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Bell’s Theorem Begs the Question

Joy Christian

Einstein Centre for Local-Realistic Physics, Oxford OX2 6LB, United Kingdom; jjc@bu.edu

Abstract: I demonstrate that Bell’s theorem is based on circular reasoning and thus a fundamentally

flawed argument. It unjustifiably assumes the additivity of expectation values for dispersion-free

states of contextual hidden variable theories for non-commuting observables involved in Bell-test

experiments, which is tautologous to assuming the bounds of ±2 on the Bell-CHSH sum of expectation

values. Its premises thus assume in a different guise the bounds of ±2 it sets out to prove. Once

this oversight is ameliorated from Bell’s argument, the bounds on the Bell-CHSH sum of expectation

values work out to be ±2
√

2 instead of ±2, thereby mitigating the conclusion of Bell’s theorem.

Consequently, what is ruled out by the Bell-test experiments is not local realism but the additivity

of expectation values, which does not hold for non-commuting observables in any hidden variable

theories to begin with.

Keywords: Bell’s theorem; local realism; Bell-CHSH inequalities; quantum correlations; Bell-test

experiments

1. Introduction

Bell’s theorem [1] is an impossibility argument (or “proof”) that claims that no locally causal and

realistic hidden variable theory envisaged by Einstein [2] that could “complete” quantum theory can

reproduce all of the predictions of quantum theory. But some such claims of impossibility in physics

are known to harbor unjustified assumptions. In this paper, I show that Bell’s theorem against locally

causal hidden variable theories is no exception. It is no different, in this respect, from von Neumann’s

theorem against all hidden variable theories [3], or the Coleman-Mandula theorem overlooking the

possibilities of supersymmetry [4]. The implicit and unjustified assumptions underlying the latter

two theorems seemed so innocuous to many that they escaped notice for decades. By contrast, Bell’s

theorem has faced skepticism and challenges by many from its very inception (cf. footnote 1 in

[5]), including by me [5–16], because it depends on a number of questionable implicit and explicit

physical assumptions that are not difficult to recognize [10,16]. In what follows, I bring out one such

assumption and demonstrate that Bell’s theorem is based on a circular argument [9]. It unjustifiably

assumes the additivity of expectation values for dispersion-free states of hidden variable theories

for non-commuting observables involved in the Bell-test experiments [17], which is tautologous to

assuming the bounds of ±2 on the Bell-CHSH sum of expectation values. Its premises thus assume in

a different guise what it sets out to prove. Once this oversight is ameliorated from Bell’s argument, the

local-realistic bounds on the Bell-CHSH sum of expectation values work out to be ±2
√

2 instead of

±2, thereby mitigating the conclusion of Bell’s theorem. As a result, what is ruled out by the Bell-test

experiments is not local realism but the additivity of expectation values, which does not hold for

non-commuting observables in dispersion-free states of hidden variable theories to begin with.

2. Heuristics for completing quantum mechanics

The goal of any hidden variable theory [3,18,19] is to reproduce the statistical predictions encoded

in the quantum states |ψ⟩ ∈ H of physical systems using hypothetical dispersion-free states |ψ, λ) :=

{|ψ⟩, λ} ∈ H ⊗L that have no inherent statistical character, where the Hilbert space H is extended

by the space L of hidden variables λ, which are hypothesized to “complete” the states of the physical

systems as envisaged by Einstein [2]. If the values of λ ∈ L can be specified in advance, then the

results of any measurements on a given physical system are uniquely determined.
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To appreciate this, recall that expectation value of the square of any self-adjoint operator Ω ∈ H

in a normalized quantum mechanical state |ψ⟩ and the square of the expectation value of Ω will not be

equal to each other in general:

⟨ψ|Ω2 |ψ⟩ ̸= ⟨ψ |Ω |ψ⟩2. (1)

This gives rise to inherent statistical uncertainty in the value of Ω, indicating that the state |ψ⟩ is not

dispersion-free:

∆Ω =
√
⟨ψ|{Ω − ⟨ψ|Ω |ψ⟩}2 |ψ⟩ ̸= 0. (2)

By contrast, in a normalized dispersion-free state |ψ, λ) of hidden variable theories formalized by

von Neumann [3], the expectation value of Ω, by hypothesis, is equal to one of its eigenvalues ω(λ),

determined by the hidden variables λ,

(ψ, λ |Ω |ψ, λ ) = ω(λ) ⇐⇒ Ω |ψ, λ) = ω(λ) |ψ, λ), (3)

so that a measurement of Ω in the state |ψ, λ ) would yield the result ω(λ) with certainty. How this

can be accomplished in a dynamical theory of measurement process remains an open question [18].

But accepting the hypothesis (3) implies

(ψ, λ |Ω2 |ψ, λ) = (ψ, λ |Ω |ψ, λ)2. (4)

Consequently, unlike in a quantum sate |ψ⟩, in a dispersion-free state |ψ, λ) observables Ω have no

inherent uncertainty:

∆Ω =
√
(ψ, λ | {Ω − (ψ, λ |Ω |ψ, λ )}2 |ψ, λ) = 0. (5)

The expectation value of Ω in the quantum state |ψ⟩ can then be recovered by integrating over the

hidden variables λ:

⟨ψ |Ω |ψ ⟩ =
∫

L

(ψ, λ |Ω |ψ, λ ) p(λ) dλ =
∫

L

ω(λ) p(λ) dλ , (6)

where p(λ) denotes the normalized probability distribution over the space L of thus hypothesized

hidden variables.

As it stands, this prescription amounts to assignment of unique eigenvalues ω(λ) to all

observables Ω simultaneously, regardless of whether they are actually measured. In other words,

according to (6) every physical quantity of a given system represented by Ω would possess a unique

preexisting value, irrespective of any measurements being performed. In Section 2 of [18], Bell works

out an instructive example to illustrate how this works for a system of two-dimensional Hilbert

space. The prescription (6) fails, however, for Hilbert spaces of dimensions greater than two, because

in higher dimensions degeneracies prevent simultaneous assignments of unique eigenvalues to all

observables in dispersion-free states |ψ, λ ) dictated by the ansatz (3), giving contradictory values for

the same physical quantities. This was proved independently by Bell [18], Kochen and Specker [20],

and Belinfante [21], as a corollary to Gleason’s theorem [22,23].

