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Simple Summary: Skin cancer is one of the most common types of cancer in humans. Diagnosing skin cancer 
using visual methods in the early stages is difficult due to similar visual manifestations in benign and 
malignant types of pigmented lesions. Existing digital dermatological databases are highly unbalanced 
towards benign categories. Training neural network systems on unbalanced data increase the risk of false 
negative prediction when a malignant pigmented lesion is recognized as benign. This study aims to develop 
an intelligent analysis system that is sensitive to unbalanced dermatological data. The use of weight coefficients 
to modify the learning loss function can increase the accuracy of neural network analysis and reduce the 
number of false negative predictions when skin cancer is recognized as benign. The proposed system can be 
used by dermatologists and specialists as an auxiliary diagnostic tool to increase the chance of early detection 
of skin cancer. 

Abstract: Currently, skin cancer is the most commonly diagnosed form of cancer in humans and is one of the 
leading causes of death in patients with cancer. Biopsy methods are an invasive research method and are not 
always available for primary diagnosis. Imaging methods have low accuracy and depend on the experience of 
the dermatologist. Artificial intelligence technologies can match and surpass visual analysis methods in 
accuracy, but they have the risk of a false negative response when a malignant pigmented lesion can be 
recognized as benign. One possible way to improve accuracy and reduce the risk of false negatives is to analyze 
heterogeneous data, combine different preprocessing methods, and use modified loss functions to eliminate 
the negative impact of unbalanced dermatological data. The paper proposes a multimodal neural network 
system with a modified cross-entropy loss function that is sensitive to unbalanced heterogeneous 
dermatological data. The accuracy of recognition in 10 diagnostically significant categories for the proposed 
system was 85.19%. The novelty of the proposed system lies in the use of cross-entropy loss when training the 
modified function with the help of weight coefficients. The introduction of weighting factors has reduced the 
number of false negative forecasts, as well as improved accuracy by 1.02-4.03 percentage points compared to 
the original multimodal systems. The introduction of the proposed multimodal system as an auxiliary 
diagnostic tool can reduce the consumption of financial and labor resources involved in the medical industry, 
as well as increase the chance of early detection of skin cancer. 

Keywords: artificial intelligence; imbalanced classification; cost-sensitive learning; multimodal neural 
networks; skin cancer; melanoma 

 

1. Introduction 

To date, skin cancer is the most frequently diagnosed form of oncopathology in humans and 
represents a wide range of malignancies [1]. More than 40% of the total number of diagnosed cancer 
cases in the world is skin cancer [2]. The sharp increase in the incidence of skin cancer is explained 
by chronic exposure to ultraviolet radiation (UV) [3] and the predominant skin phototypes I-II in the 
population [4,5], which are characterized by a high risk of malignant pigmented neoplasms. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
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Skin cancer can be divided into two types: non-melanoma and melanoma [6]. According to 
statistics from the World Health Organization (WHO), 325,000 new cases of melanoma were 
registered in 2020 [7], of which more than 17% of deaths were due to diagnosis at the last stage of 
oncopathology [8]. The median five-year survival rate for patients diagnosed with early-stage 
melanoma is about 99% [9]. In later stages, when the disease reaches the lymph nodes, the survival 
rate drops to 68% [10]. In the last stages, when the disease metastasizes to distant organs, the five-
year survival rate is 27% [11]. 

Non-melanoma skin cancer (NMSC) includes basal cell carcinoma, squamous cell carcinoma, 
and other less common skin cancers [12]. NMSC accounts for about 1/3 of all malignant neoplasms 
diagnosed annually worldwide [13]. Although NMSC is 18-20 times more common than melanoma, 
there are epidemiological data for this type of cancer [14]. This type of skin cancer is often not 
registered in the databases of national cancer registries or registered incompletely since in most cases 
it is successfully treated with excision [15] or ablation [16]. A tumor diagnosed by pathohistology is 
coded by the International Classification of Diseases 11th revision (ICD-11) [17]. Melanoma has a C43 
classifier, so the statistics for this diagnosis are reliable. The heterogeneous group of NMSCs has a 
single code (C44) to cover all types of non-melanoma cancers [18]. Therefore, separate data on basal 
cell carcinoma, squamous cell carcinoma, and other skin malignancies are not available [19], making 
it difficult to count and accurately assess individual diagnoses of NMSC [2]. Thus, there is a need to 
develop balanced auxiliary diagnostic tools aimed at identifying various non-melanoma and 
melanoma types of malignant skin lesions, including basal cell carcinoma, squamous cell carcinoma, 
and others. 

A significant influence on the risk of skin malignant lesions is exerted by such statistical factors 
as age, gender, localization of the pigmented lesion on the body, genetic predisposition, melanin 
content in the skin layers, etc. [20]. The increase in the incidence of melanoma is directly proportional 
to age, as evidenced by the average age of diagnosis, which is approximately 60 years [21]. The 
relationship between the occurrence of malignant pigmented lesions and age becomes very clear in 
people over 75 years of age, when the incidence rate doubles [22]. Gender also has a significant impact 
on the risk of skin cancer. The incidence of melanoma in men is 1.5 times higher than in women [23]. 
The incidence of NMSC is also closely related to age and gender. At an early age, people of either sex 
show the same prevalence of any type of NMSC. However, in men older than 45 years, NMSC is 
diagnosed 2-3 times more often than in women [24]. Therefore, in the primary diagnosis, in addition 
to visual analysis, it is also necessary to take into account the complete clinical picture of each patient. 

To date, the main form of skin cancer detection is a visual clinical examination using 
dermatoscopy [25]. Dermoscopy is a non-invasive method of analysis that allows you to study the 
diagnostically significant morphological features of pigmented skin lesions [26]. The average 
accuracy of visual diagnosis of malignant tumors by an experienced dermatologist is 65-75% [27,28]. 
This is because early diagnosis of skin cancer can be difficult due to similar morphological 
manifestations in benign and malignant skin lesions. The method of visual diagnostics requires 
extensive training and experience from a specialist in the field of dermatology [29]. If a malignancy 
is suspected, a histopathological examination is performed using a biopsy, which is an invasive 
diagnostic method. Histopathological analysis is considered the "gold standard" for diagnosing skin 
cancer. However, it is time-consuming and may be inconclusive in borderline cases. Discrepancies in 
diagnosis between individual pathologists can be up to 25% [30,31]. 

