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Abstract: Protein phosphorylation and ADP-ribosylation (ADPr), as two types of post-translational
modifications (PTM), are the process of adding phosphate group and ADP-ribose moieties to
proteins, respectively. Although both PTM types can occur on many amino acid types, serine is the
most common. Serine phosphorylation (pS), serine ADPr (SADPr), and their in situ crosstalks
(pSADPr) play essential roles in biological processes. Although in silico classifiers have been
developed for predicting pS and SADPr sites, the classifier for predicting pSADPr sites is
unavailable. In this study, we developed classifiers to predict pSADPr sites. Specifically, we
collected 3250 human pSADPr, 7520 SADPr, 151,227 pS and 80,096 unmodified serine sites. Based
on them, we investigated the characteristics of pSADPr sites and constructed three classifiers to
predict pSADPr sites from the pS dataset, the SADPr dataset and the protein sequences separately.
We built and evaluated five deep-learning classifiers in ten-fold cross-validation and independent
test datasets. Three of them (e.g. Convolutional Neural Network with the One-Hot encoding,
dubbed CNNon) performed better than the rest two. For instance, CNNou had the AUC values of
0.700, 0.914 and 0.954 for recognizing pSADPr sites from the SADPr, pS and unmodified serine
sites.Therefore, it is challenging to distinguish pSADPr sites from SADPr sites compared to the other
two. It is consistent with our observation that pSADPr’s characteristics are more similar to those of
SADPr than the rest. Furthermore, we used the classifiers as base classifiers to develop a few
stacking-based ensemble classifiers to improve performance. However, none of the ensemble
classifiers showed better performances, suggesting that the base classifiers have good enough
performances. Finally, we developed an online tool for extensively predicting human pSADPr sites
based on the CNNOH classifier, dubbed EdeepSADPr. It is freely available through
http://edeepsadpr.bioinfogo.org/.

Keywords: PTM; ADP-ribosylation; proteomics; post-translational modifications; deep-learning;
stacking-based ensemble learning; protein network

1. Introduction

Serine phosphorylation (pS), as the significant phosphorylation type, plays a regulatory role in
the cell cycle, growth, apoptosis, and signal transduction [1]. Serine ADP-ribosylation (SADPr), the
common ADP-ribosylation type, regulates many cellular processes, including chromatin
organization, epigenetic transcription regulation, cell differentiation and cytoplasm stress response
[2,3]. Serine phosphorylation and ADP-ribosylation can co-occur on the same residue on a
competitive basis as the in situ PTM crosstalk (dubbed pSADPr). This crosstalk represents a
significantly high degree of overlap, similar to the site-specific crosstalk between lysine acetylation
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and ubiquitylation [4]. The pSADPr crosstalk significantly increases the information content and
regulates various biological results [5,6]. Nevertheless, the in situ crosstalk of serine phosphorylation
and ADP-ribosylation have not been well investigated. Although a few in silico classifiers have been
developed for predicting pS and SADPr sites [7,8], the classifier for predicting pSADPr sites is
unavailable.

This study collected 3250 human pSADPr, 151,227 pS, 7,520 SADPr and 80,096 unmodified
serine sites. Based on these sites, we investigated the characteristics of pPSADPr and constructed
classifiers to predict pSADPr sites. We found that pPSADPr’s characteristics are more similar to those
of SADPr than pS and unmodified serine sites. We also found that pSADPr sites were preferred to be
phosphorylated by four subfamilies of serine kinases (i.e. AGC, CAMK, STE and TKL). Moreover,
we built and evaluated five deep-learning classifiers in ten-fold cross-validation and independent
test datasets. Three of them performed better than the rest two. The best classifiers had the AUC
values of 0.700, 0.914 and 0.954 for recognizing pSADPr sites from the SADPr, pS and unmodified
serine sites. Finally, we developed a few advanced stacking-based ensemble classifiers, but none
performed better. Finally, we developed an online tool for extensively predicting human pSADPr
sites, dubbed EdeepSADPr. It is freely available through http://edeepsadpr.bioinfogo.org/. We
anticipate that accurate prediction by EdeepSADPr will facilitate the discovery of new EdeepSADPr
sites and promote an understanding of its functional characteristics.

