.g. Convolutional Neural Network with the One-Hot encoding, 

dubbed CNNOH) performed better than the rest two. For instance, CNNOH had the AUC values of 

0.700, 0.914 and 0.954 for recognizing pSADPr sites from the SADPr, pS and unmodified serine 

sites.Therefore, it is challenging to distinguish pSADPr sites from SADPr sites compared to the other 

two. It is consistent with our observation that pSADPr’s characteristics are more similar to those of 

SADPr than the rest. Furthermore, we used the classifiers as base classifiers to develop a few 

stacking-based ensemble classifiers to improve performance. However, none of the ensemble 

classifiers showed better performances, suggesting that the base classifiers have good enough 

performances. Finally, we developed an online tool for extensively predicting human pSADPr sites 

based on the CNNOH classifier, dubbed EdeepSADPr. It is freely available through 

http://edeepsadpr.bioinfogo.org/. 

Keywords: PTM; ADP-ribosylation; proteomics; post-translational modifications; deep-learning; 

stacking-based ensemble learning; protein network 

1. Introduction

Serine phosphorylation (pS), as the significant phosphorylation type, plays a regulatory role in 

the cell cycle, growth, apoptosis, and signal transduction [1]. Serine ADP-ribosylation (SADPr), the 

common ADP-ribosylation type, regulates many cellular processes, including chromatin 

organization, epigenetic transcription regulation, cell differentiation and cytoplasm stress response 

[2,3]. Serine phosphorylation and ADP-ribosylation can co-occur on the same residue on a 

competitive basis as the in situ PTM crosstalk (dubbed pSADPr). This crosstalk represents a 

significantly high degree of overlap, similar to the site-specific crosstalk between lysine acetylation 
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and ubiquitylation [4]. The pSADPr crosstalk significantly increases the information content and 

regulates various biological results [5,6]. Nevertheless, the in situ crosstalk of serine phosphorylation 

and ADP-ribosylation have not been well investigated. Although a few in silico classifiers have been 

developed for predicting pS and SADPr sites [7,8], the classifier for predicting pSADPr sites is 

unavailable. 

This study collected 3250 human pSADPr, 151,227 pS, 7,520 SADPr and 80,096 unmodified 

serine sites. Based on these sites, we investigated the characteristics of pSADPr and constructed 

classifiers to predict pSADPr sites. We found that pSADPr’s characteristics are more similar to those 

of SADPr than pS and unmodified serine sites. We also found that pSADPr sites were preferred to be 

phosphorylated by four subfamilies of serine kinases (i.e. AGC, CAMK, STE and TKL). Moreover, 

we built and evaluated five deep-learning classifiers in ten-fold cross-validation and independent 

test datasets. Three of them performed better than the rest two. The best classifiers had the AUC 

values of 0.700, 0.914 and 0.954 for recognizing pSADPr sites from the SADPr, pS and unmodified 

serine sites. Finally, we developed a few advanced stacking-based ensemble classifiers, but none 

performed better. Finally, we developed an online tool for extensively predicting human pSADPr 

sites, dubbed EdeepSADPr. It is freely available through http://edeepsadpr.bioinfogo.org/. We 

anticipate that accurate prediction by EdeepSADPr will facilitate the discovery of new EdeepSADPr 

sites and promote an understanding of its functional characteristics. 

2. Materials and Methods 

2.1. Data collection and preprocessing 

Figure 1 shows the procedure of dataset construction and preprocessing. 7520 human SADPr 

sites with high confidence (i.e., ADPr peptides with Andromeda scores > 40 and localization 

probability > 0.75) were collected from the literature [2,4,9,10] (Figure 1A). 151,227 human pS sites 

were obtained from the database PhosphositePlus [11] and the literature [7] (Figure 1A). We 

compared both datasets and found 3250 pSADPr peptides, 147,977 pS peptides, and 4270 SADPr 

peptides. We also collected 80,096 unmodified serine (UM) sites after removing modified serine sites 

(i.e. pSADPr, SADPr and pS) from the reported dataset [7]. 