Artificial intelligence technologies make it possible to analyze skin pigment lesions in a faster, 
more convenient, and more affordable way [32]. The main task of such systems is the preliminary 
assessment of suspicious pigmented skin lesions using high-quality histopathologically confirmed 
clinical images and machine learning methods [33]. However, such systems cannot replace the 
decisive opinion of the pathologist and dermatologist-oncologist in the diagnosis of skin cancer due 
to the possibility of false negative predictions [34]. Therefore, at present, the development of high-
precision intelligent systems that can be used as auxiliary diagnostic tools for detecting malignant 
neoplasms at an early stage is becoming relevant. 
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One of the main problems of existing medical datasets is the asymmetric distribution of data 
toward the category of healthy patients [35]. Deficiency or excessive excess of one or more categories 
is associated with the clinical characteristics of patients and disease characteristics, as well as research 
results. As a result, a large number of negative cases of the disease are diagnosed compared with a 
small number of positive cases of pathologies [36]. Due to the influence of the more common category 
on traditional machine learning methods, the prediction results are good in the majority categories, 
but not accurate enough in the minority categories. There is a risk of false negative predictions, which 
can have potentially fatal consequences for patients. 

To solve the problem of data imbalance, there are several approaches based on the 
transformation of training data [37], the modification of training methods [38], the development of 
single-class classifiers [39], and classifier ensembles [40]. The augmentation method using affine 
transformations allows you to increase the amount of training data due to minor changes in the color, 
size, and shape of images [41]. However, simple operations are not enough to significantly increase 
the accuracy of recognition of the minority category or overcome the problem of overfitting [42]. The 
resampling method balances the training data and can be used as oversampling in minority 
categories [43], undersampling in majority categories [44], or as a combination of both methods [45]. 
A significant disadvantage of this method is the possibility of skipping significant diagnostic data 
during machine learning, as well as an increase in computational costs during data processing [46]. 

Another approach is to modify training methods with weighting factors, where higher losses are 
assigned to minority categories [47,48]. Since the cost of classification loss is taken into account during 
machine learning by neural network algorithms, cost-based learning methods are the most optimal 
for datasets with skewed distribution [49]. 

The rest of the work is structured as follows. Section 2 is divided into several subsections. In 
subsection 2.1. a description of methods for pre-processing heterogeneous dermatological data is 
proposed. In subsection 2.2. a description of the modification of the cross-entropy loss function using 
weighting factors for unbalanced dermatological data is given. In subsection 2.3. a description of a 
multimodal neural network system for processing heterogeneous dermatological data with a 
modified cross-entropy loss function, which is sensitive to unbalanced data, is presented. Section 3 
presents the results of modeling the proposed balanced-trained multimodal neural network system 
for the classification of pigmented neoplasms with the stage of data preprocessing. Section 4 discusses 
the obtained results and compares them with known works on neural network classification of 
dermatological skin images. In conclusion, the results of the work are summarized. 

2. Materials and Methods 

This study proposes a multimodal neural network system with a modified cross-entropy loss 
function, which is shown in Figure 1. The system analyzes heterogeneous data to recognize malignant 
pigmented skin lesions. As heterogeneous data, information from two different modalities is used, 
such as dermatological images and statistical information about the patient (age, gender, localization 
of the pigmented lesion on the body). Dermatological data undergoes a pre-processing stage to 
improve diagnostically significant features, as well as further transformation into the format required 
as input for neural network systems. For the analysis of visual data, various convolutional neural 
network architectures are used, pre-trained on a set of natural ImageNet images. As a neural network 
architecture for the analysis of statistical data, a selected optimal architecture of a multilayer 
perceptron, consisting of three linear layers, is used. The proposed system is trained using a modified 
cross-entropy loss function using weighting factors. Weighting coefficients are calculated in a special 
way for a selected database of unbalanced dermatological data. 
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Figure 1. Multimodal neural network system with a modified cross-entropy loss function, sensitive 
to unbalanced heterogeneous dermatological data. 

2.1. Pre-processing of heterogeneous dermatological data 

The most common types of data in the field of dermatology are visual multidimensional data 
and patient statistics. Statistical data include gender, age, as well as the localization of the pigmented 
neoplasm on the patient's body. Visual clinical examination of the skin is the main form of diagnosing 
oncopathologies. The statistical parameters of the patient may also indicate the risk of developing 
malignant forms of pigmented skin lesions. Therefore, there is a need for a comprehensive analysis 
of heterogeneous data for more accurate diagnosis [50]. The combination of visual data, as well as 
multidimensional statistical data on patients, allows you to create heterogeneous databases of 
dermatological information that can be used to build intelligent diagnostic systems and decision 
support for specialists, physicians, and clinicians [51]. The use of heterogeneous information makes 
it possible to increase the accuracy of neural network analysis by searching for additional links 
between visual objects of research and statistical metadata [52]. 

Diagnostically significant multidimensional visual information can be distorted by noises of 
various natures, as well as by various physiological factors. The presence of hair structures on 
dermatological images violates the geometric properties of the site of the pigmented neoplasm [53]. 
These noise distortions can drastically change the size, shape, color, and texture of a lesion. This 
significantly affects the result of the analysis of auxiliary automated diagnostic systems. Hair removal 
from images at the preprocessing stage is an important step in the development of systems based on 
artificial intelligence [54]. For preliminary digital processing of visual data, a method was proposed 
for cleaning hair structures using morphological operations. The proposed method is presented in 
the paper [55] and consists of four stages. In the first stage, the processed dermatological RGB image 
of the pigmented neoplasm is decomposed into color components. Further processing is performed 
separately for each color component. In the second stage, the location of hair structures is determined 
using a morphological closing operation with a given element. In the third stage, hair pixels are 
replaced with neighboring pixels using interpolation. In the fourth stage, the reverse construction of 
the dermatological RGB image from the color components is performed. The use of the proposed 
method for cleaning hair structures can significantly improve the recognition accuracy of the neural 
network system by improving the quality of visual diagnostically significant information. An 
example of the phased work of the used method for pre-cleaning hair structures is shown in Figure 
2. 
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Figure 2. An example of the step-by-step operation of the method of pre-cleaning of hair structures 
on dermatological images. 

