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Abstract: Digitalization is globally transforming the world with profound implications. It 
has enormous potential to foster progress toward sustainability. However, in its current form, 
digitalization also continues to enable and encourage practices with numerous unsustainable impacts 
affecting our environment, ingraining inequality, and degrading quality of life. There is an urgent 
need to identify such multifaceted impacts holistically. Impact assessment of digital interventions 
(DIs) leading to digitalization is important specifically for Sustainable Development Goals(SDGs). 
Action is required to understand the pursuit of short-term gains toward achieving long-term 
value-driven sustainable development. We need to understand the impact of DIs on various actors 
and in diverse contexts. A holistic understanding of the impact it creates will help us align it with 
visions of sustainable development and identify potential measures to mitigate negative short and 
long-term impacts. The recently developed Digitainability Assessment Framework (DAF) unveils the 
impact of DIs with an in-depth context-aware assessment and offers an evidence-based impact profile 
of SDGs at the indicator level. We performed the impact assessment of diverse technologies using 
DAF. This paper summarizes the insights from the Digitainable Spring School 2022 on "Sustainability 
with Digitalization and Artificial Intelligence," one of whose goals was to operationalize the DAF 
as a tool in the action learning process with diverse professionals in the field of digitalization and 
sustainability. The DAF guides a holistic context-aware process formulation for a given DI. An 
evidence-based evaluation within the DAF protocol benchmarks a specific DI’s impact against the 
SDG indicators framework. The operationalization of the DAF was carried out by looking at four 
different DIs: smart home technologies (SHT) for energy efficiency, blockchain for food security, 
artificial intelligence for land use cover and changes (LUCC), and big data for international law. Each 
of the four studies addresses different DIs for digitainability assessment using different techniques for22
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a diverse group of indicators, demonstrating the potential of the DAF but also outlining the existing23

data gaps that limit a comprehensive analysis.24

Keywords: Digitainability; Digitalization; Sustainability; Artificial Intelligence; Blockchain; Smart25

homes; Big data; Sustainable Development; SDGs; Technology Assessment Framework; Agenda 2030;26

Digital Age;27

1. Introduction28

Digitalization is driving the world towards an era where a significant part of our lives are reliant29

on digital technologies. These technologies are shaping the future by supporting the sustainable30

improvement of socio-economic, environmental, and climate-related concerns through more effective31

use of existing processes [1]. From fostering equitable access to education, to reducing poverty and32

improving healthcare services, digital technologies are instrumental in raising the quality of life and33

increasing access to resources. With internet access expanding to four billion people, almost twice as34

many as ten years ago, digitalization is breaking barriers by enabling prompt communication and35

networking, access to knowledge, and improved cost-efficiency. Digitalization brings together an36

innovative set of tools and techniques which enables the process of converting physically collected37

information and knowledge into a machine-readable language. As a result, robust integrated38

workflows that connect physical objects to the internet are being developed using embedded sensors,39

software, and other technologies that enable real-time data collection and analysis. Massive data40

analysis capability enables timely and informed decisions contributing to sustainable development [2].41

Several challenges, however, have been left largely untapped to meet the Sustainable Development42

Goals (SDGs).43

The United Nations (UN) Agenda 2030 [3] is a global roadmap defined by the United Nations44

(UN) toward equity and sustainable development with a horizon set in 2030. The 17 SDGs form45

the backbone of the UN Agenda 2030. They present a guiding framework for worldwide policies46

that guarantee a good life for present and future generations. In order to achieve the SDGs, it is47

crucial to reduce resource consumption, greenhouse gas emissions, poverty, and inequality, while48

at the same time expanding education, welfare, and combating biodiversity loss, to name just a few49

[4]. The SDG targets and indicators call for timely observation and reporting of the progression in50

member states of the UN [5]. Recent literature emphasizes that SDG progress can be aided by adopting51

innovative technologies for digitization, leading to accelerated transformation in many sectors. Digital52

interventions (DIs) have been a primary focus in most public discourses and policy circles [6]. The53

emergence of artificial intelligence (AI) and the development of machine learning (ML) have been54

deemed instrumental in achieving the Agenda 2030 [6–8]. However, it needs to be clarified how and55

to what extent these DIs provide opportunities and where they could lead to challenges limiting the56

progress of SDGs. This calls for the impact assessment for meeting the SDGs [6], given that AI promises57

significant opportunities for sustainable development and contributes to all the SDGs within the 203058

Agenda [9–14]. This potential gave birth to various initiatives such as the "AI for social good" paradigm59

