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Article

Bell’s Theorem Begs the Question

Joy Christian
Einstein Centre for Local-Realistic Physics, Oxford OX2 6LB, United Kingdom; jjc@bu.edu

Abstract: 1 demonstrate that Bell’s theorem is based on circular reasoning and thus a
fundamentally flawed argument. It unjustifiably assumes the additivity of expectation
values for dispersion-free states of contextual hidden variable theories for non-commuting
observables involved in Bell-test experiments, which is tautologous to assuming the bounds
of £2 on the Bell-CHSH sum of expectation values. Its premises thus assume in a
different guise the bounds of +2 it sets out to prove. Once this oversight is ameliorated
from Bell’s argument, the bounds on the Bell-CHSH sum of expectation values work out
to be +2+/2 instead of +2, thereby mitigating the conclusion of Bell’s theorem. Consequently, what is
ruled out by the Bell-test experiments is not local realism but the additivity of expectation values,
which does not hold for non-commuting observables in any hidden variable theories to begin with.

Keywords: Bell’s theorem; local realism; Bell-CHSH inequalities; quantum correlations; Bell-test
experiments

1. Introduction

Bell’s theorem [1] is an impossibility argument (or “proof”) that claims that no locally causal
and realistic hidden variable theory envisaged by Einstein that could “complete” quantum theory
can reproduce all of the predictions of quantum theory. But some such claims of impossibility in
physics are known to harbor unjustified assumptions. In this paper, I show that Bell’s theorem
against locally causal hidden variable theories is no exception. It is no different, in this respect,
from von Neumann’s theorem against all hidden variable theories [2], or the Coleman-Mandula
theorem overlooking the possibilities of supersymmetry [3]. The implicit and unjustified assumptions
underlying the latter two theorems seemed so innocuous to many that they escaped notice for
decades. By contrast, Bell’s theorem has faced skepticism and challenges by many from its very
inception (cf. footnote 1 in [4]), including by me [4-15], because it depends on a number of
questionable implicit and explicit physical assumptions that are not difficult to recognize [9,15]. In
what follows, I bring out one such assumption and demonstrate that Bell’s theorem is based
on a circular argument [8]. It unjustifiably assumes the additivity of expectation values for
dispersion-free states of hidden variable theories for non-commuting observables involved in the
Bell-test experiments [16], which is tautologous to assuming the bounds of +2 on the Bell-CHSH
sum of expectation values. It thus assumes in a different guise what it sets out to prove. As a result,
what is ruled out by Bell-test experiments is not local realism but the additivity of expectation values,
which does not hold for non-commuting observables in dispersion-free states of hidden variable
theories to begin with.

1.1. Heuristics for completing quantum mechanics

The goal of any hidden variable theory [2,17,18] is to reproduce the statistical predictions encoded
in the quantum states |) € ¢ of physical systems using hypothetical dispersion-free states |1, A) :=
{l$), A} € # ® £ that have no inherent statistical character, where the Hilbert space .7 is extended
by the space . of hidden variables A, which are hypothesized to “complete” the states of the physical
systems as envisaged by Einstein [19]. If the values of A € .Z can be specified in advance, then the
results of any measurements on a given physical system are uniquely determined.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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To appreciate this, recall that expectation value of the square of any self-adjoint operator () € 7
in a normalized quantum mechanical state |¢) and the square of the expectation value of ) will not be
equal to each other in general:

(| Q2 [p) £ (Y| Q) (1)

This gives rise to inherent statistical uncertainty in the value of (), indicating that the state |¢) is not
dispersion-free:

AQ = /(P Q— (9] Q[p)}2 [p) #0. @)

By contrast, in a normalized dispersion-free state |, A) of hidden variable theories formalized by
von Neumann [2], the expectation value of Q), by hypothesis, is equal to one of its eigenvalues w(A),
determined by the hidden variables A,

(9, AQ[Y, A) =w(A) <= Qfy, A) =w(A)[¢, A), ®)

so that a measurement of () in the state | ¢, A ) would yield the result w(A) with certainty. How this
can be accomplished in a dynamical theory of measurement process remains an open question [17].
But accepting the hypothesis (3) implies

(9, ALy, A) = (p, A Qg 1) @)

Consequently, unlike in a quantum sate |¢), in a dispersion-free state |1, A) observables () have no
inherent uncertainty:

A= /(p, A {Q— (9, A]Q]g, 1)} |y, A) =0. (5)

The expectation value of () in the quantum state |¢) can then be recovered by integrating over the
hidden variables A:

wlaly) = [ (e a101y,2) pa)dr = [ o) p)ar, ©

where p(A) denotes the normalized probability distribution over the space . of thus hypothesized
hidden variables.

As it stands, this prescription amounts to assignment of unique eigenvalues w(A) to all
observables ) simultaneously, regardless of whether they are actually measured. In other words,
according to (6) every physical quantity of a given system represented by () would possess a unique
preexisting value, irrespective of any measurements being performed. In Section 2 of [17], Bell works
out an instructive example to illustrate how this works for a system of two-dimensional Hilbert
space. The prescription (6) fails, however, for Hilbert spaces of dimensions greater than two, because
in higher dimensions degeneracies prevent simultaneous assignments of unique eigenvalues to all
observables in dispersion-free states | ¢, A ) dictated by the ansatz (3), giving contradictory values for
the same physical quantities. This was proved independently by Bell [17], Kochen and Specker [20],
and Belinfante [21], as a corollary to Gleason’s theorem [22,23].