Most systems based on artificial intelligence require as input a feature vector in the form of 
integers [56]. Converting categorical variables to a numerical format is a necessary step for correctly 
calculating the correlation between them and further intelligent prediction [57]. The most common 
way to preprocess categorical variables is the one-hot encoding method [58]. As a result, categorical 
variables with multiple possible values are transformed into a new set of numeric position vectors, 
all elements of which are equal to zero, except for the position of the variable value in the list of all 
possible values [59]. The processed statistical data S includes a certain number of patient factors: 𝑆 = ൛𝑠ଵ, 𝑠ଶ, … , 𝑠௤ൟ; 𝑠௤ ∈ 𝑆௤ , (1)

where 𝑆௤  is the patient's statistical factor; 𝑠௤  is a pointer to a specific patient parameter. If 𝑆ଵ 
indicates the localization factor of the pigmented neoplasm on the patient's body, then 𝑠ଵ can take 
one of eight possible values, such as localization on the anterior torso, head/neck, lateral torso, lower 
extremity, oral/genital, palms/soles, posterior torso or upper extremity. 

When processing statistical data using the one-time coding method, the dimension of the input 
feature vector 𝑆 is formed as follows: dim 𝑆 = ෍ 𝜑௤௤ = ෍ |𝑆௤|௤ , (2)

where 𝜑௤ is the cardinality of the statistical factor 𝑆௤, which depends on the number of all possible 
values of the factor. For each statistical factor 𝑆௤, the order is carried out in an arbitrary fixed way. 
As a result of encoding, for each possible value of the statistical factor 𝑆௤, a binary code is reserved, 
the length of which depends on the power. The code 100 … 0ᇣᇧᇤᇧᇥఝ೜  is reserved for the first possible value. 

For the second possible value of the statistical factor 𝑆௤, the code 010 … 0ᇣᇧᇤᇧᇥఝ೜ , etc. is reserved. Thus, the 

total binary length depends on the total number of possible values for each statistical factor. The 
scheme for processing dermatological statistical data using the one-hot encoding method is shown in 
Figure 3. 
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Figure 3. Scheme for processing dermatological statistical data using the one-hot encoding method. 

2.2. Modification of the cross-entropy loss function using weight coefficients 

With the development of artificial intelligence technologies and the advent of large amounts of 
digital information, machine learning algorithms began to strive to increase the speed and accuracy 
of extracting information from processed data. The main goal of machine learning algorithms is to 
solve the problem of optimization-minimization of structural risks, which can be represented as 
follows: 

𝑁 = min௙ 1𝐾 ෍ 𝐶ఏ൫𝑓(𝑥௜)൯ + Λ𝑀(𝑓)௄
௜ୀଵ , (3)

where 𝐾 is the number of examples in the training set; 𝐶 is the error function with parameter vector 𝜃; 𝑀 is the regularization element that represents the complexity of the model; Λ ≥ 0 is the balance 
between empirical risk and the complexity of the neural network model. 

The loss function is the main part of training a neural network model and is used to adjust the 
weights of the neural network [60]. As a result of processing training examples by a neural network, 
output responses are generated that indicate the probability or reliability of possible categories to 
which the analyzed data belong [61]. The resulting probabilities are compared with the true labels. 
The loss function calculates a penalty for any deviation between the true label and the output of the 
neural network [62]. As a rule, in deep learning, the use of the logarithmic loss function is considered 
the most optimal [63]. To solve the problem of multiple classification, the softmax 𝐶௖௘ cross-entropy 
loss function is used, which has the form: 

𝐶௖௘ = − 1𝐾 ෍ ෍ 𝑙௜௡ × log ቀℎఓ(𝑥௜ , 𝑛)ቁ௄
௜ୀଵ

ே
௡ୀଵ , (4)

where 𝑁 is the number of categories in the training database; 𝑙௜௡ is the true label for training case 𝑖 
from category 𝑛; 𝑥௜ is the input of training case 𝑖; ℎఓ is the neural network model with weights 𝜇. 

When developing artificial intelligence-based skin cancer recognition systems, it is critical to 
solve the problem of class imbalance to minimize the occurrence of false negative predictions. Most 
of the existing publicly available dermatological datasets have an asymmetric distribution towards 
benign pigmented neoplasms [64]. The number of diagnosed benign cases of pigmented lesions in 
training databases can exceed the number of patients with a detected form of malignancy by a factor 
of two. When training on bases with a large number of categories, the difference between the most 
common and the least common category can be more than a hundred times. If the training examples 
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contain a significant imbalance in the data, then the AI-based classifier will tend to focus on the 
categories with the largest number of samples [65]. The standard loss function will be successfully 
minimized when the neural network classifier predicts all input data as “benign” [66]. Thus, there 
may be a shift in classification efficiency towards the prevailing category [67]. To solve this problem, 
the most optimal is the use of unequal costs for misclassification between categories, which can be 
defined as a cost matrix or weighting coefficients [68]. 

The cost of expenses can be considered as a penalty coefficient, which is introduced when 
training a neural network model [69]. When developing systems for intelligent recognition of 
pigmented skin lesions, the penalty factor is aimed at increasing the significance of the least common 
classes of malignant pigmented neoplasms. As a result, there is a stronger penalty for misclassifying 
data from a minority sample. The neural network classifier focuses on and more carefully analyzes 
the data coming from this distribution. The calculation of the cost of training costs 𝑑௡ is inversely 
proportional to the frequency of categories in the database and has the following form: 𝑑௡ = 𝐾𝑁 ∑ 𝑝௜௡௄௜ୀଵ , (5)

where 𝑁 is the number of dermatological categories; 𝑝௜௡ is an indication that image 𝑖 belongs to 
category 𝑛. 

