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1 Abstract:  Digitalization is globally transforming the world with profound implications. It
> has enormous potential to foster progress toward sustainability. However, in its current form,
s digitalization also continues to enable and encourage practices with numerous unsustainable impacts
. affecting our environment, ingraining inequality, and degrading quality of life. There is an urgent
s need to identify such multifaceted impacts holistically. Impact assessment of digital interventions
s (DIs) leading to digitalization is important specifically for Sustainable Development Goals(SDGs).
» Action is required to understand the pursuit of short-term gains toward achieving long-term
s  value-driven sustainable development. We need to understand the impact of DIs on various actors
o and in diverse contexts. A holistic understanding of the impact it creates will help us align it with
10 Visions of sustainable development and identify potential measures to mitigate negative short and
1 long-term impacts. The recently developed Digitainability Assessment Framework (DAF) unveils the
12 impact of DIs with an in-depth context-aware assessment and offers an evidence-based impact profile
1z of SDGs at the indicator level. We performed the impact assessment of diverse technologies using
1« DAF This paper summarizes the insights from the Digitainable Spring School 2022 on "Sustainability
15 with Digitalization and Artificial Intelligence," one of whose goals was to operationalize the DAF
1s  as atoolin the action learning process with diverse professionals in the field of digitalization and
iz sustainability. The DAF guides a holistic context-aware process formulation for a given DI. An
1s  evidence-based evaluation within the DAF protocol benchmarks a specific DI's impact against the
1o SDG indicators framework. The operationalization of the DAF was carried out by looking at four
20  different DIs: smart home technologies (SHT) for energy efficiency, blockchain for food security,
a1 artificial intelligence for land use cover and changes (LUCC), and big data for international law. Each
22 of the four studies addresses different Dls for digitainability assessment using different techniques for
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= adiverse group of indicators, demonstrating the potential of the DAF but also outlining the existing
22  data gaps that limit a comprehensive analysis.

s Keywords: Digitainability; Digitalization; Sustainability; Artificial Intelligence; Blockchain; Smart
2 homes; Big data; Sustainable Development; SDGs; Technology Assessment Framework; Agenda 2030;
2z Digital Age;

s 1. Introduction

N

20 Digitalization is driving the world towards an era where a significant part of our lives are reliant
s on digital technologies. These technologies are shaping the future by supporting the sustainable
s improvement of socio-economic, environmental, and climate-related concerns through more effective
:2 use of existing processes [1]. From fostering equitable access to education, to reducing poverty and
ss improving healthcare services, digital technologies are instrumental in raising the quality of life and
s« increasing access to resources. With internet access expanding to four billion people, almost twice as
s many as ten years ago, digitalization is breaking barriers by enabling prompt communication and
s networking, access to knowledge, and improved cost-efficiency. Digitalization brings together an
sz innovative set of tools and techniques which enables the process of converting physically collected
;s information and knowledge into a machine-readable language. As a result, robust integrated
s workflows that connect physical objects to the internet are being developed using embedded sensors,
s software, and other technologies that enable real-time data collection and analysis. Massive data
«1 analysis capability enables timely and informed decisions contributing to sustainable development [2].
a2 Several challenges, however, have been left largely untapped to meet the Sustainable Development
a3 Goals (SDGs).

m The United Nations (UN) Agenda 2030 [3] is a global roadmap defined by the United Nations
4+ (UN) toward equity and sustainable development with a horizon set in 2030. The 17 SDGs form
s the backbone of the UN Agenda 2030. They present a guiding framework for worldwide policies
«z that guarantee a good life for present and future generations. In order to achieve the SDGs, it is
s crucial to reduce resource consumption, greenhouse gas emissions, poverty, and inequality, while
4 at the same time expanding education, welfare, and combating biodiversity loss, to name just a few
so [4]. The SDG targets and indicators call for timely observation and reporting of the progression in
s:  member states of the UN [5]. Recent literature emphasizes that SDG progress can be aided by adopting
sz innovative technologies for digitization, leading to accelerated transformation in many sectors. Digital
ss interventions (DIs) have been a primary focus in most public discourses and policy circles [6]. The
s« emergence of artificial intelligence (Al) and the development of machine learning (ML) have been
ss deemed instrumental in achieving the Agenda 2030 [6-8]. However, it needs to be clarified how and
s« to what extent these DIs provide opportunities and where they could lead to challenges limiting the
sz progress of SDGs. This calls for the impact assessment for meeting the SDGs [6], given that Al promises
ss  significant opportunities for sustainable development and contributes to all the SDGs within the 2030
ss Agenda [9-14]. This potential gave birth to various initiatives such as the "Al for social good" paradigm
e [15,16]. Alis interpreted as the interaction of computing and cognitive science, providing insights by
e» modeling and pattern detection, prediction, and optimization [17]. In combination with Big Data, Al
ez catalyzes innovation through massive data processing, advanced computing, and clever algorithms
es able to untangle complex problems, thus augmenting human knowledge and decision-making and
es paving the way to sustainable governance [18].

o5 Applying the DIs in specific contexts is often "wicked" with interlinked technological, social,
es environmental, and governance-related challenges. They are associated with positive and negative
ez impacts [13]. On the one hand, the DIs can serve as levers and set off dynamic transformation towards
es sustainability in different sectors. For instance, various reports point to the potential of digitalization to
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e boost energy productivity, avert resource waste, improve access to sustainable services, and establish
70 new sustainable practices [4]. On the other hand, its development and use could trigger knock-on
= effects with a negative impact on environment, society, prompting a call for closer examination of the
=2 ethical and political issues associated with its rapid proliferation [19,20]. Given the fast evolution of
s technologies and the influence of both corporate interest in technology and policy-making towards
s this crucial crossroads for humanity, the existing literature is primarily concerned with the benefits
7 of Al-based technology. As there are little empirical evidence of its inevitable trade-offs and unclear
ze net benefits, these are often overlooked in the literature [21]. Moreover, most of the studies focus on
7z the development prospects of the Global North while overlooking the infrastructure and capacity
zs constraints of the Global South [10].

70 Much of the foregoing work has centered on identifying the role of the DIs for SDGs. However,
s most scholarly attention has been directed at identifying their relevance at goal level. Given that SDGs
e1 are composed of various targets and indicators, this approach is rather superficial. As a result, insight
ez into the impacts of DI is limited by the fact that, to date, they have been measured from a narrow
es  perspective. The gap also exists in understanding the context that defines the relation of the DI to SDGs
sa progress. Nevertheless, it has been widely acknowledged that SDGs are interlinked, and the impact
es on one SDG can have cascading negative or positive impacts on other SDG targets and indicators.
ss Thus, it is crucial we uncover the interlinked impact of the DI on SDGs in a more holistic manner,
ez moving beyond the impact measurement of DIs on isolated SDGs. Instead of measuring the impact on
es a particular goal or target, the aim should be to establish a multidisciplinary view of the direct and
e indirect impacts the DI may have on all SDGs in the certain context. The context-specific assessment of
so the DI requires analyses in a broader system, whereby the impacts on most of the SDGs are considered
o1 integral to it.

02 Gupta et al. [22] and Vinuesa et al. [6] identified the role of the DIs at the target level, one level
oz deeper. The limitation of these works is their consideration to evaluate the impact of selected DI on a
s specific target at a time but not exploring the interlinked consequential impact of the particular DI
os on all other targets and indicators of SDGs. Since sustainable development requires holistic actions
os on all the essential aspects, the most meaningful way to identify the real impact of technology is
oz to identify where and how it supports bringing the change required for the advancement of all the
os  SDGs. Indicators of the SDGs are the impact measures, reflecting the "what" has been achieved
oo thus far. Therefore, it is essential to measure the ‘'what’ change at the indicator level is achieved
10 when the DI is utilized to measure consequential impact. As digitalization combines the individual,
11 organizational and societal transformation brought by the multitude of algorithms and data-driven
102 interfaces, utilizing it for sustainable development also needs diverse stakeholders’ inclusiveness and
103 active involvement with their perspectives. We need to understand the consequential impacts and
s mindfulness in using digitalization to support the achievement of SDGs and their specific targets.
105 Digitainability is introduced by Gupta et al. [22] as the effort to uncover the impact of digital tools
10s considering their interlinked impacts in a specific context with a multidisciplinary perspective to
107 secure the mindful application of digital technology to foster sustainable development. This is a crucial
s step to investigate in-depth if and to what extent the potential offered by the DIs can be leveraged
10 for sustainable development, particularly for achieving the goals of Agenda 2030 [23]. After its
1o introduction, digitainability has been perceived as essential to capturing the cross-fertilization potential
1 of digitalization and sustainability, the two mega-trends for innovation and new sustainable business
12 development [24], but more from the theoretical perspective rather than a practical one. Quite recently,
13 Gupta and Rhyner [23] in their article introduced the digitainability assessment framework (DAF)
us  as a practical tool that can help operationalize the digitainability assessment of digital intervention
us (DI) in great detail with various levels of evidence. Assessing digitainability is essential to shape the
us development process for a more intelligent and sustainable digital future.