These proofs – known as the Kochen-Specker theorem – do not exclude contextual hidden variable

theories in which the complete state |ψ, λ) of a system assigns unique values to physical quantities

only relative to experimental contexts [19,23]. If we denote the observables as Ω(c) with c being the

environmental contexts of their measurements, then the non-contextual prescription (6) can be easily

modified to accommodate contextual hidden variable theories as follows:

⟨ψ |Ω(c) |ψ ⟩ =
∫

L

(ψ, λ |Ω(c) |ψ, λ ) p(λ) dλ =
∫

L

ω(c, λ) p(λ) dλ . (7)
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Each observable Ω(c) is still assigned a unique eigenvalue ω(c, λ), but now determined cooperatively

by the complete state |ψ, λ) of the system and the state c of its environmental contexts. Consequently,

even though some of its features are no longer intrinsic to the system, contextual hidden variable

theories do not have the inherent statistical character of quantum mechanics, because outcome of an

experiment is a cooperative effect just as it is in classical physics [23]. Therefore, such theories interpret

quantum entanglement at the level of the complete state |ψ, λ) only epistemically.

For our purposes here, it is also important to recall that in the Hilbert space formulation

of quantum mechanics [3] the correspondence between observables and Hermitian operators

is one-to-one. Moreover, a sum Ω̃(c̃) = ∑
n
i=1 Ωi(ci) of several observables such as

Ω1(c1), Ω2(c2), Ω3(c3), . . . , Ωn(cn) is also an observable representing a physical quantity, and

consequently the sum of the expectation values of Ωi(ci) is the expectation value of the summed

operator Ω̃(c̃),
n

∑
i=1

⟨ψ |Ωi(ci) |ψ ⟩ = ⟨ψ |
[

n

∑
i=1

Ωi(ci)

]
|ψ ⟩, (8)

regardless of whether the observables are simultaneously measurable or mutually commutative [18].

The question then is, since within any contextual hidden variable theory characterized by (7) all of

the observables Ωi(ci) and their sum Ω̃(c̃) are assigned unique eigenvalues ωi(ci, λ) and ω̃(c̃, λ),

respectively, would these eigenvalues satisfy the equality

n

∑
i=1

[∫

L

ωi(ci, λ) p(λ) dλ

]
?
=

∫

L

[
n

∑
i=1

ωi(ci, λ)

]
p(λ) dλ (9)

in dispersion-free states |ψ, λ) of physical systems in analogy with the linear quantum mechanical

relation (8) above? The answer is: Not in general, because the eigenvalue ω̃(c̃, λ) of the summed

operator Ω̃(c̃) is not equal to the sum ∑
n
i=1 ωi(ci, λ) of eigenvalues ωi(ci, λ) for given λ, unless the

constituent observables Ωi(ci) are mutually commutative. As Bell points out in Section 3 of [18],

the linear relation (8) is an unusual property of quantum mechanical states |ψ⟩. There is no reason

to demand it individually of the dispersion-free states |ψ, λ), whose function is to reproduce the

measurable features of quantum systems only when averaged over, as in (7). I will come back to this

point in Section 6.

3. Special case of the singlet state and EPR-Bohm observables

Now, the proof of Bell’s famous theorem [1] is based on Bohm’s spin version of the EPR’s thought

experiment [24], which involves an entangled pair of spin- 1
2 particles emerging from a source and

moving freely in opposite directions, with particles 1 and 2 subject, respectively, to spin measurements

along independently chosen unit directions a and b by Alice and Bob, who are stationed at a spacelike

separated distance from each other (see Figure 1). If initially the pair has vanishing total spin, then the

quantum mechanical state of the system is described by the entangled singlet state

|Ψ⟩ = 1√
2

{
|k, +⟩1 ⊗ |k, −⟩2 − |k, −⟩1 ⊗ |k, +⟩2

}
, (10)

where k is an arbitrary unit vector in IR3 and

σ · k |k, ±⟩ = ± |k, ±⟩ (11)

defines quantum mechanical eigenstates in which the two fermions have spins “up” or “down” in the

units of h̄ = 2, with σ being the Pauli spin “vector” (σx, σy, σz). Once the state (10) is prepared, the

observable Ω(c) of interest is

Ω(c) = σ1 · a ⊗ σ2 · b , (12)
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whose possible eigenvalues are

ω(c, λ) = A B(a, b, λ) = ±1, (13)

where A = ±1 and B = ±1 are the results of spin measurements made jointly by Alice and Bob

along their randomly chosen detector directions a and b. In the singlet state (10) the joint observable

(12) predicts sinusoidal correlations ⟨Ψ|σ1 · a ⊗ σ2 · b|Ψ⟩ = −a · b between the values of the spins

observed about the freely chosen contexts a and b [6]. 3

s2s1

1 2

a

a
′

b

b
′

source
π
0 −→ e

−
+ e

+

total spin = 0

FIG. 1: In an EPR-Bohm-type experiment, a spin-less fermion – such as a neutral pion – is assumed to decay from a source into
an electron-positron pair, as depicted. Then, measurements of the spin components of each separated fermion are performed at
space-like separated observation stations and , obtaining binary results and along directions and . The
conservation of spin momentum dictates that the total spin of the system remains zero during its free evolution. After Ref. [5].

of eigenvalues for given , unless the constituent observables are mutually commutative.
As Bell points out in Section 3 of [18], the linear relation (8) is an unusual property of quantum mechanical states

. There is no reason to demand it individually of the dispersion-free states , whose function is to reproduce the
measurable features of quantum systems only when averaged over, as in (7). I will come back to this point in Section VI.

III. Special case of the singlet state and EPR-Bohm observables

Now, the proof of Bell’s famous theorem [1] is based on Bohm’s spin version of the EPR’s thought experiment [24],
which involves an entangled pair of spin- particles emerging from a source and moving freely in opposite directions,
with particles and subject, respectively, to spin measurements along independently chosen unit directions and
by Alice and Bob, who are stationed at a spacelike separated distance from each other (see Fig. 1). If initially the pair
has vanishing total spin, then the quantum mechanical state of the system is described by the entangled singlet state

(10)

where is an arbitrary unit vector in and

(11)

defines quantum mechanical eigenstates in which the two fermions have spins “up” or “down” in the units of ,
with being the Pauli spin “vector” . Once the state (10) is prepared, the observable of interest is

(12)

whose possible eigenvalues are

(13)

where and are the results of spin measurements made jointly by Alice and Bob along their randomly
chosen detector directions and . In the singlet state (10) the joint observable (12) predicts sinusoidal correlations

between the values of the spins observed about the freely chosen contexts and [6].
For locally contextual hidden variable theories there is a further requirement that the results of local measurements

must be describable by functions that respect local causality, as first envisaged by Einstein [2] and later formulated
mathematically by Bell [1]. It can be satisfied by requiring that the eigenvalue of the observable in (12)
representing the joint result is factorizable as , or in Bell’s notation as

(14)

with the factorized functions and satisfying the following condition of local causality:

Figure 1. In an EPR-Bohm-type experiment, a spin-less fermion – such as a neutral pion – is assumed

to decay from a source into an electron-positron pair, as depicted. Then, measurements of the spin

components of each separated fermion are performed at space-like separated observation stations 1

and 2, obtaining binary results A = ±1 and B = ±1 along directions a and b. The conservation of

spin momentum dictates that the total spin of the system remains zero during its free evolution. After

Ref. [5].

