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Abstract: High blood pressure (BP) has been implicated as a major risk factor for cardiovascular 

diseases in several populations, including individuals of African ancestry. Despite the elevated bur-

den of HBP-induced cardiovascular diseases in Africa and other populations of African descent, 

limited genetic studies have been carried out to explore the genetic mechanism driving this phe-

nomenon. 

We performed Genome-wide association univariate and multivariate analyses of both Systolic (SBP) 

and Diastolic Blood pressure (DBP) traits in 77, 850 individuals of African ancestry. We used sum-

mary statistics data from six independent cohorts, including the African Partnership for Chronic 

Disease Research (APCDR), the UK Biobank, and the Million Veteran Program (MVP). FUMA was 

used to annotate, prioritize, visualize, and interpret our findings to gain a better understanding of 

the molecular mechanism(s) underlying the genetics of BP traits. Finally, we undertook a Bayesian 

fine-mapping analysis to identify potential causal variants. 

Our meta-analysis identified 10 independent variants to be associated with both SBP and 9 with 

DBP traits. Whilst our multivariate GWAS method identified 21 independent signals, 18 of these 

SNPs have been previously identified. SBP was linked to gene sets involved in biological processes 

such as synapse assembly and cell-cell adhesion via plasma membrane adhesion. Of the 19 inde-

pendent SNPs combinedly identified in the BP metaanalysis, only 11 variants had posterior proba-

bility (PP) of  >50% including one novel variant rs562545 (MOBP, PP = 77%).  

To facilitate further research and the fine-mapping of high-risk loci/variants in highly susceptible 

groups for cardiovascular disease and other related traits, large-scale genomic datasets are needed. 
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Our findings highlight the importance of including ancestrally diverse populations in large GWASs 

and the need for diversity in genetic research. 

Keywords: systolic blood pressure; diastolic blood pressure; GWAS; high blood pressure; multivar-

iate; univariate 

 

1. Introduction 

Blood pressure (BP) is a quantitative trait that is affected by both multifactorial ge-

netic and environmental factors [1], [2], [3]. The heritability of high blood pressure is esti-

mated to be 30-50% [4]. Elevated blood pressure otherwise called hypertension is the lead-

ing risk factor for many cardiovascular diseases like stroke and coronary artery diseases 

[5],[6]. The global prevalence of hypertension among adults aged 30-79 years increased 

significantly from 650 million in 1990 to 1.28 billion in 2019; with two-thirds of this burden 

coming from low-income countries (LMICs)[7]. When compared to other ethnic groups, 

African Americans and other African ancestry show a higher occurrence of high blood 

pressure [8], [9],[10],[11]. 

Despite the global rise in the disease burden among individuals of African ancestry, 

limited genome-wide association studies (GWASs) of blood pressure traits have been con-

ducted or included individuals of African ancestry [12], [13]. For instance, the largest 

GWAS of blood pressure conducted to date in approximately a million individuals was 

predominantly consist of Europeans [15]. Additionally, only ~62% of all the genome-wide 

significant loci from this GWAS had the concordant direction of effects for individuals of 

African ancestry and moderate Pearson correlation coefficients with effect estimates in 

Europeans r2=0.37 in Africans, compared to the strong r2=0.78 for South Asians [15], [16], 

[17], [18]. Another example is that majority of blood pressure GWASs conducted in Afri-

can ancestry populations have small sample sizes  [19],[20],[21],[22],[23] and they mostly 

use single trait approach without giving due consideration to the phenotypic relatedness 

and the relationship between the two traits (SBP and DBP), which is a possible link be-

tween risk-related clinical measures and arterial properties [24],[25]. Thus, many novel 

insights into blood pressure traits in people of African ancestry remain to be discovered. 

Furthermore, various GWAS reports have shown that the genetic determinants of 

blood pressure have small effect sizes and vary significantly between European and non-

European populations [26].  Therefore, our study aim to extensively study the African 

population to better understand the genetic epidemiology underlying blood pressure 

traits in individuals of African descent. We also perform a multivariate GWAS in the hope 

that it will increase our study’s statistical power over the univariate approach and conse-

quently increase the overall number of novel loci observed in our study. 