The modification of the cross-entropy loss function using weight coefficients 𝐶௖௘ᇱ  can be 
represented as follows: 

𝐶௖௘ᇱ = − 1𝐾 ෍ ෍ 𝑑௖ × 𝑙௜௡ × log ቀℎఓ(𝑥௜ , 𝑛)ቁ௄
௜ୀଵ

ே
௡ୀଵ , (6)

where 𝑑௡ is the weighting factor for category 𝑛. 
Thus, modification of the cross-entropy loss function will minimize the impact of unbalanced 

data and avoid bias in the classification results towards the more common category of benign skin 
lesions. Figure 4 shows a diagram of the application of the modified cross-entropy loss function for 
training a multimodal neural network system for recognizing pigmented skin lesions. 
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Figure 4. Scheme of using a modified cross-entropy loss function for training a multimodal neural 
network system for recognizing pigmented skin lesions. 

2.3. Multimodal neural network system for the analysis of unbalanced dermatological data 

To date, multimodal machine learning is a promising area of research in which models are 
developed to analyze information from several modalities [70]. The fusion of heterogeneous data 
takes into account the representation of features of various modalities for a more complete analysis 
and allows the use of multidimensional heterogeneous information for making decisions in a neural 
network model [71]. The non-obvious relationship between the processed data and the results of 
diagnostics is extracted through an additional neural network study of information between 
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modalities. Thus, neural networks can use additional data by integrating several modalities into a 
common structure [72]. 

Convolutional neural networks (CNNs) are the most optimal neural network architecture for 
recognizing multidimensional visual data [73]. For the analysis of statistical data, the most optimal is 
a multilayer feed-forward perceptron [74]. The proposed multimodal neural network system consists 
of two neural network architectures. For the analysis of visual dermatological data presented by 
images of pigmented skin lesions, the CNN architecture is used. A linear multilayer perceptron is 
used to process statistical factors. 

The input of the proposed multimodal neural network system receives pre-processed 
dermatological images 𝐷௥௚௕, the vector of statistical features 𝑆. In a multilayer perceptron, neurons 
perform the summation of the received input data vector 𝑆 and the bias coefficient b, forming a 
synaptic input. As a result of training, the weights of neurons are iteratively formed as follows: 𝑣௔ାଵ = 𝑤௔ + ൬−𝑟 × 𝜕𝐸𝜕𝑤൰, (7)

where 𝑟 is the learning rate; డாడ௪ is the error gradient concerning the weights. After the signal passes 

through the ReLU activation function, the output signal of the neuron is calculated: 

𝑣௦ = 𝑓 ൭෍ 𝑧௜𝑣௜ + 𝑏௡
௜ ൱, (8)

Obtaining feature maps as a result of processing 𝐷௥௚௕ dermatological images is performed in 
parallel as follows: 

𝐷௙(𝑥, 𝑦) = 𝑏 + ෍ ෍ ෍ 𝑤௜௝௡(ଵ)஽ିଵ
௡ୀ଴

௪ିଵଶ
௝ୀି௪ିଵଶ

௪ିଵଶ
௜ୀି௪ିଵଶ 𝐷(𝑥 + 𝑖, 𝑦 + 𝑗, 𝑛), (9)

where 𝐷௙ is the feature map of the dermatological image; 𝑤௜௝௡(ଵ) is the 𝑐 × 𝑐 size filter factor, 𝑏 is the 
offset factor.  

On the concatenation layer, the resulting feature map 𝐷௙  and the output signal 𝑣௦  are 
combined as follows: 

𝐸 = ෍ ෍ ෍ 𝐷௙𝑤௜௝௡(ଶ)௡௝௜ + ෍ 𝑣௦𝑤௜௡(ଷ),௡
௜ୀଵ  (10)

where 𝑤௜௝௡(ଶ)  is the weight for processing feature maps of dermatological images 𝐷௙ ; 𝑤௜௡(ଷ)  is the 
weight for processing the output signal of the multilayer perceptron. 

The last layer of the multimodal neural network system is activated through the function softmax 𝐷(𝑦|𝑥, 𝜃) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥; 𝜃) . After that, the resulting output probability distribution between 
categories is compared with the original correct distribution. The modified cross-entropy loss 
function 𝐶௖௘ᇱ is used only in neural network systems with the specified output function. As a result, 
the loss function 𝐶௖௘ᇱ  indicates the distance between the output distribution and the original 
probability distribution. There is a gradual memorization of true vectors and a minimization of losses 
during training. The architecture of the proposed multimodal neural network system with a modified 
cross-entropy loss function is shown in Figure 5. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 January 2023                   doi:10.20944/preprints202301.0022.v1

https://doi.org/10.20944/preprints202301.0022.v1


 9 

 

Pre-processed  
image

13

Pre-processed  
statistical data

Heterogeneous data 

Imbalanced Dataset

Multimodal Neural Network

Softmax

Convolutional 
Layers

Neural Network
10

Linear NN
nn.Linear(13,64)
nn.ReLU()

nn.Linear(64,32)
nn.ReLU()

nn.Linear(32,10)

Concatenation 
layer

20 10
actinic keratosis (0.01)
basal cell carcinoma (0.06)

benign keratosis (0.02)

dermatofibroma (0.02)

melanoma (0.72)

nevus (0.01)

seborrheic keratosis (0.07)

solar lentigo (0.01)

squamous cell carcinoma (0.04)

vascular lesions (0.04)

Image 
pre-processing

Metadata 
pre-processing

Dermatoscopic 
image Statistical data

10

Modified Cross-Entropy 
Loss Function

 
Figure 5. The architecture of the proposed multimodal neural network system for recognizing 
pigmented skin lesions with a modified cross-entropy loss function. 