2. Materials and Methods

2.1. Data collection and preprocessing

Figure 1 shows the procedure of dataset construction and preprocessing. 7520 human SADPr
sites with high confidence (i.e., ADPr peptides with Andromeda scores > 40 and localization
probability > 0.75) were collected from the literature [2,4,9,10] (Figure 1A). 151,227 human pS sites
were obtained from the database PhosphositePlus [11] and the literature [7] (Figure 1A). We
compared both datasets and found 3250 pSADPr peptides, 147,977 pS peptides, and 4270 SADPr
peptides. We also collected 80,096 unmodified serine (UM) sites after removing modified serine sites
(i.e. pSADPr, SADPr and pS) from the reported dataset [7].

Each serine site of the above datasets was represented by a 41-residue-long sequence segment
with the serine at the center [12]. CD-HIT [13,14] was applied to eliminate the homologous peptides
by setting the threshold to 60% sequence identity, which is valuable for avoiding overestimation.
Specifically, we combined the pSADPr peptides with SADPr peptides, pS peptides, and UM peptides,
respectively, and clustered them using CD-HIT. Accordingly, we obtained 4959 clusters, 30,106
clusters and 66,526 clusters. We selected one sequence randomly from each cluster according to the
criterion: One pSADPr peptide was selected if it was included in the cluster; otherwise, one of the
other peptides was selected. After that, 2378 pSADPr, 2581 SADPr, 27,728 pS and 64,148 UM peptides
were collected (Figure 1B-D). Furthermore, each of the three datasets was divided into 11 groups,
where ten groups were used as a cross-validation dataset, and the rest group was considered an
independent test dataset (Figure 1B-D). It should be noted that if the central serine residue is located
near the N or C terminus of the protein sequence, the complement symbol “_" was added to the input
sequences at the affected terminus to ensure the length was maintained. All these data are available
at http://edeepsadpr.bioinfogo.org/.
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Figure 1. Schematic diagram of data collection and preprocessing for human pSADPr datasets. (A)
Construction of the pSADPr, pS and SADPr datasets. (B-D) The construction and preprocessing of the
pSADPr-SADPr dataset (B), the pPSADPr-pS dataset (C) and the pSADPr-UM dataset (D). UM stands
for unmodified serine.

2.2. Feature encoding schemes

We selected five encoding features representing the input peptides for the model construction.
They included the One-Hot encoding(OH) [15], the Enhanced Amino Acid Composition Encoding
(EAAC) [16], the Enhanced Grouped Amino Acids Content encoding (EGAAC) [16], the ZSCALE
Encoding (ZSCALE) and the Word Embedding (WE).

2.2.1. One-Hot (OH) encoding

In the One-hot coding, the 20 amino acids and complement symbol “_’ are encoded into a 21-
dimensional binary vector. In the vector corresponding to an amino acid, the element related to the
amino acid is marked as 1 and others are marked as 0. For example, “A” is represented by
100000000000000000000” and “V” is represented by “0100000000000000000000”.

2.2.2. ZSCALE encoding

In ZSCALE encoding, every amino acid type is characterized by five physicochemical descriptor
variables [17,18]. Therefore, each input sequence is represented as a vector of 205 (=41 x 5)
dimensions. The filling character “_" is encoded as a 5-dimensional zero vector.
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2.2.3. Word-embedding (WE) encoding

Word embedding [19] relies on the numerical encoding approach [20], which maps each type of
amino acid residue to an integer. After the NUM encoding, each integer is mapped to a predefined
five-dimension word vector. Therefore, each sequence is encoded as a vector of 205 (= 41x5) items.

2.2.4. Enhanced Amino Acid Composition (EAAC) encoding

In EAAC encoding, the frequency of each amino acid from the N-terminal to the C-terminal
within a fixed sliding window size (the default length being 5) is calculated [20]. Therefore, each
peptide sequence is encoded as a vector of 740 (=(41 — 5 + 1) x 20) items.

