

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Operationalizing Digitainability: Encouraging mindfulness to harness the power of digitalization for sustainable development

Shivam Gupta^{1,2*} , Jazmin Campos Zeballos¹ , Gema del Río Castro³ , Ana Tomičić⁴ , Sergio Andrés Morales⁵ , Maya Mahfouz^{6,10} , Isimemen Osemwiegie⁷ , Vicky Phemia Comlan Sessi⁸ , Marina Schmitz⁹ , Nady Mahmoud⁷ , Mnena Inyaregh^{1,11}

¹ Rheinische Friedrich-Wilhelms-Universität, Regina-Pacis-Weg 3, 53113 Bonn, Germany

² Detecon International GmbH, Bayenwerft 12-14, 50678 Köln, Germany

³ Universidad Politécnica de Madrid, 28040 Madrid, Spain

⁴ Catholic University of Croatia, Ilica 242, 10000, Zagreb, Croatia

⁵ Department of legal theory and of the constitution, University of La Sabana, Colombia.

⁶ Scientific Research Supervisor- AI practice at SocialLab Academy - Estonia

⁷ Center for Development Research, University of Bonn, Genscherallee 3, 53113 Bonn, Germany

⁸ Pan African University, Institute of Water and Energy Sciences, including Climate Change (PAUWES), University of Tlemcen, B.P. 119 | Pôle Chetouane, Tlemcen 13000, Algeria

⁹ Coca-Cola Chair of Sustainable Development, IEDC-Bled School of Management, Prešernova cesta 33, 4260 Bled, Slovenia

¹⁰ Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Medical Sciences Campus, Damascus Road, P.O.B. 11-5076, Riad Solh Beirut 1107 2180, Lebanon

¹¹ United Nations University Institute for Environment and Human Security, Platz d. Vereinten Nationen 1, 53113 Bonn

* Correspondence: shivam.gupta@uni-bonn.de

1 Abstract: Digitalization is globally transforming the world with profound implications. It
2 has enormous potential to foster progress toward sustainability. However, in its current form,
3 digitalization also continues to enable and encourage practices with numerous unsustainable impacts
4 affecting our environment, ingraining inequality, and degrading quality of life. There is an urgent
5 need to identify such multifaceted impacts holistically. Impact assessment of digital interventions
6 (DIs) leading to digitalization is important specifically for Sustainable Development Goals(SDGs).
7 Action is required to understand the pursuit of short-term gains toward achieving long-term
8 value-driven sustainable development. We need to understand the impact of DIs on various actors
9 and in diverse contexts. A holistic understanding of the impact it creates will help us align it with
10 visions of sustainable development and identify potential measures to mitigate negative short and
11 long-term impacts. The recently developed Digitainability Assessment Framework (DAF) unveils the
12 impact of DIs with an in-depth context-aware assessment and offers an evidence-based impact profile
13 of SDGs at the indicator level. We performed the impact assessment of diverse technologies using
14 DAF. This paper summarizes the insights from the Digitainable Spring School 2022 on "Sustainability
15 with Digitalization and Artificial Intelligence," one of whose goals was to operationalize the DAF
16 as a tool in the action learning process with diverse professionals in the field of digitalization and
17 sustainability. The DAF guides a holistic context-aware process formulation for a given DI. An
18 evidence-based evaluation within the DAF protocol benchmarks a specific DI's impact against the
19 SDG indicators framework. The operationalization of the DAF was carried out by looking at four
20 different DIs: smart home technologies (SHT) for energy efficiency, blockchain for food security,
21 artificial intelligence for land use cover and changes (LUCC), and big data for international law. Each
22 of the four studies addresses different DIs for digitainability assessment using different techniques for

23 a diverse group of indicators, demonstrating the potential of the DAF but also outlining the existing
24 data gaps that limit a comprehensive analysis.

25 **Keywords:** Digitainability; Digitalization; Sustainability; Artificial Intelligence; Blockchain; Smart
26 homes; Big data; Sustainable Development; SDGs; Technology Assessment Framework; Agenda 2030;
27 Digital Age;

28 **1. Introduction**

29 Digitalization is driving the world towards an era where a significant part of our lives are reliant
30 on digital technologies. These technologies are shaping the future by supporting the sustainable
31 improvement of socio-economic, environmental, and climate-related concerns through more effective
32 use of existing processes [1]. From fostering equitable access to education, to reducing poverty and
33 improving healthcare services, digital technologies are instrumental in raising the quality of life and
34 increasing access to resources. With internet access expanding to four billion people, almost twice as
35 many as ten years ago, digitalization is breaking barriers by enabling prompt communication and
36 networking, access to knowledge, and improved cost-efficiency. Digitalization brings together an
37 innovative set of tools and techniques which enables the process of converting physically collected
38 information and knowledge into a machine-readable language. As a result, robust integrated
39 workflows that connect physical objects to the internet are being developed using embedded sensors,
40 software, and other technologies that enable real-time data collection and analysis. Massive data
41 analysis capability enables timely and informed decisions contributing to sustainable development [2].
42 Several challenges, however, have been left largely untapped to meet the Sustainable Development
43 Goals (SDGs).

44 The United Nations (UN) Agenda 2030 [3] is a global roadmap defined by the United Nations
45 (UN) toward equity and sustainable development with a horizon set in 2030. The 17 SDGs form
46 the backbone of the UN Agenda 2030. They present a guiding framework for worldwide policies
47 that guarantee a good life for present and future generations. In order to achieve the SDGs, it is
48 crucial to reduce resource consumption, greenhouse gas emissions, poverty, and inequality, while
49 at the same time expanding education, welfare, and combating biodiversity loss, to name just a few
50 [4]. The SDG targets and indicators call for timely observation and reporting of the progression in
51 member states of the UN [5]. Recent literature emphasizes that SDG progress can be aided by adopting
52 innovative technologies for digitization, leading to accelerated transformation in many sectors. Digital
53 interventions (DIs) have been a primary focus in most public discourses and policy circles [6]. The
54 emergence of artificial intelligence (AI) and the development of machine learning (ML) have been
55 deemed instrumental in achieving the Agenda 2030 [6–8]. However, it needs to be clarified how and
56 to what extent these DIs provide opportunities and where they could lead to challenges limiting the
57 progress of SDGs. This calls for the impact assessment for meeting the SDGs [6], given that AI promises
58 significant opportunities for sustainable development and contributes to all the SDGs within the 2030
59 Agenda [9–14]. This potential gave birth to various initiatives such as the "AI for social good" paradigm
60 [15,16]. AI is interpreted as the interaction of computing and cognitive science, providing insights by
61 modeling and pattern detection, prediction, and optimization [17]. In combination with Big Data, AI
62 catalyzes innovation through massive data processing, advanced computing, and clever algorithms
63 able to untangle complex problems, thus augmenting human knowledge and decision-making and
64 paving the way to sustainable governance [18].

65 Applying the DIs in specific contexts is often "wicked" with interlinked technological, social,
66 environmental, and governance-related challenges. They are associated with positive and negative
67 impacts [13]. On the one hand, the DIs can serve as levers and set off dynamic transformation towards
68 sustainability in different sectors. For instance, various reports point to the potential of digitalization to

69 boost energy productivity, avert resource waste, improve access to sustainable services, and establish
70 new sustainable practices [4]. On the other hand, its development and use could trigger knock-on
71 effects with a negative impact on environment, society, prompting a call for closer examination of the
72 ethical and political issues associated with its rapid proliferation [19,20]. Given the fast evolution of
73 technologies and the influence of both corporate interest in technology and policy-making towards
74 this crucial crossroads for humanity, the existing literature is primarily concerned with the benefits
75 of AI-based technology. As there are little empirical evidence of its inevitable trade-offs and unclear
76 net benefits, these are often overlooked in the literature [21]. Moreover, most of the studies focus on
77 the development prospects of the Global North while overlooking the infrastructure and capacity
78 constraints of the Global South [10].

79 Much of the foregoing work has centered on identifying the role of the DIs for SDGs. However,
80 most scholarly attention has been directed at identifying their relevance at goal level. Given that SDGs
81 are composed of various targets and indicators, this approach is rather superficial. As a result, insight
82 into the impacts of DI is limited by the fact that, to date, they have been measured from a narrow
83 perspective. The gap also exists in understanding the context that defines the relation of the DI to SDGs
84 progress. Nevertheless, it has been widely acknowledged that SDGs are interlinked, and the impact
85 on one SDG can have cascading negative or positive impacts on other SDG targets and indicators.
86 Thus, it is crucial we uncover the interlinked impact of the DI on SDGs in a more holistic manner,
87 moving beyond the impact measurement of DIs on isolated SDGs. Instead of measuring the impact on
88 a particular goal or target, the aim should be to establish a multidisciplinary view of the direct and
89 indirect impacts the DI may have on all SDGs in the certain context. The context-specific assessment of
90 the DI requires analyses in a broader system, whereby the impacts on most of the SDGs are considered
91 integral to it.

92 Gupta *et al.* [22] and Vinuesa *et al.* [6] identified the role of the DIs at the target level, one level
93 deeper. The limitation of these works is their consideration to evaluate the impact of selected DI on a
94 specific target at a time but not exploring the interlinked consequential impact of the particular DI
95 on all other targets and indicators of SDGs. Since sustainable development requires holistic actions
96 on all the essential aspects, the most meaningful way to identify the real impact of technology is
97 to identify where and how it supports bringing the change required for the advancement of all the
98 SDGs. Indicators of the SDGs are the impact measures, reflecting the "what" has been achieved
99 thus far. Therefore, it is essential to measure the 'what' change at the indicator level is achieved
100 when the DI is utilized to measure consequential impact. As digitalization combines the individual,
101 organizational and societal transformation brought by the multitude of algorithms and data-driven
102 interfaces, utilizing it for sustainable development also needs diverse stakeholders' inclusiveness and
103 active involvement with their perspectives. We need to understand the consequential impacts and
104 mindfulness in using digitalization to support the achievement of SDGs and their specific targets.
105 Digitainability is introduced by Gupta *et al.* [22] as the effort to uncover the impact of digital tools
106 considering their interlinked impacts in a specific context with a multidisciplinary perspective to
107 secure the mindful application of digital technology to foster sustainable development. This is a crucial
108 step to investigate in-depth if and to what extent the potential offered by the DIs can be leveraged
109 for sustainable development, particularly for achieving the goals of Agenda 2030 [23]. After its
110 introduction, digitainability has been perceived as essential to capturing the cross-fertilization potential
111 of digitalization and sustainability, the two mega-trends for innovation and new sustainable business
112 development [24], but more from the theoretical perspective rather than a practical one. Quite recently,
113 Gupta and Rhyner [23] in their article introduced the digitainability assessment framework (DAF)
114 as a practical tool that can help operationalize the digitainability assessment of digital intervention
115 (DI) in great detail with various levels of evidence. Assessing digitainability is essential to shape the
116 development process for a more intelligent and sustainable digital future.

117 The DAF that incorporates context, the potential direct impact, indirect impacts, and cascading
118 effects mapped for the SDG indicator(s) could be considered a practical approach to assess the impact

119 of DIs. Utilizing several levels of evidence, the DAF approach is instrumental in holistically identifying
120 impacts and detecting potentially unforeseen implications. This comprehensive assessment further
121 facilitates the mapping of impacts, taking into account long-term and short-term priorities in a given
122 context. By undertaking a holistic assessment, the potential pathways that enable or inhibit the
123 growth of the SDGs can be measured and used to support sustainable digitalization. Overall, the
124 DAF is an effective tool that helps consolidate a vast amount of multidisciplinary knowledge to
125 deeply understand the interlinked direct, indirect and progressing consequential impact of the DIs for
126 sustainable development.

127 In this paper, we explore the operationalization of DAF digital technologies in a real-world
128 scenario and how it paves the way towards mindfulness in applying a DI for sustainable development.
129 We operationalize the DAF to assess the digitainability of the DIs to encourage mindfulness in their
130 application. The paper presents the outcome of the Digitainable Spring School 2022 (DSS), which
131 involved four groups thoroughly analyzing the digitainability of a specific DI in light of the SDGs. The
132 DSS aimed to bring together a diverse group of experts and practitioners from different disciplines
133 having experience working at the intersection of digitalization and sustainability. In order to fully
134 explore and identify the strengths and weaknesses of the DAF and the impacts of a DI on SDGs, a
135 study-based analysis of the methodology was deemed appropriate. The primary outcome of the DSS
136 was a practical application of digitainability as a concept and an enriched analysis of the impacts of
137 DIs for SDGs, considering different perspectives and contributions using the DAF as a methodology.

138 The paper is structured as follows: Section 2 elaborates on the methodology we have undertaken
139 for this study and further expands on the methodological consideration of the DIs. in Section 3, we
140 present the results after operationalizing the DAF for selected DIs, followed by a detailed discussion
141 on the findings of 4 studies in Section 4; finally, conclusions are drawn in the Section 5.

142 **2. Method: Digitainability assessment**

143 Considering the overarching topic of digitalization and sustainability, diverse stakeholders such
144 as practitioners are usually not typically inclined to engage with research that they consider the realm
145 of specialized academic researchers. They are more favorably prone to 'doing' and experimenting
146 using trial and error, discussions, reflection in, on, and after taking action, considering the action
147 cycles for transformation. To foster sustainable development, it is paramount to promote exchanges
148 between diverse disciplines and the research community to convert concepts into practices focusing on
149 inclusion, collaboration, and participation. This is all the more important considering the importance of
150 digitainability for mindful sustainable digital transformation. Identifying and defining the key aspects
151 and processes of digitalization and sustainability that are interdependent and vital for maximizing
152 holistic sustainable development is essential.

153 In order to conduct the digitainability assessment, we utilized the action learning approach [25], a
154 participatory approach that drew on the expertise of participants of the Digitainable Spring School
155 (DSS). Action learning is a group-based process of engaging, learning, and reflecting, where a group of
156 peers interact under the guidance of a facilitator for a given time-frame to address a specific real-world
157 issue in real-time [26]. Participants identify real problems in the discussion from their experience
158 and seek to develop innovative and creative ways to solve them [27]. The DSS brought together an
159 international group of real-life practitioners and experts in digitalization and sustainability for action
160 learning. Based on their experience with certain technologies, they operationalized the DAF as a tool
161 for understanding the complex impact of the DIs on sustainability. In this section, we discuss the
162 detailed assessment and evidence they have gathered based on the DAF methodology. Given their
163 diverse background, disciplines, and expertise, the DSS participants combined into a single arena their
164 multidisciplinary views on standardization processes, reflections, and perspectives on the theoretical
165 and practitioner contexts that supported the process of digitainability assessment. This paper brings
166 forth the operationalization process, how expert groups approached the digitainability assessment
167 process, and their recommendations for digitalization and sustainability practicing communities.

168 The DAF is used to systematically analyze the intra- and interlinked impacts of DIs on SDGs
169 [23]. It is designed to help perform technology impact assessments and map them considering various
170 synergies, trade-offs, and complex interlinkages between SDGs at the indicator level within certain
171 contexts. The analysis results are visualized in the form of a heatmap or matrix, presenting not only the
172 impact results (synergy, ambivalent, trade-off, bi-directional or uncertain) but also including the context
173 and the main SDG indicators under focus. Four groups conducted the digitainability assessment
174 using various forms of evidence from a multidisciplinary perspective and identified strengths and
175 weaknesses in the methodology and data gaps regarding DI and SDGs. The four DIs are: Smart Home
176 Technologies (SHT) for energy efficiency, Blockchain for Food Security, AI for Land Use Cover and
177 Changes (LUCC), and Big data for International Law.

178 2.1. *Group 1: Smart Home Technologies (SHTs) as DI for energy efficiency*

179 The concept of “data-driven smart sustainable cities” has emerged from the advancements in
180 information and communications technology (ICT), particularly big data, coupled with alarming
181 worldwide challenges related to the environment, climate change, natural resources and energy
182 consumption [28]. In this context, numerous strategies are presented in order to reach resource
183 efficiency and climate responsibility through modern technologies. These include “smart grid and
184 advanced metering infrastructure”, “smart buildings”, “smart home appliances and devices”, and
185 “environmental control and monitoring” [29]. In particular, energy efficiency represents a crucial,
186 effective method to overcome environmental challenges and meet the growing demands in energy
187 [30].

188 In this respect, SHTs for energy efficiency exhibit many opportunities for innovative technological
189 solutions by combining big data analytics, the IoT and associated smart sensors and meters, and
190 machine learning technologies and techniques. Thus, this technology provides better monitoring,
191 control and conservation of energy [31].

192 From the perspective of household residents, the implication would be greater awareness, control,
193 and efficient monitoring of energy/electricity consumption. From the operator’s perspective, this
194 approach allows not only for precise monitoring and analysis of electricity consumption but also
195 enables forecasting electrical energy consumption using data mining and machine learning methods;
196 this is beneficial specifically when power is drawn from renewable power plants that are highly
197 dependent on the weather [32].

198 Group 1 focused on the question of *how STHs impact the achievement of SDGs considering*
199 *digitainability?* To answer the question, the DAF methodology was applied. The analysis mainly
200 focuses on the SDGs 7, 8, 9, 10, and 11 considering their relevance to the intended application of DI. In
201 order to analyze using the DAF, grey literature was used.

202 2.2. *Group 2: Blockchain as a DI for food security*

203 Recent trends in global food sustainability and improved nutrition show growing concern, and
204 food security is far from guaranteed for all [33]. Following several decades of substantial progress
205 in reducing hunger by several hundred thousand people [34], food insecurity is regaining ground
206 year after year [35]. When world grain prices soared in 2007-2008, the Malthusian spectre of a “global
207 food crisis” was brandished by the media. Ever since, the problem of food insecurity has returned to
208 the agenda while the rise in the price of food commodities, of which Russia and Ukraine are major
209 producers, is at its highest level since 2008 [36].