3. Results 

For practical modeling, data were selected from the open archive of the International Skin 
Imaging Collaboration (ISIC). The ISIC Archive is an open-source platform that contains publicly 
available dermatological data under a Creative Commons license. Images of pigmented skin lesions 
are associated with patient statistics and confirmed diagnoses. The purpose of the archive is to 
provide open access to diagnostic dermatological data for training specialists in melanoma 
recognition methods, as well as for the development of clinical decision support systems and 
automated diagnostics. The selected data for modeling included 41,725 dermatological images of 
varying sizes and quality. Each image was associated with a set of statistical factors and an 
established diagnosis. All data were divided into 10 diagnostically significant categories such as 
vascular lesions, nevus, solar lentigo, dermatofibroma, seborrheic keratosis, benign keratosis, actinic 
keratosis, basal cell carcinoma, squamous cell carcinoma, melanoma. The selected categories are 
divided into "malignant" and "benign" groups and arranged in descending order of risk and severity 
of the course of the disease. Actinic keratosis is an intraepithelial dysplasia of keratinocytes and is 
characterized as a "precancerous" skin lesion (in situ squamous cell carcinoma). Therefore, this 
category was assigned to the group of “malignant” pigmented skin lesions [75]. A graph of the 
distribution of selected dermatological images by category is shown in Figure 6. 

 

Figure 6. Graph of the distribution of selected dermatological images into diagnostically relevant 
categories. 

The set of statistical factors for each image included information about the patient's gender 
(male/female), the age group in increments of five years, and localization of the pigmented lesion on 
the body (anterior torso, head/neck, lateral torso, lower extremity, oral/genital, palms/soles, posterior 
torso, upper extremity). The statistical factors used for neural network modeling and their cardinality 
are presented in Table 1. 
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Table 1. Table of the cardinality of each statistical factor selected for modeling from the 
dermatological database. 

№ Statistical factor Cardinality 

1 Gender 2 
2 Age  18 
3 Localization on the body 8 

TOTAL 28 

At the stage of preliminary processing of statistical data, the “Age” parameter was divided into 
four groups by the age classification adopted by the World Health Organization (WHO). The first 
group of "young age" included patients under the age of 44 years. The second group of "middle age" 
included patients aged 45 to 59 years. The third group "elderly" included patients aged 60 to 74 years. 
The fourth group "long-livers" included patients aged 75 years and older. Thus, the variability of the 
"Age" parameter was reduced from 18 to 4 possible values. Graphs of the distribution of 
dermatological data by various statistical factors are shown in Figure 7. As a result of the analysis of 
statistical data, it was found that the predominant number of patients belong to men and the age 
group of 75 years and older. Also, pigmented lesions are most often localized on the posterior torso. 
The data obtained are highly correlated with studies on the influence of statistical factors on the risk 
of skin cancer [20–23]. 

  
(a) (b) 

 
(c) 

Figure 7. Graph of the distribution of selected dermatological data by statistical factors of patients: a) 
by gender, b) by age, c) by localization of the pigmented lesion on the patient's body. 

The simulation was carried out using the high-level programming language Python 3.11.0. All 
calculations were carried out on a PC with an Intel(R) Core(TM) i5-8500 processor at 3.00 GHz with 
16 GB of RAM and a 64-bit Windows 10 operating system. Training of multimodal neural network 
systems was carried out using a graphics processing unit (GPU) based on NVIDIA GeForce GTX 
1050TI video chipset. The Pytorch machine learning framework was used to model neural network 
systems. The NumPy, Pandas, and ScikitLearn libraries were used to process statistical data. The 
Matplotlib library was used to visualize the data. 

To model a multimodal neural network system for recognizing pigmented skin lesions, sensitive 
to unbalanced data, neural network architectures DenseNet_161 [76], Inception_v4 [77], ResNeXt_50 
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[78]. The selected convolutional architectures were pre-trained on the ImageNet natural image set. 
To date, the selected neural network architectures are recognized as the most productive and highly 
accurate compared to human capabilities [79]. 

At the first stage of modeling, the selected dermatological data were pre-processed. The 
preprocessing of the statistical data was to create an input vector using the one-hot encoding method. 
The coding tables for each possible value of each statistic are shown in Figure 8. Table 2 shows the 
cardinality of each pre-processed statistic by the one-hot encoding method. Thus, it was possible to 
reduce the number of possible values that the statistical factors of patients can take from 28 to 14. 

 
 

(a) (b) 

(c) 

Figure 8. Coding tables of statistical parameters of patients using the one-hot encoding method: a) 
gender, b) age, c) localization of the pigmented lesion on the patient's body. 

Table 2. Table of the cardinality of each pre-processed statistical factor selected for modeling from the 
dermatological database. 

№ Statistical factor Cardinality 

1 Gender 2 
2 Age  4 
3 Localization on the body 8 

TOTAL 14 

Pre-processing of visual data consisted in applying the proposed method for removing hair 
structures from [55]. Examples of pre-processed dermatological images are shown in Figure 9. The 
second step in pre-processing the visual data was to transform the size of the input data. The main 
part of the selected images of pigmented skin lesions from the ISIC archive is presented in the size of 
450×600 pixels. For the selected neural network architectures, the requirements for input visual data 
are 256 × 256 pixels for the DenseNet_161 [76] and ResNeXt_50 [78] architectures, 229 × 229 pixels 
for the Inception_v4 architecture [77]. Therefore, at the stage of pre-processing, the operation of 
transforming the size of the input images was applied. For further modeling, the dermatological 
database was divided at a percentage of 80 to 20 into training data and validation data. Affine 
transformations such as reflection, rotation, translation, scaling, etc. were applied to the training set 
of visual data. Data augmentation made it possible to avoid retrainin neural network models. 

The gender
 of the patient

male 0 1
female 1 0

One-hot code
The age

 of the patient
young      0 0 0 1
middle     0 0 1 0
elderly     0 1 0 0
senile      1 0 0 0

One-hot code

Localization on the 
patient's body
posterior torso 0 0 0 0 0 0 0 1
anterior torso 0 0 0 0 0 0 1 0

lower extremity 0 0 0 0 0 1 0 0
head/neck 0 0 0 0 1 0 0 0

upper extremity 0 0 0 1 0 0 0 0
palms/soles 0 0 1 0 0 0 0 0
lateral torso 0 1 0 0 0 0 0 0
oral/genital 1 0 0 0 0 0 0 0

One-hot code
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Figure 9. An example of pre-processed dermatological images using the hairline cleaning method. 