117 The DAF that incorporates context, the potential direct impact, indirect impacts, and cascading
us effects mapped for the SDG indicator(s) could be considered a practical approach to assess the impact
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ue  of DIs. Utilizing several levels of evidence, the DAF approach is instrumental in holistically identifying
120 impacts and detecting potentially unforeseen implications. This comprehensive assessment further
11 facilitates the mapping of impacts, taking into account long-term and short-term priorities in a given
122 context. By undertaking a holistic assessment, the potential pathways that enable or inhibit the
123 growth of the SDGs can be measured and used to support sustainable digitalization. Overall, the
122 DAF is an effective tool that helps consolidate a vast amount of multidisciplinary knowledge to
125 deeply understand the interlinked direct, indirect and progressing consequential impact of the DIs for
126 sustainable development.

127 In this paper, we explore the operationalization of DAF digital technologies in a real-world
126 scenario and how it paves the way towards mindfulness in applying a DI for sustainable development.
120 We operationalize the DAF to assess the digitainability of the DIs to encourage mindfulness in their
130 application. The paper presents the outcome of the Digitainable Spring School 2022 (DSS), which
11 involved four groups thoroughly analyzing the digitainability of a specific DI in light of the SDGs. The
132 DSS aimed to bring together a diverse group of experts and practitioners from different disciplines
133 having experience working at the intersection of digitalization and sustainability. In order to fully
13a  explore and identify the strengths and weaknesses of the DAF and the impacts of a DI on SDGs, a
135 study-based analysis of the methodology was deemed appropriate. The primary outcome of the DSS
13s  was a practical application of digitainability as a concept and an enriched analysis of the impacts of
13z DlIs for SDGs, considering different perspectives and contributions using the DAF as a methodology.
138 The paper is structured as follows: Section 2 elaborates on the methodology we have undertaken
130 for this study and further expands on the methodological consideration of the Dls. in Section 3, we
1s0  present the results after operationalizing the DAF for selected Dls, followed by a detailed discussion
11 on the findings of 4 studies in Section 4; finally, conclusions are drawn in the Section 5.

1z 2. Method: Digitainability assessment

143 Considering the overarching topic of digitalization and sustainability, diverse stakeholders such
14s  as practitioners are usually not typically inclined to engage with research that they consider the realm
s Of specialized academic researchers. They are more favorably prone to ‘doing” and experimenting
s using trial and error, discussions, reflection in, on, and after taking action, considering the action
17 cycles for transformation. To foster sustainable development, it is paramount to promote exchanges
e between diverse disciplines and the research community to convert concepts into practices focusing on
10 inclusion, collaboration, and participation. This is all the more important considering the importance of
1o digitainability for mindful sustainable digital transformation. Identifying and defining the key aspects
11 and processes of digitalization and sustainability that are interdependent and vital for maximizing
152 holistic sustainable development is essential.

153 In order to conduct the digitainability assessment, we utilized the action learning approach [25], a
1ss  participatory approach that drew on the expertise of participants of the Digitainable Spring School
15 (DSS). Action learning is a group-based process of engaging, learning, and reflecting, where a group of
156 peers interact under the guidance of a facilitator for a given time-frame to address a specific real-world
157 issue in real-time [26]. Participants identify real problems in the discussion from their experience
152 and seek to develop innovative and creative ways to solve them [27]. The DSS brought together an
10 international group of real-life practitioners and experts in digitalization and sustainability for action
160 learning. Based on their experience with certain technologies, they operationalized the DAF as a tool
161 for understanding the complex impact of the DIs on sustainability. In this section, we discuss the
162 detailed assessment and evidence they have gathered based on the DAF methodology. Given their
163 diverse background, disciplines, and expertise, the DSS participants combined into a single arena their
16s  multidisciplinary views on standardization processes, reflections, and perspectives on the theoretical
1es and practitioner contexts that supported the process of digitainability assessment. This paper brings
16 forth the operationalization process, how expert groups approached the digitainability assessment
1z process, and their recommendations for digitalization and sustainability practicing communities.
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168 The DAF is used to systematically analyze the intra- and interlinked impacts of DIs on SDGs
10 [23]. It is designed to help perform technology impact assessments and map them considering various
1o synergies, trade-offs, and complex interlinkages between SDGs at the indicator level within certain
in contexts. The analysis results are visualized in the form of a heatmap or matrix, presenting not only the
172 impact results (synergy, ambivalent, trade-off, bi-directional or uncertain) but also including the context
173 and the main SDG indicators under focus. Four groups conducted the digitainability assessment
174 using various forms of evidence from a multidisciplinary perspective and identified strengths and
175 weaknesses in the methodology and data gaps regarding DI and SDGs. The four DIs are: Smart Home
e Technologies (SHT) for energy efficiency, Blockchain for Food Security, Al for Land Use Cover and
17z Changes (LUCC), and Big data for International Law.

we  2.1. Group 1: Smart Home Technologies (SHTs) as DI for energy efficiency

179 The concept of “data-driven smart sustainable cities” has emerged from the advancements in
10 information and communications technology (ICT), particularly big data, coupled with alarming
;1 worldwide challenges related to the environment, climate change, natural resources and energy
12 consumption [28]. In this context, numerous strategies are presented in order to reach resource
13 efficiency and climate responsibility through modern technologies. These include “smart grid and
1es advanced metering infrastructure”, “smart buildings”, “smart home appliances and devices”, and
s “environmental control and monitoring” [29]. In particular, energy efficiency represents a crucial,
16 effective method to overcome environmental challenges and meet the growing demands in energy
187 [30]

188 In this respect, SHTs for energy efficiency exhibit many opportunities for innovative technological
180 solutions by combining big data analytics, the IoT and associated smart sensors and meters, and
10 machine learning technologies and techniques. Thus, this technology provides better monitoring,
11 control and conservation of energy [31].

192 From the perspective of household residents, the implication would be greater awareness, control,
103 and efficient monitoring of energy/electricity consumption. From the operator’s perspective, this
e approach allows not only for precise monitoring and analysis of electricity consumption but also
105 enables forecasting electrical energy consumption using data mining and machine learning methods;
106 this is beneficial specifically when power is drawn from renewable power plants that are highly
107 dependent on the weather [32].

108 Group 1 focused on the question of how STHs impact the achievement of SDGs considering
e digitainability? To answer the question, the DAF methodology was applied. The analysis mainly
200 focuses on the SDGs 7, 8, 9, 10, and 11 considering their relevance to the intended application of DI. In
201 order to analyze using the DAF, grey literature was used.

202 2.2. Group 2: Blockchain as a DI for food security

203 Recent trends in global food sustainability and improved nutrition show growing concern, and
20 food security is far from guaranteed for all [33]. Following several decades of substantial progress
20s in reducing hunger by several hundred thousand people [34], food insecurity is regaining ground
206 year after year [35]. When world grain prices soared in 2007-2008, the Malthusian spectre of a "global
202 food crisis" was brandished by the media. Ever since, the problem of food insecurity has returned to
208 the agenda while the rise in the price of food commodities, of which Russia and Ukraine are major
200 producers, is at its highest level since 2008 [36].

210 DI can help transitions for addressing the challenges of food and agricultural systems, supporting
2 the timely achievement of SDG 2 (End Hunger) and 12 (Responsible Consumption and Production).
22 The DI, such as blockchain, brings commercial transaction standardization to improve security and
z3 reduce costs. Several recent studies (e.g., Tyczewska et al. [33], Feng et al. [37], Nurgazina et al.
ze  [38], Patidar et al. [39]) have highlighted the positive and potentially transformational nature of
x5 blockchain, particularly concerning the reconfiguration of market exchange. Research suggests that
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216 blockchain systems may reduce uncertainty, insecurity, and ambiguity in transactions by providing
21z full transactional disclosure and unified truth to all participants in the network Zhao et al. [40], Xu et al.
= [41], van Hilten et al. [42]. The blockchain is also increasingly deployed in areas where traceability and
210 product auditing is essential, such as the supply chain in food systems [38]. Group 2 focused on the
220 question of how blockchain technology can support the fulfillment of goals 2 and 12 while considering holistic
= sustainability, socio-economic and environmental aspects?

22 2.3. Group 3: Al as a DI for Land Use Cover and Changes (LUCC)

223 Given the high level of interest and the need to understand various processes that are triggered in
224 one part of the globe and affect certain processes in another part of the globe, Al has been introduced
225 as a powerful information tool to address this issue. Many approaches, such as Machine Learning,
226 Deep Learning, Agent-Based models, and others are used to empower Al for better tracking of Land
227 Cover/Use patterns.

220 Implementing machine learning algorithms can help to detect the land type, as well as spatial and
220 temporal trends in land class/type over time. Machine learning algorithms can be used to assess the
230 accuracy and validate the results of land classification. Thus, the method can benefit from predicting
21 future scenarios of land use change and implementing an accurate and reliable system to monitor land
232 class and type. It has the potential to allow large-scale interventions across space and time. In this
233 study, we consider the following SDG Indicators: Forest area as a proportion of total land area (SDG
23s  15.1.1) and the Proportion of land that is degraded over total land area (SDG 15.3.1).