Each serine site of the above datasets was represented by a 41-residue-long sequence segment 

with the serine at the center [12]. CD-HIT [13,14] was applied to eliminate the homologous peptides 

by setting the threshold to 60% sequence identity, which is valuable for avoiding overestimation. 

Specifically, we combined the pSADPr peptides with SADPr peptides, pS peptides, and UM peptides, 

respectively, and clustered them using CD-HIT. Accordingly, we obtained 4959 clusters, 30,106 

clusters and 66,526 clusters. We selected one sequence randomly from each cluster according to the 

criterion: One pSADPr peptide was selected if it was included in the cluster; otherwise, one of the 

other peptides was selected. After that, 2378 pSADPr, 2581 SADPr, 27,728 pS and 64,148 UM peptides 

were collected (Figure 1B-D). Furthermore, each of the three datasets was divided into 11 groups, 

where ten groups were used as a cross-validation dataset, and the rest group was considered an 

independent test dataset (Figure 1B-D). It should be noted that if the central serine residue is located 

near the N or C terminus of the protein sequence, the complement symbol ‘_’ was added to the input 

sequences at the affected terminus to ensure the length was maintained. All these data are available 

at http://edeepsadpr.bioinfogo.org/. 
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Figure 1. Schematic diagram of data collection and preprocessing for human pSADPr datasets. (A) 

Construction of the pSADPr, pS and SADPr datasets. (B-D) The construction and preprocessing of the 

pSADPr-SADPr dataset (B), the pSADPr-pS dataset (C) and the pSADPr-UM dataset (D). UM stands 

for unmodified serine. 

2.2. Feature encoding schemes 

We selected five encoding features representing the input peptides for the model construction. 

They included the One-Hot encoding(OH) [15], the Enhanced Amino Acid Composition Encoding 

(EAAC) [16], the Enhanced Grouped Amino Acids Content encoding (EGAAC) [16], the ZSCALE 

Encoding (ZSCALE) and the Word Embedding (WE). 

2.2.1. One-Hot (OH) encoding 

In the One-hot coding, the 20 amino acids and complement symbol ‘_’ are encoded into a 21-

dimensional binary vector. In the vector corresponding to an amino acid, the element related to the 

amino acid is marked as 1 and others are marked as 0. For example, “A” is represented by 

“100000000000000000000” and “V” is represented by “0100000000000000000000”. 

2.2.2. ZSCALE encoding 

In ZSCALE encoding, every amino acid type is characterized by five physicochemical descriptor 

variables [17,18]. Therefore, each input sequence is represented as a vector of 205 (=41 × 5) 

dimensions. The filling character “_” is encoded as a 5-dimensional zero vector. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 January 2023                   doi:10.20944/preprints202301.0040.v1

https://doi.org/10.20944/preprints202301.0040.v1


 4 

 

2.2.3. Word-embedding (WE) encoding 

Word embedding [19] relies on the numerical encoding approach [20], which maps each type of 

amino acid residue to an integer. After the NUM encoding, each integer is mapped to a predefined 

five-dimension word vector. Therefore, each sequence is encoded as a vector of 205 (= 41×5) items. 

2.2.4. Enhanced Amino Acid Composition (EAAC) encoding 

In EAAC encoding, the frequency of each amino acid from the N-terminal to the C-terminal 

within a fixed sliding window size (the default length being 5) is calculated [20]. Therefore, each 

peptide sequence is encoded as a vector of 740 (=(41 − 5 + 1) × 20) items. 

2.2.5. Enhanced Grouped Amino Acids Content (EGAAC) encoding 

The EGAAC encoding is developed based on grouped amino acid content (GAAC) 

characteristics [21]. In the GAAC encoding, the 20 amino acid types are divided into five groups 

according to their physical and chemical properties (G1: GAVLMI, FYW, G3: KRH, G4: DE, and G5: 

STCPNQ). In the EGAAC encoding, the GAAC value is calculated from N-terminal to C-terminal 

within a fixed sliding window (the default length being 5). 