210 DI can help transitions for addressing the challenges of food and agricultural systems, supporting
211 the timely achievement of SDG 2 (End Hunger) and 12 (Responsible Consumption and Production).
212 The DI, such as blockchain, brings commercial transaction standardization to improve security and
213 reduce costs. Several recent studies (e.g., Tyczewska *et al.* [33], Feng *et al.* [37], Nurgazina *et al.*
214 [38], Patidar *et al.* [39]) have highlighted the positive and potentially transformational nature of
215 blockchain, particularly concerning the reconfiguration of market exchange. Research suggests that

216 blockchain systems may reduce uncertainty, insecurity, and ambiguity in transactions by providing
217 full transactional disclosure and unified truth to all participants in the network Zhao *et al.* [40], Xu *et al.*
218 [41], van Hilten *et al.* [42]. The blockchain is also increasingly deployed in areas where traceability and
219 product auditing is essential, such as the supply chain in food systems [38]. Group 2 focused on the
220 question of *how blockchain technology can support the fulfillment of goals 2 and 12 while considering holistic*
221 *sustainability, socio-economic and environmental aspects?*

222 2.3. *Group 3: AI as a DI for Land Use Cover and Changes (LUCC)*

223 Given the high level of interest and the need to understand various processes that are triggered in
224 one part of the globe and affect certain processes in another part of the globe, AI has been introduced
225 as a powerful information tool to address this issue. Many approaches, such as Machine Learning,
226 Deep Learning, Agent-Based models, and others are used to empower AI for better tracking of Land
227 Cover/Use patterns.

228 Implementing machine learning algorithms can help to detect the land type, as well as spatial and
229 temporal trends in land class/type over time. Machine learning algorithms can be used to assess the
230 accuracy and validate the results of land classification. Thus, the method can benefit from predicting
231 future scenarios of land use change and implementing an accurate and reliable system to monitor land
232 class and type. It has the potential to allow large-scale interventions across space and time. In this
233 study, we consider the following SDG Indicators: Forest area as a proportion of total land area (SDG
234 15.1.1) and the Proportion of land that is degraded over total land area (SDG 15.3.1).

235 Halting and restoring land degradation is a crucial priority to protect biodiversity and ecosystem
236 services that support life on planet Earth [43]. AI is heralded to serve this purpose by encouraging
237 “conservation biology” [44]. According to Vinuesa *et al.* [6], AI could bring positive contributions for
238 88% of the targets related to the SDG 15 (life in land), and negative impacts for 33% of them; however,
239 sound empirical evidence is lacking so far [21]. The main contribution of AI relies on enhancing
240 the monitoring and surveillance systems by leveraging multiple data sources from remote sensing
241 [45] and satellite-based earth observation and geospatial information [21,43,46,47]. Global datasets
242 suffer limitations in terms of resolution and accuracy, while EO information (e.g., LandSat, Sentinel) is
243 mostly free and open access, available for large regions, providing long time series and data continuity,
244 representing a complement to traditional statistics for the SDGs monitoring [46,47].

245 Therefore, merging AI and EO provides reliable and disaggregated data for better monitoring
246 of the SDGs [48,49] facilitates data analysis, capacity for measurement and efficient interventions
247 [50]. Nevertheless, despite the progress in geoscience, the net impact of AI on SDG 15 is still poorly
248 understood. Yu *et al.* [51] claim that the use of AI to determine land use and cover change (LUCC) in arid
249 ecosystems has not been sufficiently researched but can provide predictions about land degradation
250 and guide policies to mitigate potential issues. Isabelle and Westerlund [52] explore AI’s role in
251 positively contributing to the SDG 15 targets. Indeed, the literature evidence contributions of AI to
252 several SDG 15 targets (SDG 15.2, 15.3, 15.5, 15.7, 15.8) ranging from predicting deforestation and
253 enhancing forest management [53–56], managing land degradation [43,56], combating poaching and
254 protecting endangered species [57,58]; halting biodiversity loss and habitat degradation [44], reducing
255 invasive species [59,60], spotting plant diseases and fires or identity seeds [61]. Kolevatova *et al.* [62]
256 claim the relevance of explainable AI (XAI) to support the climate effects of land changes (land cover,
257 deforestation, urbanization) with enhanced computational time and data usage. Palomares *et al.* [61]
258 underscore the great potential of AI systems for SDG 15 while claiming the need for high-quality open
259 data and infrastructures.

260 Nonetheless, some limitations are also observed. Isabelle and Westerlund [52] stress that ML and
261 DL training is complex and time-consuming, demanding large amounts of data and skills which are
262 not always available (e.g., endangered species), particularly in the least developed countries with a
263 lack of universal access to datasets, computing power and capacity. High-resolution data is needed,
264 but its costs are beyond the reach of small farmers. Using AI for deforestation or even maintaining

265 digital infrastructures are perceived as a challenge in these contexts due to logistic problems. Besides,
266 major forests/habitats (e.g., Amazonia) are also subjected to restrictive national policies [52,61]. Group
267 3 focused on the question of, *how AI for LUCC monitoring impacts the holistic SDGs achievement?* In this
268 study, we applied and complemented the DAF with literature from the Scopus database.

269 **2.4. Group 4: Big Data as DI for International Law**

270 The analysis of Big Data as DIs in the context of International Law is intended to examine its
271 potential role in designing treaties and how it impacts the progressing SDGs. In the field of International
272 Law, there is a growing academic interest in the phenomenon of "big data." However, the relationship
273 between International Law and the massive use of data has not yet been explored [63]. "Big data" is a
274 broad concept that cannot be reduced only to the notion of an extensive data set because this concept
275 includes (among other things) the analysis techniques applied to the data [64]. Similarly, Boyd and
276 Crawford [48] concluded that "less about data that is big than it is about a capacity to search, aggregate,
277 and cross-reference large data sets." Under those considerations, carrying out the analysis of the SDGs
278 in the light of Big Data and International Law is an opportunity to study and propose an effective
279 mechanism for compliance with the SDGs. When two or more States agree on a specific object and
280 wish to give legally binding value to said agreement, they conclude a treaty [65]. In that sense,D

281 Target 2.5 and its indicators propose international cooperation at various levels. It aims to promote
282 access to fair and equitable education as well as share the benefits derived from the use of genetic
283 resources and associated traditional knowledge. It also seeks to increase investment, correct and
284 prevent trade restrictions and distortions in world agricultural markets, adopt measures to guarantee
285 the proper functioning of the markets for primary food products and their derivatives, and facilitate
286 timely access to information on the market, including on food stocks, to help limit extreme volatility in
287 food prices [66]. Unfortunately, according to the United Nations [67] the quantity of people suffering
288 from hunger and food insecurity has been rising continuously since 2014. Due to the inadequate
289 solutions at the international level, it is urgent to update and adjust the mechanisms of international
290 law in order to achieve SDGs [68]. The group focused on the question of *what are the possible impact of*
291 *Big Data could have on the achievement of the SDG 2 through international policies' platforms?* The analysis
292 explores the state-of-the-art within the framework of the DAF methodology.

293 **3. Result/Outcome**

294 **3.1. Group 1: Smart Home Technologies (SHTs) as DI**

295 The results of the digitainability assessment conducted by performing the literature review
296 illustrate (Figure 1) that indicators 7.1.1, 7.1.2, 7.2.1, and 7.3.1 have a synergistic impact. Data-driven
297 solutions hold great potential for energy security, energy equity, and environmental sustainability
298 [69,70]. Energy savings of 12%-20% can be obtained by introducing smart household products [71].
299 According to an Australian study, SHTs can identify the best energy sources at the right time, reduce
300 costs and optimize accessibility and sustainability [72,73]. Another synergistic impact shows that it
301 is possible to identify and predict energy poverty based on satellite images accessible through big
302 data technologies [74]. Considering the long-term impact of SHTs, their use over the next ten years
303 will allow us to achieve the objectives of reducing CO2 emissions at the global level [75,76], enabling
304 households to operate in "zero emission" mode [77]. Further, data-driven solutions through IoT are a
305 potential way to increase the share of renewable energy. Smart information systems (smart grids) allow
306 the integration of renewable energies and can ensure energy security and sustainability[71,78,79]. In
307 the renewable energy context, meteorological data can be used to forecast production and thus support
308 the decision-making of the energy systems [80].

309 Nevertheless, the question of whether data-driven solutions promote energy sustainability
310 remains. This question highlights the ambivalent and bi-directional impact of the different data-driven
311 solutions on the energy sector, focusing on 7.1.2 and 7.2.1 indicators. In fact, data-driven solutions

312 require high energy requirements and carbon footprints [6]. Notwithstanding the above, indicators
 313 7.a.1 and 7.b.1 are considered to have an uncertain impact on the DI.

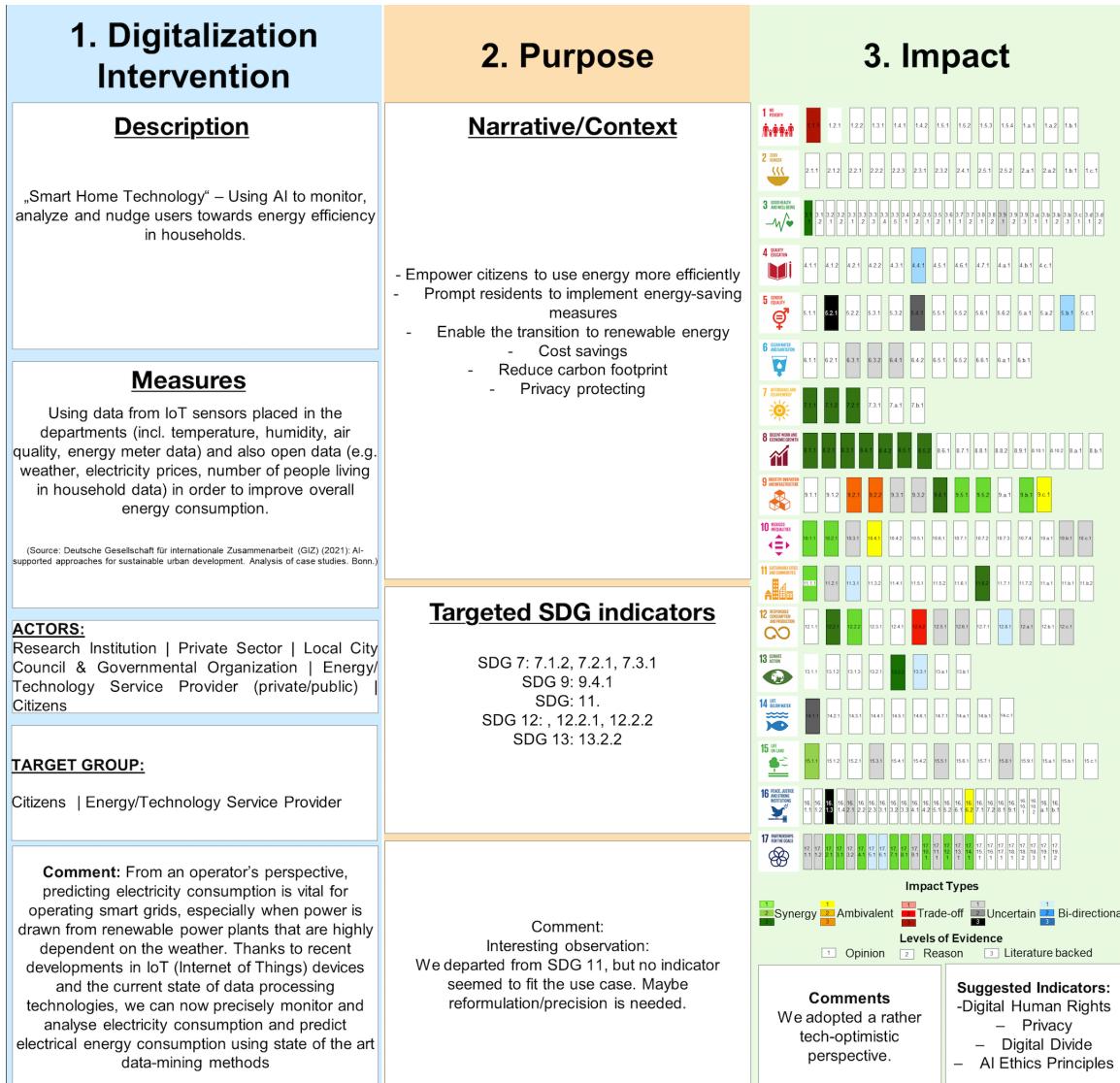


Figure 1. DAF outcome of Smart Home Technologies as DI.

314 With regard to SDG 8, a synergistic impact supported by the literature has been reported for
 315 the indicators 8.1.1., 8.2.1., 8.3.1., 8.4.1., 8.4.2., 8.5.1., 8.5.2.; whereas no impact was noted for the
 316 other indicators. Previous evidence showed that household energy efficiency could help boost the
 317 economy and increase national GDP; this was conveyed in studies and use cases from the UK and
 318 Canada [81–84]. For instance, in the UK, a potential 5% improvement in energy efficiency (through
 319 technological improvements), would result in an increase in the national GDP by 0.10% in the long
 320 term [81]. In Canada, researchers also found that "investing in energy efficiency is a significant net
 321 benefit to the economy". It will add 118,000 jobs (average annual full-time equivalent), and increase
 322 GDP by 1% over the baseline forecast over the study period (2017-2030) [82]. Moreover, the impact of
 323 SHTs is observed in creating jobs and employment. Direct jobs will arise from recalling energy service
 324 companies, as well as indirect jobs for skilled professionals along the supply chain, such as energy
 325 auditors and home energy raters, contractors, as well as retailers, and product distributors. In addition,
 326 workers hired into new direct and indirect jobs would spend their income on goods and services in the
 327 local economy, hence positively impacting the economy through the redistribution of savings [81,83].

328 Nevertheless, other authors suggested that "the introduction of increased energy efficiency should
329 be spread over all or at least a wider range of households for more effective impacts on energy
330 efficiency" [85]. The reason for this suggestion is the "rebound effect" (when an item price decreases,
331 users tend to use it more, eroding the benefits of household energy efficiency). Furthermore, energy
332 efficiency would indeed have a positive impact on the economy if users were correctly educated on the
333 effective ways of dealing with energy efficiency, i.e., not using the income coming from energy saving
334 to buy appliances that are not energy-efficient. Some studies also showed a more positive impact when
335 in-home displays were available [84,86].

336 The literature review did not disclose a strong correlation between SHT and SDG 9. SHT impact
337 is ambivalent owing to potential new business models that can again have positive as well as negative
338 impacts on the value-added by manufacturing processes. Indeed, Smart Home systems are often part of
339 a larger socio-technical system of the Smart Home bubble that triggers the introduction of other systems
340 into the 'home' (indicator 9.2.1) [87–89]. In addition, the impact of DI on indicator 9.2.2 is ambivalent
341 due to the new demand for smart home energy experts and the way the system is maintained and
342 produced. This leads to other trigger effects of household demand for traditional heating/energy
343 systems and consumers take over work from service providers [90]. Another ambivalent impact is for
344 indicator 9.c.1 due to controversy in the inequality and accessibility of modern mobile infrastructure,
345 knowing that the Smart Home system needs a modern mobile infrastructure to communicate and
346 receive data via IoT or 5G network [91]. From the point of view of synergistic impact, smart energy
347 management at home and the need for a transition to renewable energy are more probable, especially
348 since the overall growth in ICT energy demand is increasing dramatically (indicator 9.4.1) [87,92,93].
349 Indicators 9.5.1, 9.5.2, and 9.b.1 have a synergistic impact based on opinion due to public and private
350 sector funding and research, as well as the high interest in implementing these systems, as they are
351 deemed necessary for the energy transition. The DI is being implemented by large energy providers
352 and established technology providers, with little room for smaller-scale industries. It is possible to
353 create start-ups or new digital business models that can leverage smart home energy. This aspect
354 brings an uncertain impact based on opinion (indicators 9.3.1, 9.3.2).

355 Regarding SDG 10, more studies are needed on a national level in order to prove a synergy
356 impact of the DI overall. Nevertheless, if implemented within a well-crafted national policy, one
357 could argue for such a positive impact (based on opinion, indicators 10.1.1, 10.2.1). The same could
358 be argued for the labor share of GDP, especially when it comes to the green jobs created through this
359 technology. However, the consequent loss of traditional jobs should also be accounted for, hence
360 leading to a potentially ambivalent impact of the DI (based on opinion, indicator 10.4.1.). In addition,
361 an uncertain long-term impact of the DI could be observed regarding the proportion of discrimination
362 or harassment, alongside the total flow of development resources between countries and the costs of
363 remittances (based on opinion, indicators 10.3.1., 10.b.1., and 10.c.1.).

364 In the context of SDG 11, i.e., to "make cities and human settlements inclusive, safe, resilient and
365 sustainable", the SHT included within the setting of "data-driven smart sustainable cities" seems to be
366 an optimal representation, thus explaining the synergy impact on indicator 11.1.1 (based on opinion).
367 A bi-directional impact is also presented for indicator 11.3.1, the "ratio of land consumption rate to
368 population growth rate", given that it could influence and be influenced by the DI (based on opinion).
369 One additional interesting synergy impact of this DI is on indicator 11.6.2 (annual mean levels of fine
370 particulate matter (e.g., PM2.5 and PM10) in cities (population weighted), literature-backed); previous
371 evidence showed the positive impact of building energy efficiency measures on air quality [94]. While
372 this DI is promising on the environmental and sustainable development level in smart cities, much
373 more is needed to observe an impact on the other indicators in this goal, showcasing other crucial -
374 even more urgent - problems that this particular DI could not solve, namely disaster risk reduction,
375 providing personal safety, especially for women, children, older persons and persons with disabilities,
376 waste management, and supporting least developed countries.

377 As such, the smart-grid energy-efficient technology may best be introduced as part of
378 a comprehensive national policy, along with other smart home digital interventions such as
379 energy-efficient appliances and monitoring water and air quality, while also integrating renewable
380 energy resources. In addition, this DI needs to be established in a wider range of households for an
381 optimal impact. Further, policies are needed to ensure the SHTs are implemented in the right way
382 while respecting the ethical aspect of the DI, including the privacy and security of residents.

383 At the indicator level, there are few similarities between several indicators of the same goal,
384 while the potential for synergy and trade-offs between them has not been considered. In addition, the
385 multidimensional aspect of the indicators makes their interpretation ambiguous and contradictory.
386 Another aspect of the different limitations is that the indicators have been formulated at a global
387 level, with countries having different, sometimes contradictory, interests, actors, and technologies.
388 The independence between national statistical offices, the prioritization of the SDGs, and the different
389 reporting systems of the countries are also aspects that limit SDGs and potential indicators.

390 The DAF helped to assess the impact of the SHT on the SDGs and provided a means of examining
391 this association more scientifically and adopting a broader, multidimensional perspective of analysis.
392 Hence, it provides the foundation for a more purposeful, wiser, and inclusive implementation of digital
393 interventions for sustainability.