These proofs — known as the Kochen-Specker theorem - do not exclude contextual
hidden variable theories in which the complete state |1, A) of a system assigns unique
values to physical quantities only relative to experimental contexts [18,23]. If we denote the
observables as )(c) with ¢ being the environmental contexts of their measurements, then the
non-contextual prescription (6) can be easily modified to accommodate contextual hidden variable
theories as follows:

10E19) = [ (9,210©) 19, 1) p)dh = [ wle 1) pa)dn. @)
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Each observable Q)(c) is still assigned a unique eigenvalue w(c, A), but now determined cooperatively
by the complete state |, A) of the system and the state ¢ of its environmental contexts.
Consequently, even though some of its features are no longer intrinsic to the system, contextual
hidden variable theories do not have the inherent statistical character of quantum mechanics,
because outcome of an experiment is a cooperative effect just as it is in classical physics [23].
Therefore, such theories interpret quantum entanglement at the level of the complete state | ¢, A) only
epistemically.

For our purposes here, it is also important to recall that in the Hilbert space formulation
of quantum mechanics [2] the correspondence between observables and Hermitian operators
is one-to-one.  Moreover, a sum Q(¢) = Y",0(c;) of several observables such as
O1(c1), Ma(c2), Q3(c3),..., Qu(cy) is also an observable representing a physical quantity, and
consequently the sum of the expectation values of Q;(c;) is the expectation value of the summed
operator Q)(¢),

1=

1

<WQMHW=W%fQ@ﬂ¢% ®)

i=1

I
—_

regardless of whether the observables are simultaneously measurable or mutually commutative [17].
The question then is, since within any contextual hidden variable theory characterized by (7) all of
the observables ();(c;) and their sum ()(¢) are assigned unique eigenvalues w;(c;, A) and @(¢, A),
respectively, would these eigenvalues satisfy the equality

n
X

i=1

/g wi(ci, A) p(A) d/\} < /g Lé wi(ci, A)] p(A)dA ©)

in dispersion-free states |, A) of physical systems in analogy with the linear quantum mechanical
relation (8) above? The answer is: Not in general, because the eigenvalue @ (¢, A) of the summed
operator ()(¢) is not equal to the sum Y, w;(c;, A) of eigenvalues w;(c;, A) for given A, unless the
constituent observables ();(c;) are mutually commutative. As Bell points out in Section 3 of [17],
the linear relation (8) is an unusual property of quantum mechanical states |¢). There is no reason
to demand it individually of the dispersion-free states | ¢, A), whose function is to reproduce the
measurable features of quantum systems only when averaged over, as in (7). I will come back to this
point in Section 1.5.

1.2. Special case of the singlet state and EPR-Bohm observables

Now, the proof of Bell’s famous theorem [1] is based on Bohm'’s spin version of the EPR’s thought
experiment [24], which involves an entangled pair of spin—% particles emerging from a source and
moving freely in opposite directions, with particles 1 and 2 subject, respectively, to spin measurements
along independently chosen unit directions a and b by Alice and Bob, who are stationed at a spacelike
separated distance from each other (see Figure 1). If initially the pair has vanishing total spin, then the
quantum mechanical state of the system is described by the entangled singlet state

1
V2

where k is an arbitrary unit vector in R and

¥) = —={lk, )1 @k, )2 = [k, —)1 @ [k, +)2, (10)

o-klk +) = +|k +) (11)

defines quantum mechanical eigenstates in which the two fermions have spins “up” or “down” in the
units of 1 = 2, with o being the Pauli spin “vector” (oy, ay, 0%). Once the state (10) is prepared, the
observable Q)(c) of interest is

Qc)=01-a®oy-b, (12)
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whose possible eigenvalues are
w(c, A) = H(a, b,A) = =1, (13)

where &/ = £1 and % = +£1 are the results of spin measurements made jointly by Alice and Bob along
their randomly chosen detector directions a and b. In the singlet state (10) the joint observable (12)
predicts sinusoidal correlations (¥|o1 -a ® o3 -b|¥) = —a- b between the values of the spins observed
about the freely chosen contexts a and b [5].

a/,—\\ S1 So
7 \\
/ .
/ 1 \ # total spin = 0 ¢
[ ——- _-\\\
Ko 7 Ea St ®——-———- -
N Ap—
\ / source
N // 0 - +
Ne___” ™ — e 4 e
a.I

Figure 1. In an EPR-Bohm-type experiment, a spin-less fermion — such as a neutral pion — is assumed
to decay from a source into an electron-positron pair, as depicted. Then, measurements of the spin
components of each separated fermion are performed at space-like separated observation stations 1
and 2, obtaining binary results &/ = +1 and % = +£1 along directions a and b. The conservation of

spin momentum dictates that the total spin of the system remains zero during its free evolution. After
Ref. [4].

For locally contextual hidden variable theories there is a further requirement that the results of
local measurements must be describable by functions that respect local causality, as first envisaged by
Einstein [19] and later formulated mathematically by Bell [1]. It can be satisfied by requiring that the
eigenvalue w(c, A) of the observable Q)(c) in (12) representing the joint result <7 %(a, b,A) = £1is
factorizable as w(c, A) = wi(c1,A) wa(cp, A), or in Bell’s notation as

o/ %B(a, b,\) = o/ (a,A) B(b,\), (14)

with the factorized functions «7(a, A) = +1 and #(b, A) = £1 satisfying the following condition of
local causality:

Apart from the hidden variables A, the result &/ = 1 of Alice depends only on the
measurement context a, chosen freely by Alice, regardless of Bob’s actions. And, likewise,
apart from the hidden variables A, the result % = £1 of Bob depends only on the
measurement context b, chosen freely by Bob, regardless of Alice’s actions. In particular, the
function <7 (a, A) does not depend on b or % and the function #(b, A) does not depend on a
or /. Moreover, the hidden variables A do not depend on either a, b, <7, or % [10].