235 Halting and restoring land degradation is a crucial priority to protect biodiversity and ecosystem
236 services that support life on planet Earth [43]. Alis heralded to serve this purpose by encouraging
237 “conservation biology” [44]. According to Vinuesa et al. [6], Al could bring positive contributions for
28 88% of the targets related to the SDG 15 (life in land), and negative impacts for 33% of them; however,
230 sound empirical evidence is lacking so far [21]. The main contribution of Al relies on enhancing
2¢0 the monitoring and surveillance systems by leveraging multiple data sources from remote sensing
21 [45] and satellite-based earth observation and geospatial information [21,43,46,47]. Global datasets
22 suffer limitations in terms of resolution and accuracy, while EO information (e.g., LandSat, Sentinel) is
2a3  mostly free and open access, available for large regions, providing long time series and data continuity,
2as  Tepresenting a complement to traditional statistics for the SDGs monitoring [46,47].

245 Therefore, merging Al and EO provides reliable and disaggregated data for better monitoring
2e6  Of the SDGs [48,49] facilitates data analysis, capacity for measurement and efficient interventions
2a7 [50]. Nevertheless, despite the progress in geoscience, the net impact of Al on SDG 15 is still poorly
2ee  understood. Yuet al. [51] claim that the use of Al to determine land use and cover change (LUCC) in arid
200 ecosystems has not been sufficiently researched but can provide predictions about land degradation
=0 and guide policies to mitigate potential issues. Isabelle and Westerlund [52] explore Al’s role in
=1 positively contributing to the SDG 15 targets. Indeed, the literature evidence contributions of Al to
=2 several SDG 15 targets (SDG 15.2, 15.3, 15.5, 15.7, 15.8) ranging from predicting deforestation and
=3 enhancing forest management [53-56], managing land degradation [43,56], combating poaching and
zs  protecting endangered species [57,58]; halting biodiversity loss and habitat degradation [44], reducing
265 invasive species [59,60], spotting plant diseases and fires or identity seeds [61]. Kolevatova et al. [62]
26 claim the relevance of explainable Al (XAI) to support the climate effects of land changes (land cover,
=7 deforestation, urbanization) with enhanced computational time and data usage. Palomares et al. [61]
=ss  underscore the great potential of Al systems for SDG 15 while claiming the need for high-quality open
=0 data and infrastructures.

260 Nonetheless, some limitations are also observed. Isabelle and Westerlund [52] stress that ML and
261 DL training is complex and time-consuming, demanding large amounts of data and skills which are
202 Not always available (e.g., endangered species), particularly in the least developed countries with a
263 lack of universal access to datasets, computing power and capacity. High-resolution data is needed,
26 but its costs are beyond the reach of small farmers. Using Al for deforestation or even maintaining
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2es  digital infrastructures are perceived as a challenge in these contexts due to logistic problems. Besides,
2es major forests/habitats (e.g., Amazonia) are also subjected to restrictive national policies [52,61]. Group
267 3 focused on the question of, how Al for LUCC monitoring impacts the holistic SDGs achievement? In this
20 study, we applied and complemented the DAF with literature from the Scopus database.

200 2.4. Group 4: Big Data as DI for International Law

270 The analysis of Big Data as DlIs in the context of International Law is intended to examine its
ann potential role in designing treaties and how it impacts the progressing SDGs. In the field of International
22 Law, there is a growing academic interest in the phenomenon of "big data." However, the relationship
273 between International Law and the massive use of data has not yet been explored [63]. "Big data" is a
27a broad concept that cannot be reduced only to the notion of an extensive data set because this concept
25 includes (among other things) the analysis techniques applied to the data [64]. Similarly, Boyd and
zre  Crawford [48] concluded that "less about data that is big than it is about a capacity to search, aggregate,
277 and cross-reference large data sets." Under those considerations, carrying out the analysis of the SDGs
2rs  in the light of Big Data and International Law is an opportunity to study and propose an effective
220 mechanism for compliance with the SDGs. When two or more States agree on a specific object and
200 Wish to give legally binding value to said agreement, they conclude a treaty [65]. In that sense,D

281 Target 2.5 and its indicators propose international cooperation at various levels. It aims to promote
2.2 access to fair and equitable education as well as share the benefits derived from the use of genetic
2e3  Tresources and associated traditional knowledge. It also seeks to increase investment, correct and
2es  prevent trade restrictions and distortions in world agricultural markets, adopt measures to guarantee
2es  the proper functioning of the markets for primary food products and their derivatives, and facilitate
2es timely access to information on the market, including on food stocks, to help limit extreme volatility in
207 food prices [66]. Unfortunately, according to the United Nations [67] the quantity of people suffering
2ee  from hunger and food insecurity has been rising continuously since 2014. Due to the inadequate
2e0  solutions at the international level, it is urgent to update and adjust the mechanisms of international
200 law in order to achieve SDGs [68]. The group focused on the question of what are the possible impact of
201 Big Data could have on the achievement of the SDG 2 through international policies” platforms? The analysis
202 explores the state-of-the-art within the framework of the DAF methodology.

203 3. Result/Outcome

206 3.1. Group 1: Smart Home Technologies (SHTs) as DI

205 The results of the digitainability assessment conducted by performing the literature review
206 illustrate (Figure 1) that indicators 7.1.1,7.1.2,7.2.1, and 7.3.1 have a synergistic impact. Data-driven
207 solutions hold great potential for energy security, energy equity, and environmental sustainability
28 [69,70]. Energy savings of 12%-20% can be obtained by introducing smart household products [71].
200 According to an Australian study, SHTs can identify the best energy sources at the right time, reduce
;0 costs and optimize accessibility and sustainability [72,73]. Another synergetic impact shows that it
;01 is possible to identify and predict energy poverty based on satellite images accessible through big
sz data technologies [74]. Considering the long-term impact of SHTs, their use over the next ten years
o3 will allow us to achieve the objectives of reducing CO2 emissions at the global level [75,76], enabling
s0s  households to operate in "zero emission" mode [77]. Further, data-driven solutions through IoT are a
s0s potential way to increase the share of renewable energy. Smart information systems (smart grids) allow
ss the integration of renewable energies and can ensure energy security and sustainability[71,78,79]. In
sz the renewable energy context, meteorological data can be used to forecast production and thus support
a8 the decision-making of the energy systems [80].

309 Nevertheless, the question of whether data-driven solutions promote energy sustainability
s10  remains. This question highlights the ambivalent and bi-directional impact of the different data-driven
su  solutions on the energy sector, focusing on 7.1.2 and 7.2.1 indicators. In fact, data-driven solutions
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a2 require high energy requirements and carbon footprints [6]. Notwithstanding the above, indicators
a1z 7.a.1 and 7.b.1 are considered to have an uncertain impact on the DL

1. Digitalization

Intervention 2. Purpose 3. Impact

Description Narrative/Context

,+Smart Home Technology“ — Using Al to monitor,
analyze and nudge users towards energy efficiency
in households.

- Empower citizens to use energy more efficiently

- Prompt residents to implement energy-saving
i I e lemgge

- Enable the transition to renewable energy

- Cost savings = L | B R ] e 77
- Reduce carbon footprint '1 I I O

- Privacy protecting

Measures

Using data from loT sensors placed in the
departments (incl. temperature, humidity, air
quality, energy meter data) and also open data (e.g.
weather, electricity prices, number of people living
in household data) in order to improve overall
energy consumption.

o] g 51 921 bes
(Source: Deutsche fur (GIZ) (2021): Al- < H ‘ ‘ ‘ ‘ ‘ ‘ ‘ ’ H ‘
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Figure 1. DAF outcome of Smart Home Technologies as DI

314 With regard to SDG 8, a synergistic impact supported by the literature has been reported for
ais  the indicators 8.1.1., 8.2.1,, 8.3.1,, 8.4.1,, 8.4.2., 8.5.1., 8.5.2.; whereas no impact was noted for the
as  other indicators. Previous evidence showed that household energy efficiency could help boost the
a7 economy and increase national GDP; this was conveyed in studies and use cases from the UK and
sie Canada [81-84]. For instance, in the UK, a potential 5% improvement in energy efficiency (through
a0 technological improvements), would result in an increase in the national GDP by 0.10% in the long
s20 term [81]. In Canada, researchers also found that "investing in energy efficiency is a significant net
sz benefit to the economy”. It will add 118,000 jobs (average annual full-time equivalent), and increase
sz GDP by 1% over the baseline forecast over the study period (2017-2030) [82]. Moreover, the impact of
;23 SHTs is observed in creating jobs and employment. Direct jobs will arise from recalling energy service
;22 companies, as well as indirect jobs for skilled professionals along the supply chain, such as energy
:2s  auditors and home energy raters, contractors, as well as retailers, and product distributors. In addition,
s2¢  workers hired into new direct and indirect jobs would spend their income on goods and services in the
s27  local economy, hence positively impacting the economy through the redistribution of savings [81,83].
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328 Nevertheless, other authors suggested that "the introduction of increased energy efficiency should
a2 be spread over all or at least a wider range of households for more effective impacts on energy
a0 efficiency” [85]. The reason for this suggestion is the “rebound effect” (when an item price decreases,
a1 users tend to use it more, eroding the benefits of household energy efficiency). Furthermore, energy
sz efficiency would indeed have a positive impact on the economy if users were correctly educated on the
a3 effective ways of dealing with energy efficiency, i.e., not using the income coming from energy saving
;3¢ to buy appliances that are not energy-efficient. Some studies also showed a more positive impact when
335 in-home displays were available [84,86].