394 3.2. Group 2: Block chain as a DI

395 To investigate potential responses to food production, distribution, and consumption challenges,
396 the group undertook an exploratory approach to understanding state-of-the-art regarding the potential
397 of blockchain technology as a DI in the context of food systems using DAF. To make the data interact,
398 the group undertook a literature review at the intersection of these three contexts: distributed ledger
399 technology (blockchain), zero hunger, and sustainable consumption and production. We focused on
400 the context of developing countries with a significant number of consumers, producers, and retailers
401 participating in the process. E.g., household food waste could indeed increase by 50% by 2030 due
402 to the growing consumption of the middle classes in developing countries [95]. We examined the
403 interactions between the various goals and targets and the extent to which they reinforce or conflict
404 with each other.

405 Overall, the result (Figure 2) of this group exercise demonstrates that food traceability with
406 distributed ledger technology enables verification of food provenance by immutably recording
407 end-to-end transactions, which could prevent food waste and improve trust among stakeholders
408 [96]. The technology can help achieve food safety and establish trust between actors by increasing
409 the number of trusted transactions and verifying food provenance [97]. Application of the DI put in
410 place an infrastructure that fosters a more responsible production and consumption pattern in the food
411 supply chain to reduce food waste [40]. Monitoring and traceability of food can ensure the food is
412 marketed within its life cycle [97].

413 For SDG 2, we identified four indicators that were found to be relevant but were somewhat
414 ambiguous as to their potential impact. For indicator 2.3.2 (Average income of small-scale food
415 producers, by sex and indigenous status), the literature pointed to the empowerment of farmers (e.g.,
416 Ekawati *et al.* [98]) and other stakeholders (e.g., Kochupillai *et al.* [99], Patel *et al.* [100]) through data
417 as well as the potential increase of farmers' income [101]. Regarding indicator 2.4.1 (Proportion of
418 agricultural area under productive and sustainable agriculture), several papers underscored that food
419 safety traceability systems which are backed up by big data and the IoT ensure agility, transparency,
420 integrity, reliability, and safety of traceability information (e.g., Feng *et al.* [37], Vivaldini [102], Zheng
421 *et al.* [103]). Furthermore, the connections between food security and climate change, as well as related
422 risks and their respective stress on water and soil resources, are acknowledged [104]. A particular
423 emphasis in this regard was placed on the context of developing countries such as India, where the
424 public distribution system (PDS) could be explored [105]. Regarding the indicator 2.5.1 (Number
425 of (a) plant and (b) animal genetic resources for food and agriculture secured in either medium- or

426 long-term conservation facilities), Rao *et al.* [106] highlight the need for DNA-based technologies
 427 in, e.g., in meat markets. In terms of the 2.c.1 Indicator of food price anomalies, traceability across
 428 an extended number of stakeholders improves blockchain-based trust management [40], bargaining
 429 power, and democratization [107], which can be fostered through the involvement of state actors [108].
 430 Additionally, competition between traditional and online channels may prove valuable [109], although
 431 the cross-channel information strategy and its relation to performance remain unclear [110].

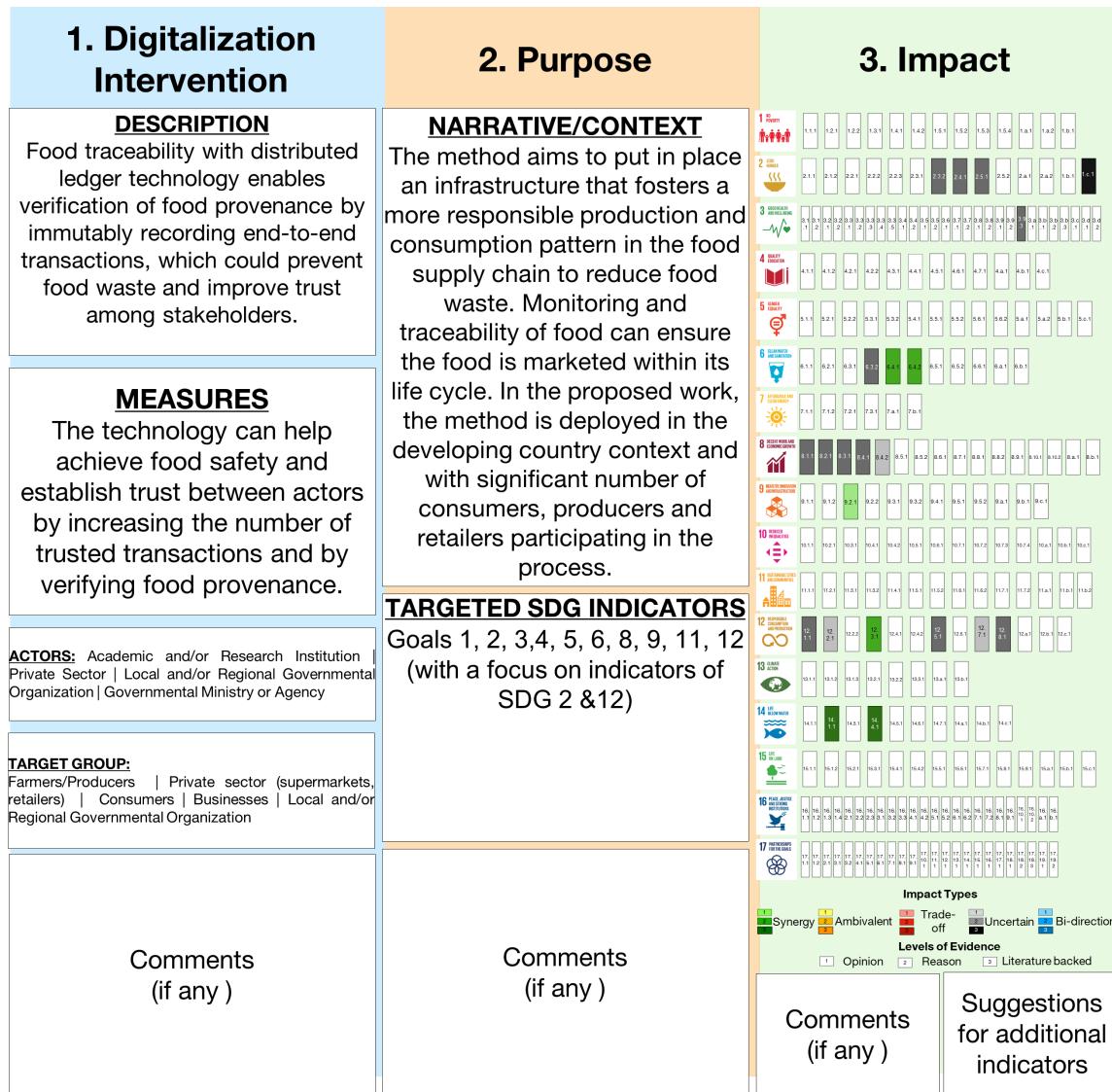


Figure 2. DAF outcome of Blockchain as DI.

432 For SDG 3,3.9.3 (Mortality rate attributed to unintentional poisoning), blockchain yields a dubious
 433 impact on food selection and the spread of polluted foods (e.g., Nurgazina *et al.* [38], Behnke and
 434 Janssen [111]), wrongly labeled foods that caused death to customers [41] or improved efficiency
 435 while also addressing concerns about animal welfare, environmental sustainability, and public health
 436 [112]. As for SDG 6, 6.3.2 (Proportion of bodies of water with good ambient water quality), blockchain
 437 shows limited evidence of impact on real-time water quality monitoring [113]. There is potential
 438 for synergistic effects with the indicators 6.4.1 (Change in water-use efficiency over time), and 6.4.2
 439 (Level of water stress: freshwater withdrawal as a proportion of available freshwater resources), as
 440 crops can be irrigated and managed with higher precision (e.g., Arsyad *et al.* [114], Duan *et al.* [115]).
 441 Additionally, blockchain may be instrumental in generating insights on the characteristics of soil and

442 water, climate conditions, treatment with pesticides and fertilizers, production process, traceability,
443 transparency, labor and human rights, quality and safety, waste reduction, authenticity, relationship
444 with stakeholders, etc. (e.g., Iftekhar *et al.* [104], Luzzani *et al.* [116]).

445 The impact on SDG 8 is stated but not definite by the indicators 8.1.1 (Annual growth rate of
446 real GDP per capita) and 8.2.1 (Annual growth rate of real GDP per employed person), although the
447 potential for a major impact on employment in the agriculture sector is discernible (e.g., Nurgazina
448 *et al.* [38], Chen *et al.* [117], Fan *et al.* [118], Guo *et al.* [119]). The indicator 8.3.1 (Proportion of informal
449 employment in total employment, by sector and sex) highlights the diversity of affected actors who
450 could nonetheless be expected to benefit from the blockchain technology [120], such as SMEs [121].
451 Using blockchain can improve the indicators 8.4.1 (Material footprint, material footprint per capita, and
452 material footprint per GDP) and 8.4.2 (Domestic material consumption, domestic material consumption
453 per capita, and domestic material consumption per GDP) insofar as it improves supply chain operations
454 economic, social, and environmental efficiency (e.g., Nurgazina *et al.* [38], Fan *et al.* [118], Tripoli and
455 Schmidhuber [122], Yadav *et al.* [123]).

456 For SDG9, 9.2.1 (Manufacturing value added as a proportion of GDP and per capita) elaborates
457 on the potential of blockchain technologies for the procurement contract and industrial added value
458 and operational performance [124–126].

459 For SDG 12, 12.1.1 (Number of countries developing, adopting, or implementing policy
460 instruments aimed at supporting the shift to sustainable consumption and production), integrating
461 organic, kosher, or halal certification into the blockchain could reassure stakeholders [127] and ensure
462 fairer supply chains [128]. In that line, indicators 12.2.1 (Material footprint, material footprint per
463 capita, and material footprint per GDP), e.g., optimizing energy consumption [129], 12.3.1 ((a) Food loss
464 index and (b) food waste index) and 12.5.1 (National recycling rate, tons of material recycled) highlight
465 food waste issues [130–133]. As such, blockchain is seen as a potential solution to contribute to the
466 circular economy (e.g., Tripoli and Schmidhuber [122], Rejeb *et al.* [134]). The indicator 12.7.1 (Degree of
467 sustainable public procurement policies and action plan implementation) discusses blockchain-based
468 digital contracts and its contribution to public procurement [101]. For the indicator 12.8.1 (Extent to
469 which (i) global citizenship education and (ii) education for sustainable development are mainstreamed
470 in (a) national education policies; (b) curricula; (c) teacher education; and (d) student assessment), the
471 work of agricultural development cooperatives has been mentioned [135].

472 For SDG 14, 14.2.1 (Number of countries using ecosystem-based approaches to managing marine
473 areas), examples outlined in the literature demonstrate the use of blockchain technology to inform
474 consumers and society, providing more transparency throughout the fish product value chain [136,137].
475 For the indicator 14.4.1 (Proportion of fish stocks within biologically sustainable levels), blockchains
476 provide added value to determine the provenance and authenticity of seafood [138,139].

477 However, when we contrast these research findings with the general expectations regarding the
478 potential of blockchain technology in this particular field, we find that the evidence is still lacking.
479 Thus, our assessment mostly sits in the “uncertain” impact category. Additionally, SDGs 1-3 (no
480 poverty, zero hunger, health and well-being) were rather underrepresented compared to the purported
481 potential in these domains.

482 The SDGs are universal in their application and their scope aims to transcend the boundaries
483 between the developed and developing world. They provide a policy framework that aims to ensure
484 greater coherence between social, environmental and economic objectives, where such issues had
485 previously been addressed in various diplomatic, political and institutional arenas. However, keeping
486 track of progress is hampered by the difficulty of measuring sustainable development in all its
487 complexity, partially due to broadly defined objectives, the achievement of which is measured through
488 a wide array of narrowly outlined indicators. However, gathering data to monitor these indicators,
489 intended to assess the achievement of the SDGs, is a major data challenge that fails to account for
490 local contexts: available data are, in many instances, outdated [140] and, therefore unusable, as
491 it was with the decennial agricultural census in Lebanon, for instance, [141]. Moreover, the sheer

492 number of indicators risks tilting the implementation of the SDGs into a technocratic exercise far from
493 the transformative ambition it was set out to achieve. Finally, besides its technological challenges,
494 blockchain raises legal and regulatory issues, which lawmakers are only beginning to tackle: the
495 cross-border aspect of the technology hinders the enforcement of set rules.

496 Transforming and improving the efficiency, inclusiveness, and sustainability of agricultural and
497 food systems is necessary to ensure that food loss and waste do not undermine efforts to eradicate
498 hunger, improve nutrition, and reduce pressure on natural resources and the environment. To reconcile
499 the challenges of food security and equity, decision-makers must be able to make informed strategic
500 choices among a range of options for managing food systems. However, the knowledge gaps found
501 in the literature impede estimates of the sustainable exploitation potential of blockchain technology.
502 To this end, international and interdisciplinary applied research from a broad spectrum of thematic
503 expertise is needed to fill the knowledge gaps on ecological, economic, and social processes interacting
504 with blockchain technology in the context of food security. At the same time, we need to critically
505 assess the usefulness of specific indicators which lack contextual country-level application potential or
506 explore avenues for qualitative assessment which could complement the picture. Thus, a more holistic
507 impact assessment using the SDGs as a compass or navigating framework is deemed an advisable
508 starting point which, however, needs to be enhanced through qualitative means of SDG assessment.
509 However, we believe that the SDGs and the associated focus on the indicators provide an interesting
510 avenue for further exploration, as the indicators offer an impact-based assessment and contribution to
511 the grand challenges of our time.

512 3.3. Group 3: AI as a DI

513 The digitainability assessment observed mainly synergistic impacts with on SDG 15 targets, as
514 well as relevant connections with many of the SDGs, especially with SDG 6 (water), SDG 2 (agriculture),
515 SDG 13 (climate), and SDG 11 (cities).

516 For SDG 1 (End poverty of all forms everywhere), we found by applying the DAF methodology
517 (Figure 3) that most of the indicators of SDG 1 are not relevant to Land Management, with the exception
518 target 5, where AI can perform a vital role in terms of the exposure to Climate extreme events, and
519 environmental disasters. For example, AI can predict floods using the Artificial Neural Network
520 (ANN), which runs hydrological models [142] and can model heat waves as used by Vautard *et al.*
521 [143].

522 In the case of SDG 2, which is related to the function of our soil and its productivity for crop
523 production, and the fairness of its distribution, we found that all targets related to land use, such as
524 target 2.3 of increasing agricultural productivity. AI tools are used for crop monitoring as the model
525 done by Singh *et al.* [144], who used AI and IoT (Internet of Things) to detect the most suitable land
526 and conditions for plant growth. AI has shown to be a powerful tool in terms of big data analysis for
527 soil quality, as shown in the review by Eli-Chukwu and Ogwugwam [145].

528 For SDG 3 to ensure healthy lives and better well-being is cross-cutting with land management
529 in some of its targets. Consequently, there may be potential trade-offs in the application of AI on
530 these indicators. SDG 3 is targeted to ensure good mental health for all, mental health is directly
531 associated with recreational activities which are directly affected by Land management. Therefore,
532 AI is being used to quantify and map recreational sites for better well-being and good health [146].
533 Not only this, but since SDG 3 targets reducing deaths caused by road injuries, AI-enhanced models
534 in road management, predictions, and transportation are offered for safety and for tracking injuries
535 [147,148]. One of the most important factors for better health is accessibility, either for education,
536 medical services, or mental improvement. AI (ANN) models are used for measuring land accessibility
537 rates in urban areas where it serves as the main factor for better well-being [148]. As shown in SDG 2,
538 Soil pollution is being quantified, which serves as some of SDG 3 indicators for reducing the death rate
539 as a result of food pollution [144].

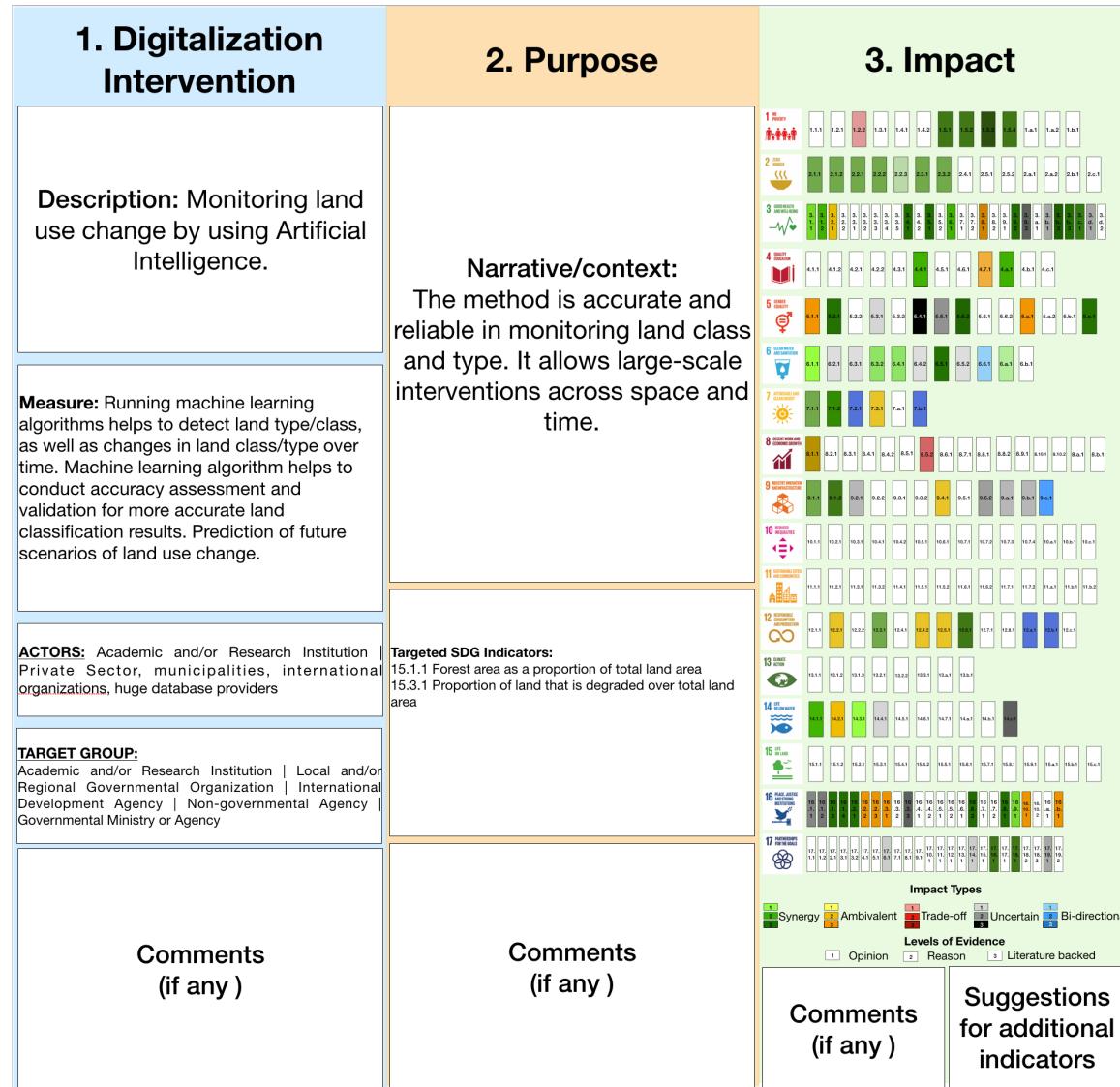


Figure 3. DAF outcome of AI as DI.