We conducted the largest GWAS of blood pressure in over 77,850 people from the 

African Partnership for Chronic Disease and Research (APCDR), African ancestry people 

from the United Kingdom (UK-Biobank), and the Million Veteran Program in this study 

(MVP). Figure 1 depicts the overall study design; we used fixed effects meta-analysis 

across the cohorts. We then performed a multivariate analysis, fine-mapping, pathway 

and tissue enrichment test analysis, and pathway and tissue enrichment test analysis to 

highlight relevant biological processes and investigate causal relationships with disease 

traits. 

2. Materials and Methods 

2.1. Study Population 

The full description of the study population can be found in the supplementary 1 

cohort description while the study design can be found in figure 1 
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Figure 1. Study design schematic for discovery and validation of loci. APCDR; African Partnership 

for Control of Disease Research, UKB; United Kingdom Biobank, MVP; Million Veteran Program. 

2.2. Meta-analysis of BP Summary Statistics in African Ancestry Individuals 

We aggregated BP association summary statistics across the three cohorts (UK-Bi-

obank, APCDR-UGR, DSS, DCC, and AADM, and the MVP) and performed an inverse-

variance-weighted meta-analysis implemented in GWAMA [37]. We used a total of sev-

enty-seven thousand eight hundred and fifty sample sizes across the studied cohorts (Ta-

ble 3). The resulting output was used for subsequent downstream analyses, and we then 

plotted the resulting p-value in a Manhattan plot. 

2.3. Tissue Expression Enrichment Pathway analysis 

We performed a gene-based analysis with the MAGMA 1.6 software (Multi-marker 

Analysis of Genomic Annotation) [38], which is available in FUMA [39]. Magma gene-

based analysis is useful for analyzing and detecting multiple genetic markers of individ-

uals with a weak effect, which is common in polygenic traits. The 1000 Genomes were 

used as a reference dataset to account for LD between SNPs, and the confounding effects 

of gene density and gene size were used as covariates. The pathway and tissue expression 

analyses were performed using the default parameters in FUMA, using the results ob-

tained from the meta-analysis.  

2.4. Functional mapping and annotation analysis 

We used an online functional mapping and annotation tool (FUMA) [39] to annotate 

SNPs from the GWAMA meta-analysis with their biological functionality and then 

mapped them to genes using positional mapping and QTL association (blood eQTL) [40]. 

The independent SNPs were classified based on their P-values as genome-wide significant 

(P ≤ 5.0 × 10−8), independence from each other (r2 < 0.1) and  LD threshold within a 1 Mb 

window. Furthermore, the independent SNPs were annotated for functional conse-

quences on gene function using ANNOVAR [41]. For the positional mapping, genes were 

mapped to SNPs if the physical distance between them was < 10 kb. The eQTL mapping 

used data from the blood cis-eQTL, and SNPs were mapped to genes on the premise that 

the SNPs had a significant effect on the expression of the gene. And also, SNPs were fil-

tered using a CADD score > 12.37, which is the threshold for deleterious scores (CADD 

scores are deleterious scores of genetic variants obtained by 63 functional annotations) 

[42]. Normalized gene expressions for 53 tissue types were obtained from GTEx. Other 

clumping parameters used were: reference panel to compute LD and MAF (minor allele 
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frequencies)= 1000 genome project was used (AFR) [43]; minor allele frequency filter > 

0.01; maximum distance between LD blocks to merge into a single locus for genomic risk 

loci= 250 kb, lead SNPs were classified as SNPs that were in LD with each other at r2 < 0.1. 

2.5. Locus Definition 

Lead SNPs from both univariate and multivariate analyses were defined based on 

positional mapping using 1Mb; SNPs that had reached the genome-wide significant 

threshold (p < 5 x 10-8) were considered to be associated with BP. Loci were defined by 

flanking distance mapping 500kb up and downstream of peak SNPs, and we retained 

SNPs with the lowest p-value from both the meta-analysis and multi-trait analysis.  