2.2.5. Enhanced Grouped Amino Acids Content (EGAAC) encoding

The EGAAC encoding is developed based on grouped amino acid content (GAAC)
characteristics [21]. In the GAAC encoding, the 20 amino acid types are divided into five groups
according to their physical and chemical properties (G1: GAVLMI, FYW, G3: KRH, G4: DE, and G5:
STCPNQ). In the EGAAC encoding, the GAAC value is calculated from N-terminal to C-terminal
within a fixed sliding window (the default length being 5).

2.3. The architecture of deep-learning classifiers

We constructed five classifiers based on Convolutional Neural Network (CNN). They included
the model combined with the One-Hot Encoding (CNNoH), the model with the Word Embedding
Encoding (CNNwe), the model with the ZSCALE Encoding (CNNzscaLe), the model with the EAAC
encoding (CNNEeaac) and the model with the EGAAC encoding (CNNEecaac). We took the CNN Model
with the One-Hot encoding (CNNoH) as an example to demonstrate the architecture (Figure 2).

(1) Input layer. Each sequence is converted into a feature vector with One-Hot encoding.

(2) The convolution layer. It contains two convolution sublayers followed by two sequentially
connected blocks. each block includes a convolution sublayer and a max pooling sublayer. There
are 128 convolution kernels with the sizes of 1 and 3 for the first and second convolution
sublayers, respectively. A dropout layer with a rate of 0.7 follows each convolution kernel to
prevent potential overfitting. In these two blocks, there were 128 convolution kernels with a size
of 9 and 10 for these two convolution sublayers of two blocks, respectively; the parameters
pool_size of the max-pooling sublayer was set as 2; the dropout rate was set to 0.5. The rectified
linear unit (ReLU) is considered the activation function.

(3) Fully connected layer. It contains a dense sublayer with 128 neurons without flattening and a
global average pooling sublayer to calculate and output an average value.

(4) Output layer: This layer contains a single neuron, activated by a sigmoid function, to output the
probability score (within the range from 0 to 1), indicating the likelihood of the crosstalk. If the
probability score of an input sequence is greater than a specified threshold, the central serine in

the sequence is predicted as a crosstalk site.
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Figure 2. The architecture of a one-dimensional convolutional neural network with the One-Hot
encoding approach (i.e. CNNOH).

2.4. Performance evaluation

Several statistical measures were used to evaluate prediction performance, including sensitivity
(SN), specificity (SP), overall accuracy (ACC), Matthew correlation coefficient (MCC) and the area
under the receiver operating characteristic (ROC) curve (AUC). The definitions of SN, SP, ACC, and
MCC are given as follows:

o = TP
" TP +FN

SP = N
" TN+ FP
TP +TN

ACC = o T FP Y TN+ FN
TP x TN — TN X FP

JTP+FN) X (TN + FP) X (TP + FP) X (TN + FN)
In the above formulas, TP, TN, FP, and FN are the number of true positives, true negatives, false

positives, and true negatives, respectively.
3. Results and discussion

3.1. Construction and functional investigation of the pSADPr datasets

We created three datasets for constructing classifiers to predict pSADPr sites (Figure 1). The first
dataset was the pSADPr-SADPr dataset, containing pPSADPr and SADPr peptides. The related model
was used to recognize pSADPr sites from known SADPr sites (Figure 1B). The second was the
PSADPr-pS dataset, including pSADPr and pS peptides (Figure 1C). The third was the pSADPr-UM
dataset, containing pSADPr and UM peptides (Figure 1D). Because the vast majority of serine
residues are unmodified in the human proteome, the model based on the third dataset was expected
to recognize pSADPr sites from the human proteome (Figure 1D). Each of the three datasets contained
two parts: cross-validation and independent test datasets (Figure 1B-D).