540 For SDG 5, synergistic impacts exist between three of the indicators and AI use in relation to
 541 only one indicator relevant to land and its ownership. These include 5.2.1 [149], 5.5.2 [150] and 5.c.1
 542 [151,152]. Considering SDG 7 (sustainable energy) and SDG 13 (climate action), the energy sector
 543 is enduring a disruptive transformation towards a more decentralized, digitalized, decarbonized,
 544 climate-neutral and green future, with strong synergies with the building, transport, and infrastructure
 545 sectors [153], and large impacts on climate. AI brings huge potential to accelerate the green energy
 546 transition [154–156], but its current application is limited to pilots, with barriers to scaling up. AI
 547 applications for energy cover consist of high-fidelity models for predicting renewable generation
 548 and demand, grid and systems optimization, operation and maintenance, demand management and
 549 innovation [157–159]. Virtual Power Plants can boost distributed energy and automation of small,
 550 distributed devices such as electric vehicles [153,160].

551 Vinuesa *et al.* [6] claim that AI has the potential to contribute to all SDG 7 ambitions positively but
 552 at the same time might be an inhibitor for 40% of the same targets. According to the group analysis, AI
 553 could contribute positively to enhancing access to electricity (7.1.1.) and clean fuels (7.1.2). Particularly,
 554 AI for land management can help to identify better supply needs and coverage of clean energy facilities

555 (e.g., solar roofs) and match them according to the population and available resources in the area
556 [161–166].

557 Besides, AI might bring bi-directional impacts on SDG 7.2.1 (renewable energy share) and SDG
558 7.b.1 (installed renewable energy capacity in developing countries). Firstly, ML and DL could help
559 assess the availability of renewable energy resources (e.g., wind and solar irradiation) [167–170] as well
560 as supporting enhanced planning and monitoring of energy facilities [153,160]. Secondly, it is widely
561 recognized that AI drives resource efficiency gains and enables the flexible matching of supply and
562 demand in real-time through smart grids and microgrids [14,153,163,171–173]. Nevertheless, smart
563 grids can suffer cyber-attacks and are prone to blackouts in the least developed contexts [61]. On the
564 other hand, renewable energy could help curb the growing carbon footprint of energy-intensive
565 algorithms (e.g., Deep Learning) and facilitate more sustainable use of digital technologies by
566 integrating green energy in data centers toward carbon neutrality and green AI [160].

567 However, an ambivalent impact is observed on SDG 7.3.1 dedicated to energy intensity (primary
568 energy) which merits further analysis since the related net effect remains unclear. AI for land
569 management can support efficient use of resources leading to lower energy consumption and intensity
570 of the economy [174,175]. However, potential rebound effects [176] may arise along with growing
571 energy demand from the DL algorithms [177,178], which might outweigh the benefits. AI systems,
572 particularly Deep Learning, require mitigating strategies to reduce their large carbon emissions
573 [179–181]. Besides, a lack of transparency and accountability is observed regarding carbon emissions
574 [182], which are generated in three ways: by its use for applications with negative impacts (e.g., Oil
575 and Gas); system-level impacts; the life cycle of software and hardware [158].

576 Regarding SDG 13, AI brings huge potential for understanding the climate crisis, and the literature
577 provides evidence of its positive role in supporting crisis and disaster management, early prediction of
578 natural events, as well as opportunities for education on climate responsibility and action [157,158,163].
579 Sætra [183] claims that AI shines in dealing with complexity and enhancing climate science and policy,
580 but the political harms of algorithmic governance should be avoided. Vinuesa *et al.* [6] argue that AI
581 systems could bring benefits to 70% of the targets, causing negative effects on 20% of them.

582 According to our analysis, AI systems bring positive synergies to SDG 13.1.1 (deaths and missing
583 persons due to disasters), providing enhanced disaster prediction and management [157,160,163,
584 184,185]. An ambivalent impact is identified regarding SDG 13.2.2 on GHG emissions, in analogy
585 with SDG 7, due to the yet unclear net effects of AI systems in terms of energy consumption and
586 related carbon footprint. In combination with earth observation (i.e., Land and Sentinel Satellites), AI
587 could help assess the emissions and their effects, while algorithms generate a high carbon footprint.
588 Several experts call for more transparency in terms of the climate impacts of AI. Regarding the
589 contribution to SDG 13.3.1 (education for sustainable development), AI has indeed the potential to
590 analyze massive educational data (e.g., MOOC), adapt educational programmes to the needs of the
591 students, and provide augmented reality [157]. At the same time, nonetheless, it could aggravate
592 extant inequalities and biases. However, limitations are observed with regard to most SDG 13 metrics
593 as they are considered narrow and mainly focused on the countries with established climate strategies
594 and financial resources. SDG 13 targets and indicators do not reflect the complexity of this crucial
595 goal and do not provide suitable means for measuring progress. Even when AI has the potential to
596 contribute to a better understanding and monitoring of SDG 13.1.2, 13.1.3, 13.2.1, and 13.b.1 focused
597 on the availability of disaster risk strategies and plans, little evidence is provided in the literature and
598 these impacts remain uncertain.

599 With regards to SDG 9 (industry, infrastructure, innovation) and SDG 11 (sustainable cities), AI
600 systems in combination with Big Data, IoT, and Digital Twins, could contribute to support both a
601 resilient, sustainable, and circular industry and smart manufacturing [186] by monitoring pollution
602 and resource efficiency, enhancing transport and communication infrastructures and boosting research
603 and innovation across all the domains [159,163]. In the urban sphere, the great potential of AI in
604 combination with the Internet of People (IoP) for smart and low-carbon cities is widely recognized

605 [14,61,187]. Therefore, a positive contribution to SDG 9 and SDG 11 is evinced with benefits to SDG 12
606 by a more sustainable production supply chain.

607 In our analysis, a synergic impact is observed in relation to SDG 9.1.1 (rural population near an
608 all-season road) and SDG 9.1.2 (transport) since AI for land management might support the mapping
609 and monitoring of population close to road facilities [51,188,189] as well as the volume of passengers
610 and freight from Big Data coming from transportation systems [190–192], and their evolution patterns
611 over time. An ambivalent impact regarding the contribution to SDG 9.4.1 (CO₂ emissions) is observed
612 since AI for land could be useful to calculate the carbon footprint based on LCAs from different
613 activities, forest extension, and soil features acting as carbon sinks [193,194]. At the same time,
614 however, large GHG emissions are associated with AI systems, as aforementioned. AI could support
615 the optimization of supply chains and energy systems, improve quality, and reduce defects, leading
616 to resource efficiency but rebound effects could increase the net emissions and material footprint
617 [163,195,196]. Nonetheless, cyber-security and privacy represent critical risks that should be wisely
618 considered in critical facilities. Besides, its impact is unclear with regard to SDG 9.5.2 since AI could
619 foster scientific discovery, benefiting many researchers in the realm of SD [197], but no clear evidence
620 has been provided in the literature so far. A bi-directional impact is proved regarding SDG 9.c.1
621 (population covered by the mobile network) since AI for land can help monitor the mobile network
622 and population coverage while better mobile connectivity could also be an enabler for enhancing
623 AI capabilities and better access to mobile Big Data [198,199]. AI systems are already contributing
624 to SDG 11 in numerous cities around the world, but their use for smart cities has been criticized for
625 lacking genuine sustainability and citizen-centric approach as well as for being focused on highly
626 developed economies [187]. Moreover, several targets (11.1, 11.4, 11.a, 11.c) have been overlooked in
627 the literature on AI for cities, which has been mainly focused on: mobility, environmental management,
628 and monitoring (water, air, waste, energy), disaster responsiveness. Therefore, significant gaps remain
629 in ensuring the social good of AI towards sustainable smart cities for all. Despite the potential benefits,
630 SDG9 and SDG 11 metrics represent a fragmented and incomplete perspective of infrastructures,
631 industry, and cities, hindering the outstanding potential of AI and digital paradigms in these domains
632 and lacking evidence for a relevant number of indicators.

633 For SDG 10 (inequality), one of the well-known menaces of AI systems is its potential to exacerbate
634 inequalities, bias, and discrimination. Vinuesa *et al.* [6] argue that in SDG 10, most impacts of AI
635 systems are considered negative, causing trade-offs in 55% of the targets. Admittedly, uncertain
636 impacts are identified in most targets, and a potential trade-off in terms of potential discrimination
637 is caused by extant algorithms. Again, limitations are observed in relation to narrow targets and
638 metrics. AI systems could support better and more efficient monitoring of metrics about people
639 below-median income (SDG 10.1.1, 10.2.1), migration and refugees tracking (SDG 10.7.2, 10.7.3, 10.7.4),
640 fiscal control of markets, financial and economic indicators (SDG 10.4.2, 10.5.1, 10.a.1., ODA flows,
641 remittances) but a clear, direct impact is not evidenced in the literature due to a lack of empirical
642 evidence. The most relevant impact of AI systems on SDG 10 is a trade-off related to discrimination
643 (SDG 10.3.1.) and potential bias [192,200–205]. Indeed, AI has been widely criticized for augmenting
644 inequality, bias, discrimination, and reproducing hierarchies [204]. Even when AI could contribute to
645 fighting discrimination by analyzing massive amounts of data (e.g., social networks, PNL, sentiment
646 analysis), the negative impact outweighs any benefit. Besides, access to AI systems and digital skills
647 is uneven across geographies [206], and AI-based automated work could also amplify inequalities
648 against vulnerable people.

649 According to Vinuesa *et al.* [6], AI systems can be expected to have a positive impact on 59% of
650 SDG 12 targets and a negative impact on 16% of them. They could support tracking consumption
651 towards sustainable patterns and better ESG monitoring, facilitating a circular economy. However,
652 severe uncertainties emerge regarding the well-known negative trade-offs of digitalization in terms of
653 material footprint and e-waste. Saetra argues that the positive effects seem negligible with a lack of
654 evidence and empirical data, and the negative impacts outweigh the benefits. Di Vaio *et al.* [207] claim

655 that AI could drive a cultural drift in SDG 12 by enabling sustainable business models, but relevant
656 gaps remain, and ethical considerations should be integrated to ensure the proper use of this paradigm
657 for the 2030 Agenda. Indeed, we observe three ambivalent impacts regarding the contribution of AI
658 systems to SDG 12.2.1 (material footprint), SDG 12.4.2 (hazardous waste), and SDG 12.5.1. (Recycling
659 rate). AI could increase the need for data centers and related digital infrastructures leading to an
660 increase in material footprint, land use, and e-waste, while at the same time, ML and DL systems could
661 support an optimized production system, resource efficiency, and environmental awareness [208,209].
662 AI for land management could improve the monitoring of waste treatment facilities and the detection
663 of illegal landfills [190,210–215]. But it might also lead to increased waste due to the required digital
664 infrastructures and the digital-induced overconsumption [21].

665 In contrast, synergic impacts are found in relation to the application of AI systems to SDG 12.3.1
666 (Food Loss and waste), SDG 12.6.1 (corporate sustainability reporting), and SDG 12.b.1 (accounting
667 tools for sustainable tourism). Indeed, AI for land management can help to monitor agricultural
668 fields and crops, influencing the availability of food on the market. Yet, the relationship between food
669 supply chains and related losses is not clearly established [134,216–218]. AI for land management
670 could be useful to support the ESG reporting [219,220], particularly regarding land and soil [221,222]
671 as well as to bring information about the potential impacts of tourism on land and environment [223].
672 Bi-directional impacts are observed regarding SDG 12.a.1, linked to SDG 7.b.1 (installed renewable
673 energy in developing countries). AI for land management could help map and monitor renewable
674 energy facilities by using Geospatial Big Data and distilling it into knowledge [224]. Besides, more
675 renewable energy could help AI to be more sustainable by reducing its carbon footprint. Again, SDG 12
676 metrics are considered narrow and unable to represent the complexity of the sustainable consumption
677 and production paradigm, hindering the potential of AI to contribute to the 2030 Agenda.

678 Considering SDG 17 (means of implementation and partnerships), Sætra [21] underlines the
679 relevance of the partnerships' support for monitoring systems and compliance but claims that despite
680 its outstanding relevance for governance, the role of AI in SDG 17 has been overlooked. Vinuesa *et al.*
681 [6] argue that AI could positively contribute to just 15% of the subgoals while causing a negative
682 contribution to 5% of them. We observed that most impacts are uncertain due to a lack of evidence
683 and empirical data, along with strong limitations and shortcomings featuring SDG 17 targets and
684 metrics. AI systems could support SDG 17.6.1 (fixed Internet broadband subscriptions) and SDG 17.8.1.
685 (Individuals using the Internet) by enhancing the monitoring and operating of digital infrastructures
686 [225–227]. On the other side, proper Internet broadband coverage supports cloud-based AI systems.
687 However, the literature in this area is sparse. Synergies can be observed regarding SDG 17.16.1
688 (monitoring frameworks) and SDG 17.18.1. (Statistical capacity for SDGs monitoring), since AI systems
689 in combination with Big Data (e.g., earth observation, sensors, IoP) can be a relevant tool for enhancing
690 statistical capacity and monitoring all the SDGs [69,228–230] and particularly SDG 15 targets.

691 Overall, AI offers exceptional potential for enhancing land-related metrics (SDG 15) in
692 combination with remote sensing and satellite earth observation data. However, several limitations,
693 barriers, and risks remain to leverage and mainstream the full potential of AI systems for social good,
694 particularly in the least developed countries constrained by a lack of resources and capacities and
695 unsuitable logistics and regulations. AI requires synergic integration with other digital paradigms
696 (e.g., IoT, Digital Twins, Big Data, 5G, blockchain), trustworthy regulation, transparent accountability,
697 and cross-fertilization with multidisciplinary domains such as climate change agriculture, water, ocean
698 ecosystems, and urban planning. The impacts of AI on land management are mainly positive synergies,
699 but several trade-offs and ambivalent impacts are also evidenced. This is particularly the case with
700 regard to the net carbon footprint, material footprint, as well as unsolved social dilemmas and ethical
701 implications [67,231].

702 In relation to the potential impacts that AI for land management brings across the whole SDG
703 indicators, most observed interactions can be considered synergies and ambivalent impacts, including
704 trade-offs with unclear net impact. These ambivalent impacts are mainly related to the "Janus faced"

705 nature of AI in terms of the carbon footprint from energy-eager algorithms (e.g., DL), material footprint,
706 and e-waste from supporting data-driven infrastructures subjected to early obsolescence, rebound
707 effects causing overconsumption, cyber-security vulnerabilities, but also social and ethical threats such
708 as capacity constraints, asymmetry of power, malicious use [232], misinformation, discrimination,
709 inequalities, bias, security, safety, privacy and greenwashing. A few interesting bi-directional impacts
710 are also observed due to the enabling nature of both digitalization (broadband and mobile connectivity)
711 and renewable energy, which deserve further exploitation.

712 In addition, a significant number of uncertain impacts have been identified due to the intrinsic
713 limitations of the SDGs targets and indicators and the lack of literature and empirical data for many of
714 them. One of the main barriers to the application of AI to SD and the 2030 Agenda stems from the
715 drawbacks of the SDGs targets and indicators themselves. It is widely accepted that SDG indicators
716 are narrow and reductionist and do not reflect the complexity of the domains they are expected to
717 cover [18].

718 In addition, a relevant limitation of this analysis relies on the potential bias induced when selecting
719 datasets [159], applying black-box algorithms and when evaluating interactions and impacts based
720 on expert opinions and pilots whose results are difficult to extrapolate and could lead to spurious
721 conclusions [52]. In conclusion, there exists a burgeoning research landscape and huge opportunities
722 but also several caveats, data and reporting gaps, lack of accountability, and limited literature on
723 the contribution of AI to most SDG metrics that merit further research. Besides, contexts are highly
724 relevant, and further research is needed in underrepresented countries, especially from the Global
725 South.

726 Ensuring a sustainable, responsible, and inclusive application of AI for the 2030 Agenda will
727 require trustworthy regulation beyond human-centric principles [233] and ethical standards [6,234,235]
728 to halting the "wild west" of the unregulated AI [206]. Besides, greening AI is an urgent priority and
729 might be achieved by policy incentives for green algorithms [236], renewable energy and efficiency
730 in data infrastructures, standardized methodologies for carbon and energy accountability embedded
731 within the whole life cycle of AI systems [181] and environmental education. Accountability and
732 transparency should be encouraged using FAIR data, trustworthy and Explainable AI (XAI) to fight
733 discrimination and biased outcomes. Further research on social dilemmas and ambivalent impacts
734 is needed and should cover all relevant contexts and communities, particularly the Global South, to
735 reduce digital divides. Alliances for social good might bring relevant stakeholders together, including
736 civil society and vulnerable communities, to share data [157] and overcome current capacity and
737 accessibility constraints such as the non-universal access to data sets [237]. Finally, the SDG framework
738 and metrics should be revisited through the lenses of digitalization to accommodate the opportunities
739 brought by AI in combination with EO and Big Data. This evolution of the 2030 Agenda monitoring
740 should bear in mind the systemic nature of sustainability and digitalization; therefore, methodologies
741 and standardization are needed for this purpose [238].