2.6. Fine-mapping Analysis of Sentinel Variants 

Following our result output from multi-trait analysis and meta-analysis, we per-

formed Bayesian fine-mapping to identify possible causal variants for the locus ± 500kb 

of all the lead SNPs. We used a Bayesian approach [44] to fine-map the loci of the lead 

SNPs. The Z-scores for the SNPs were then used to compute the Bayes factor for each SNP 

denoted as ��� , given by: 

��� = �
�
�∗�����(�)

�
�
 

Where K is the number of studies). The posterior probability of driving the association for 

each SNP was computed by:  

��������� �����������  =      
���

∑ �� ��

 

Where the summation in the denominator is over all SNPs at the locus. 

Ninety-nine percent credible set sizes were calculated by sorting all SNPs at the locus 

according to their posterior probability from highest to lowest and then counting the num-

ber of SNPs required to achieve a cumulative posterior probability greater or equal to 0.99. 

High confidence was defined as index SNPs that account for more than 50% of the poste-

rior probability of driving the BP association at a given signal. 

2.7. Multivariate GWAS analysis 

To further increase the statistical power for discovery, we employed a cross-pheno-

type approach implemented in the CPASSOC software [45]. The cross-phenotype associ-

ation analysis accounts for the correlation of summary statistics data among traits and the 

participating cohorts and allows for both heterogeneity and homogeneity effects. The 

CPASSOC analysis generates two statistical tests: SHom and Shet, the latter of which is an 

extension of the former and improves statistical power when there is a difference in the 

genetic effect sizes across the traits. Meanwhile, the SHom test, which is similar to the 

fixed-effect meta-analysis approach, increases in power when the genetic effect sizes 

across the traits are the same. 

3. Results 

3.1. Results overview 

We compiled GWAS summary statistics from three cohorts (Table 1), totaling 

20,000,000 SNPs in 77,850 people of African descent. We used a univariate meta-analysis 

and a multivariate GWAS to find genetic variants linked to BP traits. At a genome-wide 

significant threshold of (P<5x10-8) for both known and novel loci, the meta-analysis and 

multivariate approaches identified both known and novel loci. We used FUMA and fine 

mapping to gain more insight into the likely causal variants and molecular mechanism(s) 

that contribute to the genetics of BP traits. 
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Table 1. Description of study cohort used in this study. 

Cohort Continent Country 
Sample Size 

      (N) 
Phenotype  Type of Cohorts 

Imputation Panel and 

Genome Build 

APCDR-UGR 

(Gurdasani 

et.al.,2020) 

Africa Uganda 6,407 
DBP 

SBP 
Observational 

Africa genome 

panel, hg19 

APCDR-DCC 

(Gurdasani 

et.al.2020) 

 Africa  South-Africa 1,600  
DBP 

SBP 
Observational 

Africa genome 

panel, hg19 

APCDR-DDS 

(Gurdasani 

et.al.,2020) 

Africa South-Africa 1,165 
DBP 

SBP 
Case-control 

Africa genome 

panel, hg19 

APCDR-

AADM 

(Gurdasani 

et.al.2020) 

Africa 

Nigeria 

Ghana 

Kenya 

5,231 
DBP 

SBP 
Case-control 

Africa genome 

panel, hg19 

MVP – AFR  

 
America USA 56,833 

DBP 

SBP 
Observational 

1000 Genome, 

hg19 

UKB – AFR 

(Sudlow 

C,et.al.2015) 

Europe UK 6,614 
DBP 

SBP 
Observational 

1000 Genome, 

hg19 

3.2. Univariate GWAS meta-analysis   

Meta-analysis of all six cohorts (n=77,850) identified 166 significant variants for SBP 

(Supplementary Table 1) and 184 genome-wide significance variants (P<5x10-8) for DBP 

(Supplementary Table 2).  The significant SNPs for both blood pressure traits were 

clumped at  ±500Kb distance leaving 10 for SBP (Supplementary Table 3) and 9 lead 