336 The literature review did not disclose a strong correlation between SHT and SDG 9. SHT impact
s37  is ambivalent owing to potential new business models that can again have positive as well as negative
s impacts on the value-added by manufacturing processes. Indeed, Smart Home systems are often part of
330 alarger socio-technical system of the Smart Home bubble that triggers the introduction of other systems
s0  into the 'home’ (indicator 9.2.1) [87-89]. In addition, the impact of DI on indicator 9.2.2 is ambivalent
s due to the new demand for smart home energy experts and the way the system is maintained and
sz produced. This leads to other trigger effects of household demand for traditional heating/energy
a3 systems and consumers take over work from service providers [90]. Another ambivalent impact is for
sas  indicator 9.c.1 due to controversy in the inequality and accessibility of modern mobile infrastructure,
s knowing that the Smart Home system needs a modern mobile infrastructure to communicate and
sas  receive data via IoT or 5G network [91]. From the point of view of synergistic impact, smart energy
sz management at home and the need for a transition to renewable energy are more probable, especially
se  since the overall growth in ICT energy demand is increasing dramatically (indicator 9.4.1) [87,92,93].
a0 Indicators 9.5.1,9.5.2, and 9.b.1 have a synergistic impact based on opinion due to public and private
0 sector funding and research, as well as the high interest in implementing these systems, as they are
51 deemed necessary for the energy transition. The DI is being implemented by large energy providers
2 and established technology providers, with little room for smaller-scale industries. It is possible to
33 create start-ups or new digital business models that can leverage smart home energy. This aspect
54 brings an uncertain impact based on opinion (indicators 9.3.1, 9.3.2).

355 Regarding SDG 10, more studies are needed on a national level in order to prove a synergy
sss impact of the DI overall. Nevertheless, if implemented within a well-crafted national policy, one
ssz - could argue for such a positive impact (based on opinion, indicators 10.1.1, 10.2.1). The same could
s be argued for the labor share of GDP, especially when it comes to the green jobs created through this
0 technology. However, the consequent loss of traditional jobs should also be accounted for, hence
se0  leading to a potentially ambivalent impact of the DI (based on opinion, indicator 10.4.1.). In addition,
se1  an uncertain long-term impact of the DI could be observed regarding the proportion of discrimination
se2  Or harassment, alongside the total flow of development resources between countries and the costs of
363 remittances (based on opinion, indicators 10.3.1., 10.b.1., and 10.c.1.).

364 In the context of SDG 11, i.e., to “make cities and human settlements inclusive, safe, resilient and
ses  sustainable”, the SHT included within the setting of “data-driven smart sustainable cities” seems to be
ses an optimal representation, thus explaining the synergy impact on indicator 11.1.1 (based on opinion).
sez A bi-directional impact is also presented for indicator 11.3.1, the “ratio of land consumption rate to
ses  population growth rate”, given that it could influence and be influenced by the DI (based on opinion).
3o One additional interesting synergy impact of this DI is on indicator 11.6.2 (annual mean levels of fine
a0 particulate matter (e.g., PM2.5 and PM10) in cities (population weighted), literature-backed); previous
sn  evidence showed the positive impact of building energy efficiency measures on air quality [94]. While
sz this DI is promising on the environmental and sustainable development level in smart cities, much
sz more is needed to observe an impact on the other indicators in this goal, showcasing other crucial -
;74 even more urgent - problems that this particular DI could not solve, namely disaster risk reduction,
a5 providing personal safety, especially for women, children, older persons and persons with disabilities,
s7e  waste management, and supporting least developed countries.
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377 As such, the smart-grid energy-efficient technology may best be introduced as part of
s7s  a comprehensive national policy, along with other smart home digital interventions such as
sre  energy-efficient appliances and monitoring water and air quality, while also integrating renewable
;0 energy resources. In addition, this DI needs to be established in a wider range of households for an
;a1 optimal impact. Further, policies are needed to ensure the SHTs are implemented in the right way
;2 while respecting the ethical aspect of the DI, including the privacy and security of residents.

383 At the indicator level, there are few similarities between several indicators of the same goal,
ssa  While the potential for synergy and trade-offs between them has not been considered. In addition, the
;s multidimensional aspect of the indicators makes their interpretation ambiguous and contradictory.
s Another aspect of the different limitations is that the indicators have been formulated at a global
;a7 level, with countries having different, sometimes contradictory, interests, actors, and technologies.
ses  The independence between national statistical offices, the prioritization of the SDGs, and the different
;0 reporting systems of the countries are also aspects that limit SDGs and potential indicators.

390 The DAF helped to assess the impact of the SHT on the SDGs and provided a means of examining
=01 this association more scientifically and adopting a broader, multidimensional perspective of analysis.
s Hence, it provides the foundation for a more purposeful, wiser, and inclusive implementation of digital
303 interventions for sustainability.

s0s 3.2, Group 2: Block chain as a DI

205 To investigate potential responses to food production, distribution, and consumption challenges,
»s the group undertook an exploratory approach to understanding state-of-the-art regarding the potential
sz of blockchain technology as a DI in the context of food systems using DAF. To make the data interact,
ss the group undertook a literature review at the intersection of these three contexts: distributed ledger
300 technology (blockchain), zero hunger, and sustainable consumption and production. We focused on
a0 the context of developing countries with a significant number of consumers, producers, and retailers
s participating in the process. E.g., household food waste could indeed increase by 50% by 2030 due
a2 to the growing consumption of the middle classes in developing countries [95]. We examined the
«03 interactions between the various goals and targets and the extent to which they reinforce or conflict
a4 With each other.

408 Overall, the result (Figure 2) of this group exercise demonstrates that food traceability with
ws distributed ledger technology enables verification of food provenance by immutably recording
207 end-to-end transactions, which could prevent food waste and improve trust among stakeholders
a8 [96]. The technology can help achieve food safety and establish trust between actors by increasing
a0 the number of trusted transactions and verifying food provenance [97]. Application of the DI put in
a0 place an infrastructure that fosters a more responsible production and consumption pattern in the food
an  supply chain to reduce food waste [40]. Monitoring and traceability of food can ensure the food is
sz marketed within its life cycle [97].

413 For SDG 2, we identified four indicators that were found to be relevant but were somewhat
a4 ambiguous as to their potential impact. For indicator 2.3.2 (Average income of small-scale food
a5 producers, by sex and indigenous status), the literature pointed to the empowerment of farmers (e.g.,
«1e  Ekawati et al. [98]) and other stakeholders (e.g., Kochupillai et al. [99], Patel et al. [100]) through data
a7 as well as the potential increase of farmers’ income [101]. Regarding indicator 2.4.1 (Proportion of
a1s  agricultural area under productive and sustainable agriculture), several papers underscored that food
a0 safety traceability systems which are backed up by big data and the IoT ensure agility, transparency,
a20  integrity, reliability, and safety of traceability information (e.g., Feng et al. [37], Vivaldini [102], Zheng
a2z et al. [103]). Furthermore, the connections between food security and climate change, as well as related
a2 risks and their respective stress on water and soil resources, are acknowledged [104]. A particular
«2s empbhasis in this regard was placed on the context of developing countries such as India, where the
a2¢ public distribution system (PDS) could be explored [105]. Regarding the indicator 2.5.1 (Number
«2s of (a) plant and (b) animal genetic resources for food and agriculture secured in either medium- or
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long-term conservation facilities), Rao et al. [106] highlight the need for DNA-based technologies
in, e.g., in meat markets. In terms of the 2.c.1 Indicator of food price anomalies, traceability across
an extended number of stakeholders improves blockchain-based trust management [40], bargaining
power, and democratization [107], which can be fostered through the involvement of state actors [108].
Additionally, competition between traditional and online channels may prove valuable [109], although
the cross-channel information strategy and its relation to performance remain unclear [110].
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Figure 2. DAF outcome of Blockchain as DI.