742 3.4. Group 4: Big Data as DI for International Law

743 The results of this study demonstrate (Figure 4) the opportunities provided by Big Data to achieve
744 the SDGs. It showcases the benefits of action learning by taking a futuristic perspective about the
745 potential impact of DIs. This study aims to demonstrate how DAF can help innovate while anchoring
746 insights in a mindful consideration of DI impacts on SDGs.

747 Implementing Big Data to achieve SDG2 to create binding international treaties would allow
748 direct compliance with indicator 2.5, which seeks to promote access to fair and equitable sharing of
749 benefits arising from the utilization of genetic resources and internationally recognized traditional
750 knowledge. Its implementation is primarily aligned with the "means of implementation" targets.

751 It would allow to increase and facilitate investments to improve international cooperation in
752 rural infrastructure, agricultural research facilities, technology and research development, research,
753 and gene banks to increase agricultural productive catalyzing target 2a. Proper management of Big

754 Data can facilitate access to transparent, updated, and complete information for trade and global
 755 agricultural markets and fair prices aligned with Target 2c. The information and improvement of the
 756 markets can help to eliminate export subsidies in line with the Doha Development Round and 2b
 757 Target.

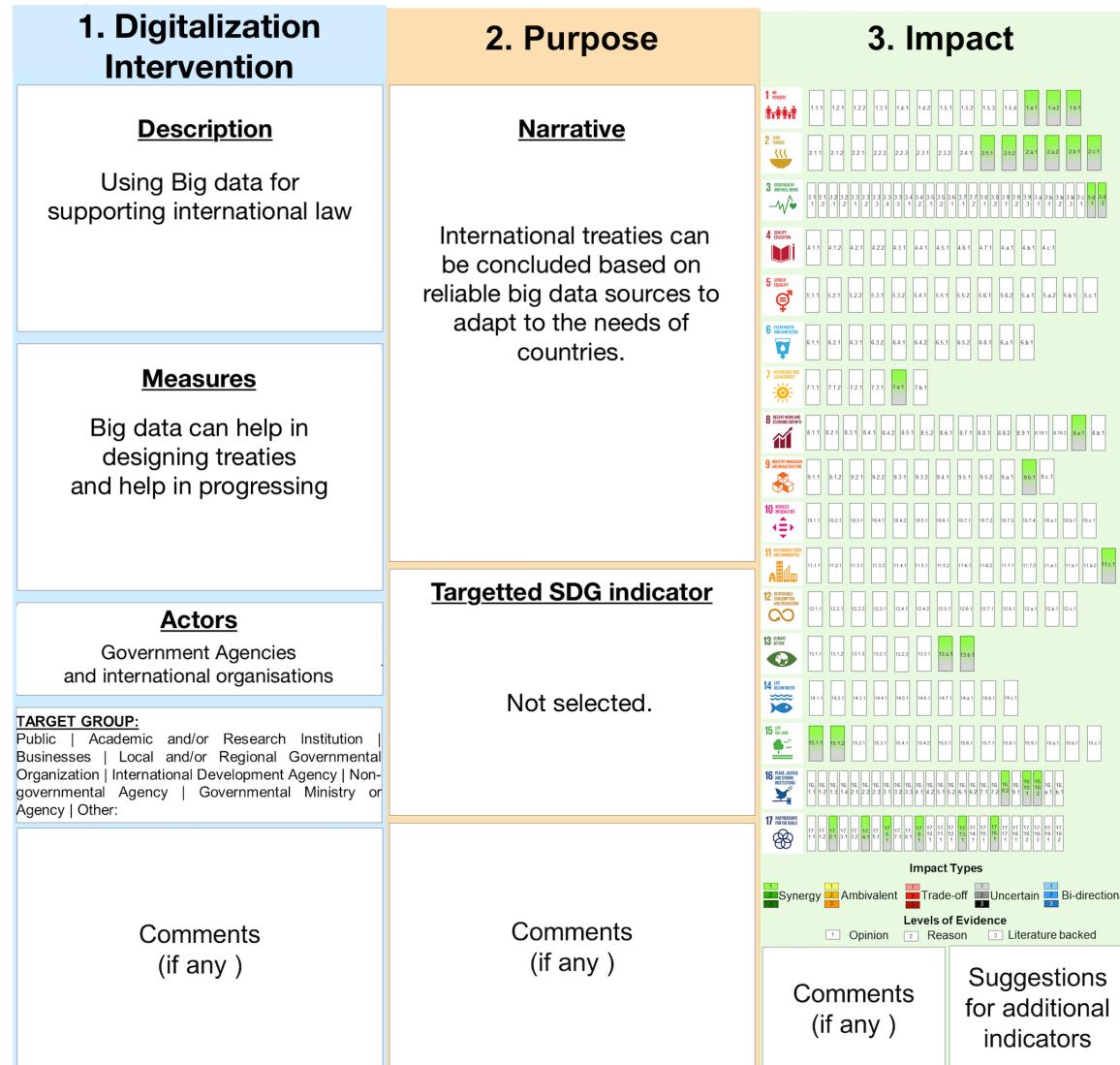


Figure 4. DAF outcome of Big Data as DI.

758 Beyond SDG 2, Big data and international law can be adopted for other targets, especially the
 759 "means of implementation" targets, that seek to ensure significant mobilization of resources. For SDG 1
 760 (1.a and 1.b) on policy-making and investment in developing countries, SDG 3 (3.d) to reduce risks and
 761 health risks, SDG 7 (7.a) for clean energy investments, SDG8 (8.a) aid trade for developing countries,
 762 SDG 9 (9.b) for technology development, SDG 11 (11.c) for sustainable and resilient buildings, SDG 13
 763 (13.a) to implement committees under the UNFCCC, SDG 15 (15.1) for conservation and restoration
 764 of ecosystems inland, SDG 16 (16.3, 16.8, 16.10) to ensure access to justice, participation in global
 765 institutions and governance particularly of developing countries, and fundamental freedom, and SDG
 766 17 (17.2, 17.4, 17.6, 17.9, 17.10, 17.13, 17.16) to aid countries to implement the assistance commitments,
 767 coordinate coherent policies for long-term sustainability, enhance international cooperation and
 768 capacity building, implement the non-discriminatory multilateral trading system, improve global
 769 macroeconomic stability and enhance the Global Partnership for Sustainable Development.

770 One of the most important characteristics of International Law Treaties is that they are concluded
771 by the will of the parties. According to Linares [239], an international treaty "is an instrument where
772 provisions are freely agreed between two or more subjects of International Law to create, modify or
773 extinguish obligations and rights." Therefore, if the developing States do not have the will to sign
774 treaties, the countries that need help and cooperation will not be able to implement the proposed
775 measure even when big data demonstrate to the parties the benefits of signing the treaty. Pulido-Ortiz
776 *et al.* [240], mention that "normative language suffers from indeterminacies caused by the ambiguities,
777 vagueness, and inaccuracies of the words and sentences, and by the contradictions, redundancies, and
778 gaps in the set of legal norms". In this order of ideas, the indeterminacy of the language of the SDGs
779 can mean that the creation of a binding international treaty does not achieve its objective; even with
780 the help of Big Data, the indeterminacy of the ODS would prevent meeting some of the 2030 goals,
781 and nothing ensures compliance with the goals.

782 Another great challenge is that the States provide the correct and adequate information to be
783 able to create the database of the needs that some States have in order to carry out a treaty and
784 obtain a benefit. Additionally, developing countries do not have sufficient technology to collect the
785 necessary information to identify their needs and eventually create an international treaty. As long as
786 the technology gap is not overcome, big data for International Treaties may be ineffective.

787 4. Discussion

788 DIs has the potential to accelerate sustainable development. However, implementation actions still
789 need to be improved in several areas for some technologies to fully utilize their potential for achieving
790 the SDGs. Results from the case studies highlight the differences between countries in the use and
791 maturity of the technology. Groups 1, 2, and 3 identify impacts at indicator levels covering synergies,
792 ambivalent impacts, trade-offs, bidirectional impacts, and uncertainties, showing the interlinkages
793 that SDGs have at an indicator level and the diverse impact that DI can have depending on the context
794 where those DI are applied. The results of Group 4 pointed out that beyond the application of the DI
795 towards the achievement of the SDGs, the legal wording and language used in the 2030 Agenda may
796 hinder the application of the DI and collaboration at the international level. Results also showed the
797 scarcity of literature when it comes to evaluating and supporting the DAF analysis. Furthermore, the
798 interlinkages between SDGs have yet to be fully understood, which hampers a fully comprehensive
799 DAF analysis. For example, the interlinkages between targets and indicators of SDG 1, 8, 9, 11, 13,
800 and 15 are unclear but seem to have affinities in broader contexts because of the social, environmental,
801 and economic dependencies. For instance, SDG 7 has complex linkages with SDG 12 regarding
802 industrial development and clean energy to sustain a green transition. Achieving SDG 6 may affect
803 the progress of SDG 3 targets, as access to clean water and sanitation is fundamental to delivering
804 health services. In addition, in the case of group 4, outcomes on Big Data for International Law results
805 showed that the potential of DI remains unexplored. The analysis of group 4 also demonstrated two
806 crucial aspects, first the methodological aspect about how lack of clarity on indicators and context lead
807 to a surface interpretation of DI implications, and second the advantage of the method to help identify
808 the importance of big data to facilitate the identification of partners and pathways to create robust
809 policies to advance the SDGs.

810 The action learning undertaken through the DAF tool, as presented in this paper, has facilitated
811 the in-depth identification of the complex and interrelated impacts of DI for sustainable development.
812 The process helped peers in each group to question, reflect and generate actionable learning that would
813 flow into the mindful application of DIs. The process also helped improve the current understanding
814 of the peers in a multidisciplinary manner and kindled a new strategic approach for sustainable
815 transformation. Throughout the DSS, participants worked on their identified DI for digitainability
816 assessment with the support of other participants and insights from experts and advisors on various
817 aspects at the intersection of sustainability and digitalization. Feedback from guest specialists during
818 the DSS also helped participants make sense of their multidimensional experiences through real-time

819 reflection and relevant theories. The flexibility to incorporate information from scientific literature,
820 grey literature, and other potential sources also helped in mapping the multidisciplinary knowledge
821 and existing gaps. Thus, operationalizing DAF for action learning with feedback enriches participants'
822 practices and values to ensure that any multidimensional actions identified in the assessment are seen
823 not as neutral or positive stances but as positions with specific impacts. As can be noticed from the
824 group work and outcomes, each group used different techniques for evidence gathering and analysis.
825 Despite this, the result demonstrates the versatility of DAF in facilitating inclusive, diverse voices to
826 be heard at different levels during the digitainability assessment of technology, leaving no one behind
827 for sustainable development.

828 The findings also demonstrate the extent to which analysis of the actual impacts on the SDGs
829 is limited. It is crucial to navigate between intra- and inter-administrative boundaries at the micro,
830 meso, and macro levels to analyze the DIs impact in a specific context with stakeholders' intent
831 in implementing DI. It helps realize the scale and dependence between administrative levels and
832 the overall impact those have on the target and goal, with hints to understanding the impacts of
833 administrative boundaries. Results also indicate that analysis focusing on varying levels and contexts
834 should consider the information in great detail to understand the short and long-term impacts of the
835 DIs in intra- and interdependent forms and contexts.

836 When considering sustainable development, it is also crucial to balance the progress towards all
837 the key dimensions of sustainability because substantial adverse effects in one could lead to a chain
838 reaction of repercussions on overall progress. DAF provides a method for assessing impact along
839 several dimensions. However, current data gaps pose several limitations to a comprehensive analysis.
840 Furthermore, the crucial trade-offs and ambiguities between the different pillars of sustainability
841 should not be overlooked due to the focus on a narrow or isolated assessment of the impact of DIs.
842 Evaluating the impact of the DIs considering the SDGs help address potential gaps that arise between
843 various multi-stakeholder actions for sustainable development. However, due to the complexity of the
844 SDGs, there is some overlap between the different DIs applications and indicators. At the indicator
845 level, there are few similarities among indicators of the same goal, and the potential for synergy and
846 trade-offs between them has not been adequately investigated. The interdisciplinary aspect of the SDG
847 indicators also makes their interpretation ambiguous or even contradictory. Another aspect that needs
848 consideration in the assessment is formulating the indicator in a global perspective, with different
849 and sometimes conflicting interests, actors, and technologies. In addition, different reporting systems
850 sometimes limit assessment processes. While the DAF helps to overcome these gaps and disparities to
851 some extent, it is also valuable for identifying them and highlighting research imperatives.

852 The DAF provides a methodology for assessing the impact of DIs, allowing for a more robust
853 evidence-based scientific approach to identifying spatial and temporal effects from a broader
854 multidimensional perspective. These critical and holistic assessments of the DIs' usefulness help
855 to address significant challenges we all face in achieving Agenda 2030. As we move towards the
856 2030 Agenda milestone, the evolution of new goals needs to consider the digitainability aspect more
857 systemically, towards sustainability in the digital age, stressing the need for more robust methodologies,
858 indicators, standardization processes, and policies accordingly. In that sense, the analysis of DIs impact
859 on SDGs through the DAF can point to hotspots and opportunities tailored to specific contexts and
860 areas, promoting local adaptation and actions required for sustainable development more inclusively
861 and holistically. We believe that DAF can complement other analyses as a valuable tool for performing
862 the ex-ante and ex-post consequential analysis considering all 17 SDGs.

863 5. Conclusion and Outlook

864 This paper demonstrates the operationalization of the DAF for encouraging mindfulness in the
865 application of the DIs for sustainable development. It has emphasized how a multidisciplinary
866 perspective, with experts from diverse backgrounds, can operationalize the framework to
867 systematically gather evidence reflecting gaps and opportunities DIs can offer for sustainable

868 development, supporting action learning. The paper's outcome firstly demonstrates the practical
869 approach to digitainability. Secondly, it reflects on the digitainability assessment of diverse DIs
870 in specific contexts recognizing interlinkages for the holistic impact on SDGs. Thirdly, the paper
871 demonstrates the need for a more inclusive and integrated assessment with practical tools for
872 encouraging mindfulness in diverse stakeholders acting toward sustainable development. Future
873 work should focus on automating some of the DAF procedures, alleviating the labor-intensive task
874 of evidence-gathering using tools and techniques recognized by various stakeholders. Expanding
875 the framework with capabilities to interconnect data sources and empirical evidence could make
876 assessment more robust and informative. Furthermore, developing global data sets based on DAF
877 inputs with diverse actors and DIs can help guide context-driven mindful decisions for sustainability
878 in the digital age.

879 **Acknowledgments:** The authors gratefully acknowledge funding provided by the German Federal Ministry for
880 Education and Research (BMBF) for the project "digitainable" within which the DSS could be organized. The
881 authors thank the participants and speakers of the DSS for insightful discussions that led to the writing of this
882 paper. We thank Jakob Rhyner for his helpful comments on the manuscripts.

883 **Author Contributions:** SG and JCZ conceptualized, and developed the methodology, GR MM NM SAM IO MS
884 VPS AT performed formal analysis with MI SG and JCZ. SG and JCZ investigated, prepared drafted—the original
885 draft with the support of GR MM NM SAM IO MS VPS AT. SG JZ JR and AT reviewed and edited the draft along
886 with essential feedback.

887 **Conflicts of Interest:** The authors declare no conflict of interest.

888 References

- 889 1. Balogun, A.L.; Marks, D.; Sharma, R.; Shekhar, H.; Balmes, C.; Maheng, D.; Arshad, A.; Salehi, P. Assessing
890 the potentials of digitalization as a tool for climate change adaptation and sustainable development in
891 urban centres. *Sustainable Cities and Society* **2020**, *53*, 101888.
- 892 2. Appio, F.P.; Frattini, F.; Petruzzelli, A.M.; Neirotti, P. Digital transformation and innovation management:
893 A synthesis of existing research and an agenda for future studies. *Journal of Product Innovation Management*
894 **2021**, *38*, 4–20.
- 895 3. Cf, O. Transforming our world: the 2030 Agenda for Sustainable Development. *United Nations: New York,*
896 *NY, USA 2015*.
- 897 4. Gossen, M.; Rohde, F.; Santarius, T. A Marriage Story of Digitalisation and Sustainability? *Ökologisches*
898 *Wirtschaften-Fachzeitschrift* **2021**, *36*, 4–8.
- 899 5. Korwatanasakul, U. Monitoring, Reporting, and Verification Framework for Nationalisation and
900 Regionalisation of Indicators for the Sustainable Development Goals. In *Sustainable Development Goals and*
901 *Pandemic Planning*; Springer, 2022; pp. 567–599.
- 902 6. Vinuela, R.; Azizpour, H.; Leite, I.; Balaam, M.; Dignum, V.; Domisch, S.; Felländer, A.; Langhans, S.D.;
903 Tegmark, M.; Fuso Nerini, F. The role of artificial intelligence in achieving the Sustainable Development
904 Goals. *Nature communications* **2020**, *11*, 1–10.
- 905 7. George, G.; Merrill, R.K.; Schillebeeckx, S.J. Digital sustainability and entrepreneurship: How digital
906 innovations are helping tackle climate change and sustainable development. *Entrepreneurship Theory and*
907 *Practice* **2021**, *45*, 999–1027.
- 908 8. Magistretti, S.; Dell'Era, C.; Petruzzelli, A.M. How intelligent is Watson? Enabling digital transformation
909 through artificial intelligence. *Business Horizons* **2019**, *62*, 819–829.
- 910 9. Chui, M.; Manyika, J.; Miremadi, M.; Henke, N.; Chung, R.; Nel, P.; Malhotra, S. Notes from the AI frontier:
911 Insights from hundreds of use cases. *McKinsey Global Institute* **2018**, p. 28.
- 912 10. Cowls, J.; Tsamados, A.; Taddeo, M.; Floridi, L. A definition, benchmark and database of AI for social good
913 initiatives. *Nature Machine Intelligence* **2021**, *3*, 111–115.
- 914 11. Di Vaio, A.; Palladino, R.; Hassan, R.; Escobar, O. Artificial intelligence and business models in the
915 sustainable development goals perspective: A systematic literature review. *Journal of Business Research*
916 **2020**, *121*, 283–314.
- 917 12. (ITU), I.T.U. AI Repository. <https://www.itu.int/en/ITU-T/AI/Pages/ai-repository.aspx>, 2022. Accessed:
918 2022-05-05.