SNPs for DBP (Supplementary Table 4).  After clumping, out of the 19 SNPs identified 

across both traits, 2 were at least 1 Mbp away from any previously reported BP locus and 

therefore considered novel; an intergenic variant rs77534700 in AC074290.1 (p = 3.749e-08) 

and rs562545 an intronic variant at MOBP (p = 1.823e-09) and are both associated with DBP 

trait (Table 2, Figure 2A,2B). Commonly known variants in CACNA1D, HTR4, 

SLC22A14, NPPA-AS1, C3orf73, KCNK3, RPL35P4, CASZ1, NPPA-AS1, CTC-436K13.2, 

KCNN3, RSPO3, ATP2B1, FGF5, ULK4, and NPPA-AS1 were associated with SBP and DBP 

(Supplementary table 3 and 4). 

The CACNA1D gene is an intron variant that has previously been identified in other 

populations, including African Americans, and is thought to regulate the renin-aldoste-

rone-angiotensin system. The previously observed associations of the genetic variant in 

the meta-analyses were predominantly from the MVP cohorts, which might be driven by 

the fact that the largest proportion of our sample size came from the MVP’s African Amer-

ican population.  We plotted the resulting p-values from this association analysis on a 

Manhattan plot. (Figure 2). 

Table 2. Novel distinct variant identified using a meta-analysis approach. 

Nearest 

Gene 
Lead SNPs Chr BP 

Effect 

Allele 

Other 

Allele 
Trait Beta SE MAF P-value 

Functional 

Consequence 

AC074290.1 rs77534700 2 
19467806

7  
A G DBP -0.0967  0.0176  0.0836 3.749e-08  

Intergenic 

variant 

MOBP rs562545 3 39536524 A G DBP 0.0593  0.0099  0.8973 1.823e-09 
   Intron variant 

(A) 
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(B) 

      

Figure 2. Manhattan plots showing the minimum P-value for the association across (A) DBP and (B) 

SBP blood pressure traits, computed using inverse-variance fixed-effect meta-analysis from 75,850 

individuals. Each point on the Manhattan plots denotes a variant, with the X-axis representing the 

genomic position and the Y-axis representing the association level -log 10 (P-value). The horizontal 

red line shows the genome-wide significant threshold p-value = 5 X10–8. 

3.3. Functional mapping and annotation analyses from FUMA from the meta-analysis 

Using the default parameters on FUMA, we performed functional annotation on all 

SNPs in linkage disequilibrium (LD)  to annotate and prioritize genes obtained from our 

meta-analysis. FUMA's SNP2GENE function revealed that the functional consequences of 

SNPs on genes in SBP included 12 lead SNPs (Supplementary Table 5), 20 independent 

SNPs (Supplementary Table 6), and 10 genomic risk loci (Supplementary Table 7). Fol-

lowing that, in DBP, 13 lead SNPs (Supplementary Table 8), 27 independent SNPs (Sup-

plementary Table 9), and 8 genomic risk loci (Supplementary Table 10) were identified. 

The majority of the markers in SBP were intergenic, followed by those in the intronic re-

gion. In DBP, the most significant proportion of the markers were intronic SNPs, followed 

by intergenic SNPs (Supplementary Figure 1). 19 genes were identified through posi-

tional and/or eQTL mapping in SBP (Supplementary Table 5), and 34 genes for DBP SNPs 

(Supplementary Table 6). 
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The MAGMA gene set, tissue expression, and pathway analyses were carried out as 

part of the FUMA workflow. According to the MAGMA gene set study, after Bonferroni 

correction, no DBP gene sets were significant, but 10 SBP gene sets were (Supplementary 

Table 7). SBP was specifically linked to gene sets involved in biological processes such as 

synapse assembly (including presynaptic membrane assembly and organization, postsyn-

aptic density, and specialization assembly), cell-cell adhesion via plasma membrane ad-

hesion molecules (i.e., the connection of one cell to another cell through the use of adhe-

sion molecules that are at least partially embedded in the plasma membrane), and the 

Takada gastric cancer copy number  (i.e. candidate genes in the regions of copy number 

loss in gastric cancer cell lines). 