The expectation value £(a, b) of the joint results in the dispersion-free state | ¢, A) should then satisfy
the condition

(¥|o1-a® oo b|¥) = E(a,b) ::/j o/ (a, \) B(b, A) p(A)dA, (15)

where the hidden variables A originate from a source located in the overlap of the backward light-cones
of Alice and Bob, and the normalized probability distribution p(A) is assumed to remain statistically
independent of the contexts a and b so that p(A | a,b) = p(A), which is a reasonable assumption. In
fact, relaxing this assumption to allow p(A) to depend on a and b introduces a form of non-locality, as
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explained by Clauser and Horne in footnote 13 of [25]. Then, since < (a,A) = £1 and #(b,A) = +1,
their product </ (a, A) (b, A) = £1, setting the following bounds on £(a, b):

—1< &(a,b) < +1. (16)

These bounds are respected not only by local hidden variable theories but also by quantum mechanics
and experiments.

1.3. Mathematical core of Bell’s theorem

By contrast, at the heart of Bell’s theorem is a derivation of the bounds of 2 on a combination of
the expectation values £(a, b) of local results <7 (a, A) and #(b, A), recorded at remote observation
stations by Alice and Bob, from four different sub-experiments involving measurements of
non-commuting observables such as o1 - a and ¢ - a’ [1,16]:

E(a,b)+&(a, b)+£&(,b)—£(@@, b). (17)

Alice can freely choose a detector direction a or a’, and likewise Bob can freely choose a detector
direction b or b/, to detect, at a space-like distance from each other, the spins of fermions they receive
from the common source. Then, from (16), we can immediately read off the upper and lower bounds
on the combination (17) of expectation values:

—4 < &(a,b) +&(ab)+&@,b)—&@, D) < +4. (18)
The next step in Bell’s derivation of the bounds +2 instead of £4 is the assumption of additivity of
expectation values:
E(a,b) + E(a, b)) + £, b) — £, b)
- /2 (a,))B(b, A) p(A) dA +/$ (3, \) BV, 1) p(A) dA +/$M(a/,A)%(b,A) p(A)dA 7/;gd(a/,/\)=98(b’,)\) p(Vdr (19)
= /2{ o (a,A) B(b,A) + o (a,A) B(b,\) + o (a', 1) B(b,\) — o7 (2, 1) B(b,A)} p(A) dA.
We will have much to discuss about this step, but if we accept the last equality, then the bounds of

+2 on Bell-CHSH combination (17) of expectation values is not difficult to work out by rewriting the
integrand on its right-hand side as

Aa,A) { B(b,A)+ B, A} + (a,A){ Z(b,A) — B(D,A) ). (20)

Since #(b,A) = £1, if |B(b,A) + B(b/,A)| =2, then |ZB(b,A) — £(b',A)| =0, and vice versa.
Consequently, since Jz{(a, A) = £1, the integrand (20) is bounded by £2 and the absolute value of the
last integral in (19) does not exceed 2:

2« /f{%(a,)\) B(b,\) + o (a,A) B(b,A) + o7 (a,A) (b, A) — 7 (a, ) (b, A)} p(A)dA < +2.  (21)

Therefore, the equality (19) implies that the absolute value of the combination of expectation values is
bounded by 2:
—2 < E(a,b) +&(a b)) +&@,b) — £, b) < +2. (22)

But since the bounds on (17) predicted by quantum mechanics and observed in experiments are +2+/2,
Bell concludes that no local and realistic theory envisaged by Einstein can reproduce the statistical
predictions of quantum mechanics. In particular, contextual hidden variable theories specified by (7)
that respect the factorizability (14) are not viable.
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Now, it is not difficult to demonstrate the converse of the above derivation in which the additivity
of expectation values (19) is derived by assuming the stringent bounds of +2 on the sum (17).
Employing (15), (17) can be written as

./z o (a,\)B(b,\) p(A) dA +/$ of(a,A) BV, 1) p(A) dA f/%ﬂ(a/,A)@(b, A) p(A) dA —/fﬂ(a’, MNB®,A) p(A)dr. (23)

Since each product <7 (a, A)Z(b, A) in the above integrals is equal to £1, each of the four integrals is
bounded by +1:

1< /f o/ (a,A)B(b,A) p(\)dA < +1. (24)

Thus the sum of four integrals in (23) is bounded by £4, not 2. However, we started with (22), which
contends that the sum of integrals in (23) is bounded by £2. But the only way to reduce the bounds
on (23) from £4 to £2 without violating the rules of anti-derivatives is by equating the sum of integrals
in (23) to the following integral of the sum,

/j{ o (a,A) B(b,A) + o (a,A) BV, \) + o (a’,\) B(b,A) — o (a',A) B(b',\)} p(A\)dA, (25)

which, as we saw above in (21), is bounded by +2. We have thus derived the additivity
of expectation values (19) by imposing (22) as our starting assumption. Thus, given the
previous derivation that led us to (22) by assuming (19) and the current derivation that led
us to (19) by assuming (22), we have proved that the assumption (19) of the additivity of
expectation values is tautologous to assuming the bounds of £2 on Bell-CHSH combination (17)
of expectation values.

In many derivations of (22) in the literature, factorized probabilities of observing binary
measurement results are employed rather than measurement results themselves I have used in (14) in
my derivation following Bell [1,16]. But employing probabilities would only manage to obfuscate the
logical flaw in Bell’s argument I intend to bring out here.