For locally contextual hidden variable theories there is a further requirement that the results of

local measurements must be describable by functions that respect local causality, as first envisaged by

Einstein [2] and later formulated mathematically by Bell [1]. It can be satisfied by requiring that the

eigenvalue ω(c, λ) of the observable Ω(c) in (12) representing the joint result A B(a, b, λ) = ±1 is

factorizable as ω(c, λ) = ω1(c1, λ)ω2(c2, λ), or in Bell’s notation as

A B(a, b, λ) = A (a, λ)B(b, λ), (14)

with the factorized functions A (a, λ) = ±1 and B(b, λ) = ±1 satisfying the following condition of

local causality:

Apart from the hidden variables λ, the result A = ±1 of Alice depends only on the

measurement context a, chosen freely by Alice, regardless of Bob’s actions [1]. And,

likewise, apart from the hidden variables λ, the result B = ±1 of Bob depends only on

the measurement context b, chosen freely by Bob, regardless of Alice’s actions. In particular,

the function A (a, λ) does not depend on b or B and the function B(b, λ) does not depend

on a or A . Moreover, the hidden variables λ do not depend on either a, b, A , or B [11].

The expectation value E(a, b) of the joint results in the dispersion-free state |ψ, λ) should then satisfy

the condition

⟨Ψ| σ1 · a ⊗ σ2 · b |Ψ⟩ = E(a, b) :=
∫

L

A (a, λ)B(b, λ) p(λ) dλ , (15)

where the hidden variables λ originate from a source located in the overlap of the backward light cones

of Alice and Bob, and the normalized probability distribution p(λ) is assumed to remain statistically

independent of the contexts a and b so that p(λ | a, b) = p(λ), which is a reasonable assumption. In

fact, relaxing this assumption to allow p(λ) to depend on a and b introduces a form of non-locality, as

explained by Clauser and Horne in footnote 13 of [25]. Then, since A (a, λ) = ±1 and B(b, λ) = ±1,

their product A (a, λ)B(b, λ) = ±1, setting the following bounds on E(a, b):

−1 ⩽ E(a, b) ⩽ +1. (16)
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These bounds are respected not only by local hidden variable theories but also by quantum mechanics

and experiments.

4. Mathematical core of Bell’s theorem

By contrast, at the heart of Bell’s theorem is a derivation of the bounds of ±2 on an ad hoc sum of the

expectation values E(a, b) of local results A (a, λ) and B(b, λ), recorded at remote observation stations

by Alice and Bob, from four different sub-experiments involving measurements of non-commuting

observables such as σ1 · a and σ1 · a′ [1,17]:

E(a, b) + E(a, b′) + E(a′, b)− E(a′, b′) . (17)

Alice can freely choose a detector direction a or a′, and likewise Bob can freely choose a detector

direction b or b′, to detect, at a space-like distance from each other, the spins of fermions they receive

from the common source. Then, from (16), we can immediately read off the upper and lower bounds

on the combination (17) of expectation values:

−4 ⩽ E(a, b) + E(a, b′) + E(a′, b) − E(a′, b′) ⩽ +4 . (18)

The next step in Bell’s derivation of the bounds ±2 instead of ±4 is the assumption of additivity of
expectation values:

E(a, b) + E(a, b′) + E(a′, b) − E(a′, b′)

=
∫

L

A (a, λ)B(b, λ) p(λ) dλ +
∫

L

A (a, λ)B(b′, λ) p(λ) dλ +
∫

L

A (a′, λ)B(b, λ) p(λ) dλ −
∫

L

A (a′, λ)B(b′, λ) p(λ) dλ

=
∫

L

{
A (a, λ)B(b, λ) +A (a, λ)B(b′, λ) +A (a′, λ)B(b, λ)−A (a′, λ)B(b′, λ)

}
p(λ) dλ . (19)

We will have much to discuss about this step, but if we accept the last equality, then the bounds of ±2

on the Bell-CHSH combination (17) of expectation values are not difficult to work out by rewriting the

integrand on its right-hand side as

A(a, λ)
{

B(b, λ) +B(b′, λ)
}
+ A(a′, λ)

{
B(b, λ)−B(b′, λ)

}
. (20)

Since B(b, λ) = ±1, if |B(b, λ) +B(b′, λ)| = 2, then |B(b, λ)−B(b′, λ)| = 0, and vice versa.
Consequently, since A(a, λ) = ±1, the integrand (20) is bounded by ±2 and the absolute value of the
last integral in (19) does not exceed 2:

−2 ⩽

∫

L

{
A (a, λ)B(b, λ) +A (a, λ)B(b′, λ) +A (a′, λ)B(b, λ)−A (a′, λ)B(b′, λ)

}
p(λ) dλ ⩽ +2 . (21)

Therefore, the equality (19) implies that the absolute value of the combination of expectation values is

bounded by 2:

−2 ⩽ E(a, b) + E(a, b′) + E(a′, b) − E(a′, b′) ⩽ +2 . (22)

But since the bounds on (17) predicted by quantum mechanics and observed in experiments are ±2
√

2,

Bell concludes that no local and realistic theory envisaged by Einstein can reproduce the statistical

predictions of quantum mechanics. In particular, contextual hidden variable theories specified by (7)

that respect the factorizability (14) are not viable.
Now, it is not difficult to demonstrate the converse of the above derivation in which the additivity of

expectation values (19) is derived by assuming the stringent bounds of ±2 on the sum (17). Employing
(15), (17) can be written as
∫

L

A (a, λ)B(b, λ) p(λ) dλ +
∫

L

A (a, λ)B(b′, λ) p(λ) dλ +
∫

L

A (a′, λ)B(b, λ) p(λ) dλ −
∫

L

A (a′, λ)B(b′, λ) p(λ) dλ . (23)

Since each product A (a, λ)B(b, λ) in the above integrals is equal to ±1, each of the four integrals is

bounded by ±1:

−1 ⩽

∫

L

A (a, λ)B(b, λ) p(λ) dλ ⩽ +1. (24)
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Thus the sum of four integrals in (23) is bounded by ±4, not ±2. However, we started with (22), which

contends that the sum of integrals in (23) is bounded by ±2. But the only way to reduce the bounds on

(23) from ±4 to ±2 without violating the rules of anti-derivatives is by equating the sum of integrals in

(23) to the following integral of the sum,

∫

L

{
A (a, λ)B(b, λ) +A (a, λ)B(b′, λ) +A (a′, λ)B(b, λ)−A (a′, λ)B(b′, λ)

}
p(λ) dλ , (25)

which, as we saw above in (21), is bounded by ±2. We have thus derived the additivity of expectation

values (19) by imposing (22) as our starting assumption. Thus, given the previous derivation that led

us to (22) by assuming (19) and the current derivation that led us to (19) by assuming (22), we have

proved that the assumption (19) of the additivity of expectation values is tautologous to assuming the

bounds of ±2 on Bell-CHSH combination (17) of expectation values.