Based on MAGMA tissue expression analysis, SBP was not associated with any gene 

property analysis for tissue specificity. However, DBP was associated with nine tissue 

specificities, significantly associated with brain tissues: particularly the hippocampus, 

brain substantia nigra, brain amygdala, brain putamen basal ganglia, hypothalamus, cor-

tex, anterior cingulate cortex BA24, caudate basal ganglia, and nucleus accumbens basal 

ganglia (Figure 3). Notably, the strongest enrichment was observed for genes expressed 

in the hippocampus, followed by putamen basal ganglia. 

As part of the FUMA pipeline, we used GENE2FUNC to test differentially expressed 

genes (DEGs); DBP found no association with our GTEx v8 54 tissue types, but SBP found 

two significantly up-regulated DEGs in the sigmoid and transverse colon (Supplemen-

tary Figure 2).  Finally, we tested the enrichment of input gene sets (adjusted p<0.05) and 

we found several gene sets previously associated with SBP, DBP, and correlated traits 

(Supplementary Figure 2-8).  

 

Figure 3. MAGMA tissue expression analysis using gene expression per tissue based on GTEx 

RNAseq data for 53 specific tissue types. Significant tissue is shown in red. 

3.4. Fine-mapping of putatively causal variants 

We performed Bayesian fine-mapping to pinpoint putative causal variants for dis-

tinct BP association signals using differences in the structure of LD between ancestry 

groups. Bayesian fine-mapping of the 19 distinct signals from the meta-analysis after 

clumping for DBP and SBP was undertaken in the region mapping 500kb up-and-down-

stream, which together accounted for 99% posterior probability and was based on associ-

ation summary statistics from the meta-analysis GWAS. Only 11 variants from the lead 
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SNPs had >50% posterior probability (PP) of being causal, including the novel variant 

rs562545 (MOBP, PP = 77%) (Supplementary Table 14, Figure 4), and known variants; 

rs3821845 (CACNA1D, PP = 99%), rs12509595 (FGFR, PP  = 99%),  rs11129785 (SLC22A14, 

PP = 75%), rs12476527 (KCNK3, PP = 52%), rs5068 (NPPA-AS1, PP = 64%),   rs73437338 

(ATP2B1, PP = 52%), rs7720317 (CTC-436K13.2, PP = 59%), rs1984285 (KCNN3, PP = 99%).  

One of the lead SNPs, rs880315 (CASZ1, PP = 95%) was not the lead variant in the fine-

mapping but was overlapped by other variants rs17035646 (PP = 99%) (Supplementary 

Table 8.  

 

Figure 4. Regional visualization of the GWAS of –log10 of the P-value of genomic location MOBP 

(rs562545 in purple) (A), AC074290.1 (rs77534700 in purple)(B), with each dot representing SNP on 

the corresponding genes at the bottom. . 

Multivariate GWAS analysis of blood pressure traits identifies additional novel loci 

Using CPASSOC, we performed a multivariate analysis, this method identified 166 

genome-wide significant loci associated with blood pressure (Supplementary Table 10 (p 

< 5 x 10-8). After clumping, we identified 21 independent significant SNPs, 3 novel SNPs, 

and 18 known SNPs (Supplementary Table 16). Interestingly, using the model assuming 

heterogeneity in CPASSOC, we identified 3 novel independent significant variants (Table 

3), rs138493856 (DNAJC17P1/GLULP6, p = 6.132e-09), rs139235642 (RRM2, p = 2.798e-08) and  

rs72619992 (LOC105377644, p = 1.134e-08). The resulting p-values were then plotted and 

visualized in a Manhattan plot (figure 5).  
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Figure 5. Manhattan plots showing P-value for the association computed from CPASSOC results 

output. Each point on the Manhattan plots denotes a variant, with the X-axis representing the ge-

nomic position and the Y-axis representing the association level -log 10 (P-value). The horizontal 

red line shows the genome-wide significant threshold p-value = 5 X10–8. 