1.4. Additivity of expectation values is respected by quantum states

The key step that led us to the bounds of 42 on (17) that are more restrictive than 42+/2
is the assumption (19) of the additivity of expectation values, which (as noted after (9) and will
be further explained in Section 1.5) is valid only for commuting observables [15]. This assumption,
however, is usually not viewed as an assumption at all. It is usually viewed as a benign
mathematical step, necessitated by Einstein’s requirement of realism [19]. But as I will demonstrate
in Section 1.5, far from being required by realism, the right-hand side of (19), in fact, contradicts realism,
which requires that every observable of a physical system is assigned a unique eigenvalue, quantifying
one of its preexisting properties.

Moreover, realism has already been adequately accommodated by the very definition of
the local functions </(a,A) and #(b,A) and their counterfactual juxtaposition on the left-hand
side of (19), as contextually existing properties of the system. Evidently, while a result in
only one of the four expectation values corresponding to a sub-experiment that appear on the
left-hand side of (19) can be realized in a given run of a Bell-test experiment, the remaining
three results appearing on that side are realizable at least counterfactually, thus fulfilling the
requirement of realism [8]. Therefore, the requirement of realism does not necessitate the
left-hand side of (19) to be equated with its right-hand side in the derivation of (22). Realism
requires definite results </ (a,A) Z(b,A) to exist as eigenvalues only counterfactually, not all
four at once, as they are written on the right-hand side of (19). What is more, as we will soon see,
realism implicit in the prescription (7) requires the quantity (20) to be a correct eigenvalue of the
summed operator (33), but it is not.
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On the other hand, given the assumption p(A | a, b) = p(A) of statistical independence and the
addition property of anti-derivatives, mathematically the equality (19) follows at once. The binary
properties of the functions <7 (a, A) and %4 (b, A) then immediately lead to the bounds of £2 on the
Bell-CHSH sum (17). But, as we saw above, assuming the bounds of 2 on (17) leads, conversely, to the
assumption (19) of the additivity of expectation values. Thus, assuming the additivity of expectation
values (19) is mathematically equivalent to assuming the bounds of +2 on the sum (17). In other words,
Bell’s argument presented in Section 1.3 assumes its conclusion (22) in the guise of assumption (19).

Sometimes assumption (19) is justified on statistical grounds. It is argued that the
four sub-experiments appearing on the left-hand side of (19) with different experimental
settings {a, b}, {a, b'}, etc. can be performed independently of each other, on possibly
different occasions, and then the resulting averages are added together at a later time for
statistical analysis. If the number of experimental runs for each pair of settings is sufficiently
large, then, theoretically, the sum of the four averages appearing on the left-hand side
of (19) are found not to exceed the bounds of £2, thus justifying the equality (19). This
can be easily verified in numerical simulations (see Ref. [27] cited in [12]). However,
this heuristic argument is not an analytical proof of the bounds. What it implicitly neglects to take into
account by explicitly assuming that the four sub-experiments can be performed independently, is that
the sub-experiments involve mutually exclusive pairs of settings such as {a, b} and {a, b’} in physical
space, and thus involve non-commuting observables that cannot be measured simultaneously [8].
Unless the statistical analysis takes this physical fact into account, it cannot be claimed to have any
relevance for the Bell-test experiments. For ignoring this physical fact amounts to incorrectly assuming
that the spin observables o1 -a ® o3 - b, efc. are mutually commuting, and thus simultaneously
measurable, for which assumption (19) is indeed valid, as demonstrated below in Section 1.5 (see the
discussion around (39)). On the other hand, when the non-commutativity of the observables involved
in the sub-experiments is taken into account in numerical simulations, the bounds on (17) turn out to
be +2+/2, as shown in [9,10] and Ref. [27] cited in [12]. In other words, such a statistical argument is
simply assumption (19) in disguise.

Another important point to recognize here is that the above derivation of the stringent bounds of
+2 on (17) for a locally causal dispersion-free counterpart |, A) of the quantum mechanical singlet
state (10) must comply with the heuristics of the contextual hidden variable theories we discussed
in Section 1.1. If it does not, then the bounds of +2 cannot be claimed to have any relevance for the
viability of local hidden variable theories [23]. Therefore, as discussed in Section 1.1, in a contextual
hidden variable theory all of the observables ();(c;) of any physical system, including their sum
Q(€) = 1, Q(c;) (which also represents a physical quantity in the Hilbert space formulation of
quantum mechanics [2] whether or not it is observed), must be assigned unique eigenvalues w;(c;, A)
and @ (¢, A), respectively, in the dispersion-free states |, A) of the system, regardless of whether these
observables are simultaneously measurable.