In many derivations of (22) in the literature, factorized probabilities of observing binary

measurement results are employed rather than measurement results themselves I have used in (14) in

my derivation following Bell [1,17]. But employing probabilities would only manage to obfuscate the

logical flaw in Bell’s argument I intend to bring out here.

5. Additivity of expectation values is respected by quantum states

The key step that led us to the bounds of ±2 on (17) that are more restrictive than ±2
√

2 is the

assumption (19) of the additivity of expectation values, which (as noted after (9) and will be further

explained in Section 6) is valid only for commuting observables [16]. This assumption, however, is usually

not viewed as an assumption at all. It is usually viewed as a benign mathematical step, necessitated by

Einstein’s requirement of realism [2]. But as I will demonstrate in Section 6, far from being required by

realism, the right-hand side of (19), in fact, contradicts realism, which requires that every observable of a

physical system is assigned a unique eigenvalue, quantifying one of its preexisting properties.

Moreover, realism has already been adequately accommodated by the very definition of the local

functions A (a, λ) and B(b, λ) and their counterfactual juxtaposition on the left-hand side of (19),

as contextually existing properties of the system. Evidently, while a result in only one of the four

expectation values corresponding to a sub-experiment that appears on the left-hand side of (19) can be

realized in a given run of a Bell-test experiment, the remaining three results appearing on that side

are realizable at least counterfactually, thus fulfilling the requirement of realism [9]. Therefore, the

requirement of realism does not necessitate the left-hand side of (19) to be equated with its right-hand

side in the derivation of (22). Realism requires definite results A (a, λ)B(b, λ) to exist as eigenvalues

only counterfactually, not all four at once, as they are written on the right-hand side of (19). What is

more, as we will soon see, realism implicit in the prescription (7) requires the quantity (20) to be a

correct eigenvalue of the summed operator (33), but it is not.

On the other hand, given the assumption p(λ | a, b) = p(λ) of statistical independence and the

addition property of anti-derivatives, mathematically the equality (19) follows at once, provided we

adopt a double standard for additivity: reject (19) for von Neumann’s theorem as Bell did in [18],

but accept it for Bell’s theorem [9]. The binary properties of the functions A (a, λ) and B(b, λ) then

immediately lead to the bounds of ±2 on (17). But, as we saw above, assuming the bounds of ±2 on

(17) leads, conversely, to the assumption (19) of additivity of expectation values. Thus, assuming the

additivity of expectation values (19) is mathematically equivalent to assuming the bounds of ±2 on

the sum (17). In other words, Bell’s argument presented in Section 4 assumes its conclusion (22) in the

guise of assumption (19).

Sometimes assumption (19) is justified on statistical grounds. It is argued that the four

sub-experiments appearing on the left-hand side of (19) with different experimental settings {a, b},

{a, b′}, etc. can be performed independently of each other, on possibly different occasions, and then

the resulting averages are added together at a later time for statistical analysis. If the number of

experimental runs for each pair of settings is sufficiently large, then, theoretically, the sum of the
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four averages appearing on the left-hand side of (19) are found not to exceed the bounds of ±2, thus

justifying the equality (19). This can be easily verified in numerical simulations (see Ref. [27] cited in

[13]). However, this heuristic argument is not an analytical proof of the bounds. What it implicitly

neglects to take into account by explicitly assuming that the four sub-experiments can be performed

independently, is that the sub-experiments involve mutually exclusive pairs of settings such as {a, b}
and {a, b′} in physical space, and thus involve non-commuting observables that cannot be measured

simultaneously [9]. Unless the statistical analysis takes this physical fact into account, it cannot be

claimed to have any relevance for the Bell-test experiments. For ignoring this physical fact amounts

to incorrectly assuming that the spin observables σ1 · a ⊗ σ2 · b, etc. are mutually commuting, and

thus simultaneously measurable, for which assumption (19) is indeed valid, as demonstrated below

in Section 6 (see the discussion around (39)). On the other hand, when the non-commutativity of

the observables involved in the sub-experiments is taken into account in numerical simulations, the

bounds on (17) turn out to be ±2
√

2, as shown in [10,11] and Ref. [27] cited in [13]. In other words,

such a statistical argument is simply assumption (19) in disguise.

Another important point to recognize here is that the above derivation of the stringent bounds of

±2 on (17) for a locally causal dispersion-free counterpart |Ψ, λ) of the quantum mechanical singlet

state (10) must comply with the heuristics of the contextual hidden variable theories we discussed

in Section 2. If it does not, then the bounds of ±2 cannot be claimed to have any relevance for the

viability of local hidden variable theories [23]. Therefore, as discussed in Section 2, in a contextual

hidden variable theory all of the observables Ωi(ci) of any physical system, including their sum

Ω̃(c̃) = ∑
n
i=1 Ωi(ci) (which also represents a physical quantity in the Hilbert space formulation of

quantum mechanics [3] whether or not it is observed), must be assigned unique eigenvalues ωi(ci, λ)

and ω̃(c̃, λ), respectively, in the dispersion-free states |ψ, λ) of the system, regardless of whether these

observables are simultaneously measurable.
Now, within quantum mechanics, expectation values do add in analogy with the equality

(19) assumed by Bell for local hidden variable theories [3,18]. In quantum mechanics, the
statistical predictions of which any hidden variable theory is obliged to reproduce, the joint results
A (a, λ)B(b, λ) observed by Alice and Bob would be eigenvalues of the operators σ1 · a ⊗ σ2 · b,
and the linearity in the rules of Hilbert space quantum mechanics ensures that these operators satisfy
the additivity of expectation values. Thus, for any quantum state |ψ⟩, the following equality holds:

⟨ψ| σ1 · a ⊗ σ2 · b |ψ⟩+ ⟨ψ| σ1 · a ⊗ σ2 · b′ |ψ⟩+ ⟨ψ| σ1 · a′ ⊗ σ2 · b |ψ⟩ − ⟨ψ| σ1 · a′ ⊗ σ2 · b′ |ψ⟩

= ⟨ψ| σ1 · a ⊗ σ2 · b + σ1 · a ⊗ σ2 · b′ + σ1 · a′ ⊗ σ2 · b − σ1 · a′ ⊗ σ2 · b′ |ψ⟩. (26)

Comparing (19) and (26), the equality between the two sides of (19) seems reasonable, even physically.