For SDG 3, 3.9.3 (Mortality rate attributed to unintentional poisoning), blockchain yields a dubious
impact on food selection and the spread of polluted foods (e.g., Nurgazina et al. [38], Behnke and
Janssen [111]), wrongly labeled foods that caused death to customers [41] or improved efficiency
while also addressing concerns about animal welfare, environmental sustainability, and public health
[112]. As for SDG 6, 6.3.2 (Proportion of bodies of water with good ambient water quality), blockchain
shows limited evidence of impact on real-time water quality monitoring [113]. There is potential
for synergistic effects with the indicators 6.4.1 (Change in water-use efficiency over time), and 6.4.2
(Level of water stress: freshwater withdrawal as a proportion of available freshwater resources), as
crops can be irrigated and managed with higher precision (e.g., Arsyad et al. [114], Duan et al. [115]).
Additionally, blockchain may be instrumental in generating insights on the characteristics of soil and
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w2 water, climate conditions, treatment with pesticides and fertilizers, production process, traceability,
a3 transparency, labor and human rights, quality and safety, waste reduction, authenticity, relationship
saa  with stakeholders, etc. (e.g., Iftekhar et al. [104], Luzzani et al. [116]).

ass The impact on SDG 8 is stated but not definite by the indicators 8.1.1 (Annual growth rate of
ass  real GDP per capita) and 8.2.1 (Annual growth rate of real GDP per employed person), although the
a7 potential for a major impact on employment in the agriculture sector is discernible (e.g., Nurgazina
as etal [38], Chenet al. [117], Fan et al. [118], Guo et al. [119]). The indicator 8.3.1 (Proportion of informal
as  employment in total employment, by sector and sex) highlights the diversity of affected actors who
a0 could nonetheless be expected to benefit from the blockchain technology [120], such as SMEs [121].
as1 Using blockchain can improve the indicators 8.4.1 (Material footprint, material footprint per capita, and
«s2  material footprint per GDP) and 8.4.2 (Domestic material consumption, domestic material consumption
453 per capita, and domestic material consumption per GDP) insofar as it improves supply chain operations
454 economic, social, and environmental efficiency (e.g., Nurgazina et al. [38], Fan et al. [118], Tripoli and
a5 Schmidhuber [122], Yadav et al. [123]).

as6 For SDG?Y, 9.2.1 (Manufacturing value added as a proportion of GDP and per capita) elaborates
ss7 on the potential of blockchain technologies for the procurement contract and industrial added value
«ss  and operational performance [124-126].

450 For SDG 12, 12.1.1 (Number of countries developing, adopting, or implementing policy
a0 instruments aimed at supporting the shift to sustainable consumption and production), integrating
ss1  organic, kosher, or halal certification into the blockchain could reassure stakeholders [127] and ensure
sz fairer supply chains [128]. In that line, indicators 12.2.1 (Material footprint, material footprint per
63 capita, and material footprint per GDP), e.g., optimizing energy consumption [129], 12.3.1 ((a) Food loss
sss index and (b) food waste index) and 12.5.1 (National recycling rate, tons of material recycled) highlight
ss food waste issues [130-133]. As such, blockchain is seen as a potential solution to contribute to the
s circular economy (e.g., Tripoli and Schmidhuber [122], Rejeb et al. [134]). The indicator 12.7.1 (Degree of
sz sustainable public procurement policies and action plan implementation) discusses blockchain-based
ses digital contracts and its contribution to public procurement [101]. For the indicator 12.8.1 (Extent to
o which (i) global citizenship education and (ii) education for sustainable development are mainstreamed
a7o  in (a) national education policies; (b) curricula; (c) teacher education; and (d) student assessment), the
an work of agricultural development cooperatives has been mentioned [135].

a2 For SDG 14, 14.2.1 (Number of countries using ecosystem-based approaches to managing marine
a3 areas), examples outlined in the literature demonstrate the use of blockchain technology to inform
a7 consumers and society, providing more transparency throughout the fish product value chain [136,137].
azs  For the indicator 14.4.1 (Proportion of fish stocks within biologically sustainable levels), blockchains
a7ze  provide added value to determine the provenance and authenticity of seafood [138,139].

a7z However, when we contrast these research findings with the general expectations regarding the
a7s  potential of blockchain technology in this particular field, we find that the evidence is still lacking.
aze  Thus, our assessment mostly sits in the “uncertain” impact category. Additionally, SDGs 1-3 (no
a0 poverty, zero hunger, health and well-being) were rather underrepresented compared to the purported
a1 potential in these domains.

282 The SDGs are universal in their application and their scope aims to transcend the boundaries
«es  between the developed and developing world. They provide a policy framework that aims to ensure
ass greater coherence between social, environmental and economic objectives, where such issues had
sss  previously been addressed in various diplomatic, political and institutional arenas. However, keeping
wss track of progress is hampered by the difficulty of measuring sustainable development in all its
a7 complexity, partially due to broadly defined objectives, the achievement of which is measured through
as  a wide array of narrowly outlined indicators. However, gathering data to monitor these indicators,
a0 intended to assess the achievement of the SDGs, is a major data challenge that fails to account for
w0 local contexts: available data are, in many instances, outdated [140] and, therefore unusable, as
201 it was with the decennial agricultural census in Lebanon, for instance, [141]. Moreover, the sheer


https://doi.org/10.20944/preprints202212.0565.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 30 December 2022 d0i:10.20944/preprints202212.0565.v1

a2 number of indicators risks tilting the implementation of the SDGs into a technocratic exercise far from
a3 the transformative ambition it was set out to achieve. Finally, besides its technological challenges,
a0s  blockchain raises legal and regulatory issues, which lawmakers are only beginning to tackle: the
a5 cross-border aspect of the technology hinders the enforcement of set rules.

a96 Transforming and improving the efficiency, inclusiveness, and sustainability of agricultural and
a7 food systems is necessary to ensure that food loss and waste do not undermine efforts to eradicate
w8 hunger, improve nutrition, and reduce pressure on natural resources and the environment. To reconcile
ass the challenges of food security and equity, decision-makers must be able to make informed strategic
so  choices among a range of options for managing food systems. However, the knowledge gaps found
so1 in the literature impede estimates of the sustainable exploitation potential of blockchain technology.
so2 To this end, international and interdisciplinary applied research from a broad spectrum of thematic
sos expertise is needed to fill the knowledge gaps on ecological, economic, and social processes interacting
sos  with blockchain technology in the context of food security. At the same time, we need to critically
sos assess the usefulness of specific indicators which lack contextual country-level application potential or
sos explore avenues for qualitative assessment which could complement the picture. Thus, a more holistic
sor impact assessment using the SDGs as a compass or navigating framework is deemed an advisable
sos  starting point which, however, needs to be enhanced through qualitative means of SDG assessment.
soo However, we believe that the SDGs and the associated focus on the indicators provide an interesting
si0  avenue for further exploration, as the indicators offer an impact-based assessment and contribution to
su the grand challenges of our time.

siz 3.3. Group 3: Alas a DI

513 The digitainability assessment observed mainly synergistic impacts with on SDG 15 targets, as
s.e  well as relevant connections with many of the SDGs, especially with SDG 6 (water), SDG 2 (agriculture),
sis - SDG 13 (climate), and SDG 11 (cities).

516 For SDG 1 (End poverty of all forms everywhere), we found by applying the DAF methodology
si7 (Figure 3) that most of the indicators of SDG 1 are not relevant to Land Management, with the exception
sie  target 5, where Al can perform a vital role in terms of the exposure to Climate extreme events, and
s1s  environmental disasters. For example, Al can predict floods using the Artificial Neural Network
s20 (ANN), which runs hydrological models [142] and can model heat waves as used by Vautard et al.
s [143].

s22 In the case of SDG 2, which is related to the function of our soil and its productivity for crop
s production, and the fairness of its distribution, we found that all targets related to land use, such as
s2a target 2.3 of increasing agricultural productivity. Al tools are used for crop monitoring as the model
s2s done by Singh et al. [144], who used Al and IoT (Internet of Things) to detect the most suitable land
s2¢ and conditions for plant growth. Al has shown to be a powerful tool in terms of big data analysis for
s27  soil quality, as shown in the review by Eli-Chukwu and Ogwugwam [145].

520 For SDG 3 to ensure healthy lives and better well-being is cross-cutting with land management
s2 in some of its targets. Consequently, there may be potential trade-offs in the application of Al on
s0  these indicators. SDG 3 is targeted to ensure good mental health for all, mental health is directly
s associated with recreational activities which are directly affected by Land management. Therefore,
s2 Al is being used to quantify and map recreational sites for better well-being and good health [146].
sss Not only this, but since SDG 3 targets reducing deaths caused by road injuries, Al-enhanced models
s« in road management, predictions, and transportation are offered for safety and for tracking injuries
sss [147,148]. One of the most important factors for better health is accessibility, either for education,
ss.s medical services, or mental improvement. AI (ANN) models are used for measuring land accessibility
ss7  rates in urban areas where it serves as the main factor for better well-being [148]. As shown in SDG 2,
sse  Soil pollution is being quantified, which serves as some of SDG 3 indicators for reducing the death rate
s39  as a result of food pollution [144].
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Figure 3. DAF outcome of Al as DI

540 For SDG 5, synergistic impacts exist between three of the indicators and Al use in relation to
saa only one indicator relevant to land and its ownership. These include 5.2.1 [149], 5.5.2 [150] and 5.c.1
sz [151,152]. Considering SDG 7 (sustainable energy) and SDG 13 (climate action), the energy sector
sa3  is enduring a disruptive transformation towards a more decentralized, digitalized, decarbonized,
see climate-neutral and green future, with strong synergies with the building, transport, and infrastructure
sas  sectors [153], and large impacts on climate. Al brings huge potential to accelerate the green energy
ses transition [154-156], but its current application is limited to pilots, with barriers to scaling up. Al
se7 applications for energy cover consist of high-fidelity models for predicting renewable generation
sss and demand, grid and systems optimization, operation and maintenance, demand management and
se0 innovation [157-159]. Virtual Power Plants can boost distributed energy and automation of small,
sso  distributed devices such as electric vehicles [153,160].