919 13. Khakurel, J.; Penzenstadler, B.; Porras, J.; Knutas, A.; Zhang, W. The rise of artificial intelligence under the
920 lens of sustainability. *Technologies* **2018**, *6*, 100.

921 14. Leal Filho, W.; Yang, P.; Eustachio, J.H.P.P.; Azul, A.M.; Gellers, J.C.; Gielczyk, A.; Dinis, M.A.P.; Kozlova,
922 V. Deploying digitalisation and artificial intelligence in sustainable development research. *Environment,
923 Development and Sustainability* **2022**, pp. 1–32.

924 15. for Good, A. AI for Good Global Summit. <https://aiforgood.itu.int/>, note = Accessed: 2022-05-06, 2019.

925 16. Tomašev, N.; Cornebise, J.; Hutter, F.; Mohamed, S.; Picciariello, A.; Connelly, B.; Belgrave, D.; Ezer, D.;
926 Haert, F.C.v.d.; Mugisha, F.; others. AI for social good: unlocking the opportunity for positive impact.
927 *Nature Communications* **2020**, *11*, 1–6.

928 17. Gao, H.; Ding, X. The research landscape on the artificial intelligence: a bibliometric analysis of recent 20
929 years. *Multimedia Tools and Applications* **2022**, *81*, 12973–13001.

930 18. Castro, G.D.R.; Fernandez, M.C.G.; Colsa, Á.U. Unleashing the convergence amid digitalization and
931 sustainability towards pursuing the Sustainable Development Goals (SDGs): A holistic review. *Journal of
932 Cleaner Production* **2021**, *280*, 122204.

933 19. van Wynsberghe, A. Sustainable AI: AI for sustainability and the sustainability of AI. *AI Ethics* (2021).

934 20. Coeckelbergh, M. AI for climate: Freedom, justice, and other ethical and political challenges. *AI and Ethics*
935 **2021**, *1*, 67–72.

936 21. Sætra, H.S. AI in context and the sustainable development goals: Factoring in the unsustainability of the
937 sociotechnical system. *Sustainability* **2021**, *13*, 1738.

938 22. Gupta, S.; Motlagh, M.; Rhyner, J. The digitalization sustainability matrix: A participatory research tool for
939 investigating digitainability. *Sustainability* **2020**, *12*, 9283.

940 23. Gupta, S.; Rhyner, J. Mindful application of digitalization for sustainable development: The Digitainability
941 Assessment Framework. *Sustainability* **2022**, *14*, 3114.

942 24. Lichtenhaler, U. Digitainability: the combined effects of the megatrends digitalization and sustainability.
943 *Journal of Innovation Management* **2021**, *9*, 64–80.

944 25. Vaughn, L.M.; Jacquez, F. Participatory research methods—Choice points in the research process. *Journal of
945 Participatory Research Methods* **2020**, *1*, 13244.

946 26. McGill, I.; Brockbank, A. *Action learning handbook*; Kogan page, 2003.

947 27. Mughal, F. When global meets local: Action learning, positionality and postcolonialism. *Management
948 Learning* **2021**, *52*, 65–85.

949 28. Bibri, S.E. Data-driven smart sustainable cities of the future: An evidence synthesis approach to a
950 comprehensive state-of-the-art literature review. *Sustainable Futures* **2021**, *3*, 100047.

951 29. Bibri, S.E. Data-driven environmental solutions for smart sustainable cities: strategies and pathways for
952 energy efficiency and pollution reduction, 2020.

953 30. Singh, J. Why energy efficiency matters and how to Scale it Up **2016**.

954 31. Ponnusamy, V.K.; Kasinathan, P.; Madurai Elavarasan, R.; Ramanathan, V.; Anandan, R.K.; Subramaniam,
955 U.; Ghosh, A.; Hossain, E. A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the
956 Smart Grid. *Sustainability* **2021**, *13*, 13322.

957 32. Traunmueller, M., P.A.J.K.A.B.A..M.O. AI-supported approaches for sustainable urban development:
958 Analysis of case studies. https://toolkit-digitalisierung.de/app/uploads/2021/03/GIZ-AIT-BMZ_2021_AI-supported-approaches-for-sustainable-urban-development.pdf, 2021. Accessed: 2022-04-29.

960 33. Tyczewska, A.; Woźniak, E.; Gracz, J.; Kuczyński, J.; Twardowski, T. Towards food security: current state
961 and future prospects of agrobiotechnology. *Trends in biotechnology* **2018**, *36*, 1219–1229.

962 34. Roser, M.; Ritchie, H. Hunger and undernourishment. *Our World in Data* **2019**.

963 35. Pereira, M.; Oliveira, A.M. Poverty and food insecurity may increase as the threat of COVID-19 spreads.
964 *Public health nutrition* **2020**, *23*, 3236–3240.

965 36. di Caracalla, V.d.T. The impacts on global food security and nutrition of the military conflict in Ukraine
966 **2022**.

967 37. Feng, H.; Wang, X.; Duan, Y.; Zhang, J.; Zhang, X. Applying blockchain technology to improve agri-food
968 traceability: A review of development methods, benefits and challenges. *Journal of cleaner production* **2020**,
969 *260*, 121031.

970 38. Nurgazina, J.; Pakdeetrakulwong, U.; Moser, T.; Reiner, G. Distributed ledger technology applications in
971 food supply chains: A review of challenges and future research directions. *Sustainability* **2021**, *13*, 4206.

972 39. Patidar, A.; Sharma, M.; Agrawal, R.; Sangwan, K.S. A Smart Contracts and Tokenization Enabled
973 Permissioned Blockchain Framework for the Food Supply Chain. IFIP International Conference on
974 Advances in Production Management Systems. Springer, 2021, pp. 228–235.

975 40. Zhao, G.; Liu, S.; Lopez, C.; Lu, H.; Elgueta, S.; Chen, H.; Boshkoska, B.M. Blockchain technology in
976 agri-food value chain management: A synthesis of applications, challenges and future research directions.
977 *Computers in industry* **2019**, *109*, 83–99.

978 41. Xu, B.; Agbele, T.; Jiang, R. Biometric blockchain: A better solution for the security and trust of food
979 logistics. IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2019, Vol. 646, p.
980 012009.

981 42. van Hilt, M.; Ongena, G.; Ravesteijn, P. Blockchain for organic food traceability: case studies on drivers
982 and challenges. *Frontiers in Blockchain* **2020**, p. 43.

983 43. Giuliani, G.; Chatenoux, B.; Benvenuti, A.; Lacroix, P.; Santoro, M.; Mazzetti, P. Monitoring land
984 degradation at national level using satellite Earth Observation time-series data to support SDG15—exploring
985 the potential of data cube. *Big Earth Data* **2020**, *4*, 3–22.

986 44. Kwok, R. AI empowers conservation biology. *Nature* **2019**, *567*, 133–135.

987 45. Ishtiaque, A.; Masrur, A.; Rabby, Y.W.; Jerin, T.; Dewan, A. Remote sensing-based research for monitoring
988 progress towards SDG 15 in Bangladesh: A review. *Remote sensing* **2020**, *12*, 691.

989 46. O'Connor, B.; Moul, K.; Pollini, B.; de Lam, X.; Simonson, W.; Allison, H.; Albrecht, F.; Guzinski,
990 M.; Larsen, H.; McGlade, J.; others. Earth Observation for SDG—Compendium of Earth Observation
991 Contributions to the SDG Targets and Indicators. *ESA, May* **2020**.

992 47. NASA. Landsat Science. <https://landsat.gsfc.nasa.gov/>, 2022. Accessed: 2022-05-07.

993 48. Boyd, D.; Crawford, K. Critical Questions for Big Data in Information, „Communication & Society“.
994 *Communication and Society* **2012**, *15*, 662–679.

995 49. Yifang, B.; Gong, P.; Gini, C. Global land cover mapping using Earth observation satellite data: Recent
996 progresses and challenges. *ISPRS journal of photogrammetry and remote sensing (Print)* **2015**, *103*, 1–6.

997 50. Efremova, N.; West, D.; Zausaev, D. AI-based evaluation of the SDGs: The case of crop detection with
998 earth observation data. *CoRR* **2019**, *abs/1907.02813*, [1907.02813].

999 51. Yu, Y.; Cao, Y.; Hou, D.; Disse, M.; Brieden, A.; Zhang, H.; Yu, R. The study of artificial intelligence for
1000 predicting land use changes in an arid ecosystem. *Journal of Geographical Sciences* **2022**, *32*, 717–734.

1001 52. Isabelle, D.A.; Westerlund, M. A Review and Categorization of Artificial Intelligence-Based Opportunities
1002 in Wildlife, Ocean and Land Conservation. *Sustainability* **2022**, *14*, 1979.

1003 53. Mayfield, H.J.; Smith, C.; Gallagher, M.; Hockings, M. Considerations for selecting a machine learning
1004 technique for predicting deforestation. *Environmental Modelling & Software* **2020**, *131*, 104741.

1005 54. Leal, F.A.; Miguel, E.P.; Matricardi, E.A.T. Estimates of deforestation rates in rural properties in the legal
1006 amazon. *Floresta e Ambiente* **2020**, *27*.

1007 55. Irvin, J.; Sheng, H.; Ramachandran, N.; Johnson-Yu, S.; Zhou, S.; Story, K.; Rustowicz, R.; Elsworth, C.;
1008 Austin, K.; Ng, A.Y. ForestNet: Classifying Drivers of Deforestation in Indonesia using Deep Learning on
1009 Satellite Imagery, 2020.

1010 56. Conservation International. Trends Earth, a New Tool to Assess the Health of the Land That Supports
1011 Us. <https://business.esa.int/news/using-ai-and-satellites-to-combat-poaching-endangered-species>. Accessed: 2021-12-07.

1012 57. ESA. Using AI and satellites to combat poaching of endangered species. <https://business.esa.int/news/using-ai-and-satellites-to-combat-poaching-endangered-species>, 2021. Accessed: 2022-05-07.

1013 58. Kaiser, C. Catching poachers with machine learning **2020**. accessed on 8th of May 2022.

1014 59. Carter, S.; van Rees, C.; Hand, B.K.; Muhlfeld, C.; Luikart, G.; Kimball, J.S. Testing a generalizable machine
1015 learning workflow for aquatic invasive species on rainbow trout (*Oncorhynchus mykiss*) in Northwest
1016 Montana. *Frontiers in big Data* **2021**, *4*.

1017 60. Jensen, T.; Seerup Hass, F.; Seam Akbar, M.; Holm Petersen, P.; Jokar Arsanjani, J. Employing machine
1018 learning for detection of invasive species using sentinel-2 and aviris data: The case of Kudzu in the United
1019 States. *Sustainability* **2020**, *12*, 3544.

1020 61. Palomares, I.; Martínez-Cámara, E.; Montes, R.; García-Moral, P.; Chiachio, M.; Chiachio, J.; Alonso, S.;
1021 Melero, F.J.; Molina, D.; Fernández, B.; others. A panoramic view and swot analysis of artificial intelligence
1022 1023

1024 for achieving the sustainable development goals by 2030: Progress and prospects. *Applied Intelligence* **2021**,
1025 51, 6497–6527.

1026 62. Kolevatova, A.; Riegler, M.A.; Cherubini, F.; Hu, X.; Hammer, H.L. Unraveling the Impact of Land Cover
1027 Changes on Climate Using Machine Learning and Explainable Artificial Intelligence. *Big Data and Cognitive
1028 Computing* **2021**, 5, 55.

1029 63. Johns, F.; Grolman, L. Big Data and International Law. <https://www.oxfordbibliographies.com/view/document/obo-9780199796953/obo-9780199796953-0176.xml>, 2021. Accessed: 2022-05-30.

1030 64. Kitchin, R. Big Data, new epistemologies and paradigm shifts. *Big data & society* **2014**, 1, 2053951714528481.

1031 65. Barberis, J.A. El concepto de tratado internacional. *Anuario español de derecho internacional* **1982**, 6, 3–28.

1032 66. United Nations. Goal 2: Zero Hunger. United Nations Sustainable Development. <https://www.un.org/sustainabledevelopment/hunger/>, 2015. Accessed: 2022-05-30.

1033 67. United Nations. Progress towards the Sustainable Development Goals—Report of the
1034 Secretary-General. <https://documents-dds-ny.un.org/doc/UNDOC/GEN/N21/109/71/PDF/N2110971.pdf?OpenElement>, 2021. Accessed: 2022-05.

1035 68. Serrano, J.L.; Serrano, J.L. El Derecho internacional público y el desequilibrio de los Estados con economías
1036 subdesarrolladas frente a la globalización económica. *Espacios Pùblicos* **2008**, 11, 312–337.

1037 69. Bachmann, N.; Tripathi, S.; Brunner, M.; Jodlbauer, H. The Contribution of Data-Driven Technologies in
1038 Achieving the Sustainable Development Goals. *Sustainability* **2022**, 14, 2497.

1039 70. Sovacool, B.K.; Martiskainen, M.; Del Rio, D.D.F. Knowledge, energy sustainability, and vulnerability in
1040 the demographics of smart home technology diffusion. *Energy Policy* **2021**, 153, 112196.

1041 71. Kim, H.; Choi, H.; Kang, H.; An, J.; Yeom, S.; Hong, T. A systematic review of the smart energy conservation
1042 system: From smart homes to sustainable smart cities. *Renewable and Sustainable Energy Reviews* **2021**,
1043 140, 110755.

1044 72. Nicholls, L.; Strengers, Y. Robotic vacuum cleaners save energy? Raising cleanliness conventions and
1045 energy demand in Australian households with smart home technologies. *Energy Research & Social Science*
1046 **2019**, 50, 73–81.

1047 73. Jensen, R.H.; Strengers, Y.; Raptis, D.; Nicholls, L.; Kjeldskov, J.; Skov, M.B. Exploring Hygge as a desirable
1048 design vision for the sustainable smart home. *Proceedings of the 2018 Designing Interactive Systems
1049 Conference*, 2018, pp. 355–360.

1050 74. Hassani, H.; Yeganegi, M.R.; Beneki, C.; Unger, S.; Moradghaffari, M. Big data and energy poverty
1051 alleviation. *Big Data and Cognitive Computing* **2019**, 3, 50.

1052 75. Nelson, S.; Allwood, J.M. Technology or behaviour? Balanced disruption in the race to net zero emissions.
1053 *Energy Research & Social Science* **2021**, 78, 102124.

1054 76. Hossein Motlagh, N.; Mohammadrezaei, M.; Hunt, J.; Zakeri, B. Internet of Things (IoT) and the energy
1055 sector. *Energies* **2020**, 13, 494.

1056 77. Herrero, S.T.; Nicholls, L.; Strengers, Y. Smart home technologies in everyday life: do they address key
1057 energy challenges in households? *Current Opinion in Environmental Sustainability* **2018**, 31, 65–70.

1058 78. Lund, H.; Østergaard, P.A.; Connolly, D.; Mathiesen, B.V. Smart energy and smart energy systems. *Energy*
1059 **2017**, 137, 556–565.

1060 79. Nazeer, O.; Javaid, N.; Rafique, A.A.; Kiani, S.; Javaid, Y.; Khurshid, Z. Home energy management using
1061 hybrid meta-heuristic optimization technique. *International Conference on Innovative Mobile and Internet
1062 Services in Ubiquitous Computing*. Springer, 2018, pp. 599–609.

1063 80. Zhou, K.; Fu, C.; Yang, S. Big data driven smart energy management: From big data to big insights.
1064 *Renewable and Sustainable Energy Reviews* **2016**, 56, 215–225.

1065 81. European Commission DG Environment News Alert Service, edited by SCU, The University
1066 of the West of England. Household energy efficiency could help boost the economy.
1067 https://ec.europa.eu/environment/integration/research/newsalert/pdf/household_energy_efficiency_could_help_boost_economy_49si7_en.pdf, 2016. Accessed: 2022-04-30.

1068 82. Malone, L. THE ECONOMIC IMPACT OF IMPROVED ENERGY EFFICIENCY IN CANADA **2018**.

1069 83. US EPA. Local Residential Energy Efficiency. <https://www.epa.gov/statelocalenergy/local-residential-energy-efficiency>, 2021. Accessed: 2022-04-30.

1070 84. Ugarte, S.; van der Ree, B.; Voogt, M.; Eichhammer, W.; Ordoñez, J.A.; Reuter, M.; Schlomann, B.;
1071 Lloret Gallego, P.; Villafafila Robles, R. Energy efficiency for low-income households **2016**.

1072 1073 1074 1075 1076

1077 85. Figus, G.; Turner, K.; McGregor, P.; Katris, A. Making the case for supporting broad energy efficiency
1078 programmes: Impacts on household incomes and other economic benefits. *Energy Policy* **2017**, *111*, 157–165.

1079 86. Brockway, P.E.; Sorrell, S.; Semieniuk, G.; Heun, M.K.; Court, V. Energy efficiency and economy-wide
1080 rebound effects: A review of the evidence and its implications. *Renewable and Sustainable Energy Reviews*
1081 **2021**, *141*, 110781.

1082 87. Nyborg, S.; Røpke, I. Energy impacts of the smart home: Conflicting visions. In *Energy Efficiency First: The*
1083 *foundation of a low-carbon society*; European Council for an Energy Efficient Economy, 2011; pp. 1849–1860.

1084 88. Sovacool, B.; Del Rio, D.F.; Griffiths, S. Policy mixes for more sustainable smart home technologies.
1085 *Environmental Research Letters* **2021**, *16*, 054073.

1086 89. Del Rio, D.D.F.; Sovacool, B.K.; Bergman, N.; Makuch, K.E. Critically reviewing smart home technology
1087 applications and business models in Europe. *Energy Policy* **2020**, *144*, 111631.

1088 90. Pilipczuk, O. Sustainable smart cities and energy management: The labor market perspective. *Energies*
1089 **2020**, *13*, 6084.

1090 91. Ivezic, M. Smart Home / Smart Building Connectivity Options and Their Cybersecurity. <https://cyberkinetic.com/miot-5g/smart-building-smart-home-connectivity-cybersecurity/>, 2020. Accessed:
1091 2022-05-03.

1092 92. Bedi, P.; Goyal, S.; Rajawat, A.S.; Shaw, R.N.; Ghosh, A. Application of AI/IoT for Smart Renewable Energy
1093 Management in Smart Cities. In *AI and IoT for Smart City Applications*; Springer, 2022; pp. 115–138.