Now, within quantum mechanics, expectation values do add in analogy with the equality (19)
assumed by Bell for local hidden variable theories [2,17]. In quantum mechanics, the statistical
predictions of which any hidden variable theory is obliged to reproduce, the joint results
</ (a, A) #(b, A) observed by Alice and Bob would be eigenvalues of the operators o1 -a ® o - b,
and the linearity in the rules of Hilbert space quantum mechanics ensures that these operators satisfy
the additivity of expectation values. Thus, for any quantum state |¢), the following equality holds:

(Ylor-a® oa-blp)+(Pplo-a® or-b' )+ (Plor-a" @ o2-b|p) — (| oy -a" ® oz - b |)

= <1P|(71~a®0’2~b+(71~a®0’2-bl+0’1-a/®0’2~b—(71~a/®(72~b/‘l/)>. (26)
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Comparing (19) and (26), the equality between the two sides of (19) seems reasonable, even physically.
Furthermore, since the condition (15) for any hidden variable theory obliges us to set the four terms on
the left-hand side of (26) as

(¥|o1-a® oa-b[¥) :/j /(a, \) Z(b, ) p(A)dA, 27)

(¥|o1-a® o b [¥) = /g o/ (a, ) B(b', A) p(A)dA, (28)

(¥|oy-a' @ oy b|¥) = /j (a', A) B(b, \) p(A)dA, 29)

and (T|01-a’@>02-b’Pf>:izf&%(d,Ajsg(bC,k)p(A)dA, (30)

it may seem reasonable that, given the quantum mechanical equality (26), any hidden variable theory
should satisfy

(F1QE@) [¥) = (¥|o1-a®@ or-bto-a®oy-b +01-a ®@oy-b—0y-a' ® cy-b'|¥) (31)

:/x{ o (a,A) B(b,\) + o (a,A) BB, A) + o (a',A) B(b,\) — o/ (a, 1) BB/, \)} p(A)dA,

adhering to the prescription (7), which would then justify equality (19). Since hidden variable theories
are required to satisfy the prescription (7), should not they also reproduce Equation (31)? The answer
to this is not straightforward.

1.5. Additivity of expectation values does not hold for dispersion-free states

The problem with Equation (31) is that, while the joint results </ (a, A)%(b, A), etc. appearing
on the left-hand side of Equation (19) are possible eigenvalues of the products of spin operators
01-a ® o0y - b, efc., their summation

/(a, A) B(b, A) + o (a, A) B!, A) + o (a, \) B(b, \) — o/ (a, A) B/, \) (32)

appearing as the integrand on the right-hand side of Equations (31) or (19) is not an eigenvalue of the
summed operator

Q@)=01ra®0oy-b+ora®oy-b+01-a ®oy-b—0y-a ® 0y, (33)

because the spin operators ¢ - a and o - @, etc., and therefore 01 -a ® o7 - b, etc., do not commute
with each other:

[c1-a®0y-b, 01-a®oy-b' ] =20-{(axb')x(axb)} (34)
£0if b £b +a.

Consequently, Equation (31) would hold within any hidden variable theory only if the operators
o1-a ® oy -b,etc. were commuting operators. This is well known from the famous criticisms of von
Neumann’s theorem against hidden variable theories (see, e.g., [8] and references therein). While the
equality (19) of the sum of expectation values with the expectation value of the sum is respected in
quantum mechanics, it does not hold for hidden variable theories [17].

In [17], Bell illustrates this problem using spin components of a spin—% particle. Suppose we
make a measurement of the component oy of the spin with a Stern-Gerlach magnet suitably oriented
in R3. That would yield an eigenvalue sy of 0y as a result. However, if we wish to measure the
component oy of the spin, then that would require a different orientation of the magnet in R?, and
would give a different eigenvalue, sy of 0y, as a result. Moreover, a measurement of the sum of the x-
and y-components of the spin, 0y + 0y, would again require a very different orientation of the magnet
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in IR®. Therefore, the result obtained as an eigenvalue of the summed operators o + 0y will not be the
sum sy + sy, of an eigenvalue of the operator 0, added linearly to an eigenvalue of the operator ¢y. As
Bell points out in [17], the additivity of expectation values (¢ | ox | ) + (¢ |0y [ ) = (¢ | o+ 0y | P)
is a rather unusual property of the quantum states |¢). It does not hold for the dispersion-free states
|, A) of hidden variable theories because the eigenvalues of non-commuting observables such as
0y and 0y do not add linearly, as we noted at the end of Section 1.1. Consequently, the additivity
relation (19) that holds for quantum states would not hold for the dispersion-free states.

This problem, however, suggests its own resolution. We can work out the correct eigenvalue
@ (¢, A) of the summed operator (33), at least formally, as I have worked out in Appendix A below. The
correct version of Equation (31) is then

(Y|o-a® oy -b+oj-a®oa-b'+01-a @0a-b—0y-a ® 02-b'|‘I’):/ @(a,a’,b,b’,A) p(A)dr, (35)
@

where

&= i\/{%(a, A) ZB(b, A) + o (a, \) B(b', A) + o (a, A) B(b, A) — o/ (a', A) B(V, A)}2 +(F,A|O|F,A)£0  (36)

is the correct eigenvalue of the summed operator (33), with its non-commuting part separated out as
the operator
O(a,a’,b,b’) =20 -n(a,a’,b,b’), (37)

where the vector

n(a,a’,b,b’) = { (a ><b/) x (axb)+ (a' ><b) X (axb)+ (a' ><b) X (a>< b/) (38)
— (@ xDb')x(axb)—(a' xb') x (a’ xb) - (a' xb') x (axb) }.

The details of how this separation is accomplished using (34) can be found in Appendix A
below. From (36), it is now easy to appreciate that the additivity of expectation values (19) assumed
by Bell can hold only if the expectation value (¥,A|®|¥,A) = £2||n|| of the non-commuting
part within the eigenvalue @(a,a’,b,b’,A) of the summed operator (33) is zero. But that is
possible only if the operators o1 -a ® o3 - b, efc. constituting the sum (33) commute with each
other. In general, if the operators o1 - a ® o - b, efc. in (33) do not commute with each other, then we
would have

@(a,a’,b,b',A) # o/(a, \) B(b, A) + o (a, \) B(b', \) + o (a', ) B(b, ) — o/ (a', \) B(b', 7). (39)

But the operators 01 -a ® o3 - b, etc. indeed do not commute with each other, because the pairs
of directions {a, a' }, etc. in (33) are mutually exclusive directions in R3. Therefore, the additivity
of expectation values assumed at step (19) in the derivation of (22) is unjustifiable. Far from being
necessitated by realism, it actually contradicts realism.