We explored the characteristics of the pPSADPr crosstalks by comparing pSADPr-containing and
other peptides in the three datasets through the Two-Sample-Logo program [22]. For the pSADPr-
SADPr dataset, the amino acid R was significantly enriched at positions -2 and -3 (i.e. P-2 and P-3),
whereas K was depleted at P-1 (Figure 3A). For the rest datasets, the pSADPr crosstalks showed
similar characteristics (Figure 3B,C). Specifically, K was enriched entirely except P+1 and G was
enriched at P1 and P2; D and E were depleted at P-3 to P+5 and L was depleted entirely. The
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maximum enriched/depleted value (29.3%) for the pSADPr-pS dataset was similar to that (32.0%) for
the pSADPr-UM dataset, and both were more than twice as large as that (13.2%) for the pSADPr-
SADPr dataset (Figure 3). It indicates that the differences between pSADPr and SADPr sites are
smaller than those between pSADPr and pS/UM sites. In other words, it is easy to distinguish pPSADPr
sites from pS/UM sites, compared to recognizing pSADPr sites from SADPr sites.
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Figure 3. Sequence pattern surrounding the pSADPr sites. Enriched and depleted residues flanking
the central pSADPr sites were shown for the pSADPr-SADPr dataset (A), the pSADPr-pS dataset(B),
and the pSADPr-UM dataset (C) (P < 0.05, t-test with Bonferroni correction). The patterns were
generated using the Two-Sample-Logo program [22].

The human serine kinase family contains a few subfamilies, each with its characteristics. We
explored which subfamilies preferred phosphorylating the pSADPr sites. To perform this analysis,
we used the human pS sites as the background and the pSADPr sites as the test dataset. We employed
the GPS program [23] to predict pS sites for each subfamily from both datasets (Figure 4). We found
that four subfamilies (ie. AGC, CAMK, STE and TKL) tended to phosphorylate pSADPr sites
(P<5.0x10%, hyper-geometric test). In comparison, two subfamilies (i.e. CK1 and CMGC) prefer not
to phosphorylate pSADPr sites (p<5.1x10%, hyper-geometric test). For example, 68% of pSADPr sites
could be phosphorylated by the AGC subfamily, whereas only 44% of pS sites are modified by this
subfamily (P=2.3x10-74, hyper-geometric test). This observation suggests that the pPSADPr sites may
be related to specific subfamilies of serine kinases.
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Figure 4. Enrichment analysis of human pSADPr sites as the substrates of serine kinase subfamilies
predicted by GPS [23]. Human pS sites were used as the background. P-value was calculated using
the hyper-geometric test.

In the three datasets, the pSADPr-pS and pSADPr-UM datasets were imbalanced because the
numbers of pS and UM peptides were far more than the number of pSADPr peptides (Figure 1C,D).
To explore the effect of the imbalanced dataset on the predictor’s performance, we built the related
balanced cross-validation dataset where the number (2162) of randomly selected pS or UM peptides
was the same as that of pSADPr peptides. We constructed the CNNou models related to the
imbalanced and balanced datasets and evaluated their prediction performances in terms of the
independent test. The CNNox model based on the imbalanced dataset had better performance than
the counterpart constructed using the balanced dataset (p=0.002 for both pSADPr-pS and pSADPr-
UM datasets, Wilcoxon rank sum test; Figure 5). Therefore, we chose the imbalanced dataset for
model construction.

A B

0.95 5 P=0.002 1.00 ~

P=0.002

3 0.0 | S 5.05 - ==
. . Q

o}

0.85

Balanced Idemaeset Imbalanceci dataset Balanced'dataset Imbalancetli dataset

Figure 5. Performance comparisons between the CNNon models based on balanced and imbalanced
datasets in the independent test dataset. The models were developed for the pPSADPr-pS dataset (A)
and the pSADPr-UM dataset (B).
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3.2. Construction and evaluation of CNN-based classifiers

We constructed five CNN classifiers (i.e. CNNon, CNNwe, CNNEeaac, CNNEecaac and CNNzscaL)
to recognize pSADPr sites from the three datasets and compared their prediction performances. Here,
we used the pSADPr-SADPr dataset to demonstrate the process. Three out of the five classifiers (i.e.
CNNos, CNNwe and CNNzscare) showed similar performances and superiority over the rest two (i.e.
CNNeaac and CNNEecaac) in ten-fold cross-validation and independent test (Table 1; Figures 6 and
S1). For instance, the CNNox model had an AUC value of 0.712, larger than that (0.659) of the
CNNeaac model in the cross-validation. We repeated this analysis for the pPSADPr-pS and pSADPr-
UM datasets and made similar observations that the three classifiers had the best performances
(Tables S1 and S2; Figures 52-S5). Furthermore, we compared the classifiers’ performances for the
three datasets. We found that the AUC values (0.921 & 0.953) of the CNNow classifiers for pPSADPr-
pS and pSADPr-UM datasets were significantly larger than that (0.712) for the pSADPr-SADPr
dataset. These results were consistent with our observation that the differences between pSADPr and
SADPr sites are smaller than those between pSADPr and pS/UM sites (Figure 3). Since the One-Hot
feature is the simplest compared to the Word-Embedding and ZSCALE features, we chose the CNN
classifier with the One-Hot scheme as the representative of the three classifiers.