551 Vinuesa et al. [6] claim that AT has the potential to contribute to all SDG 7 ambitions positively but
ss2  at the same time might be an inhibitor for 40% of the same targets. According to the group analysis, Al
sss  could contribute positively to enhancing access to electricity (7.1.1.) and clean fuels (7.1.2). Particularly,
ssa Al for land management can help to identify better supply needs and coverage of clean energy facilities
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sss  (e.g., solar roofs) and match them according to the population and available resources in the area
sse  [161-166].

557 Besides, Al might bring bi-directional impacts on SDG 7.2.1 (renewable energy share) and SDG
sse  7.b.1 (installed renewable energy capacity in developing countries). Firstly, ML and DL could help
sso  assess the availability of renewable energy resources (e.g., wind and solar irradiation) [167-170] as well
seo  as supporting enhanced planning and monitoring of energy facilities [153,160]. Secondly, it is widely
ser recognized that Al drives resource efficiency gains and enables the flexible matching of supply and
sz demand in real-time through smart grids and microgrids [14,153,163,171-173]. Nevertheless, smart
ses grids can suffer cyber-attacks and are prone to blackouts in the least developed contexts [61]. On the
ses oOther hand, renewable energy could help curb the growing carbon footprint of energy-intensive
ses algorithms (e.g., Deep Learning) and facilitate more sustainable use of digital technologies by
ses integrating green energy in data centers toward carbon neutrality and green AI [160].

567 However, an ambivalent impact is observed on SDG 7.3.1 dedicated to energy intensity (primary
see energy) which merits further analysis since the related net effect remains unclear. Al for land
seo Management can support efficient use of resources leading to lower energy consumption and intensity
s2o  of the economy [174,175]. However, potential rebound effects [176] may arise along with growing
sn energy demand from the DL algorithms [177,178], which might outweigh the benefits. Al systems,
sz particularly Deep Learning, require mitigating strategies to reduce their large carbon emissions
szs [179-181]. Besides, a lack of transparency and accountability is observed regarding carbon emissions
s7a  [182], which are generated in three ways: by its use for applications with negative impacts (e.g., Oil
sz and Gas); system-level impacts; the life cycle of software and hardware [158].

576 Regarding SDG 13, Al brings huge potential for understanding the climate crisis, and the literature
sz provides evidence of its positive role in supporting crisis and disaster management, early prediction of
s7e natural events, as well as opportunities for education on climate responsibility and action [157,158,163].
s7o  Seetra [183] claims that Al shines in dealing with complexity and enhancing climate science and policy,
sso but the political harms of algorithmic governance should be avoided. Vinuesa et al. [6] argue that Al
s systems could bring benefits to 70% of the targets, causing negative effects on 20% of them.

s82 According to our analysis, Al systems bring positive synergies to SDG 13.1.1 (deaths and missing
ses persons due to disasters), providing enhanced disaster prediction and management [157,160,163,
ses  184,185]. An ambivalent impact is identified regarding SDG 13.2.2 on GHG emissions, in analogy
ses  with SDG 7, due to the yet unclear net effects of Al systems in terms of energy consumption and
sss related carbon footprint. In combination with earth observation (i.e., Land and Sentinel Satellites), Al
se7  could help assess the emissions and their effects, while algorithms generate a high carbon footprint.
sse  Several experts call for more transparency in terms of the climate impacts of Al. Regarding the
seo  contribution to SDG 13.3.1 (education for sustainable development), Al has indeed the potential to
seo analyze massive educational data (e.g., MOOC), adapt educational programmes to the needs of the
s students, and provide augmented reality [157]. At the same time, nonetheless, it could aggravate
so2 extant inequalities and biases. However, limitations are observed with regard to most SDG 13 metrics
sos  as they are considered narrow and mainly focused on the countries with established climate strategies
ses and financial resources. SDG 13 targets and indicators do not reflect the complexity of this crucial
sos goal and do not provide suitable means for measuring progress. Even when Al has the potential to
sos contribute to a better understanding and monitoring of SDG 13.1.2,13.1.3, 13.2.1, and 13.b.1 focused
soz on the availability of disaster risk strategies and plans, little evidence is provided in the literature and
sos these impacts remain uncertain.

s00 With regards to SDG 9 (industry, infrastructure, innovation) and SDG 11 (sustainable cities), Al
s0 systems in combination with Big Data, IoT, and Digital Twins, could contribute to support both a
s1 resilient, sustainable, and circular industry and smart manufacturing [186] by monitoring pollution
sz and resource efficiency, enhancing transport and communication infrastructures and boosting research
sz and innovation across all the domains [159,163]. In the urban sphere, the great potential of Al in
s0s combination with the Internet of People (IoP) for smart and low-carbon cities is widely recognized
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sos [14,61,187]. Therefore, a positive contribution to SDG 9 and SDG 11 is evinced with benefits to SDG 12
es Dy a more sustainable production supply chain.

607 In our analysis, a synergic impact is observed in relation to SDG 9.1.1 (rural population near an
soe all-season road) and SDG 9.1.2 (transport) since Al for land management might support the mapping
eo and monitoring of population close to road facilities [51,188,189] as well as the volume of passengers
ew0 and freight from Big Data coming from transportation systems [190-192], and their evolution patterns
s Over time. An ambivalent impact regarding the contribution to SDG 9.4.1 (CO2 emissions) is observed
sz since Al for land could be useful to calculate the carbon footprint based on LCAs from different
e13 activities, forest extension, and soil features acting as carbon sinks [193,194]. At the same time,
s1s  however, large GHG emissions are associated with Al systems, as aforementioned. Al could support
e1s the optimization of supply chains and energy systems, improve quality, and reduce defects, leading
eis  to resource efficiency but rebound effects could increase the net emissions and material footprint
eir  [163,195,196]. Nonetheless, cyber-security and privacy represent critical risks that should be wisely
s1e considered in critical facilities. Besides, its impact is unclear with regard to SDG 9.5.2 since Al could
e10 foster scientific discovery, benefiting many researchers in the realm of SD [197], but no clear evidence
s20 has been provided in the literature so far. A bi-directional impact is proved regarding SDG 9.c.1
ez (population covered by the mobile network) since Al for land can help monitor the mobile network
s22 and population coverage while better mobile connectivity could also be an enabler for enhancing
e2s Al capabilities and better access to mobile Big Data [198,199]. Al systems are already contributing
622 to SDG 11 in numerous cities around the world, but their use for smart cities has been criticized for
e2s lacking genuine sustainability and citizen-centric approach as well as for being focused on highly
e2s developed economies [187]. Moreover, several targets (11.1, 11.4, 11.a, 11.c) have been overlooked in
e27 the literature on Al for cities, which has been mainly focused on: mobility, environmental management,
s2¢ and monitoring (water, air, waste, energy), disaster responsiveness. Therefore, significant gaps remain
e20 in ensuring the social good of Al towards sustainable smart cities for all. Despite the potential benefits,
ec  SDGY and SDG 11 metrics represent a fragmented and incomplete perspective of infrastructures,
e industry, and cities, hindering the outstanding potential of Al and digital paradigms in these domains
32 and lacking evidence for a relevant number of indicators.

633 For SDG 10 (inequality), one of the well-known menaces of Al systems is its potential to exacerbate
e3s inequalities, bias, and discrimination. Vinuesa et al. [6] argue that in SDG 10, most impacts of Al
e3s  systems are considered negative, causing trade-offs in 55% of the targets. Admittedly, uncertain
e3s impacts are identified in most targets, and a potential trade-off in terms of potential discrimination
esz is caused by extant algorithms. Again, limitations are observed in relation to narrow targets and
e metrics. Al systems could support better and more efficient monitoring of metrics about people
30 below-median income (SDG 10.1.1, 10.2.1), migration and refugees tracking (SDG 10.7.2,10.7.3, 10.7.4),
es0  fiscal control of markets, financial and economic indicators (SDG 10.4.2, 10.5.1, 10.a.1., ODA flows,
e Temittances) but a clear, direct impact is not evidenced in the literature due to a lack of empirical
sz evidence. The most relevant impact of Al systems on SDG 10 is a trade-off related to discrimination
ses  (SDG 10.3.1.) and potential bias [192,200-205]. Indeed, Al has been widely criticized for augmenting
eas inequality, bias, discrimination, and reproducing hierarchies [204]. Even when Al could contribute to
ess fighting discrimination by analyzing massive amounts of data (e.g., social networks, PNL, sentiment
ses analysis), the negative impact outweighs any benefit. Besides, access to Al systems and digital skills
ea7 is uneven across geographies [206], and Al-based automated work could also amplify inequalities
ess against vulnerable people.