1094 93. Ringel, M.; Laidi, R.; Djenouri, D. Multiple benefits through smart home energy management solutions—A
1095 simulation-based case study of a single-family-house in algeria and Germany. *Energies* **2019**, *12*, 1537.

1096 94. Frilingou, N.; Bouris, D. Effects of Building Energy Efficiency Measures on Air Quality at the Neighborhood
1097 Level in Athens, Greece. *Energies* **2020**, *13*, 5689.

1098 95. Falcone, P.M.; Imbert, E. Bringing a sharing economy approach into the food sector: The potential of food
1099 sharing for reducing food waste. In *Food waste reduction and valorisation*; Springer, 2017; pp. 197–214.

1100 96. Pandey, V.; Pant, M.; Snasel, V. Blockchain technology in food supply chains: Review and bibliometric
1101 analysis. *Technology in Society* **2022**, p. 101954.

1102 97. Xu, X.; Lu, Q.; Liu, Y.; Zhu, L.; Yao, H.; Vasilakos, A.V. Designing blockchain-based applications a case
1103 study for imported product traceability. *Future Generation Computer Systems* **2019**, *92*, 399–406.

1104 98. Ekawati, R.; Arkeman, Y.; Titi, C.S.; others. Proposed Design of White Sugar Industrial Supply Chain
1105 System based on Blockchain Technology. *International Journal of Advanced Computer Science and Applications*
1106 **2021**, *12*.

1107 99. Kochupillai, M.; Gallersdörfer, U.; König, J.; Beck, R. Incentivizing research & innovation with
1108 agrobiodiversity conserved in situ: Possibilities and limitations of a blockchain-based solution. *Journal of*
1109 *Cleaner Production* **2021**, *309*, 127155.

1110 100. Patel, N.; Shukla, A.; Tanwar, S.; Singh, D. KRanTi: blockchain-based farmer's credit scheme for
1111 agriculture-food supply chain. *Transactions on Emerging Telecommunications Technologies* **2021**, p. e4286.

1112 101. Zhang, X.; Cao, Z.; Dong, W. Overview of edge computing in the agricultural internet of things: key
1113 technologies, applications, challenges. *Ieee Access* **2020**, *8*, 141748–141761.

1114 102. Vivaldini, M. Blockchain in operations for food service distribution: steps before implementation.
1115 *International Journal of Logistics Management, The* **2021**.

1116 103. Zheng, M.; Zhang, S.; Zhang, Y.; Hu, B. Construct food safety traceability system for people's health under
1117 the internet of things and big data. *IEEE Access* **2021**, *9*, 70571–70583.

1118 104. Iftekhar, A.; Cui, X.; Yang, Y. Blockchain Technology for Trustworthy Operations in the Management of
1119 Strategic Grain Reserves. *Foods* **2021**, *10*, 2323.

1120 105. Kaur, H. Modelling internet of things driven sustainable food security system. *Benchmarking: An*
1121 *International Journal* **2019**.

1122 106. Rao, M.S.; Chakraborty, G.; Murthy, K.S. Market drivers and discovering technologies in meat species
1123 identification. *Food Analytical Methods* **2019**, *12*, 2416–2429.

1124 107. Scuderi, A.; Foti, V.; Timpanaro, G. The supply chain value of pod and pgi food products through the
1125 application of blockchain. *Calitatea* **2019**, *20*, 580–587.

1126 108. Kakkar, A.; others. A Blockchain Technology Solution to Enhance Operational Efficiency of Rice Supply
1127 Chain for Food Corporation of India. International Conference on Sustainable Communication Networks
1128 and Application. Springer, 2019, pp. 24–31.

1129

1130 109. Liu, Y.; Ma, D.; Hu, J.; Zhang, Z. Sales mode selection of fresh food supply chain based on blockchain
1131 technology under different channel competition. *Computers & Industrial Engineering* **2021**, *162*, 107730.

1132 110. Dong, S.; Yang, L.; Shao, X.; Zhong, Y.; Li, Y.; Qiao, P. How can channel information strategy promote sales
1133 by combining ICT and blockchain? Evidence from the agricultural sector. *Journal of Cleaner Production* **2021**,
1134 299, 126857.

1135 111. Behnke, K.; Janssen, M. Boundary conditions for traceability in food supply chains using blockchain
1136 technology. *International Journal of Information Management* **2020**, *52*, 101969.

1137 112. Neethirajan, S.; Kemp, B. Digital livestock farming. *Sensing and Bio-Sensing Research* **2021**, *32*, 100408.

1138 113. Lin, Y.P.; Mukhtar, H.; Huang, K.T.; Petway, J.R.; Lin, C.M.; Chou, C.F.; Liao, S.W. Real-time identification of
1139 irrigation water pollution sources and pathways with a wireless sensor network and blockchain framework.
1140 *Sensors* **2020**, *20*, 3634.

1141 114. Arsyad, A.A.; Dadkhah, S.; Köppen, M. Two-factor blockchain for traceability cacao supply chain.
1142 International Conference on Intelligent Networking and Collaborative Systems. Springer, 2018, pp.
1143 332–339.

1144 115. Duan, J.; Zhang, C.; Gong, Y.; Brown, S.; Li, Z. A content-analysis based literature review in blockchain
1145 adoption within food supply chain. *International journal of environmental research and public health* **2020**,
1146 *17*, 1784.

1147 116. Luzzani, G.; Grandis, E.; Frey, M.; Capri, E. Blockchain Technology in Wine Chain for Collecting and
1148 Addressing Sustainable Performance: An Exploratory Study. *Sustainability* **2021**, *13*, 12898.

1149 117. Chen, H.; Chen, Z.; Lin, F.; Zhuang, P. Effective management for blockchain-based agri-food supply chains
1150 using deep reinforcement learning. *IEE Access* **2021**, *9*, 36008–36018.

1151 118. Fan, Z.P.; Wu, X.Y.; Cao, B.B. Considering the traceability awareness of consumers: should the supply
1152 chain adopt the blockchain technology? *Annals of Operations Research* **2020**, pp. 1–24.

1153 119. Guo, J.; Cengiz, K.; Tomar, R. An IOT and Blockchain Approach for Food Traceability System in Agriculture.
1154 *Scalable Computing: Practice and Experience* **2021**, *22*, 127–137.

1155 120. Astill, J.; Dara, R.A.; Campbell, M.; Farber, J.M.; Fraser, E.D.; Sharif, S.; Yada, R.Y. Transparency in food
1156 supply chains: A review of enabling technology solutions. *Trends in Food Science & Technology* **2019**,
1157 *91*, 240–247.

1158 121. Katsikouli, P.; Wilde, A.S.; Dragoni, N.; Høgh-Jensen, H. On the benefits and challenges of blockchains for
1159 managing food supply chains. *Journal of the Science of Food and Agriculture* **2021**, *101*, 2175–2181.

1160 122. Tripoli, M.; Schmidhuber, J. Optimising traceability in trade for live animals and animal products with
1161 digital technologies. *Rev. Sci. Tech* **2020**, *39*, 235–244.

1162 123. Yadav, A.; Yadav, D.; Gupta, S.; Kumar, D.; Kumar, P. Online food court payment system using blockchain
1163 technolgy. 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and
1164 Computer Engineering (UPCON). IEEE, 2018, pp. 1–7.

1165 124. Alshakhs, A.; Ramirez, R.; Khuntia, J. Blockchain for Supply Chain Management: Practice-Based View
1166 **2020**.

1167 125. Li, J.; Maiti, A.; Springer, M.; Gray, T. Blockchain for supply chain quality management: challenges and
1168 opportunities in context of open manufacturing and industrial internet of things. *International Journal of
1169 Computer Integrated Manufacturing* **2020**, *33*, 1321–1355.

1170 126. Markovic, M.; Edwards, P.; Jacobs, N. Recording provenance of food delivery using IoT, semantics and
1171 business blockchain networks. 2019 Sixth International Conference on Internet of Things: Systems,
1172 Management and Security (IOTSMS). IEEE, 2019, pp. 116–118.

1173 127. Rejeb, A.; Keogh, J.G.; Zailani, S.; Treiblmaier, H.; Rejeb, K. Blockchain technology in the food industry: A
1174 review of potentials, challenges and future research directions. *Logistics* **2020**, *4*, 27.

1175 128. Friedman, N.; Ormiston, J. Blockchain as a sustainability-oriented innovation?: Opportunities for and
1176 resistance to Blockchain technology as a driver of sustainability in global food supply chains. *Technological
1177 Forecasting and Social Change* **2022**, *175*, 121403.

1178 129. Patil, A.S.; Tama, B.A.; Park, Y.; Rhee, K.H. A framework for blockchain based secure smart green house
1179 farming. In *Advances in Computer Science and Ubiquitous Computing*; Springer, 2017; pp. 1162–1167.

1180 130. Benyam, A.A.; Soma, T.; Fraser, E. Digital agricultural technologies for food loss and waste prevention
1181 and reduction: Global trends, adoption opportunities and barriers. *Journal of Cleaner Production* **2021**,
1182 323, 129099.

1183 131. Kayikci, Y.; Usar, D.D.; Aylak, B.L. Using blockchain technology to drive operational excellence in
1184 perishable food supply chains during outbreaks. *The International Journal of Logistics Management* **2021**.

1185 132. Thakur, S.; Breslin, J.G. Scalable and secure product serialization for multi-party perishable good supply
1186 chains using blockchain. *Internet of Things* **2020**, *11*, 100253.

1187 133. Valoppi, F.; Agustin, M.; Abik, F.; Morais de Carvalho, D.; Sithole, J.; Bhattarai, M.; Varis, J.J.; Arzami, A.;
1188 Pulkkinen, E.E.; Mikkonen, K.S.; others. Insight on current advances in food science and technology for
1189 feeding the world population. *Frontiers in sustainable food systems* **2021**.

1190 134. Rejeb, A.; Rejeb, K.; Abdollahi, A.; Zailani, S.; Iranmanesh, M.; Ghobakhloo, M. Digitalization in food
1191 supply chains: A bibliometric review and key-route main path analysis. *Sustainability* **2021**, *14*, 83.

1192 135. Mangla, S.K.; Kazancoglu, Y.; Ekinci, E.; Liu, M.; Özbiltekin, M.; Sezer, M.D. Using system dynamics to
1193 analyze the societal impacts of blockchain technology in milk supply chainsrefer. *Transportation Research
1194 Part E: Logistics and Transportation Review* **2021**, *149*, 102289.

1195 136. Cruz, E.F.; da Cruz, A.M.R. Using Blockchain to Implement Traceability on Fishery Value Chain. ICSOFT,
1196 2020, pp. 501–508.

1197 137. Mondragon, A.E.C.; Mondragon, C.E.C.; Coronado, E.S. Feasibility of Internet of Things and Agnostic
1198 Blockchain Technology Solutions: A Case in the Fisheries Supply Chain. 2020 IEEE 7th International
1199 Conference on Industrial Engineering and Applications (ICIEA). IEEE, 2020, pp. 504–508.

1200 138. Gopi, K.; Mazumder, D.; Sammut, J.; Saintilan, N. Determining the provenance and authenticity of seafood:
1201 A review of current methodologies. *Trends in Food Science & Technology* **2019**, *91*, 294–304.

1202 139. Sengupta, T.; Narayananmurthy, G.; Moser, R.; Pereira, V.; Bhattacharjee, D. Disruptive technologies for
1203 achieving supply chain resilience in COVID-19 era: An implementation case study of satellite imagery and
1204 blockchain technologies in fish supply chain. *Information Systems Frontiers* **2021**, pp. 1–17.

1205 140. Lupu, N.; Michelitch, K. Advances in survey methods for the developing world. *Annual Review of Political
1206 Science* **2018**, *21*, 195–214.

1207 141. Caiserman, A.; Dumas, D.; Bennafla, K.; Faour, G.; Amiraslani, F. Application of remotely sensed imagery
1208 and socioeconomic surveys to map crop choices in the Bekaa Valley (Lebanon). *Agriculture* **2019**, *9*, 57.

1209 142. Tabbusum, R.; Dar, A.Q. Performance evaluation of artificial intelligence paradigms—artificial neural
1210 networks, fuzzy logic, and adaptive neuro-fuzzy inference system for flood prediction. *Environmental
1211 Science and Pollution Research* **2021**, *28*, 25265–25282.

1212 143. Vautard, R.; Gobiet, A.; Jacob, D.; Belda, M.; Colette, A.; Déqué, M. Fernández J, García-Díez M, Goergen
1213 K, Güttler I et al.: The simulation of European heat waves from an ensemble of regional climate models
1214 within the EURO-CORDEX project. *Clim Dyn* **2013**, *41*, 2555–2575.

1215 144. Singh, R.; Srivastava, S.; Mishra, R. Ai and iot based monitoring system for increasing the yield in crop
1216 production. 2020 International Conference on Electrical and Electronics Engineering (ICE3). IEEE, 2020,
1217 pp. 301–305.

1218 145. Eli-Chukwu, N.; Ogwugwam, E. Applications of Artificial Intelligence in Agriculture: A Review.
1219 *Engineering, Technology and Applied Science Research* **2019**, *9*, 4377–4383.

1220 146. Burkhard, B.; Kandziora, M.; Hou, Y.; Müller, F. Ecosystem Service Potentials, Flows and Demands –
1221 Concepts for Spatial Localisation, Indication and Quantification. *Landscape Online* **2014**, *34*, 1–32.

1222 147. Abduljabbar, R.; Dia, H.; Liyanage, S.; Bagloee, S.A. Applications of Artificial Intelligence in Transport: An
1223 Overview. *Sustainability* **2019**, *11*.

1224 148. Abduljabbar, Rusul L.; Liyanage, S.D.H. The role of micro-mobility in shaping sustainable cities: A
1225 systematic literature reviewt. *Transportation Research Part D: Transport and Environment* **2021**, *92*.

1226 149. Rodríguez, D.A.; Díaz-Ramírez, A.; Miranda-Vega, J.E.; Trujillo, L.; Mejía-Alvarez, P. A Systematic Review
1227 of Computer Science Solutions for Addressing Violence Against Women and Children. *IEEE Access* **2021**,
1228 *9*, 114622–114639.

1229 150. Nuseir, M.T.; Al Kurdi, B.H.; Alshurideh, M.T.; Alzoubi, H.M. Gender discrimination at workplace:
1230 Do Artificial Intelligence (AI) and Machine Learning (ML) have opinions about it. The International
1231 Conference on Artificial Intelligence and Computer Vision. Springer, 2021, pp. 301–316.

1232 151. Nesti, G. Mainstreaming gender equality in smart cities: Theoretical, methodological and empirical
1233 challenges. *Information Polity* **2019**, *24*, 289–304.

1234 152. Ondili, M. Artificial intelligence: labour gender gap in Africa **2021**.

1235 153. Forum, W.E. Harnessing Artificial Intelligence to Accelerate the Energy Transition **2021**.

1236 154. Mosavi, A.; Salimi, M.; Faizollahzadeh Ardabili, S.; Rabczuk, T.; Shamshirband, S.; Varkonyi-Koczy, A.R.
1237 State of the art of machine learning models in energy systems, a systematic review. *Energies* **2019**, *12*, 1301.

1238 155. Perera, K.S.; Aung, Z.; Woon, W.L. Machine learning techniques for supporting renewable energy
1239 generation and integration: a survey. International Workshop on Data Analytics for Renewable Energy
1240 Integration. Springer, 2014, pp. 81–96.

1241 156. Ramchurn, S.D.; Vytelingum, P.; Rogers, A.; Jennings, N.R. Putting the 'smarts' into the smart grid: a grand
1242 challenge for artificial intelligence. *Communications of the ACM* **2012**, *55*, 86–97.

1243 157. Alonso, S.; Montes, R.; Molina, D.; Palomares, I.; Martínez-Cámara, E.; Chiachio, M.; Chiachio, J.; Melero,
1244 F.J.; García-Moral, P.; Fernández, B.; others. Ordering artificial intelligence based recommendations to
1245 tackle the sdgs with a decision-making model based on surveys. *Sustainability* **2021**, *13*, 6038.

1246 158. Clutton-Brock, P.; Rolnick, D.; Donti, P.L.; Kaack, L. Climate Change and AI. Recommendations for
1247 Government Action. Technical report, GPAI, Climate Change AI, Centre for AI & Climate, 2021.

1248 159. Pigola, A.; da Costa, P.R.; Carvalho, L.C.; Silva, L.F.d.; Kniess, C.T.; Maccari, E.A. Artificial
1249 Intelligence-Driven Digital Technologies to the Implementation of the Sustainable Development Goals: A
1250 Perspective from Brazil and Portugal. *Sustainability* **2021**, *13*, 13669.

1251 160. Herweijer, C.; Waughray, D. Fourth industrial revolution for the earth harnessing artificial intelligence for
1252 the earth. *A report of PricewaterhouseCoopers (PwC)* **2018**.

1253 161. Mayer, K.; Rausch, B.; Arlt, M.L.; Gust, G.; Wang, Z.; Neumann, D.; Rajagopal, R. 3D-PV-Locator:
1254 Large-scale detection of rooftop-mounted photovoltaic systems in 3D. *Applied Energy* **2022**, *310*, 118469.

1255 162. Moradi, S.; Yousefi, H.; Noorollahi, Y.; Rosso, D. Multi-criteria decision support system for wind farm
1256 site selection and sensitivity analysis: Case study of Alborz Province, Iran. *Energy Strategy Reviews* **2020**,
1257 *29*, 100478.

1258 163. Rolnick, D.; Donti, P.L.; Kaack, L.H.; Kochanski, K.; Lacoste, A.; Sankaran, K.; Ross, A.S.; Milojevic-Dupont,
1259 N.; Jaques, N.; Waldman-Brown, A.; others. Tackling climate change with machine learning. *ACM
1260 Computing Surveys (CSUR)* **2022**, *55*, 1–96.

1261 164. Senocak, A.A.; Goren, H.G. Forecasting the biomass-based energy potential using artificial intelligence and
1262 geographic information systems: A case study. *Engineering Science and Technology, an International Journal*
1263 **2022**, *26*, 100992.

1264 165. Taylor, W.O.; Watson, P.L.; Cerrai, D.; Anagnostou, E.N. Dynamic modeling of the effects of vegetation
1265 management on weather-related power outages. *Electric Power Systems Research* **2022**, *207*, 107840.