Since three of the four results appearing in the expression (32) can be realized only counterfactually,
their summation in (32) cannot be realized even counterfactually [8]. Thus, in addition to not being a
correct eigenvalue of the summed operator (33) as required by the prescription (7) for hidden variable
theories, the quantity appearing in (32) is, in fact, an entirely fictitious quantity, with no counterpart in
any possible world, apart from in the trivial case when all observables are commutative. By contrast,
the correct eigenvalue (36) of the summed operator (33) can be realized at least counterfactually because
it is a genuine eigenvalue of that operator, thereby satisfying the requirement of realism correctly, in
accordance with the prescription (7) for hidden variable theories. Using (36), all five of the observables
appearing on both sides of the quantum mechanical Equation (26) can be assigned unique and correct
eigenvalues [8].
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Once this oversight is ameliorated, it is not difficult to show that the conclusion of Bell’s theorem
no longer follows. For then, using the correct eigenvalue (36) of (33) instead of (32) on the right-hand
side of (19), we have the equation

£(a b) +&(a, b') + £, b) — £(a, b) :/g @(a,a’,b, b, 1) p(A) dA (40)

instead of (19), which implements local realism correctly on both of its sides, as required by the
prescription (7) we discussed in Section 1.1. This Equation (40) is thus the correct dispersion-free
counterpart of the equivalence (26) for the quantum mechanical expectation values [8]. It can reduce to
Bell’s assumption (19) only when the expectation value (¥, A |® | ¥, A) of the non-commuting part
within the eigenvalue @(a,a’, b, b’, 1) of the summed operator (33) happens to be vanishing, and thus
expresses the correct relationship among the expectation values for the singlet state (10) in the local
hidden variable framework considered by Bell [1]. Recall again from the end of Section 1.1 that the
quantum mechanical relation (26) is an unusual property of the quantum states |¢). As Bell stressed
in [17], “[t]here is no reason to demand it individually of the hypothetical dispersion free states,
whose function it is to reproduce the measurable peculiarities of quantum mechanics when averaged
over.” Moreover, in Section V of [8] I have demonstrated that the bounds on the right-hand side of (40)
are +2+/2 instead of +2. An alternative derivation of these bounds follows from the magnitude ||n||
of the vector defined in (38), which, as proved in Appendix B below, is bounded by 2, and therefore
the eigenvalue +2 ||n|| of the operator (37) obtained as its expectation value (¥, A | © | ¥, A) is bounded
by +4, giving

—4 < (Y,7A|0(a,ad,b,b') |¥,7) < +4. (41)

Substituting these into (36), together with the bounds of +2 we worked out before on the commuting
part (32), gives
—2v2 < @(a,a,b, b, 1) < +2V72, (42)

which is constrained to be real despite the square root in the expression (36) because the operator (33)
is Hermitian. Consequently, we obtain the following Tsirel’son’s bounds in the dispersion-free state,
on the right-hand side of (40):

22 < /f&?(a,a’,b,b’,)\) p(A)dA < +2V2. 43)

Given the correct relation (40) between expectation values instead of the flawed assumption (19), we
thus arrive at
—2v2 < &(a, b)+&(a, b)) +£(a, b) —E(a, b') < +2V2. (44)

Since the bounds of +2+/2 we have derived on the Bell-CHSH sum of expectation values are the same
as those predicted by quantum mechanics and observed in the Bell-test experiments, the conclusion
of Bell’s theorem is mitigated. What is ruled out by these experiments is not local realism but
the assumption of the additivity of expectation values, which does not hold for non-commuting
observables in dispersion-free states of any hidden variable theories to begin with.

1.6. Conclusion: Bell’s theorem assumes its conclusion (petitio principii)

Let me reiterate the main points discussed above. Together, they demonstrate that Bell’s theorem
begs the question.

(1) The first point is that the derivation in Section 1.3 of the bounds of 2 on (17) for the
dispersion-free counterpart | ¥, A) of the singlet state (10) must comply with the heuristics of the
contextual hidden variable theories discussed in Section 1.1. Otherwise, the stringent bounds of 12
cannot be claimed to have any relevance for hidden variable theories. This requires compliance
with the prescription (7) that equates the quantum mechanical expectation values with their

doi:10.20944/preprints202301.0023.v9
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hidden variable counterparts for all observables, including any sums of observables, pertaining
to the singlet system.

(2) The most charitable view of the equality (19) is that it is an assumption, over and
above those of locality, realism, and all other auxiliary assumptions required for deriving the
inequalities (22), because it is valid only for commuting observables. Far from being required by
realism, it contradicts realism, because it fails to assign the correct eigenvalue (36) to the summed
observable (33) as its realistic counterpart, as required by the prescription (7). Realism requires
that all observables, including their sums, must be assigned unique eigenvalues, regardless of whether
they are observed.

(3) Expectation values in dispersion-free states of hidden variable theories do not add
linearly for observables that are not simultaneously measurable. And yet, Bell assumed
linear additivity (19) within a local hidden variable model. Conversely, in the light of the
heuristics of contextual hidden variable theories we discussed in Section 1.1, assuming (19)
is equivalent to assuming that the spin observables o1 -a ® o - b, etc. commute with each other, but
they do not.