Furthermore, since the condition (15) for any hidden variable theory obliges us to set the four terms on

the left-hand side of (26) as

⟨Ψ| σ1 · a ⊗ σ2 · b |Ψ⟩ =
∫

L

A (a, λ)B(b, λ) p(λ) dλ , (27)

⟨Ψ| σ1 · a ⊗ σ2 · b′ |Ψ⟩ =
∫

L

A (a, λ)B(b′, λ) p(λ) dλ , (28)

⟨Ψ| σ1 · a′ ⊗ σ2 · b |Ψ⟩ =
∫

L

A (a′, λ)B(b, λ) p(λ) dλ , (29)

and ⟨Ψ| σ1 · a′ ⊗ σ2 · b′ |Ψ⟩ =
∫

L

A (a′, λ)B(b′, λ) p(λ) dλ , (30)

it may seem reasonable that, given the quantum mechanical equality (26), any hidden variable theory
should satisfy

⟨Ψ| Ω̃(c̃) |Ψ⟩ = ⟨Ψ| σ1 · a ⊗ σ2 · b + σ1 · a ⊗ σ2 · b′ + σ1 · a′ ⊗ σ2 · b − σ1 · a′ ⊗ σ2 · b′ |Ψ⟩

=
∫

L

{
A (a, λ)B(b, λ) +A (a, λ)B(b′, λ) +A (a′, λ)B(b, λ)−A (a′, λ)B(b′, λ)

}
p(λ) dλ , (31)
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adhering to the prescription (7), which would then justify equality (19). Since hidden variable theories

are required to satisfy the prescription (7), should not they also reproduce equation (31)? The answer

to this is not straightforward.

6. Additivity of expectation values does not hold for dispersion-free states

The problem with equation (31) is that, while the joint results A (a, λ)B(b, λ), etc. appearing

on the left-hand side of equation (19) are possible eigenvalues of the products of spin operators

σ1 · a ⊗ σ2 · b, etc., their summation

A (a, λ)B(b, λ) +A (a, λ)B(b′, λ) +A (a′, λ)B(b, λ)−A (a′, λ)B(b′, λ) (32)

appearing as the integrand on the right-hand side of equation (31) or (19) is not an eigenvalue of the

summed operator

Ω̃(c̃) = σ1 · a ⊗ σ2 · b + σ1 · a ⊗ σ2 · b′ + σ1 · a′ ⊗ σ2 · b − σ1 · a′ ⊗ σ2 · b′, (33)

because the spin operators σ1 · a and σ1 · a′, etc., and therefore σ1 · a ⊗ σ2 · b, etc., do not commute

with each other:

[
σ1 · a ⊗ σ2 · b, σ1 · a ⊗ σ2 · b′ ] = 2 σ ·

{(
a × b′)× (a × b)

}

̸= 0 if b′ ̸= b ̸= a. (34)

Consequently, equation (31) would hold within any hidden variable theory only if the operators

σ1 · a ⊗ σ2 · b, etc. were commuting operators. This is well known from the famous criticisms of von

Neumann’s theorem against hidden variable theories (see, e.g., [9] and references therein). While the

equality (19) of the sum of expectation values with the expectation value of the sum is respected in

quantum mechanics, it does not hold for hidden variable theories [18].

In [18], Bell illustrates this problem using spin components of a spin- 1
2 particle. Suppose we

make a measurement of the component σx of the spin with a Stern-Gerlach magnet suitably oriented

in IR3. That would yield an eigenvalue sx of σx as a result. However, if we wish to measure the

component σy of the spin, then that would require a different orientation of the magnet in IR3, and

would give a different eigenvalue, sy of σy, as a result. Moreover, a measurement of the sum of the x-

and y-components of the spin, σx + σy, would again require a very different orientation of the magnet

in IR3. Therefore, the result obtained as an eigenvalue of the summed operators σx + σy will not be the

sum sx + sy of an eigenvalue of the operator σx added linearly to an eigenvalue of the operator σy. As

Bell points out in [18], the additivity of expectation values ⟨ψ | σx |ψ ⟩+ ⟨ψ | σy |ψ ⟩ = ⟨ψ | σx + σy |ψ ⟩
is a rather unusual property of the quantum states |ψ⟩. It does not hold for the dispersion-free states

|ψ, λ) of hidden variable theories because the eigenvalues of non-commuting observables such as σx

and σy do not add linearly, as we noted at the end of Section 2. Consequently, the additivity relation

(26) that holds for quantum states would not hold for the dispersion-free states.
This problem, however, suggests its own resolution. We can work out the correct eigenvalue

ω̃(c̃, λ) of the summed operator (33), at least formally, as I have worked out in Appendix A below. The
correct version of equation (31) is then

⟨Ψ| σ1 · a ⊗ σ2 · b + σ1 · a ⊗ σ2 · b′ + σ1 · a′ ⊗ σ2 · b − σ1 · a′ ⊗ σ2 · b′ |Ψ⟩ =
∫

L

ω̃(a, a′, b, b′, λ) p(λ) dλ , (35)

where

ω̃= ±
√{

A (a, λ)B(b, λ) +A (a, λ)B(b′, λ) +A (a′, λ)B(b, λ)−A (a′, λ)B(b′, λ)
}2

+ (Ψ, λ | Θ̃ |Ψ, λ) ̸= 0 (36)

is the correct eigenvalue of the summed operator (33), with its non-commuting part separated out as

the operator

Θ̃(a, a′, b, b′) = 2 σ · n(a, a′, b, b′) , (37)
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where the vector

n(a, a′, b, b′) =
{ (

a × b′)× (a × b) +
(
a′ × b

)
× (a × b) +

(
a′ × b

)
×

(
a × b′)

−
(
a′ × b′)× (a × b)−

(
a′ × b′)×

(
a′ × b

)
−

(
a′ × b′)×

(
a × b′) }. (38)