1266 166. Zhang, C.; Li, Z.; Jiang, H.; Luo, Y.; Xu, S. Deep learning method for evaluating photovoltaic potential of
1267 urban land-use: A case study of Wuhan, China. *Applied Energy* **2021**, *283*, 116329.

1268 167. Ahmad, I.; Sana, A.; Kano, M.; Cheema, I.I.; Menezes, B.C.; Shahzad, J.; Ullah, Z.; Khan, M.; Habib,
1269 A. Machine learning applications in biofuels' life cycle: soil, feedstock, production, consumption, and
1270 emissions. *Energies* **2021**, *14*, 5072.

1271 168. Kwak, Y.; Deal, B.; Heavides, T. A large scale multi criteria suitability analysis for identifying solar
1272 development potential: A decision support approach for the state of Illinois, USA. *Renewable Energy* **2021**,
1273 *177*, 554–567.

1274 169. Mahaver, V.K.; Rao, K. Solar energy potential of the state of Rajasthan in India. 2018 3rd International
1275 Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact
1276 on Humanity (CIPECH). IEEE, 2018, pp. 56–61.

1277 170. Al-Ruzouq, R.; Abdallah, M.; Shanableh, A.; Alani, S.; Obaid, L.; Gibril, M.B.A. Waste to energy spatial
1278 suitability analysis using hybrid multi-criteria machine learning approach. *Environmental Science and
1279 Pollution Research* **2022**, *29*, 2613–2628.

1280 171. iea. Case Study: Artificial Intelligence for Building Energy Management Systems. <https://www.iea.org/articles/case-study-artificial-intelligence-for-building-energy-management-systems>. Accessed:
1281 2022-05-05.

1282 172. Lee, M.; He, G. An empirical analysis of applications of artificial intelligence algorithms in wind power
1283 technology innovation during 1980–2017. *Journal of Cleaner Production* **2021**, *297*, 126536.

1284 173. Shi, Z.; Yao, W.; Li, Z.; Zeng, L.; Zhao, Y.; Zhang, R.; Tang, Y.; Wen, J. Artificial intelligence techniques for
1285 stability analysis and control in smart grids: Methodologies, applications, challenges and future directions.
1286 *Applied Energy* **2020**, *278*, 115733.

1287

1288 174. Ermoliev, Y.; Zagorodny, A.G.; Bogdanov, V.L.; Ermolieva, T.; Havlik, P.; Rovenskaya, E.; Komendantova, N.; Obersteiner, M. Linking Distributed Optimization Models for Food, Water, and Energy Security Nexus Management. *Sustainability* **2022**, *14*, 1255.

1289 175. Peponi, A.; Morgado, P.; Kumble, P. Life cycle thinking and machine learning for urban metabolism assessment and prediction. *Sustainable Cities and Society* **2022**, *80*, 103754.

1290 176. Sorrell, S. Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency. *Energy policy* **2009**, *37*, 1456–1469.

1291 177. Coulombel, N.; Boutueil, V.; Liu, L.; Viguie, V.; Yin, B. Substantial rebound effects in urban ridesharing: Simulating travel decisions in Paris, France. *Transportation Research Part D: Transport and Environment* **2019**, *71*, 110–126.

1292 178. Dobbe, R.; Whittaker, M. AI and Climate Change: How they're connected, and what we can do about it. *AI Now Institute, Medium, October* **2019**, *17*. Accessed: 2022-05-04.

1293 179. Strubell, E.; Ganesh, A.; McCallum, A. Energy and policy considerations for deep learning in NLP. *arXiv preprint arXiv:1906.02243* **2019**.

1300 180. Henderson, P.; Hu, J.; Romoff, J.; Brunskill, E.; Jurafsky, D.; Pineau, J. Towards the systematic reporting of the energy and carbon footprints of machine learning. *Journal of Machine Learning Research* **2020**, *21*, 1–43.

1301 181. Schwartz, R.; Dodge, J.; Smith, N.A.; Etzioni, O. Green AI, 2019.

1305 182. Belkhir, L.; Elmeligi, A. Assessing ICT global emissions footprint: Trends to 2040 & recommendations. *Journal of cleaner production* **2018**, *177*, 448–463.

1307 183. Sætra, H.S. A shallow defence of a technocracy of artificial intelligence: Examining the political harms of algorithmic governance in the domain of government. *Technology in Society* **2020**, *62*, 101283.

1309 184. Huntingford, C.; Jeffers, E.S.; Bonsall, M.B.; Christensen, H.M.; Lees, T.; Yang, H. Machine learning and artificial intelligence to aid climate change research and preparedness. *Environmental Research Letters* **2019**, *14*, 124007.

1312 185. Global Partnership on AI Report In collaboration with Climate Change AI and the Centre for AI Climate. CLIMATE CHANGE AND AI: Recommendations for Government Action. <https://gpai.ai/projects/responsible-ai/environment/climate-change-and-ai.pdf>, 2021. Accessed: 2022-04-30.

1315 186. Kotsopoulos, T.; Sarigiannidis, P.; Ioannidis, D.; Tzovaras, D. Machine learning and deep learning in smart manufacturing: The smart grid paradigm. *Computer Science Review* **2021**, *40*, 100341.

1317 187. Gupta, S.; Degbelo, A. An Empirical Analysis of AI Contributions to Sustainable Cities (SDG11). *arXiv preprint arXiv:2202.02879* **2022**.

1319 188. Rasol, M.; Pais, J.C.; Pérez-Gracia, V.; Solla, M.; Fernandes, F.M.; Fontul, S.; Ayala-Cabrera, D.; Schmidt, F.; Assadollahi, H. GPR monitoring for road transport infrastructure: A systematic review and machine learning insights. *Construction and Building Materials* **2022**, *324*, 126686.

1322 189. Sun, Z.; Zhou, W.; Ding, C.; Xia, M. Multi-Resolution Transformer Network for Building and Road Segmentation of Remote Sensing Image. *ISPRS International Journal of Geo-Information* **2022**, *11*, 165.

1324 190. Wu, X.; Yang, D.; Wu, R.; Gu, J.; Wen, Y.; Zhang, S.; Wu, R.; Wang, R.; Xu, H.; Zhang, K.M.; others. High-resolution mapping of regional traffic emissions using land-use machine learning models. *Atmospheric Chemistry and Physics* **2022**, *22*, 1939–1950.

1327 191. Zou, L.; Shu, S.; Lin, X.; Lin, K.; Zhu, J.; Li, L. Passenger Flow Prediction Using Smart Card Data from Connected Bus System Based on Interpretable XGBoost. *Wireless Communications and Mobile Computing* **2022**, *2022*.

1330 192. Zhang, S.; Mehta, N.; Singh, P.V.; Srinivasan, K. Frontiers: Can an artificial intelligence algorithm mitigate racial economic inequality? an analysis in the context of airbnb. *Marketing Science* **2021**, *40*, 813–820.

1332 193. Abbasian, H.; Solgi, E.; Hosseini, S.M.; Kia, S.H. Modeling terrestrial net ecosystem exchange using machine learning techniques based on flux tower measurements. *Ecological Modelling* **2022**, *466*, 109901.

1334 194. Zhu, X.H.; Lu, K.F.; Peng, Z.R.; He, H.D.; Xu, S.Q. Spatiotemporal variations of carbon dioxide (CO₂) at Urban neighborhood scale: Characterization of distribution patterns and contributions of emission sources. *Sustainable Cities and Society* **2022**, *78*, 103646.

1337 195. Berral, J.L.; Goiri, I.; Nou, R.; Julià, F.; Guitart, J.; Gavaldà, R.; Torres, J. Towards energy-aware scheduling in data centers using machine learning. Proceedings of the 1st International Conference on energy-Efficient Computing and Networking, 2010, pp. 215–224.

1340 196. Zhang, X.; Hug, G.; Kolter, J.Z.; Harjunkoski, I. Model predictive control of industrial loads and energy
1341 storage for demand response. 2016 IEEE Power and Energy Society General Meeting (PESGM). IEEE, 2016,
1342 pp. 1–5.

1343 197. Prioux, N.; Ouaret, R.; Hetreux, G.; Belaud, J.P. Environmental assessment coupled with machine learning
1344 for circular economy. *Clean Technologies and Environmental Policy* **2022**, pp. 1–14.

1345 198. Naik, D.; Sireesha, P.; De, T. Machine Learning-Based Green and Energy Efficient Traffic Grooming
1346 Architecture for Next Generation Cellular Networks. In *Evolutionary Computing and Mobile Sustainable
1347 Networks*; Springer, 2021; pp. 261–269.

1348 199. Petric, M.; Neskovic, A.; Neskovic, N.; Borenovic, M. Indoor localization using multi-operator public land
1349 mobile networks and support vector machine learning algorithms. *Wireless Personal Communications* **2019**,
1350 *104*, 1573–1597.

1351 200. Goyal, A.; Aneja, R. Artificial intelligence and income inequality: Do technological changes and worker's
1352 position matter? *Journal of Public Affairs* **2020**, *20*, e2326.

1353 201. Luengo-Oroz, M.; Bullock, J.; Pham, K.H.; Lam, C.S.N.; Luccioni, A. From artificial intelligence bias to
1354 inequality in the time of COVID-19. *IEEE Technology and Society Magazine* **2021**, *40*, 71–79.

1355 202. Joyce, K.; Smith-Doerr, L.; Alegria, S.; Bell, S.; Cruz, T.; Hoffman, S.G.; Noble, S.U.; Shestakofsky, B. Toward
1356 a sociology of artificial intelligence: A call for research on inequalities and structural change. *Socius* **2021**,
1357 *7*, 2378023121999581.

1358 203. Lutz, C. Digital inequalities in the age of artificial intelligence and big data. *Human Behavior and Emerging
1359 Technologies* **2019**, *1*, 141–148.

1360 204. Zajko, M. Artificial intelligence, algorithms, and social inequality: Sociological contributions to
1361 contemporary debates. *Sociology Compass* **2022**, *16*, e12962.

1362 205. Sampath, P.G. Governing Artificial Intelligence in an Age of Inequality. *Global Policy* **2021**, *12*, 21–31.

1363 206. Truby, J. Governing artificial intelligence to benefit the UN sustainable development goals. *Sustainable
1364 Development* **2020**, *28*, 946–959.

1365 207. Di Vaio, A.; Palladino, R.; Hassan, R.; Escobar, O. Artificial intelligence and business models in the
1366 sustainable development goals perspective: A systematic literature review. *Journal of Business Research*
1367 **2020**, *121*, 283–314.

1368 208. Sarkodie, S.A. Causal effect of environmental factors, economic indicators and domestic material
1369 consumption using frequency domain causality test. *Science of the Total Environment* **2020**, *736*, 139602.

1370 209. Buhl, J.; Liedtke, C.; Teubler, J.; Schuster, S.; Bienge, K. A material footprint model for green information
1371 systems—using statistical learning to identify the predictors of natural resource use. *Cogent Engineering*
1372 **2019**, *6*, 1616655.

1373 210. Patil, A.; Tatke, A.; Vachhani, N.; Patil, M.; Gulhane, P. Garbage Classifying Application Using Deep
1374 Learning Techniques. 2021 International Conference on Recent Trends on Electronics, Information,
1375 Communication & Technology (RTEICT). IEEE, 2021, pp. 122–130.

1376 211. Sharifi, M.; Hadidi, M.; Vessali, E.; Mosstafakhani, P.; Taheri, K.; Shahoie, S.; Khodamoradpour, M.
1377 Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan
1378 Province, western Iran. *Waste management* **2009**, *29*, 2740–2758.

1379 212. Van Fan, Y.; Jiang, P.; Tan, R.R.; Aviso, K.B.; You, F.; Zhao, X.; Lee, C.T.; Klemeš, J.J. Forecasting plastic
1380 waste generation and interventions for environmental hazard mitigation. *Journal of hazardous materials*
1381 **2022**, *424*, 127330.

1382 213. Verge, A.; Rowe, R.K. A framework for a decision support system for municipal solid waste landfill design.
1383 *Waste management & research* **2013**, *31*, 1217–1227.

1384 214. Wu, P.Y.; Mjörnell, K.; Mangold, M.; Sandels, C.; Johansson, T. A data-driven approach to assess the risk of
1385 encountering hazardous materials in the building stock based on environmental inventories. *Sustainability*
1386 **2021**, *13*, 7836.

1387 215. Xiong, N.; Yang, X.; Zhou, F.; Wang, J.; Yue, D. Spatial distribution and influencing factors of litter in urban
1388 areas based on machine learning—A case study of Beijing. *Waste Management* **2022**, *142*, 88–100.

1389 216. Anggraeni, M.C.; Silaban, C.A.; Anggreainy, M.S.; Cahyadi, E. Role of Artificial Intelligence in the
1390 Management of Food Waste. 2021 2nd International Conference on Artificial Intelligence and Data Sciences
1391 (AiDAS). IEEE, 2021, pp. 1–6.

1392 217. Amentae, T.K.; Gebresenbet, G. Digitalization and future agro-food supply chain management: A
1393 literature-based implications. *Sustainability* **2021**, *13*, 12181.

1394 218. Restrepo, D.S.; Pérez, L.E.; López, D.M.; Vargas-Cañas, R.; Osorio-Valencia, J.S. Multi-Dimensional Dataset
1395 of Open Data and Satellite Images for Characterization of Food Security and Nutrition. *Frontiers in
1396 Nutrition* **2021**, *8*.

1397 219. D'Amato, V.; D'Ecclesia, R.; Levantesi, S. Fundamental ratios as predictors of ESG scores: a machine
1398 learning approach. *Decisions in Economics and Finance* **2021**, *44*, 1087–1110.

1399 220. Bienvenido Huertas, David; Farinha, F.O.M.J.S.E.M.d.J.d.L.R. Comparison of artificial intelligence
1400 algorithms to estimate sustainability indicators. *riarte* **2020**, 2020. Accessed: 2022-04-30.

1401 221. Bora, Irfan ; Duan, H.K.V.M.A.Z.C.A..D.J. The Transformation of Government Accountability and
1402 Reporting. *ournal of Emerging Technologies in Accounting* **2021**, *18*.

1403 222. Sætra, H.S. A Framework for Evaluating and Disclosing the ESG Related Impacts of AI with the SDGs.
1404 *Sustainability* **2021**, *13*, 8503.

1405 223. Arreeras, T.; Arimura, M.; Asada, T.; Arreeras, S. Association rule mining tourist-attractive destinations for
1406 the sustainable development of a large tourism area in Hokkaido using Wi-Fi tracking data. *Sustainability*
1407 **2019**, *11*, 3967.

1408 224. Joshi, S., M.S.H.P. High resolution global spatiotemporal assessment of rooftop solar photovoltaics potential
1409 for renewable electricity generation. *Nature Communications* **2021**, *12*.

1410 225. Okuda, A.; Vakataki'Ofa, S. Artificial intelligence and broadband development through the Asia-Pacific
1411 Information Superhighway. *Journal of Infrastructure, Policy and Development* **2018**, *2*, 319–342.

1412 226. Jain, S.K.; Jain, S. Artificial intelligence applied to multi-and broadband antenna design. *Artificial
1413 Intelligence for Signal Processing and Wireless Communication* **2022**, *11*, 69.

1414 227. ESCAP, U. Artificial Intelligence and Broadband Divide: State of ICT Connectivity in Asia and the Pacific
1415 2017 Report **2017**.

1416 228. Mehmood, H.; Liao, D.; Mahadeo, K. A Review of Artificial Intelligence Applications to Achieve
1417 Water-related Sustainable Development Goals. 2020 IEEE / ITU International Conference on Artificial
1418 Intelligence for Good (AI4G), 2020, pp. 135–141.

1419 229. Merodio Gómez, P.; Juarez Carrillo, O.J.; Kuffer, M.; Thomson, D.R.; Olarte Quiroz, J.L.; Villaseñor García,
1420 E.; Vanhuysse, S.; Abascal, Á.; Oluoch, I.; Nagenborg, M.; others. Earth observations and statistics:
1421 Unlocking sociodemographic knowledge through the power of satellite images. *Sustainability* **2021**,
1422 *13*, 12640.

1423 230. Mondejar, M.E.; Avtar, R.; Diaz, H.L.B.; Dubey, R.K.; Esteban, J.; Gómez-Morales, A.; Hallam, B.; Mbungu,
1424 N.T.; Okolo, C.C.; Prasad, K.A.; others. Digitalization to achieve sustainable development goals: Steps
1425 towards a Smart Green Planet. *Science of the Total Environment* **2021**, *794*, 148539.

1426 231. Goralski, M.A.; Tan, T.K. Artificial intelligence and sustainable development. *The International Journal of
1427 Management Education* **2020**, *18*, 100330.

1428 232. Müller, V.C. *Risks of Artificial Intelligence*; Hall/CRC: Caracas, 2016. 1st Edition.

1429 233. How, M.L.; Cheah, S.M.; Chan, Y.J.; Khor, A.; Say, E. Artificial Intelligence-Enhanced Decision Support for
1430 Informing Global Sustainable Development: A Human-Centric AI-Thinking Approach.

1431 234. Floridi, L.; Cowls, J.; Beltrametti, M. AI4People—An Ethical Framework for a Good AI Society:
1432 Opportunities, Risks, Principles, and Recommendations. *Minds Machines* **2018**, *28*, 689–707.

1433 235. Dignum, V. *Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way*; 2019.

1434 236. Lannelongue, L.; Grealey, J.; Inouye, M. Green Algorithms: Quantifying the Carbon Footprint of
1435 Computation. *Advanced Science* **2021**, *8*.

1436 237. Visvizi, A. Computers and human behavior in the smart city: Issues, topics, and new research directions,
1437 2022.

1438 238. Walsh, P.P.; Murphy, E.; Horan, D. The role of science, technology and innovation in the UN 2030 agenda.
1439 *Technological Forecasting and Social Change* **2020**, *154*, 119957.

1440 239. Linares, A. *Derecho Internacional Públco*; Vol. 1, Anauco: Caracas, 1992. 2nd Edition.

1441 240. Pulido-Ortiz, F.E.; others. Elementos relevantes para el análisis de las sentencias de la Corte Constitucional
1442 colombiana. *Novum Jus: Revista Especializada en Sociología Jurídica y Política*; Vol. 2, no. 1 (ene.-dic. 2008); p.
1443 125-152 **2008**.