Table 1. Prediction performances of CNN-based classifiers for the pPSADPr-SADPr dataset*.

Classifier SN sp ACC MCC AUC
Ten-fold Cross-

validation

CNNon 0.599+0.031 0.694+0.001 0.649+0.016 0.294+0.031 0.712+0.020
CNNzscaLe 0.598+0.059  0.694+0.001 0.649+0.025 0.293+0.058 0.705+0.030
CNNwe 0.591+0.089  0.694+0.001 0.644+0.044 0.285+0.088 0.696+0.043
CNNEaac 0.523+0.040 0.694+0.001 0.611+0.021 0.219+0.040 0.659+0.016
CNNEcaac 0.488+0.034 0.694+0.001 0.595+0.018 0.185+0.034 0.621+0.029
Independent test

CNNon 0.608+0.034  0.694+0.000 0.653+0.016 0.303+0.033 0.700+0.010
CNNzscaLE 0.583+0.037  0.694+0.000 0.641+0.018 0.278+0.036 0.692+0.017
CNNwe 0.557+0.058  0.694+0.000 0.628+0.028 0.253+0.057 0.682+0.022
CNNEaac 0.500+0.016  0.694+0.000 0.601+0.008 0.197+0.016 0.637+0.008
CNNEGaac 0.488+0.044 0.694+0.000 0.595+0.021 0.185+0.043 0.621+0.016

* Ten models were constructed and evaluated in ten-fold cross-validation. Their average performance
and standard deviation were separately calculated for the cross-validation and the independent test
datasets.
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Figure 6. Performance comparison of CNN-based classifiers built for the pSADPr-SADPr dataset in
ten-fold cross-validation (A) and independent test (B).

3.3. Construction and evaluation of stacking ensemble learning classifiers

A stacking-based ensemble learning architecture is one of the ensemble techniques in which
multiple learning models are integrated to produce one optimal predictive model, which performs
better than the base models taken alone. In the stacking ensemble architecture, a meta-learner is
trained to output a prediction based on the different base learner’s predictions. The stacking ensemble
architecture has been used to improve the prediction performance in various bioinformatics
applications (e.g. lysine acetylation site prediction) [24-26]. Here, we introduced the two-stage
stacking ensemble approach to improve the performance of the pSADPr site prediction (Figure 7). In
the first stage, different CNN algorithms (e.g. CNNox, CNNwe and CNNzscaLe) were selected to
construct base classifiers. Specifically, ten base classifiers for each CNN algorithm were built and
validated using the ten-fold cross-validation dataset. The base classifiers were then used for
prediction in the independent test dataset, and their prediction results were averaged. Therefore,
each CNN algorithm corresponds to the validation result and the averaged result for the independent
test dataset. In the second stage, the validation and the averaged results were merged as a meta cross-
validation dataset and a meta-independent test dataset, respectively (Figure 7). The former dataset
was used to train and validate a meta-classifier, whereas the latter was employed to evaluate the
meta-classifier’s performance. Here, we constructed the meta-classifier using the random forest
algorithm (RF), which was optimized using the GridSearchCV package. The optimized parameters
included max_depth as 8, max_features as ‘sqrt’, min_samples_leaf as 20, min_samples_split as 300
and n_estimators as 100.

Base clssr Oy M O

 Model1  Model2  Model 10

~ Models

Ten-fold cross-validation dataset

—>( prediﬂll-m ][ Prediction ] [ Prediction J( Priediciinn ) oNN, CNN\,\,ECNNZS‘,ALE
NS | [ s )

- i Meta independent test dataset |

First stage Second stage

(Training and testing of Meta-classifier )

Figure 7. The architecture of the two-stage stacking ensemble classifier.