649 According to Vinuesa et al. [6], Al systems can be expected to have a positive impact on 59% of
eso  SDG 12 targets and a negative impact on 16% of them. They could support tracking consumption
es1 towards sustainable patterns and better ESG monitoring, facilitating a circular economy. However,
es2 severe uncertainties emerge regarding the well-known negative trade-offs of digitalization in terms of
ess material footprint and e-waste. Saetra argues that the positive effects seem negligible with a lack of
esa evidence and empirical data, and the negative impacts outweigh the benefits. Di Vaio et al. [207] claim
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ess that Al could drive a cultural drift in SDG 12 by enabling sustainable business models, but relevant
ess  gaps remain, and ethical considerations should be integrated to ensure the proper use of this paradigm
sz for the 2030 Agenda. Indeed, we observe three ambivalent impacts regarding the contribution of Al
ese  systems to SDG 12.2.1 (material footprint), SDG 12.4.2 (hazardous waste), and SDG 12.5.1. (Recycling
ess rate). Al could increase the need for data centers and related digital infrastructures leading to an
eso increase in material footprint, land use, and e-waste, while at the same time, ML and DL systems could
se1 support an optimized production system, resource efficiency, and environmental awareness [208,209].
ssz Al for land management could improve the monitoring of waste treatment facilities and the detection
ess  Of illegal landfills [190,210-215]. But it might also lead to increased waste due to the required digital
ess infrastructures and the digital-induced overconsumption [21].

665 In contrast, synergic impacts are found in relation to the application of Al systems to SDG 12.3.1
ess (Food Loss and waste), SDG 12.6.1 (corporate sustainability reporting), and SDG 12.b.1 (accounting
es7 tools for sustainable tourism). Indeed, Al for land management can help to monitor agricultural
see fields and crops, influencing the availability of food on the market. Yet, the relationship between food
sso  supply chains and related losses is not clearly established [134,216-218]. Al for land management
er0 could be useful to support the ESG reporting [219,220], particularly regarding land and soil [221,222]
enn  as well as to bring information about the potential impacts of tourism on land and environment [223].
ez Bi-directional impacts are observed regarding SDG 12.a.1, linked to SDG 7.b.1 (installed renewable
ers energy in developing countries). Al for land management could help map and monitor renewable
era energy facilities by using Geospatial Big Data and distilling it into knowledge [224]. Besides, more
e7s renewable energy could help Al to be more sustainable by reducing its carbon footprint. Again, SDG 12
e7e metrics are considered narrow and unable to represent the complexity of the sustainable consumption
erz and production paradigm, hindering the potential of Al to contribute to the 2030 Agenda.

678 Considering SDG 17 (means of implementation and partnerships), Seetra [21] underlines the
7o relevance of the partnerships’ support for monitoring systems and compliance but claims that despite
eso  its outstanding relevance for governance, the role of Al in SDG 17 has been overlooked. Vinuesa et al.
sex [0] argue that Al could positively contribute to just 15% of the subgoals while causing a negative
ss2 contribution to 5% of them. We observed that most impacts are uncertain due to a lack of evidence
ess and empirical data, along with strong limitations and shortcomings featuring SDG 17 targets and
sss metrics. Al systems could support SDG 17.6.1 (fixed Internet broadband subscriptions) and SDG 17.8.1.
ses  (Individuals using the Internet) by enhancing the monitoring and operating of digital infrastructures
sss  [225-227]. On the other side, proper Internet broadband coverage supports cloud-based Al systems.
ez However, the literature in this area is sparse. Synergies can be observed regarding SDG 17.16.1
ess  (monitoring frameworks) and SDG 17.18.1. (Statistical capacity for SDGs monitoring), since Al systems
ses in combination with Big Data (e.g., earth observation, sensors, IoP) can be a relevant tool for enhancing
eso  statistical capacity and monitoring all the SDGs [69,228-230] and particularly SDG 15 targets.

601 Overall, Al offers exceptional potential for enhancing land-related metrics (SDG 15) in
e02 combination with remote sensing and satellite earth observation data. However, several limitations,
e0s barriers, and risks remain to leverage and mainstream the full potential of Al systems for social good,
eos particularly in the least developed countries constrained by a lack of resources and capacities and
es unsuitable logistics and regulations. Al requires synergic integration with other digital paradigms
os (e.g., 0T, Digital Twins, Big Data, 5G, blockchain), trustworthy regulation, transparent accountability,
esz and cross-fertilization with multidisciplinary domains such as climate change agriculture, water, ocean
e0s ecosystems, and urban planning. The impacts of Al on land management are mainly positive synergies,
e0o but several trade-offs and ambivalent impacts are also evidenced. This is particularly the case with
700 regard to the net carbon footprint, material footprint, as well as unsolved social dilemmas and ethical
71 implications [67,231].

702 In relation to the potential impacts that Al for land management brings across the whole SDG
703 indicators, most observed interactions can be considered synergies and ambivalent impacts, including
s trade-offs with unclear net impact. These ambivalent impacts are mainly related to the “Janus faced”
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70s nature of Alin terms of the carbon footprint from energy-eager algorithms (e.g., DL), material footprint,
76 and e-waste from supporting data-driven infrastructures subjected to early obsolescence, rebound
77 effects causing overconsumption, cyber-security vulnerabilities, but also social and ethical threats such
708 as capacity constraints, asymmetry of power, malicious use [232], misinformation, discrimination,
7s inequalities, bias, security, safety, privacy and greenwashing. A few interesting bi-directional impacts
710 are also observed due to the enabling nature of both digitalization (broadband and mobile connectivity)
7 and renewable energy, which deserve further exploitation.

712 In addition, a significant number of uncertain impacts have been identified due to the intrinsic
=3 limitations of the SDGs targets and indicators and the lack of literature and empirical data for many of
na  them. One of the main barriers to the application of Al to SD and the 2030 Agenda stems from the
ns  drawbacks of the SDGs targets and indicators themselves. It is widely accepted that SDG indicators
ne are narrow and reductionist and do not reflect the complexity of the domains they are expected to
71z cover [18].

718 In addition, a relevant limitation of this analysis relies on the potential bias induced when selecting
ne datasets [159], applying black-box algorithms and when evaluating interactions and impacts based
720 0N expert opinions and pilots whose results are difficult to extrapolate and could lead to spurious
72 conclusions [52]. In conclusion, there exists a burgeoning research landscape and huge opportunities
222 but also several caveats, data and reporting gaps, lack of accountability, and limited literature on
723 the contribution of Al to most SDG metrics that merit further research. Besides, contexts are highly
724 relevant, and further research is needed in underrepresented countries, especially from the Global
725 South.

726 Ensuring a sustainable, responsible, and inclusive application of Al for the 2030 Agenda will
72z require trustworthy regulation beyond human-centric principles [233] and ethical standards [6,234,235]
72¢  to halting the “wild west” of the unregulated AI [206]. Besides, greening Al is an urgent priority and
72 might be achieved by policy incentives for green algorithms [236], renewable energy and efficiency
730 in data infrastructures, standardized methodologies for carbon and energy accountability embedded
751 within the whole life cycle of Al systems [181] and environmental education. Accountability and
732 transparency should be encouraged using FAIR data, trustworthy and Explainable AI (XAI) to fight
733 discrimination and biased outcomes. Further research on social dilemmas and ambivalent impacts
73s is needed and should cover all relevant contexts and communities, particularly the Global South, to
735 reduce digital divides. Alliances for social good might bring relevant stakeholders together, including
736 civil society and vulnerable communities, to share data [157] and overcome current capacity and
737 accessibility constraints such as the non-universal access to data sets [237]. Finally, the SDG framework
73 and metrics should be revisited through the lenses of digitalization to accommodate the opportunities
730 brought by Al in combination with EO and Big Data. This evolution of the 2030 Agenda monitoring
a0 should bear in mind the systemic nature of sustainability and digitalization; therefore, methodologies
z1  and standardization are needed for this purpose [238].

re2  3.4. Group 4: Big Data as DI for International Law

743 The results of this study demonstrate (Figure 4) the opportunities provided by Big Data to achieve
7as the SDGs. It showcases the benefits of action learning by taking a futuristic perspective about the
7s  potential impact of DIs. This study aims to demonstrate how DAF can help innovate while anchoring
a6 insights in a mindful consideration of DI impacts on SDGs.

7a7 Implementing Big Data to achieve SDG2 to create binding international treaties would allow
ne  direct compliance with indicator 2.5, which seeks to promote access to fair and equitable sharing of
zas  benefits arising from the utilization of genetic resources and internationally recognized traditional
70 knowledge. Its implementation is primarily aligned with the "means of implementation” targets.