Table 3. Novel variants of Blood pressure traits identified using multivariate methods. 

Nearest Gene Lead SNPs Chr BP 
Effect 

Allele 

Other 

Allele 
HET_Pvalue Functional Consequence 

 DNAJC17P1/ 

GLULP6 

 

 

  

 

 

 

 

GLULP6GLULP6 

GLULP6  

rs138493856  2 194678067  A G 6.1322e-09  Intergenic variant 

RRM2 rs139235642  2 10278626  T C 2.7981e-08  
intron variant NMD 

transcript variant 

LOC105377644  rs72619992  3 39407952  A C 1.1339e-08  Intron variant 
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Figure 6. Venn diagram comparing the loci found by Meta-analysis and multivariate GWAS analy-

sis. Both methods identified both known, the novel loci are indicated with an asterisk. 

4. Discussion 

This study describes the largest GWAS of blood pressure in African ancestry to date, 

involving a total of 77,850 individuals from the MVP, APCDR, and UK Biobank cohorts. 

The results of this analysis provide additional relevant information on the genetic and 

biological architecture of blood pressure traits in people of African ancestry. 

According to our results, the multivariate GWAS approach had greater statistical 

power in identifying new variants than the univariate meta-analysis (Figure 6). Previous 

GWAS studies had shown the power of the multivariate approach, especially when deal-

ing with traits that are highly correlated [27]. 

Five novel variants were discovered using both methods. The multivariate approach 

identified three variants: DNAJC17P1/GLULP6 (rs138493856), RRM2 (rs139235642), and 

LOC105377644 (rs72619992), while the univariate approach identified two variants: 

AC074290.1 (rs77534700) and MOBP (rs562545). The DNAJC17P1/GLULP6 gene, which is 

located in the intergenic region, is known to be associated with susceptibility to infectious 

disease measurement [28] as well as educational attainment [29]. The RRM2 is a protein-

coding gene that encodes one of two non-identical subunits for ribonucleotide reductase 

and is highly expressed in the bone marrow (28.1) and lymph node (20.5), along with other 

tissues [30]. The high expression of this gene can lead to the abnormal proliferation of 

histiocytes and can also be used as a marker for malignant changes in ovarian endometri-

osis [31].  The rs72619992 variant in LOC105377644 is an uncharacterized RNA gene that 

belongs to the ncRNA class and does not code for any protein. In AC074290.1, our uni-

variate method identified an uncharacterized pseudogene. According to the GWAS cata-

log, the MOBP gene, which is a myelin-associated oligodendrocyte-associated protein, is 

linked to Alzheimer's disease [32], cognitive performance, and other brain-related disor-

ders [33]. The MOBP gene is thought to be involved in both frontotemporal dementia and 

nervous system development. We used the largest BP summary statistics from European 

ancestry individuals to look up our lead SNPs, while some of the lead SNPs were found 

to be replicated at replicated at P-value 0.05. None of the SNPs identified as being novel 

replicated (Supplementary 13). 

In the meta-analysis results, our in silico functional mapping and annotation analyses 

from FUMA revealed several biologically relevant signals.  SBP gene sets, for example, 

were significantly associated with associated biological systems such as several synapse 

assembly components (such as components correlated to nervous system develop-

ment/neurons and chemical or electrical synapses), candidate genes in regions of copy 
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number loss in gastric cancer cell lines, cell-cell adhesion via plasma membrane adhesion 

molecules (possibly, part of action potentials generated by the movement of ions through 

transmembranous channels), and cell-cell adhesion via plasma membrane adhesion. 