For the training process, preprocessed dermatological images of pigmented skin lesions were 
fed into the input of selected SNS from the training set. The vector of preprocessed statistical data 
from the training sample was fed to the input of the developed multilayer neural network 
architecture, consisting of three linear layers and ReLu activation layers. After the multimodal signals 
passed through the CNN and the linear perceptron, the output feature vectors were combined on the 
concatenation layer. The output signal was applied to the softmax layer to determine the probabilistic 
ratio of predicted labels for 10 diagnostically significant categories. The obtained probabilities were 
compared with the true labels to the training data, and the error value was calculated using the 
modified cross-entropy loss function. Errors in less common categories were punished more severely 
for neural network architectures than errors in more common ones. As a result, there was a gradual 
memorization of true vectors and a minimization of losses during training. The calculated weight 
coefficients of each of the classes for modifying the cross-entropy loss function are presented in Table 
3. 

Table 3. Weight coefficients are used to modify the cross-entropy loss function in a multimodal neural 
network system. 

№ Diagnostic category Weight coefficient 

1 Vascular lesions 3.8893 
2 Nevus  0.0353 
3 Solar lentigo 3.6444 
4 Dermatofibroma 3.9992 
5 Seborrheic keratosis 0.6721 
6 Benign keratosis 0.8954 
7 Actinic keratosis 1.1323 
8 Basal cell carcinoma 0.2900 
9 Squamous cell carcinoma 1.5000 

10 Melanoma 0.1758 

Each neural network system was trained for 7 epochs. When using a larger number of epochs, a 
pronounced retraining of each of the proposed neural network systems was observed. The size of the 
input data packet was 8. SGD was used as an optimizer with a standard learning rate of 0.001 and a 
moment of 0.9. Table 4 presents the results of assessing the accuracy of testing the proposed 
multimodal neural network system that is sensitive to unbalanced dermatological data. Table 5 
presents the results of estimating the loss function when testing the proposed multimodal neural 
network system. The presented results are compared with the original multimodal systems that are 
not sensitive to imbalanced data. 
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Table 4. The results of assessing the accuracy when testing the proposed multimodal neural network 
system, sensitive to unbalanced dermatological data. 

CNN 

architecture 

Results of test 

Original multimodal 
neural network 

system, % 

Multimodal neural 
network system with a 
modified cross-entropy 

loss function, % 

Difference in recognition 
accuracy between original and 
proposed multimodal neural 

network systems, % 
DenseNet_161 [76]  81.15 85.19 4.04 

Inception_v4 [77] 82.42 83.86 1.44 
ResNeXt_50 [78] 83.91 84.93 1.02 

Table 5. The results of the loss function evaluation when testing the proposed multimodal neural 
network system, sensitive to unbalanced dermatological data. 

CNN 

architecture 

Results of test 

Original multimodal 
neural network 

system 

Multimodal neural 
network system with a 
modified cross-entropy 

loss function 

Different in value of the loss 
function between original and 
proposed multimodal neural 

network systems 
DenseNet_161 [76]  0.2563 0.1344 0.1219 

Inception_v4 [77] 0.2087 0.1964 0.0123 
ResNeXt_50 [78] 0.1843 0.1475 0.0368 

As a result of the simulation, it was found that the use of a modified cross-entropy loss function 
with the help of weight coefficients can improve the accuracy of neural network recognition and 
reduce the value of the loss function. The highest recognition accuracy of dermatological data was 
85.19% and was obtained when testing the proposed multimodal neural network system that is 
sensitive to unbalanced data based on the DenseNet_161 architecture. When testing each of the 
proposed multimodal neural network architectures that are sensitive to unbalanced dermatological 
data, the recognition accuracy was higher than when testing the original multimodal neural network 
architectures. The increase in the accuracy of intelligent prediction in neural network architectures 
with a modified cross-entropy loss function was 1.02-4.03 percentage points, depending on the 
selected pre-trained CNN. The smallest loss function index was 0.1344 and was obtained when 
testing a multimodal neural network system that is sensitive to unbalanced data based on the 
DenseNet_161 architecture. The value of the loss function of the proposed multimodal neural 
network systems with a modified cross-entropy loss function was in all cases lower than that of the 
original multimodal neural network architectures. The decrease in the loss function exponent was 
0.1219-0.0123 depending on the selected pre-trained CNN. Table 6 presents the results of calculations 
of various methods for the quantitative evaluation of neural network systems. 

Table 6. Results of testing multimodal neural network systems by quantitative assessment methods. 

CNN 

architecture 

Loss 

function 

weights 

Specificity Sensitivity F-1 score MCC FNR FPR NPV PPV 

Simulation 

time, 

hh:mm:ss 

DenseNet_161 
[76] 

Not 
used 

0.9791 0.8115 0.8115 0.6543 0.1884 0.0209 0.9791 0.8115 14:02:18 

Used 0.9835 0.8519 0.8519 0.7169 0.1481 0.0164 0.9835 0.8519 13:54:55 

Inception_v4 [77] 
Not 
used 

0.9821 0.8397 0.8397 0.6929 0.1602 0.0178 0.9821 0.8397 09:28:24 

Used 0.9833 0.8494 0.8494 0.7165 0.1506 0.0167 0.9833 0.8494 10:52:07 

ResNeXt_50 [78] 
Not 
used 

0.9795 0.8156 0.8156 0.6457 0.1844 0.0205 0.9795 0.8156 11:47:05 
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Used 0.9821 0.8391 0.8391 0.6846 0.1616 0.0179 0.9820 0.8391 10:12:15 