2.3. The architecture of deep-learning classifiers 

We constructed five classifiers based on Convolutional Neural Network (CNN). They included 

the model combined with the One-Hot Encoding (CNNOH), the model with the Word Embedding 

Encoding (CNNWE), the model with the ZSCALE Encoding (CNNZSCALE), the model with the EAAC 

encoding (CNNEAAC) and the model with the EGAAC encoding (CNNEGAAC). We took the CNN Model 

with the One-Hot encoding (CNNOH) as an example to demonstrate the architecture (Figure 2). 

(1) Input layer. Each sequence is converted into a feature vector with One-Hot encoding. 

(2) The convolution layer. It contains two convolution sublayers followed by two sequentially 

connected blocks. each block includes a convolution sublayer and a max pooling sublayer. There 

are 128 convolution kernels with the sizes of 1 and 3 for the first and second convolution 

sublayers, respectively. A dropout layer with a rate of 0.7 follows each convolution kernel to 

prevent potential overfitting. In these two blocks, there were 128 convolution kernels with a size 

of 9 and 10 for these two convolution sublayers of two blocks, respectively; the parameters 

pool_size of the max-pooling sublayer was set as 2; the dropout rate was set to 0.5. The rectified 

linear unit (ReLU) is considered the activation function.  

(3) Fully connected layer. It contains a dense sublayer with 128 neurons without flattening and a 

global average pooling sublayer to calculate and output an average value. 

(4) Output layer: This layer contains a single neuron, activated by a sigmoid function, to output the 

probability score (within the range from 0 to 1), indicating the likelihood of the crosstalk. If the 

probability score of an input sequence is greater than a specified threshold, the central serine in 

the sequence is predicted as a crosstalk site. 
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Figure 2. The architecture of a one-dimensional convolutional neural network with the One-Hot 

encoding approach (i.e. CNNOH). 

2.4. Performance evaluation 

Several statistical measures were used to evaluate prediction performance, including sensitivity 

(SN), specificity (SP), overall accuracy (ACC), Matthew correlation coefficient (MCC) and the area 

under the receiver operating characteristic (ROC) curve (AUC). The definitions of SN, SP, ACC, and 

MCC are given as follows: 𝑆𝑁 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 𝑆𝑃 = 𝑇𝑁𝑇𝑁 + 𝐹𝑃 𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 𝑀𝐶𝐶 = 𝑇𝑃 × 𝑇𝑁 − 𝑇𝑁 × 𝐹𝑃ඥሺ𝑇𝑃 + 𝐹𝑁ሻ × ሺ𝑇𝑁 + 𝐹𝑃ሻ × ሺ𝑇𝑃 + 𝐹𝑃ሻ × ሺ𝑇𝑁 + 𝐹𝑁ሻ 
In the above formulas, TP, TN, FP, and FN are the number of true positives, true negatives, false 

positives, and true negatives, respectively. 

3. Results and discussion 

3.1. Construction and functional investigation of the pSADPr datasets 

We created three datasets for constructing classifiers to predict pSADPr sites (Figure 1). The first 

dataset was the pSADPr-SADPr dataset, containing pSADPr and SADPr peptides. The related model 

was used to recognize pSADPr sites from known SADPr sites (Figure 1B). The second was the 

pSADPr-pS dataset, including pSADPr and pS peptides (Figure 1C). The third was the pSADPr-UM 

dataset, containing pSADPr and UM peptides (Figure 1D). Because the vast majority of serine 

residues are unmodified in the human proteome, the model based on the third dataset was expected 

to recognize pSADPr sites from the human proteome (Figure 1D). Each of the three datasets contained 

two parts: cross-validation and independent test datasets (Figure 1B-D).  

We explored the characteristics of the pSADPr crosstalks by comparing pSADPr-containing and 

other peptides in the three datasets through the Two-Sample-Logo program [22]. For the pSADPr-

SADPr dataset, the amino acid R was significantly enriched at positions -2 and -3 (i.e. P-2 and P-3), 

whereas K was depleted at P-1 (Figure 3A). For the rest datasets, the pSADPr crosstalks showed 

similar characteristics (Figure 3B,C). Specifically, K was enriched entirely except P+1 and G was 

enriched at P1 and P2; D and E were depleted at P-3 to P+5 and L was depleted entirely. The 
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maximum enriched/depleted value (29.3%) for the pSADPr-pS dataset was similar to that (32.0%) for 

the pSADPr-UM dataset, and both were more than twice as large as that (13.2%) for the pSADPr-

SADPr dataset (Figure 3). It indicates that the differences between pSADPr and SADPr sites are 

smaller than those between pSADPr and pS/UM sites. In other words, it is easy to distinguish pSADPr 

sites from pS/UM sites, compared to recognizing pSADPr sites from SADPr sites.  