The details of how this separation is accomplished using (34) can be found in Appendix A below. From
(36), it is now easy to appreciate that the additivity of expectation values (19) assumed by Bell can
hold only if the expectation value (Ψ, λ | Θ̃ |Ψ, λ) = ±2 ||n|| of the non-commuting part within the
eigenvalue ω̃(a, a′, b, b′, λ) of the summed operator (33) is zero. But that is possible only if the
operators σ1 · a ⊗ σ2 · b, etc. constituting the sum (33) commute with each other. In general, if the
operators σ1 · a ⊗ σ2 · b, etc. in (33) do not commute with each other, then we would have

ω̃(a, a′, b, b′, λ) ̸= A (a, λ)B(b, λ) +A (a, λ)B(b′, λ) +A (a′, λ)B(b, λ)−A (a′, λ)B(b′, λ). (39)

But the operators σ1 · a ⊗ σ2 · b, etc. indeed do not commute with each other, because the pairs

of directions {a, a′}, etc. in (33) are mutually exclusive directions in IR3. Therefore, the additivity

of expectation values assumed at step (19) in the derivation of (22) is unjustifiable. Far from being

necessitated by realism, it actually contradicts realism.

Since three of the four results appearing in the expression (32) can be realized only counterfactually,

their summation in (32) cannot be realized even counterfactually [9]. Thus, in addition to not being a

correct eigenvalue of the summed operator (33) as required by the prescription (7) for hidden variable

theories, the quantity appearing in (32) is, in fact, an entirely fictitious quantity, with no counterpart in

any possible world, apart from in the trivial case when all observables are commutative. By contrast,

the correct eigenvalue (36) of the summed operator (33) can be realized at least counterfactually because

it is a genuine eigenvalue of that operator, thereby satisfying the requirement of realism correctly, in

accordance with the prescription (7) for hidden variable theories. Using (36), all five of the observables

appearing on both sides of the quantum mechanical equation (26) can be assigned unique and correct

eigenvalues [9].

Once this oversight is ameliorated, it is not difficult to show that the conclusion of Bell’s theorem

no longer follows. For then, using the correct eigenvalue (36) of (33) instead of (32) on the right-hand

side of (19), we have the equation

E(a, b) + E(a, b′) + E(a′, b)− E(a′, b′) =
∫

L

ω̃(a, a′, b, b′, λ) p(λ) dλ (40)

instead of (19), which implements local realism correctly on both of its sides, as required by the

prescription (7) we discussed in Section 2. This equation (40) is thus the correct dispersion-free

counterpart of the equivalence (26) for the quantum mechanical expectation values [9]. It can reduce to

Bell’s assumption (19) only when the expectation value (Ψ, λ | Θ̃ |Ψ, λ) of the non-commuting part

within the eigenvalue ω̃(a, a′, b, b′, λ) of the summed operator (33) happens to be vanishing. It thus

expresses the correct relationship among the expectation values for the singlet state (10) in the local

hidden variable framework considered by Bell [1]. Recall again from the end of Section 2 that the

quantum mechanical relation (26) is an unusual property of the quantum states |ψ⟩. As Bell stressed

in [18], “[t]here is no reason to demand it individually of the hypothetical dispersion free states,

whose function it is to reproduce the measurable peculiarities of quantum mechanics when averaged

over.” Moreover, in Section V of [9] I have demonstrated that the bounds on the right-hand side of (40)

are ±2
√

2 instead of ±2. An alternative derivation of these bounds follows from the magnitude ||n||
of the vector defined in (38), which, as proved in Appendix B below, is bounded by 2, and therefore the

eigenvalue ±2 ||n|| of the operator (37) obtained as its expectation value (Ψ, λ | Θ̃ |Ψ, λ) is bounded

by ±4, giving

−4 ⩽ (Ψ, λ | Θ̃(a, a′, b, b′) |Ψ, λ) ⩽ +4 . (41)
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Substituting these into (36), together with the bounds of ±2 we worked out before on the commuting

part (32), gives

−2
√

2 ⩽ ω̃(a, a′, b, b′, λ) ⩽ +2
√

2 , (42)

which is constrained to be real despite the square root in the expression (36) because the operator (33)

is Hermitian. Consequently, we obtain the following Tsirel’son’s bounds in the dispersion-free state,

on the right-hand side of (40):

−2
√

2 ⩽

∫

L

ω̃(a, a′, b, b′, λ) p(λ) dλ ⩽ +2
√

2 . (43)

Given the correct relation (40) between expectation values instead of the flawed assumption (19), we

thus arrive at

−2
√

2 ⩽ E(a, b) + E(a, b′) + E(a′, b)− E(a′, b′) ⩽ +2
√

2 . (44)

Since the bounds of ±2
√

2 we have derived on the Bell-CHSH sum of expectation values are the same

as those predicted by quantum mechanics and observed in the Bell-test experiments, the conclusion

of Bell’s theorem is mitigated. What is ruled out by these experiments is not local realism but

the assumption of the additivity of expectation values, which does not hold for non-commuting

observables in dispersion-free states of any hidden variable theories to begin with.

It is also instructive to note that the intermediate bounds ±2
√

2 on the Bell-CHSH sum (17),

instead of the extreme bounds ±2 or ±4, follow in the above derivation of (44) as a consequence of the

geometry of physical space [5,6]. Thus, what is brought out in it is the oversight of the non-commutative

or Clifford-algebraic attributes of the physical space in Bell’s derivation of the bounds ±2 in (22).

Indeed, it is evident from Appendix B below that the geometry of physical space imposes the bounds

0 ⩽ ||n|| ⩽ 2 on the magnitude of the vector (38), which, in turn, lead us to the bounds ±2
√

2 in

(44). This is in sharp contrast with the traditional view of these bounds as due to non-local influences,

stemming from a failure of the locality condition (14). But in the derivation of (44) above, the condition

(14) is strictly respected. Therefore, the strength of the bounds ±2
√

2 in (44) is a consequence — not of

non-locality or non-reality, but of the geometry of physical space [5,6]. Non-locality or non-reality is

necessitated only if one erroneously insists on linear additivity (19) of eigenvalues of non-commuting

observables for each individual dispersion-free state |Ψ, λ).

7. Conclusion: Bell’s theorem assumes its conclusion (petitio principii)

Let me reiterate the main points discussed above. Together, they demonstrate that Bell’s theorem

begs the question.

(1) The first point is that the derivation in Section 4 of the bounds of ±2 on (17) for the

dispersion-free counterpart |Ψ, λ) of the singlet state (10) must comply with the heuristics of the

contextual hidden variable theories discussed in Section 2. Otherwise, the stringent bounds of ±2

cannot be claimed to have any relevance for hidden variable theories. This requires compliance with

the prescription (7) that equates the quantum mechanical expectation values with their hidden variable

counterparts for all observables, including any sums of observables, pertaining to the singlet system.