(4) When the correct eigenvalue (36) is assigned to the summed operator (33) replacing the
incorrect step (19), the bounds on Bell-CHSH sum (17) work out to be +24/2 instead of +2, thus
mitigating the conclusion of Bell’s theorem.

(5) As we proved in Section 1.3, the assumption (19) of the additivity of expectation values is
equivalent to assuming the strong bounds of +2 on Bell-CHSH sum (17) of expectation values. In
other words, (19) and (22) are tautologous.

The first four points above invalidate assumption (19), and thus inequalities (22) on physical
grounds, and the last
one demonstrates that Bell’s theorem assumes its conclusion in a different guise, and is thus
invalid on logical grounds.

In this paper I have focused on a formal and logical
critique of Bell's theorem. Elsewhere [9,13,15], I  have developed
a comprehensive local-realistic framework for understanding quantum correlations in
terms of the geometry of the spatial part of one of the well-known solutions of Einstein’s
field equations of general relativity — namely, that of a quaternionic 3-sphere — taken
as a physical space within which we are confined to perform Bell-test experiments. This
framework is based on Clifford algebra and thus explicitly takes the non-commutativity of observables
into account. It thus shows, constructively, that contextually local hidden variable theories are
not ruled out by Bell-test experiments. Since, as we discussed in Section 1.2, the formal proof of
Bell’s theorem is based on the entangled singlet state (10), in [4,5,7,10-12,14] I have reproduced
the correlations predicted by (10) as a special case within the local-realistic framework proposed
in [9,13,15]. I especially recommend the calculations presented in [7] and [14], which also discuss
a macroscopic experiment that would be able to falsify the 3-sphere hypothesis I have proposed in
these publications.

Appendix A. Separating the commuting and non-commuting parts of the summed operator (33)

Before considering the specific operator (33), in this appendix let us prove that, in general, the
eigenvalue of a sum r R +sS +tT + u U of operators is not equal to the sum r Z +s . +t T +u U
of the individual eigenvalues of the operators R, S, 7, and U, unless these operators commute with
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each other. Here 7, s, t, and u are real numbers. It is not difficult to prove this known fact by evaluating
the square of the operator {rR +sS +tT + ull} as follows:

{FrR+sS+tT+ull{rR+sS+tT +uld} =r*R*>+rsRS + rt RT + ru RU
+ 57 SR+ 5°8% + st ST + su SU
+trTRAtsTS+2T> +tuTU (A1)
+urUR 4+ usUS + utUT + u*U>.

Now, assuming that the operators R, S, T, and & do not commute in general, let us define the following
operators:

L:=8SR-RS — SR=RS+L, (A2)
M:=TR—-RT < TR=RT +M, (A3)
N:=T8—8T « TS=8T+N, (A4)
O:=UR—-RU <> UR =RU+ O, (A5)
P=UT —TU = UT =TU+P, (A6)

and Q:=US—SU < US=SU+Q. (A7)

These operators would be null operators with vanishing eigenvalues if the operators R, S, 7, and U
did commute with each other. Using these relations for the operators SR, TR, TS, UR, UT and US,
Equation (A1) can be simplified to

{rR4AsS+HtT +uld}{rR+sS+tT +uld} = r*R*+2rs RS + 2rt RT + 2ru RU
+ 15 L4 s28% + 25t ST + 2s5u SU (A8)
+rt M A stN + 2T% +2tu TU
+ru O+ su Q+ tu P + u’U? (A9)
= {rR+sS+tTH+uld} +,

where
Vi=rsLArHM+stN+ruO+tuP+suQ. (A10)

We have thus separated out the commuting part {r R +sS +t T + ull }. and the non-commuting part
Y of the summed operator X := {r R +s8 + T + uld}. Note that the operators £, M, N, O, P, and
Q defined in (A2)-(A7) will not commute with each other in general unless their constituents R, S,
T, and U themselves are commuting. Next, we work out the eigenvalue 2" of the operator X in a
normalized eigenstate | ¢ ) using the eigenvalue equations

X[¢)=21¢) (A11)

and
xx|g)=x{x|g)}=x{2|8)} =2 {X|8)}=273), (A12)

in terms of the eigenvalues %, ., 7, and % of the operators R, S, 7, and U and the expectation value
(¢lyley:

2 =+ /(612x18) = £/ (E[{rR+sS+tT +uu}2[8) +(£|]8), (A13)

where we have used (??). But the eigenvalue of the commuting part {rR+sS+t7T +ull}c
of X is simply the linear sum rZ +s. +t.7 +u of the eigenvalues of the operators R, S,

doi:10.20944/preprints202301.0023.v9
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T, and U. Consequently, using the equation analogous to (A12) for the square of the operator
{rR+sS+tT+ uZ/I}C we can express the eigenvalue 2" of X as

%:i\/{r%+sy+tﬂ+u%}2+<§|y|§>. (A14)

Now, because the operators £, M, N, O, P, and Q defined in (A2)—~(A7) will not commute with
each other in general if their constituent operators R, S, 7, and U are non-commuting, the state | &)
will not be an eigenstate of the operator ) defined in (A10). Moreover, while a dispersion-free state
|, A) would pick out one of the eigenvalues % of Y, it will not be equal to the linear sum of the
corresponding eigenvalues ., #, A, 0, &, and 2 in general,