For the statistical evaluation of the trained models, such quantitative methods as Specificity, 
Sensitivity, F-1 score, Matthew’s correlation coefficient (MCC), false negative rate (FNR), False 
positive rate (FPR), Negative predictive value (NPV) and Positive predictive were chosen. value 
(PPV). When evaluating intelligent systems for assisted dermatological diagnostics, sensitivity 
indicates how well the system can identify malignant skin lesions in patients who do have 
pigmentary oncopathology. The higher the sensitivity, the more reliable the intelligent medical 
system. When testing the proposed multimodal neural network systems for dermatological data 
recognition, it was found that the highest sensitivity index belongs to the proposed system based on 
the DenseNet_161 architecture with a modified cross-entropy loss function and is 0.8519. Specificity 
indicates how well the neural network system identifies patients with benign pigmented neoplasms. 
The best sensitivity index was obtained for a multimodal neural network system sensitive to 
unbalanced data based on the DenseNet_161 architecture and amounted to 0.9835. F-1 score is a 
measure of the evaluation of neural network systems and represents the harmonic mean of positive 
predictive value and sensitivity. The best F-1 score was obtained when testing the proposed neural 
network system with a modified loss function based on the DenseNet_161 architecture and amounted 
to 0.8519. At the same time, the statistical metric F-1 score is dependent on the ratio of positive and 
negative cases and cannot always correctly evaluate systems in which there is a clear imbalance of 
data. MCC is a more reliable measure of the statistical evaluation of systems with unbalanced data. 
A high MCC score indicates that the neural network system performs well in all four categories of 
the confusion matrix in proportion to the number of benign and malignant cases in the data set [80]. 
The best MCC score was 0.7169 and was obtained when evaluating a multimodal neural network 
system based on the DenseNet_161 architecture, which is sensitive to unbalanced data. False positive 
rate (FNR) and true positive rate (FPR) are the probability of false and true rejection of the null 
hypothesis as a result of testing a neural network system. The positive and negative predictive values 
(PPV and NPV) indicate the proportion of benign and malignant system test results that are truly 
benign and truly malignant. As a result of testing all trained neural network systems, the best result 
for all four indicators FNR, FPR, NPV and PPV was obtained from a neural network system based 
on the DenseNet_161 architecture, which is sensitive to unbalanced data and amounted to 0.1481, 
0.0164, 0.9835 and 0.8519, respectively. For all the considered testing metrics, the systems trained 
using the modified cross-entropy loss function had a higher result than the original multimodal 
systems for recognizing pigmented skin lesions. The use of a modified cross-entropy loss function 
when training multimodal neural network systems made it possible to obtain classifiers that are 
sensitive to unbalanced dermatological data. Figures 10–12 show confusion matrices for testing 
multimodal neural network systems. Diagnostic categories are arranged in order of increasing risk 
and severity of the course of the disease. Figures 13 and 14 show the confusion matrices for testing 
multimodal neural network systems in two categories. 
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(a) (b) 

Figure 10. Confusion matrices as a result of testing a multimodal neural network system based on the 
DenseNet_161 architecture: a) original multimodal neural network system; b) multimodal neural 
network system with a modified cross-entropy loss function. 

  
(a) (b) 

Figure 11. Confusion matrices as a result of testing a multimodal neural network system based on the 
Inception_v4 architecture: a) original multimodal neural network system; b) multimodal neural 
network system with a modified cross-entropy loss function. 

 
 

(a) (b) 
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Figure 12. Confusion matrices as a result of testing a multimodal neural network system based on the 
ResNeXt_50 architecture: a) original multimodal neural network system; b) multimodal neural 
network system with a modified cross-entropy loss function. 

  
 

(a) (b) (c) 

Figure 13. Confusion matrices in two categories as a result of testing the original multimodal neural 
network system based on architectures: a) DenseNet_161; b) Inception_v4; c) ResNeXt_50. 

  
(a) (b) (c) 

Figure 14. Confusion matrices in two categories as a result of testing a multimodal neural network 
system modified with a cross-entropy loss function based on architectures: a) DenseNet_161; b) 
Inception_v4; c) ResNeXt_50. 

As a result of the analysis of confusion matrices, it can be concluded that the use of the modified 
cross-entropy loss function when training various multimodal neural network systems can reduce 
the number of false positive and false negative predictions. For intelligent systems of medical 
auxiliary diagnostics, reducing the percentage of false negative predictions is a critical task. The 
greatest result in the reduction of cases of false negative prediction was obtained when comparing 
multimodal neural network systems based on the DenseNet_161 architecture and amounted to 468 
cases. The use of the modified cross-entropy loss function reduced the number of cases of false-
negative recognition of pigmented skin lesions by 468 cases for the architecture based on 
DenseNet_161, by 36 cases for the architecture based on Inception_v4 and by 51 cases for the 
architecture based on ResNeXt_50. 

As a result of calculations for the McNemar test in Figure 15, it was found that the use of the 
modified cross-entropy loss function at the training stage of the neural network system made it 
possible to increase the number of correct recognitions in 497-1280 cases when the original 
multimodal neural network system made errors. At the same time, in 119-204 cases, the recognition 
results of a multimodal system sensitive to unbalanced data were incorrect compared to the original 
neural network system. 
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(a) (b) (c) 

Figure 15. Classification tables for testing multimodal neural network systems for recognizing 
pigmented skin lesions for McNemar analysis based on architectures: a) DenseNet_161; b) 
Inception_v4; c) ResNeXt_50. 

Due to the more severe punishment when training a multimodal neural network, it was possible 
to obtain a neural network system that is sensitive to unbalanced data. However, the proposed system 
cannot be used as an independent diagnostic tool due to the risk of false negative errors. 

4. Discussion 

The paper presents a multimodal neural network system with a modified cross-entropy loss 
function, sensitive to unbalanced heterogeneous dermatological data. The accuracy of the proposed 
neural network system based on the DenseNet_161 convolutional architecture was 85.19%. The 
system analyzes heterogeneous dermatological data represented by images of pigmented skin lesions 
and such statistical information as gender, age and location of pigmented lesions on the body. At the 
same time, the educational dermatological data available in the public domain are highly unbalanced 
towards “benign” categories. The modification of the cross-entropy loss function made it possible to 
overcome the data imbalance and achieve higher accuracy compared to the results of testing the 
original multimodal systems, as well as compared to the results of similar systems for detecting 
malignant skin lesions. Table 7 compares the results of the recognition accuracy of pigmented skin 
neoplasms of the proposed system, sensitive to unbalanced data, with the results of similar 
multimodal systems. 

Table 7. Accuracy results in testing various multimodal neural network systems for recognizing 
pigmented skin lesions.  