(2) The most charitable view of the equality (19) is that it is an assumption, over and above those of

locality, realism, and all other auxiliary assumptions required for deriving the inequalities (22), because

it is valid only for commuting observables. Far from being required by realism, it contradicts realism,

because it fails to assign the correct eigenvalue (36) to the summed observable (33) as its realistic

counterpart, as required by the prescription (7). Realism requires that all observables, including their

sums, must be assigned unique eigenvalues, regardless of whether they are observed.

(3) Expectation values in dispersion-free states of hidden variable theories do not add linearly

for observables that are not simultaneously measurable. And yet, Bell assumed linear additivity (19)

within a local hidden variable model. Conversely, in the light of the heuristics of contextual hidden
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variable theories we discussed in Section 2, assuming (19) is equivalent to assuming that the spin

observables σ1 · a ⊗ σ2 · b, etc. commute with each other, but they do not.

(4) When the correct eigenvalue (36) is assigned to the summed operator (33) replacing the

incorrect step (19), the bounds on Bell-CHSH sum (17) work out to be ±2
√

2 instead of ±2, thus

mitigating the conclusion of Bell’s theorem.

(5) As we proved in Section 4, the assumption (19) of the additivity of expectation values is

equivalent to assuming the strong bounds of ±2 on Bell-CHSH sum (17) of expectation values. In

other words, (19) and (22) are tautologous.

The first four points above invalidate assumption (19), and thus inequalities (22) on physical

grounds, and the last one demonstrates that Bell’s theorem assumes its conclusion in a different guise,

and is thus invalid on logical grounds.

In this paper, I have focused on a formal or logical critique of Bell’s theorem. Elsewhere [10,14,16],

I have developed a comprehensive local-realistic framework for understanding quantum correlations

in terms of the geometry of the spatial part of one of the well-known solutions of Einstein’s field

equations of general relativity — namely, that of a quaternionic 3-sphere — taken as a physical

space within which we are confined to perform Bell-test experiments. This framework is based on

Clifford algebra and thus explicitly takes the non-commutativity of observables into account. It thus

shows, constructively, that contextually local hidden variable theories are not ruled out by Bell-test

experiments. Since, as we discussed in Section 3, the formal proof of Bell’s theorem is based on the

entangled singlet state (10), in [5,6,8,11–13,15] I have reproduced the correlations predicted by (10) as a

special case within the local-realistic framework proposed in [10,14,16]. I especially recommend the

calculations presented in [8] and [15], which also discuss a macroscopic experiment that would be able

to falsify the 3-sphere hypothesis I have proposed in these publications.

Appendix A. Separating the commuting and non-commuting parts of the summed operator (33)

Before considering the specific operator (33), in this appendix let us prove that, in general, the

eigenvalue of a sum r R+ sS + t T + u U of operators is not equal to the sum r R + s S + t T + u U

of the individual eigenvalues of the operators R, S, T , and U , unless these operators commute with

each other. Here r, s, t, and u are real numbers. It is not difficult to prove this known fact by evaluating

the square of the operator {r R+ sS + t T + uU} as follows:

{r R+ sS + t T + uU}{r R+ sS + t T + uU} = r2R2 + rsRS + rtRT + ruRU
+ sr SR+ s2S2 + stST + suSU
+ tr T R+ ts T S + t2T 2 + tu T U
+ ur UR+ usUS + utUT + u2U2. (A1)

Now, assuming that the operators R, S , T , and U do not commute in general, let us define the following

operators:

L := SR−RS ⇐⇒ SR = RS + L, (A2)

M := T R−RT ⇐⇒ T R = RT +M, (A3)

N := T S − ST ⇐⇒ T S = ST +N , (A4)

O := UR−RU ⇐⇒ UR = RU +O, (A5)

P := UT − T U ⇐⇒ UT = T U +P , (A6)

and Q := US − SU ⇐⇒ US = SU +Q. (A7)
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These operators would be null operators with vanishing eigenvalues if the operators R, S, T , and U
did commute with each other. Using these relations for the operators SR, T R, T S , UR, UT and US ,

equation (A1) can be simplified to

{r R+ sS + t T + uU}{r R+ sS + t T + uU} = r2R2 + 2rsRS + 2rtRT + 2ruRU
+ rsL+ s2S2 + 2stST + 2suSU
+ rtM+ stN + t2T 2 + 2tu T U
+ ruO+ suQ+ tuP + u2U2 (A8)

= {r R+ sS + t T + uU}2
c + Y , (A9)

where

Y := rsL+ rtM+ stN + ruO+ tuP + suQ . (A10)

We have thus separated out the commuting part {r R+ sS + t T + uU}c and the non-commuting part

Y of the summed operator X := {r R+ sS + t T + uU}. Note that the operators L, M, N , O, P , and

Q defined in (A2) to (A7) will not commute with each other in general unless their constituents R,

S, T , and U themselves are commuting. Next, we work out the eigenvalue X of the operator X in a

normalized eigenstate | ξ ⟩ using the eigenvalue equations

X | ξ ⟩ = X | ξ ⟩ (A11)

and

X X | ξ ⟩ = X
{
X | ξ ⟩

}
= X

{
X | ξ ⟩

}
= X

{
X | ξ ⟩

}
= X

2 | ξ ⟩, (A12)

in terms of the eigenvalues R, S , T , and U of the operators R, S , T , and U and the expectation value

⟨ ξ |Y | ξ ⟩:

X = ±
√
⟨ ξ |X X | ξ ⟩ = ±

√
⟨ ξ |

{
r R+ sS + t T + uU

}2

c
| ξ ⟩+ ⟨ ξ |Y | ξ ⟩ , (A13)

where we have used (A9). But the eigenvalue of the commuting part {r R+ sS + t T + uU}c

of X is simply the linear sum r R + s S + t T + u U of the eigenvalues of the operators R, S,

T , and U . Consequently, using the equation analogous to (A12) for the square of the operator{
r R+ sS + t T + uU

}
c

we can express the eigenvalue X of X as

X = ±
√{

r R + s S + t T + u U
}2

+ ⟨ ξ |Y | ξ ⟩ . (A14)