YW trsL+rt M +st N +ruld+tuP+sul, (A15)

even if we assume that the operators X’ and )V commute with each other so that (¢, A |V |, A) =&
is an eigenvalue of ). That is to say, just like the eigenvalue 2" of X, the eigenvalue % of ) is also
a nonlinear function in general. On the other hand, because we wish to prove that the eigenvalue
of thesum rR +sS +t7T + uldl of the operators R, S, 7, and U is not equal to the sum r Z + 5. +
t. 7 +u of the individual eigenvalues of the operators R, S, T, and U unless they commute
with each other, we must make sure that the eigenvalue %" does not vanish for the unlikely case in
which the operators £, M, N, O, P, and Q commute with each other. But even in that unlikely case,
we would have

Y =rsLArt M +stN +rul+tuP +su2 (A16)

as eigenvalue of the operator ) defined in (A10), and consequently the eigenvalue 2" in (A14) will at
best reduce to

,%:i\/{r%JrsYJrt9+u%}2+rs$+rt//+st%+ruﬁ+tu,@+su3. (A17)

In other words, even in such an unlikely case % will not vanish, and consequently the eigenvalue 2
will not reduce to
X =rR+s S+t T +u. (A18)

Consequently, unless (¢, A | Y(c) |, A) = 0, the expectation value of X (¢) equating the average of
Z (c, M) will be

WI1X©) 1) = [ 2 1) p)dr (A19)

-/, [ J{r B ) +5 76, ) +ET(0A) +u (e D+ (9, A1 D)9, A)} p(A)dA (A20)

7&/2 {i\/{r%(c, A +s (e, A)+tT(c, A) +u(c, )\)}2+ (c, /\)} p(A)dA if[X, Y] #0  (A21)

#/x +{rZ(c, A)+sL(c, \)+tT(c, A\)+u#(c, \)} p(A)dA if &, M, N, O, P, 2 +0, (A22)

where c indicates the contexts of experiments as discussed in Section 1.1. The above result confirms
the inequality (39) we discussed in Section 1.5. Note that, because 2 (c, A) and # (¢, A) are highly
nonlinear functions in general (recall, e.g., that /x2 £ 2 # Vx2 + /y2), the inequality in (A22)
can reduce to equality if and only if the operators R, S, 7, and U commute with each other. In
that case, the operators £, M, N, O, P, and Q defined in (A2)-(A7) will also commute with each
other, as well as being null operators, with each of the eigenvalues .2, .#, .4, 0, &, and 2
reducing to zero. Consequently, in that case (9, A|Y(c) |, A) will vanish identically and (A14)
will reduce to (A18).

doi:10.20944/preprints202301.0023.v9


https://doi.org/10.20944/preprints202301.0023.v9

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 March 2023 doi:10.20944/preprints202301.0023.v9

14 of 16

It is now straightforward to deduce the operator ©(a, a’, b, b’) specified in (37) using (34). For this
purpose, we first note that for the Bell-CHSH sum (17) the real numbersr =s =t = +land u = —1,
and therefore (A18) simplifies to

2, A)=ZR(c, \)+S(c, \)+ T (c, \) =X (c, ). (A23)

This quantity is tacitly assumed in the derivation of Bell’s theorem to be the eigenvalue of the summed
operator (33), implying the following identifications:

o (a, \) B(b, \) =Z(a, b, A)

= +1 is an eigenvalue of the observable R(a, b) =c1-a ® o3-b, (A24)
o (a, A) B(b', A) = S(a, b, A)
= 41 is an eigenvalue of the observable S(a, b’)=¢1-a ® 03 b/, (A25)
(', A\) B, A)= T, b, A)
= 41 is an eigenvalue of the observable T (a’, b) =c;-a' ® o3 -b, (A26)
and & (a’, A\) B(b', A) =%, b, A)
= 41 is an eigenvalue of the observable U(a’, b') = ¢y -a’ ® o5 b'. (A27)

The non-commuting part of the operator (33) can therefore be identified using (A10) and the above
identifications as
O(a,a’,b,b’) = {L+ M+N -0 —-P—Q}(aa,b,b’), (A28)

where the operators £, M, N, O, P, and Q are defined in (A2)-(A7). The result is the operator specified
in (37).

Appendix B. Establishing bounds on the magnitude of the vector n defined in (38)

The vector n defined in (38) is a function of four unit vectors, a, a’, b, and b/, in
R?, and involves various cross products among these vectors. Consequently, as the vectors
a, a/, b, and b’ vary in their directions within R?® due to various choices made by Alice
and Bob, the extremum values of the magnitude ||n|| is obtained by setting the vectors
orthogonal to each other, with angles between them set to 90 or 270 degrees. However,
in three dimensions that is possible only for three of the four vectors, so one of the four
would have to be set either parallel or anti-parallel to one of the remaining three. Therefore,

let us first choose to set b’ = —b. Substituting this into (38) then gives n = 0, and
thus ||n|| = 0. We have thus found the lower bound on the magnitude ||n||. To determine the
upper bound on ||n||, we set a’ = —a instead. Substituting this into (38) reduces the vector n to the

following function of a, a’, b and b’:
n=2{(axb’)x(axb)}. (A29)
Consequently, in this case, the magnitude of the vector n works out to be

|| = 2{|(ax b)) [|(a x b)]| sin B axpr),(axb) (A30)
= 2{|[al[ [[b"|] sin Ba } {|[all [[b] sin Bap } { sinBaxb (axb) ) (A31)

where 3,1, is the angle between a and b, etc. But since the vectors a, a’, b, and b’ are all unit vectors
and we have set them orthogonal to each other (apart from a’ = —a), we obtain ||n|| = 2 as the
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maximum possible value for the magnitude of n. We have thus established the following bounds on
the magnitude of the vector n as specified in (38):

0 < [In] <2 (A32)
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