Multimodal neural network system for recognizing 

pigmented skin lesions 

Accuracy of recognition of 

pigmented neoplasms of the skin, 

% 

Known neural network systems 
[81]  71.90  
[82]  76.80 
[83] 80.42 

The proposed multimodal neural network system based on 

the DenseNet_161 architecture 
85.19 

The work [81] presents a method for intelligent recognition of heterogeneous data, such as 
clinical images and statistical metadata. The modeling was carried out on a data set of 2917 clinical 
cases, divided into five diagnostically significant categories. As a result, the average test accuracy for 
multi-class classification of the ResNet-50 multimodal neural network architecture was 71.9%, which 
is 13.03 percentage points lower than the accuracy results of the proposed multimodal system with a 
similar ResNeXt_50 architecture trained with a modified cross-entropy loss function. This result is 
13.20 percentage points lower than the test accuracy of the proposed multimodal system with the 
best DenseNet_161 architecture in terms of accuracy. The use of more training data, as well as the use 
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of preprocessing methods and modification of the cross-entropy loss function, made it possible to 
significantly increase the accuracy of recognition of dermatological data compared to similar systems. 

The work [82] presents a multimodal neural network system CAFNet, which analyzes such 
heterogeneous dermatological data as dermoscopic and clinical images. The CAFNet system uses 
two architectures for feature extraction from dermoscopic and clinical images and a neural network 
architecture for feature analysis. The results show that CAFNet achieves an average accuracy of 
76.80% on a test dataset of 7 diagnostically relevant categories of pigmented skin lesions. The 
accuracy of the CAFNet neural network system is 6.94% compared to the accuracy of recognizing 
pigmented skin lesions using the ResNet-50 SNS. Despite a significant increase in the recognition 
accuracy of pigmented skin lesions when using heterogeneous visual data, the CAFNet test results 
are 8.39 percentage points lower than those of the proposed multimodal neural network system with 
a modified cross-entropy loss function based on the DenseNet_161 architecture. The joint use of 
visual data and statistical data of patients made it possible to identify additional relationships 
between the diagnosis and pigmented neoplasm, thereby increasing the accuracy of intelligent 
diagnostics. At the same time, the use of the input data pre-processing stage also significantly 
improved the quality of the information processed by the artificial intelligence system. 

The work [83] presents a multi-mode data fusion diagnostic network MDFNet, which combines 
heterogeneous features of clinical skin images and clinical data of patients. The experimental results 
showed that the MDFNet system has an accuracy of 80.42% on the test data, which is about 9% higher 
than the accuracy of the neural network model using only dermatological images. Modeling of the 
system was carried out on 2298 clinical cases, divided into six categories of pigmented skin lesions. 
The authors of the work used ResNet_50 and DenseNet_121 as neural network architectures. Test 
evaluation of MDFNet based on the ResNet_50 architecture made it possible to obtain a classification 
accuracy of 77.11%, which is 7.82 percentage points lower than the accuracy of the proposed 
multimodal system based on a similar SNA ResNeXt_50. Test evaluation of MDFNet based on the 
DenseNet_121 architecture showed an accuracy of 80.42%, which is 4.77 percentage points lower than 
the accuracy of the proposed multimodal system based on the similar SNS DenseNet_161. Training 
using a modified cross-entropy loss function using weighting coefficients made it possible to obtain 
a classifier that is sensitive to unbalanced dermatological data and to reduce the frequency of false 
negative errors, in which malignant pigmented neoplasms are recognized as benign. 

The proposed multimodal system trained with a modified cross-entropy loss function 
significantly exceeds the accuracy of visual analysis methods used by oncol dermatologists. A 
comparison of the accuracy of classification of pigmented skin lesions in dermatologists with 
different levels of experience and an artificial intelligence system was presented in [84–86] by a 
computer program using an artificial algorithm. skin neoplasms. However, the developed 
multimodal neural network system, which is sensitive to unbalanced data, cannot replace the 
decisive opinion of a specialist. The proposed system can only be used as an additional diagnostic 
tool due to the risk of a false negative response, when a malignant neoplasm can be recognized as 
benign. Therefore, a promising direction for further research is the construction of more complex 
ensemble systems for neural network analysis of dermatological data. Another promising area for 
further research is the introduction of segmentation at the stage of pre-processing of visual data. 
Semantic segmentation will make it possible to highlight the contour of a pigmented neoplasm, the 
distortion of which is a diagnostic morphological manifestation of oncopathology. The development 
of web applications and computer programs for implementation in the healthcare sector as auxiliary 
tools for diagnosing oncopathologies is also relevant. 

5. Conclusions 

As a result of the study, a multimodal neural network system was developed with a modified 
cross-entropy loss function, sensitive to unbalanced heterogeneous dermatological data. The 
accuracy of the proposed system was 85.19% for the architecture based on the DenseNet_161 CNN. 
In all cases, the recognition accuracy of dermatological data in systems sensitive to unbalanced data 
was higher compared to the original multimodal neural network systems. The increase in accuracy 
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was 1.02-4.03 percentage points, depending on the selected pre-trained SNA. The value of the error 
function for the developed system based on the DenseNet_161 architecture was 0.1344. In all cases, 
there was a decrease in the value of the error function in systems sensitive to unbalanced data 
compared to the original neural network architectures. The decrease in the error function exponent 
was 0.1219-0.0123, depending on the selected pre-trained CNN. The use of the modified cross-
entropy loss function allowed us to increase the accuracy of the multimodal neural network system 
and increase the sensitivity to unbalanced data. At the same time, a significant reduction in the 
number of false positive and false negative predictions was found, which is a critical task for 
recognition systems of malignant skin lesions. 

The main limitation of using the proposed multimodal neural network system with a modified 
cross-entropy loss function sensitive to unbalanced heterogeneous dermatological data is that 
specialists can only use the system as an additional diagnostic tool. The developed system cannot be 
used as an independent diagnostic tool due to the possible risk of false negative errors. However, the 
proposed system can be used as a highly accurate auxiliary tool to assist in making a medical decision. 
The introduction of such high-precision systems for automated analysis of pigmented skin lesions 
will reduce the consumption of financial and labor resources involved in the medical industry, as 
well as increase the chance of early detection of pigmented oncopathologies. 
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