751 It would allow to increase and facilitate investments to improve international cooperation in
72 rural infrastructure, agricultural research facilities, technology and research development, research,
s and gene banks to increase agricultural productive catalyzing target 2a. Proper management of Big
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7s¢ Data can facilitate access to transparent, updated, and complete information for trade and global
755 agricultural markets and fair prices aligned with Target 2c. The information and improvement of the
7ss markets can help to eliminate export subsidies in line with the Doha Development Round and 2b

757 Target.
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Figure 4. DAF outcome of Big Data as DI

758 Beyond SDG 2, Big data and international law can be adopted for other targets, especially the
7o "means of implementation" targets, that seek to ensure significant mobilization of resources. For SDG 1
760 (1.a and 1.b) on policy-making and investment in developing countries, SDG 3 (3.d) to reduce risks and
761 health risks, SDG 7 (7.a) for clean energy investments, SDGS (8.a) aid trade for developing countries,
762 SDG 9 (9.b) for technology development, SDG 11 (11.c) for sustainable and resilient buildings, SDG 13
763 (13.a) to implement committees under the UNFCCC, SDG 15 (15.1) for conservation and restoration
7ea  Of ecosystems inland, SDG 16 (16.3, 16.8, 16.10) to ensure access to justice, participation in global
7es institutions and governance particularly of developing countries, and fundamental freedom, and SDG
ee 17 (17.2,17.4,17.6,17.9,17,10, 17.13, 17.16) to aid countries to implement the assistance commitments,
767 coordinate coherent policies for long-term sustainability, enhance international cooperation and
76 capacity building, implement the non-discriminatory multilateral trading system, improve global
760 mMacroeconomic stability and enhance the Global Partnership for Sustainable Development.
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770 One of the most important characteristics of International Law Treaties is that they are concluded
1 by the will of the parties. According to Linares [239], an international treaty "is an instrument where
772 provisions are freely agreed between two or more subjects of International Law to create, modify or
773 extinguish obligations and rights." Therefore, if the developing States do not have the will to sign
77a  treaties, the countries that need help and cooperation will not be able to implement the proposed
775 measure even when big data demonstrate to the parties the benefits of signing the treaty. Pulido-Ortiz
776 et al. [240], mention that "normative language suffers from indeterminacies caused by the ambiguities,
77z vagueness, and inaccuracies of the words and sentences, and by the contradictions, redundancies, and
77s  gaps in the set of legal norms". In this order of ideas, the indeterminacy of the language of the SDGs
770 can mean that the creation of a binding international treaty does not achieve its objective; even with
7e0 the help of Big Data, the indeterminacy of the ODS would prevent meeting some of the 2030 goals,
ze1 and nothing ensures compliance with the goals.

782 Another great challenge is that the States provide the correct and adequate information to be
7e3  able to create the database of the needs that some States have in order to carry out a treaty and
7es Obtain a benefit. Additionally, developing countries do not have sufficient technology to collect the
7es Necessary information to identify their needs and eventually create an international treaty. As long as
e the technology gap is not overcome, big data for International Treaties may be ineffective.

7sz 4. Discussion

788 DIs has the potential to accelerate sustainable development. However, implementation actions still
7e0 Need to be improved in several areas for some technologies to fully utilize their potential for achieving
70 the SDGs. Results from the case studies highlight the differences between countries in the use and
71 maturity of the technology. Groups 1, 2, and 3 identify impacts at indicator levels covering synergies,
72 ambivalent impacts, trade-offs, bidirectional impacts, and uncertainties, showing the interlinkages
703 that SDGs have at an indicator level and the diverse impact that DI can have depending on the context
70 Where those DI are applied. The results of Group 4 pointed out that beyond the application of the DI
75 towards the achievement of the SDGs, the legal wording and language used in the 2030 Agenda may
7s hinder the application of the DI and collaboration at the international level. Results also showed the
7z scarcity of literature when it comes to evaluating and supporting the DAF analysis. Furthermore, the
78 interlinkages between SDGs have yet to be fully understood, which hampers a fully comprehensive
70 DAF analysis. For example, the interlinkages between targets and indicators of SDG 1, 8, 9, 11, 13,
soo and 15 are unclear but seem to have affinities in broader contexts because of the social, environmental,
so1 and economic dependencies. For instance, SDG 7 has complex linkages with SDG 12 regarding
s02 industrial development and clean energy to sustain a green transition. Achieving SDG 6 may affect
s03 the progress of SDG 3 targets, as access to clean water and sanitation is fundamental to delivering
sos health services. In addition, in the case of group 4, outcomes on Big Data for International Law results
sos showed that the potential of DI remains unexplored. The analysis of group 4 also demonstrated two
s0s crucial aspects, first the methodological aspect about how lack of clarity on indicators and context lead
soz to a surface interpretation of DI implications, and second the advantage of the method to help identify
s0s the importance of big data to facilitate the identification of partners and pathways to create robust
s00 policies to advance the SDGs.

810 The action learning undertaken through the DAF tool, as presented in this paper, has facilitated
s the in-depth identification of the complex and interrelated impacts of DI for sustainable development.
sz The process helped peers in each group to question, reflect and generate actionable learning that would
a1 flow into the mindful application of DIs. The process also helped improve the current understanding
s1a  Of the peers in a multidisciplinary manner and kindled a new strategic approach for sustainable
a5 transformation. Throughout the DSS, participants worked on their identified DI for digitainability
s assessment with the support of other participants and insights from experts and advisors on various
sz aspects at the intersection of sustainability and digitalization. Feedback from guest specialists during
a1 the DSS also helped participants make sense of their multidimensional experiences through real-time
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a0 reflection and relevant theories. The flexibility to incorporate information from scientific literature,
s20 grey literature, and other potential sources also helped in mapping the multidisciplinary knowledge
s22  and existing gaps. Thus, operationalizing DAF for action learning with feedback enriches participants’
22 practices and values to ensure that any multidimensional actions identified in the assessment are seen
=23 not as neutral or positive stances but as positions with specific impacts. As can be noticed from the
s2a group work and outcomes, each group used different techniques for evidence gathering and analysis.
e2s  Despite this, the result demonstrates the versatility of DAF in facilitating inclusive, diverse voices to
=26 be heard at different levels during the digitainability assessment of technology, leaving no one behind
s27  for sustainable development.

a2 The findings also demonstrate the extent to which analysis of the actual impacts on the SDGs
e20 1is limited. It is crucial to navigate between intra- and inter-administrative boundaries at the micro,
a0 meso, and macro levels to analyze the DIs impact in a specific context with stakeholders’ intent
sa1  in implementing DI. It helps realize the scale and dependence between administrative levels and
es2 the overall impact those have on the target and goal, with hints to understanding the impacts of
e3s administrative boundaries. Results also indicate that analysis focusing on varying levels and contexts
a3  should consider the information in great detail to understand the short and long-term impacts of the
e3s  DlIs in intra- and interdependent forms and contexts.

836 When considering sustainable development, it is also crucial to balance the progress towards all
=3z the key dimensions of sustainability because substantial adverse effects in one could lead to a chain
sss  reaction of repercussions on overall progress. DAF provides a method for assessing impact along
e30  several dimensions. However, current data gaps pose several limitations to a comprehensive analysis.
ss0 Furthermore, the crucial trade-offs and ambiguities between the different pillars of sustainability
s should not be overlooked due to the focus on a narrow or isolated assessment of the impact of DIs.
sa2 Evaluating the impact of the DIs considering the SDGs help address potential gaps that arise between
sa3 various multi-stakeholder actions for sustainable development. However, due to the complexity of the
sas  SDGs, there is some overlap between the different Dls applications and indicators. At the indicator
sas  level, there are few similarities among indicators of the same goal, and the potential for synergy and
sas trade-offs between them has not been adequately investigated. The interdisciplinary aspect of the SDG
saz indicators also makes their interpretation ambiguous or even contradictory. Another aspect that needs
sss  consideration in the assessment is formulating the indicator in a global perspective, with different
se0 and sometimes conflicting interests, actors, and technologies. In addition, different reporting systems
sso  sometimes limit assessment processes. While the DAF helps to overcome these gaps and disparities to
ss1  some extent, it is also valuable for identifying them and highlighting research imperatives.

852 The DAF provides a methodology for assessing the impact of Dls, allowing for a more robust
es3  evidence-based scientific approach to identifying spatial and temporal effects from a broader
ssa  multidimensional perspective. These critical and holistic assessments of the DIs” usefulness help
sss  to address significant challenges we all face in achieving Agenda 2030. As we move towards the
sss 2030 Agenda milestone, the evolution of new goals needs to consider the digitainability aspect more
sz systemically, towards sustainability in the digital age, stressing the need for more robust methodologies,
sse  indicators, standardization processes, and policies accordingly. In that sense, the analysis of DIs impact
sso  on SDGs through the DAF can point to hotspots and opportunities tailored to specific contexts and
ss0 areas, promoting local adaptation and actions required for sustainable development more inclusively
se1 and holistically. We believe that DAF can complement other analyses as a valuable tool for performing
se2  the ex-ante and ex-post consequential analysis considering all 17 SDGs.

ses 5. Conclusion and Outlook

sca This paper demonstrates the operationalization of the DAF for encouraging mindfulness in the
ses application of the DIs for sustainable development. It has emphasized how a multidisciplinary
ses perspective, with experts from diverse backgrounds, can operationalize the framework to
sez systematically gather evidence reflecting gaps and opportunities DIs can offer for sustainable
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see development, supporting action learning. The paper’s outcome firstly demonstrates the practical
ses approach to digitainability. Secondly, it reflects on the digitainability assessment of diverse DlIs
s70  in specific contexts recognizing interlinkages for the holistic impact on SDGs. Thirdly, the paper
enn  demonstrates the need for a more inclusive and integrated assessment with practical tools for
sz encouraging mindfulness in diverse stakeholders acting toward sustainable development. Future
szs work should focus on automating some of the DAF procedures, alleviating the labor-intensive task
s7a  Of evidence-gathering using tools and techniques recognized by various stakeholders. Expanding
e7s  the framework with capabilities to interconnect data sources and empirical evidence could make
s7e  assessment more robust and informative. Furthermore, developing global data sets based on DAF
e77  inputs with diverse actors and DIs can help guide context-driven mindful decisions for sustainability
e7e  in the digital age.
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