According to the above analysis, the three classifiers (i.e. CNNon, CNNwe and CNNzscate) had
better performances than two other classifiers (i.e. CNNeaac and CNNEecaac) for all three datasets.
Based on the observation, we fused them as base classifiers to build the two-stage stacking ensemble
approach with a good performance. We started with the fusion of the three best classifiers until we
fused all the classifiers. The related stacking models included Stackingo+z:w, Stackingo+z-w+e and
Stackingo+z+w-e+ec, where O stands for OH, Z for ZSCALE, W for WE, E for EAAC and EG for EGAAC.
For the pSADPr-SADPr dataset, the three stacking models showed similar performances in meta ten-
fold cross-validation and independent test (Table 2; Figures 8 and S6). For instance, their average
AUC/MCC values were around 0.719/0.313 in cross-validation (Table 2). The stacking models for the
two other datasets (pSADPr-pS and pSADPr-UM) also performed similarly (Figures S7-510).
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Table 2. Prediction performances of stacking ensemble classifiers for the pPSADPr-SADPr dataset.

Classifier SN SP ACC MCC AUC
Cross-

validation

CNNo+zsw 0.618+0.029  0.694+0.001 0.657+£0.014 0.313+0.029 0.719+0.021
CNNo+z+sw-E 0.621+0.030  0.694+0.001 0.658+0.015 0.315+0.030 0.719+0.019
CNNoswzsw+esec  0.617£0.039  0.694+0.001  0.657+0.019  0.311+0.039 0.718+0.022
Independent

test

CNNo+zsw 0.578+0.009  0.694+0.000 0.638+0.004 0.274+0.009 0.704+0.003
CNNo+z+sw+E 0.584+0.012  0.694+0.000 0.641+0.006 0.279+0.012 0.703+0.002
CNNowzsw+eses  0.597+£0.022  0.694+0.000 0.647+0.011  0.292+0.021 0.703+0.002

3.4. Comparison of CNN-based models and stacking ensemble models

We compared the performances of the CNN-based models and the stacking ensemble models
for each of the three datasets. We found no statistical difference between the CNNou model and these
stacking ensemble models for each dataset (Figures 8, S10 and S11). The observation that the meta-
classifiers perform similarly to the base classifier is consistent with the previous report for predicting
bacterial Type IV secreted effectors, in which the meta-classifier and base classifier performed
similarly [27]. It suggests that the base classifiers may have sufficient predictive ability, and the
stacking ensemble architecture does not constantly improve prediction accuracy.
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Figure 8. Performance comparison between CNN-based classifiers and the stacking-based ensemble
classifiers for the pSADPr-SADPr dataset in the ten-fold cross-validation (A) and independent test
(B). P values were calculated using the two-sided Mann-Whitney U test.

3.5. Construction of the online EdeepSADPr predictor

We developed an online prediction tool for predicting human pSADPr sites extensively from
different conditions, dubbed EdeepSADPr. This tool consists of three models, each corresponding to
the prediction from the SADPr dataset, the serine phosphorylation dataset or the human proteome.
As the CNNoH classifier had no less predictive performance than other methods, we selected this
classifier to construct EdeepSADPr. The usage of this tool was described as follows. After the model
selection, the input sequence with the fasta format would be uploaded. The prediction results were
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output in tabular form with five columns: sequence header, position, sequence, prediction score, and
prediction category. The predicted results can also be downloaded as a data file. EdeepSADPr is
accessible via http://edeepsadpr.bioinfogo.org/.

4. Conclusion

The main goal of this study is to develop a model with good performance to predict pPSADPr
sites from protein sequence information and to investigate the characteristics of pSADPr. We
developed different deep-learning classifiers and used them as base classifiers to construct a few
stacking-based ensemble models. It was demonstrated that the base classifiers and the ensemble
models had similar performances. Nevertheless, this observation may require further investigation.
Moreover, we found the characteristics of pPSADPr sites, which may boost the understanding of this
crosstalk. In summary, we developed the first classifier to predict human pSADPr sites and expect
accurate prediction facilitate the discovery of new EdeepSADPr sites.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org.
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