Now, because the operators L, M, N , O, P , and Q defined in (A2) to (A7) will not commute with

each other in general if their constituent operators R, S, T , and U are non-commuting, the state | ξ ⟩
will not be an eigenstate of the operator Y defined in (A10). Moreover, while a dispersion-free state

|ψ, λ) would pick out one of the eigenvalues Y of Y , it will not be equal to the linear sum of the

corresponding eigenvalues L , M , N , O , P , and Q in general,

Y ̸= rs L + rt M + st N + ru O + tu P + su Q , (A15)

even if we assume that the operators X and Y commute with each other so that (ψ, λ |Y |ψ, λ ) = Y

is an eigenvalue of Y . That is to say, just like the eigenvalue X of X , the eigenvalue Y of Y is also a

nonlinear function in general. On the other hand, because we wish to prove that the eigenvalue of the

sum r R+ sS + t T + uU of the operators R, S , T , and U is not equal to the sum r R + s S + t T +u U

of the individual eigenvalues of the operators R, S, T , and U unless they commute with each other,

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 May 2023                   doi:10.20944/preprints202301.0023.v10

https://doi.org/10.20944/preprints202301.0023.v10


13 of 15

we must make sure that the eigenvalue Y does not vanish for the unlikely case in which the operators

L, M, N , O, P , and Q commute with each other. But even in that unlikely case, we would have

Y = rs L + rt M + st N + ru O + tu P + su Q (A16)

as eigenvalue of the operator Y defined in (A10), and consequently the eigenvalue X in (A14) will at

best reduce to

X = ±
√{

r R + s S + t T + u U
}2

+ rs L + rt M + st N + ru O + tu P + su Q . (A17)

In other words, even in such an unlikely case Y will not vanish, and consequently the eigenvalue X

will not reduce to

X = r R + s S + t T + u U . (A18)

Consequently, unless (ψ, λ |Y(c) |ψ, λ ) ≡ 0, the expectation value of X (c) equating the average of
X (c, λ) will be

⟨ψ |X (c) |ψ ⟩ =
∫

L

X (c, λ) p(λ) dλ (A19)

=
∫

L

[
±
√{

r R(c, λ) + s S (c, λ) + t T (c, λ) + u U (c, λ)
}2

+ (ψ, λ |Y(c) |ψ, λ )

]
p(λ) dλ (A20)

̸=
∫

L

[
±
√{

r R(c, λ) + s S (c, λ) + t T (c, λ) + u U (c, λ)
}2

+ Y (c, λ)

]
p(λ) dλ if [X , Y ] ̸= 0 (A21)

̸=
∫

L

±
{

r R(c, λ) + s S (c, λ) + t T (c, λ) + u U (c, λ)
}

p(λ) dλ if L , M , N , O , P , Q ̸= 0, (A22)

where c indicates the contexts of experiments as discussed in Section 2. The above result confirms the

inequality (39) we discussed in Section 6. Note that, because X (c, λ) and Y (c, λ) are highly nonlinear

functions in general (recall, e.g., that
√

x2 ± y2 ̸=
√

x2 ±
√

y2 ), the inequality in (A22) can reduce to

equality if and only if the operators R, S , T , and U commute with each other. In that case, the operators

L, M, N , O, P , and Q defined in (A2) to (A7) will also commute with each other, as well as being null

operators, with each of the eigenvalues L , M , N , O , P , and Q reducing to zero. Consequently, in

that case (ψ, λ |Y(c) |ψ, λ ) will vanish identically and (A14) will reduce to (A18).

It is now straightforward to deduce the operator Θ̃(a, a′, b, b′) specified in (37) using (34). For this

purpose, we first note that for the Bell-CHSH sum (17) the real numbers r = s = t = +1 and u = −1,

and therefore (A18) simplifies to

X (c, λ) = R(c, λ) +S (c, λ) +T (c, λ)−U (c, λ). (A23)

This quantity is tacitly assumed in the derivation of Bell’s theorem to be the eigenvalue of the summed
operator (33), implying the following identifications:

A (a, λ)B(b, λ) ≡ R(a, b, λ)

= ±1 is an eigenvalue of the observable R(a, b) ≡ σ1 · a ⊗ σ2 · b , (A24)

A (a, λ)B(b′, λ) ≡ S (a, b′, λ)

= ±1 is an eigenvalue of the observable S(a, b′) ≡ σ1 · a ⊗ σ2 · b′ , (A25)

A (a′, λ)B(b, λ) ≡ T (a′, b, λ)

= ±1 is an eigenvalue of the observable T (a′, b) ≡ σ1 · a′ ⊗ σ2 · b , (A26)

and A (a′, λ)B(b′, λ) ≡ U (a′, b′, λ)

= ±1 is an eigenvalue of the observable U(a′, b′) ≡ σ1 · a′ ⊗ σ2 · b′. (A27)

The non-commuting part of the operator (33) can therefore be identified using (A10) and the above

identifications as

Θ̃(a, a′, b, b′) =
{
L+M+N −O−P −Q

}
(a, a′, b, b′) , (A28)
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where the operators L, M, N , O, P , and Q are defined in (A2) to (A7). The result is the operator

specified in (37).

Appendix B. Establishing bounds on the magnitude of the vector n defined in (38)

The vector n defined in (38) is a function of four unit vectors, a, a′, b, and b′, in IR3, and involves

various cross products among these vectors. Consequently, as the vectors a, a′, b, and b′ vary in

their directions within IR3 due to various choices made by Alice and Bob, the extremum values of

the magnitude ||n|| is obtained by setting the vectors orthogonal to each other, with angles between

them set to 90 or 270 degrees. However, in three dimensions that is possible only for three of the four

vectors, so one of the four would have to be set either parallel or anti-parallel to one of the remaining

three. Therefore, let us first choose to set b′ = −b. Substituting this into (38) then gives n = 0, and

thus ||n|| = 0. We have thus found the lower bound on the magnitude ||n||. To determine the upper

bound on ||n||, we set a′ = −a instead. Substituting this into (38) reduces the vector n to the following

function of a, a′, b and b′:
n = 2

{ (
a × b′)× (a × b)

}
. (A29)

Consequently, in this case, the magnitude of the vector n works out to be

||n|| = 2 ||(a × b′)|| ||(a × b)|| sin β(a×b′),(a×b) (A30)

= 2
{
||a|| ||b′|| sin βa,b′

} {
||a|| ||b|| sin βa,b

} {
sin β(a×b′),(a×b)

}
, (A31)

where βa,b is the angle between a and b, etc. But since the vectors a, a′, b, and b′ are all unit vectors

and we have set them orthogonal to each other (apart from a′ = −a), we obtain ||n|| = 2 as the

maximum possible value for the magnitude of n. We have thus established the following bounds on

the magnitude of the vector n as specified in (38):

0 ⩽ ||n|| ⩽ 2. (A32)
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