 

Figure 3. Sequence pattern surrounding the pSADPr sites. Enriched and depleted residues flanking 

the central pSADPr sites were shown for the pSADPr-SADPr dataset (A), the pSADPr-pS dataset(B), 

and the pSADPr-UM dataset (C) (P < 0.05, t-test with Bonferroni correction). The patterns were 

generated using the Two-Sample-Logo program [22]. 

The human serine kinase family contains a few subfamilies, each with its characteristics. We 

explored which subfamilies preferred phosphorylating the pSADPr sites. To perform this analysis, 

we used the human pS sites as the background and the pSADPr sites as the test dataset. We employed 

the GPS program [23] to predict pS sites for each subfamily from both datasets (Figure 4). We found 

that four subfamilies (i.e. AGC, CAMK, STE and TKL) tended to phosphorylate pSADPr sites 

(P<5.0×10-26, hyper-geometric test). In comparison, two subfamilies (i.e. CK1 and CMGC) prefer not 

to phosphorylate pSADPr sites (p<5.1×10-29, hyper-geometric test). For example, 68% of pSADPr sites 

could be phosphorylated by the AGC subfamily, whereas only 44% of pS sites are modified by this 

subfamily (P=2.3×10-174, hyper-geometric test). This observation suggests that the pSADPr sites may 

be related to specific subfamilies of serine kinases.  
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Figure 4. Enrichment analysis of human pSADPr sites as the substrates of serine kinase subfamilies 

predicted by GPS [23]. Human pS sites were used as the background. P-value was calculated using 

the hyper-geometric test. 

In the three datasets, the pSADPr-pS and pSADPr-UM datasets were imbalanced because the 

numbers of pS and UM peptides were far more than the number of pSADPr peptides (Figure 1C,D). 

To explore the effect of the imbalanced dataset on the predictor’s performance, we built the related 

balanced cross-validation dataset where the number (2162) of randomly selected pS or UM peptides 

was the same as that of pSADPr peptides. We constructed the CNNOH models related to the 

imbalanced and balanced datasets and evaluated their prediction performances in terms of the 

independent test. The CNNOH model based on the imbalanced dataset had better performance than 

the counterpart constructed using the balanced dataset (p=0.002 for both pSADPr-pS and pSADPr-

UM datasets, Wilcoxon rank sum test; Figure 5). Therefore, we chose the imbalanced dataset for 

model construction. 

 

Figure 5. Performance comparisons between the CNNOH models based on balanced and imbalanced 

datasets in the independent test dataset. The models were developed for the pSADPr-pS dataset (A) 

and the pSADPr-UM dataset (B). 
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3.2. Construction and evaluation of CNN-based classifiers 

We constructed five CNN classifiers (i.e. CNNOH, CNNWE, CNNEAAC, CNNEGAAC and CNNZSCALE) 

to recognize pSADPr sites from the three datasets and compared their prediction performances. Here, 

we used the pSADPr-SADPr dataset to demonstrate the process. Three out of the five classifiers (i.e. 

CNNOH, CNNWE and CNNZSCALE) showed similar performances and superiority over the rest two (i.e. 

CNNEAAC and CNNEGAAC) in ten-fold cross-validation and independent test (Table 1; Figures 6 and 

S1). For instance, the CNNOH model had an AUC value of 0.712, larger than that (0.659) of the 

CNNEAAC model in the cross-validation. We repeated this analysis for the pSADPr-pS and pSADPr-

UM datasets and made similar observations that the three classifiers had the best performances 

(Tables S1 and S2; Figures S2–S5). Furthermore, we compared the classifiers’ performances for the 

three datasets. We found that the AUC values (0.921 & 0.953) of the CNNOH classifiers for pSADPr-

pS and pSADPr-UM datasets were significantly larger than that (0.712) for the pSADPr-SADPr 

dataset. These results were consistent with our observation that the differences between pSADPr and 

SADPr sites are smaller than those between pSADPr and pS/UM sites (Figure 3). Since the One-Hot 

feature is the simplest compared to the Word-Embedding and ZSCALE features, we chose the CNN 

classifier with the One-Hot scheme as the representative of the three classifiers. 