In addition, the SBP meta-analysis tissue enrichment analysis was associated with 

significantly up-regulated DEGs in the sigmoid and transverse colon (Supplementary fig-

ure 1); which may suggest that gut microbiota may play a role in the regulation of gastro-

renal axis and blood pressure [34]. Furthermore, the most interesting enrichment of input 

genes in gene sets significant in the Reactome was in the cardiac conduction and muscle 

contraction pathways for the SBP meta-analysis, which are the mechanisms and pathways 

that elicit rapid changes in the heart rate, blood pressure, and respond to changes in au-

tonomic tone. On the other hand, our DBP MAGMA tissue expression analysis high-

lighted nine brain tissue types associated with DBP. For instance, the putamen, caudate, 

and nucleus accumbens basal ganglia are input nuclei as well as part of the corpus stria-

tum, and the substantia nigra is a basal ganglia function-related nuclei, which are all in-

volved in processing movement-related information. Dysfunction in this region is known 

to be associated with movement disorders like Huntington’s, as correlated by GWAS cat-

alog genes highlighted. In addition, the GWAS catalog genes included in gene sets in-

cluded blood pressure traits and their interactions with alcohol and cigarette smoking, 

hence, these may be interesting environmental risk factors that should be investigated for 

their impact on BP traits in populations of African descent. Further investigation is needed 

to understand this, as different regions have different drinking and smoking habits. 

Furthermore, our tissue expression analysis shows that DBP gene expression is en-

riched in the brain hippocampus (Figure 3), a brain region that is essential for learning 

and memory [35]. According to one study, hypertension is linked to decreased functional 

hippocampus connectivity and impaired memory [36]. As a result, more research is 

needed to understand our findings from in silico functional mapping and annotation anal-

yses, as well as their mechanism. 

Our current study has several strengths. First, our study is the largest SBP and DBP 

GWAS meta-analysis of an African population; thus, it has allowed us to find novel loci 

and replicate prior findings. Secondly, our functional mapping and annotation found sev-

eral biologically relevant regions, that support our genetic findings, and these regions, 

tissues, and pathways are good candidates to explore further to elucidate the pathogenesis 

of blood pressure-related disorders like hypertension and prevent or treat them better. 

Finally, fine-mapping recommended target candidate loci to test in vivo and in vitro to 

improve our understanding of the regulators and genetic factors that affect blood pressure 

traits. The CPASSOC used for our multivariate GWAS increased statistical power and re-

flected the nature of the multivariate effect of traits on the genetic factor.  

One of our limitations is that the "black" participants in our study are primarily from 

admixed regions with a variety of characteristics. Thus, our study used a small sample 

size from the continental African population, and this may be the reason why most of our 

variants were identified from the MVP dataset, as this data had the largest sample size 

(Table 3). Although our study is the largest study of SBP and DBP genetics, the overall 

sample size was small compared to contemporary GWASs for other traits. Thus, future 

studies will need to include more continental Africans to make sure our genetic risk fac-

tors can be used to make genetic risk scores that are inclusive of all or most African pop-

ulations and their full range of diversity. Due to the diversity in African genome, latent 

sub-structuring could inflate the results, but this effect was minimized by adjusting for 

principal components in the GWAS model by the contributing cohorts. Second, the pau-

city of functional genomics information specific to African people makes it challenging to 

evaluate the functional relevance of the relationships found. Thirdly, regional environ-

mental factors, including dietary variations, variances in the prevalence of TB and HIV, 

and other non-communicable disease factors, could potentially have an impact on BP out-

comes; however, there isn't enough research on these aspects in our target group. Afrocen-

tric GWAS data are grossly limited, hence we used Blood pressure GWAS data from in-

dividual of African ancestry available and accessible to the authors. 
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In conclusion, we have conducted the largest GWAS of blood pressure in African 

ancestry, which has significantly enabled an in-depth understanding of the genetic com-

ponent. Our analysis emphasizes the relevance of applying fine-mapping and multivari-

ate methods to correlated trait and their increase in statistical power toward the discovery 

of causal variants. These strategies offer a reliable approach to better understanding the 

genetic epidemiology of blood pressure disease in African ancestry and treatment devel-

opment strategy. Lastly, to better understand the implication of these results, future stud-

ies could replicate the result on the European population. 
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