Table 1. Prediction performances of CNN-based classifiers for the pSADPr-SADPr dataset*. 

Classifier SN SP ACC MCC AUC 

Ten-fold Cross-

validation 

  

CNNOH 0.599±0.031 0.694±0.001 0.649±0.016 0.294±0.031 0.712±0.020 

CNNZSCALE 0.598±0.059 0.694±0.001 0.649±0.025 0.293±0.058 0.705±0.030 

CNNWE 0.591±0.089 0.694±0.001 0.644±0.044 0.285±0.088 0.696±0.043 

CNNEAAC 0.523±0.040 0.694±0.001 0.611±0.021 0.219±0.040 0.659±0.016 

CNNEGAAC 0.488±0.034 0.694±0.001 0.595±0.018 0.185±0.034 0.621±0.029 

Independent test   

CNNOH 0.608±0.034 0.694±0.000 0.653±0.016 0.303±0.033 0.700±0.010 

CNNZSCALE 0.583±0.037 0.694±0.000 0.641±0.018 0.278±0.036 0.692±0.017 

CNNWE 0.557±0.058 0.694±0.000 0.628±0.028 0.253±0.057 0.682±0.022 

CNNEAAC 0.500±0.016 0.694±0.000 0.601±0.008 0.197±0.016 0.637±0.008 

CNNEGAAC 0.488±0.044 0.694±0.000 0.595±0.021 0.185±0.043 0.621±0.016 

* Ten models were constructed and evaluated in ten-fold cross-validation. Their average performance 

and standard deviation were separately calculated for the cross-validation and the independent test 

datasets. 
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Figure 6. Performance comparison of CNN-based classifiers built for the pSADPr-SADPr dataset in 

ten-fold cross-validation (A) and independent test (B). 

3.3. Construction and evaluation of stacking ensemble learning classifiers 

A stacking-based ensemble learning architecture is one of the ensemble techniques in which 

multiple learning models are integrated to produce one optimal predictive model, which performs 

better than the base models taken alone. In the stacking ensemble architecture, a meta-learner is 

trained to output a prediction based on the different base learner’s predictions. The stacking ensemble 

architecture has been used to improve the prediction performance in various bioinformatics 

applications (e.g. lysine acetylation site prediction) [24–26]. Here, we introduced the two-stage 

stacking ensemble approach to improve the performance of the pSADPr site prediction (Figure 7). In 

the first stage, different CNN algorithms (e.g. CNNOH, CNNWE and CNNZSCALE) were selected to 

construct base classifiers. Specifically, ten base classifiers for each CNN algorithm were built and 

validated using the ten-fold cross-validation dataset. The base classifiers were then used for 

prediction in the independent test dataset, and their prediction results were averaged. Therefore, 

each CNN algorithm corresponds to the validation result and the averaged result for the independent 

test dataset. In the second stage, the validation and the averaged results were merged as a meta cross-

validation dataset and a meta-independent test dataset, respectively (Figure 7). The former dataset 

was used to train and validate a meta-classifier, whereas the latter was employed to evaluate the 

meta-classifier’s performance. Here, we constructed the meta-classifier using the random forest 

algorithm (RF), which was optimized using the GridSearchCV package. The optimized parameters 

included max_depth as 8, max_features as ‘sqrt’, min_samples_leaf as 20, min_samples_split as 300 

and n_estimators as 100. 

 

Figure 7. The architecture of the two-stage stacking ensemble classifier. 

According to the above analysis, the three classifiers (i.e. CNNOH, CNNWE and CNNZSCALE) had 

better performances than two other classifiers (i.e. CNNEAAC and CNNEGAAC) for all three datasets. 

Based on the observation, we fused them as base classifiers to build the two-stage stacking ensemble 

approach with a good performance. We started with the fusion of the three best classifiers until we 

fused all the classifiers. The related stacking models included StackingO+Z+W, StackingO+Z+W+E and 

StackingO+Z+W+E+EG, where O stands for OH, Z for ZSCALE, W for WE, E for EAAC and EG for EGAAC. 

For the pSADPr-SADPr dataset, the three stacking models showed similar performances in meta ten-

fold cross-validation and independent test (Table 2; Figures 8 and S6). For instance, their average 

AUC/MCC values were around 0.719/0.313 in cross-validation (Table 2). The stacking models for the 

two other datasets (pSADPr-pS and pSADPr-UM) also performed similarly (Figures S7–S10). 
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Table 2. Prediction performances of stacking ensemble classifiers for the pSADPr-SADPr dataset. 

Classifier SN SP ACC MCC AUC 

Cross-

validation 

     

CNNO+Z+W 0.618±0.029 0.694±0.001 0.657±0.014 0.313±0.029 0.719±0.021 

CNNO+Z+W+E 0.621±0.030 0.694±0.001 0.658±0.015 0.315±0.030 0.719±0.019 

CNNO+Z+W+E+EG 0.617±0.039 0.694±0.001 0.657±0.019 0.311±0.039 0.718±0.022 

Independent 

test 

     

CNNO+Z+W 0.578±0.009 0.694±0.000 0.638±0.004 0.274±0.009 0.704±0.003 

CNNO+Z+W+E 0.584±0.012 0.694±0.000 0.641±0.006 0.279±0.012 0.703±0.002 

CNNO+Z+W+E+EG 0.597±0.022 0.694±0.000 0.647±0.011 0.292±0.021 0.703±0.002 

3.4. Comparison of CNN-based models and stacking ensemble models 

We compared the performances of the CNN-based models and the stacking ensemble models 

for each of the three datasets. We found no statistical difference between the CNNOH model and these 

stacking ensemble models for each dataset (Figures 8, S10 and S11). The observation that the meta-

classifiers perform similarly to the base classifier is consistent with the previous report for predicting 

bacterial Type IV secreted effectors, in which the meta-classifier and base classifier performed 

similarly [27]. It suggests that the base classifiers may have sufficient predictive ability, and the 

stacking ensemble architecture does not constantly improve prediction accuracy.  

 

Figure 8. Performance comparison between CNN-based classifiers and the stacking-based ensemble 

classifiers for the pSADPr-SADPr dataset in the ten-fold cross-validation (A) and independent test 

(B). P values were calculated using the two-sided Mann–Whitney U test. 

3.5. Construction of the online EdeepSADPr predictor 

We developed an online prediction tool for predicting human pSADPr sites extensively from 

different conditions, dubbed EdeepSADPr. This tool consists of three models, each corresponding to 

the prediction from the SADPr dataset, the serine phosphorylation dataset or the human proteome. 

As the CNNOH classifier had no less predictive performance than other methods, we selected this 

classifier to construct EdeepSADPr. The usage of this tool was described as follows. After the model 

selection, the input sequence with the fasta format would be uploaded. The prediction results were 
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output in tabular form with five columns: sequence header, position, sequence, prediction score, and 

prediction category. The predicted results can also be downloaded as a data file. EdeepSADPr is 

accessible via http://edeepsadpr.bioinfogo.org/. 

4. Conclusion 

The main goal of this study is to develop a model with good performance to predict pSADPr 

sites from protein sequence information and to investigate the characteristics of pSADPr. We 

developed different deep-learning classifiers and used them as base classifiers to construct a few 

stacking-based ensemble models. It was demonstrated that the base classifiers and the ensemble 

models had similar performances. Nevertheless, this observation may require further investigation. 

Moreover, we found the characteristics of pSADPr sites, which may boost the understanding of this 

crosstalk. In summary, we developed the first classifier to predict human pSADPr sites and expect 

accurate prediction facilitate the discovery of new EdeepSADPr sites. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 

paper posted on Preprints.org. 
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