[15,16]. AI is interpreted as the interaction of computing and cognitive science, providing insights by60

modeling and pattern detection, prediction, and optimization [17]. In combination with Big Data, AI61

catalyzes innovation through massive data processing, advanced computing, and clever algorithms62

able to untangle complex problems, thus augmenting human knowledge and decision-making and63

paving the way to sustainable governance [18].64

Applying the DIs in specific contexts is often "wicked" with interlinked technological, social,65

environmental, and governance-related challenges. They are associated with positive and negative66

impacts [13]. On the one hand, the DIs can serve as levers and set off dynamic transformation towards67

sustainability in different sectors. For instance, various reports point to the potential of digitalization to68
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boost energy productivity, avert resource waste, improve access to sustainable services, and establish69

new sustainable practices [4]. On the other hand, its development and use could trigger knock-on70

effects with a negative impact on environment, society, prompting a call for closer examination of the71

ethical and political issues associated with its rapid proliferation [19,20]. Given the fast evolution of72

technologies and the influence of both corporate interest in technology and policy-making towards73

this crucial crossroads for humanity, the existing literature is primarily concerned with the benefits74

of AI-based technology. As there are little empirical evidence of its inevitable trade-offs and unclear75

net benefits, these are often overlooked in the literature [21]. Moreover, most of the studies focus on76

the development prospects of the Global North while overlooking the infrastructure and capacity77

constraints of the Global South [10].78

Much of the foregoing work has centered on identifying the role of the DIs for SDGs. However,79

most scholarly attention has been directed at identifying their relevance at goal level. Given that SDGs80

are composed of various targets and indicators, this approach is rather superficial. As a result, insight81

into the impacts of DI is limited by the fact that, to date, they have been measured from a narrow82

perspective. The gap also exists in understanding the context that defines the relation of the DI to SDGs83

progress. Nevertheless, it has been widely acknowledged that SDGs are interlinked, and the impact84

on one SDG can have cascading negative or positive impacts on other SDG targets and indicators.85

Thus, it is crucial we uncover the interlinked impact of the DI on SDGs in a more holistic manner,86

moving beyond the impact measurement of DIs on isolated SDGs. Instead of measuring the impact on87

a particular goal or target, the aim should be to establish a multidisciplinary view of the direct and88

indirect impacts the DI may have on all SDGs in the certain context. The context-specific assessment of89

the DI requires analyses in a broader system, whereby the impacts on most of the SDGs are considered90

integral to it.91

Gupta et al. [22] and Vinuesa et al. [6] identified the role of the DIs at the target level, one level92

deeper. The limitation of these works is their consideration to evaluate the impact of selected DI on a93

specific target at a time but not exploring the interlinked consequential impact of the particular DI94

on all other targets and indicators of SDGs. Since sustainable development requires holistic actions95

on all the essential aspects, the most meaningful way to identify the real impact of technology is96

to identify where and how it supports bringing the change required for the advancement of all the97

SDGs. Indicators of the SDGs are the impact measures, reflecting the "what" has been achieved98

thus far. Therefore, it is essential to measure the ’what’ change at the indicator level is achieved99

when the DI is utilized to measure consequential impact. As digitalization combines the individual,100

organizational and societal transformation brought by the multitude of algorithms and data-driven101

interfaces, utilizing it for sustainable development also needs diverse stakeholders’ inclusiveness and102

active involvement with their perspectives. We need to understand the consequential impacts and103

mindfulness in using digitalization to support the achievement of SDGs and their specific targets.104

Digitainability is introduced by Gupta et al. [22] as the effort to uncover the impact of digital tools105

considering their interlinked impacts in a specific context with a multidisciplinary perspective to106

secure the mindful application of digital technology to foster sustainable development. This is a crucial107

step to investigate in-depth if and to what extent the potential offered by the DIs can be leveraged108

for sustainable development, particularly for achieving the goals of Agenda 2030 [23]. After its109

introduction, digitainability has been perceived as essential to capturing the cross-fertilization potential110

of digitalization and sustainability, the two mega-trends for innovation and new sustainable business111

development [24], but more from the theoretical perspective rather than a practical one. Quite recently,112

Gupta and Rhyner [23] in their article introduced the digitainability assessment framework (DAF)113

as a practical tool that can help operationalize the digitainability assessment of digital intervention114

(DI) in great detail with various levels of evidence. Assessing digitainability is essential to shape the115

development process for a more intelligent and sustainable digital future.116

The DAF that incorporates context, the potential direct impact, indirect impacts, and cascading117

effects mapped for the SDG indicator(s) could be considered a practical approach to assess the impact118
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of DIs. Utilizing several levels of evidence, the DAF approach is instrumental in holistically identifying119

impacts and detecting potentially unforeseen implications. This comprehensive assessment further120

facilitates the mapping of impacts, taking into account long-term and short-term priorities in a given121

context. By undertaking a holistic assessment, the potential pathways that enable or inhibit the122

growth of the SDGs can be measured and used to support sustainable digitalization. Overall, the123

DAF is an effective tool that helps consolidate a vast amount of multidisciplinary knowledge to124

deeply understand the interlinked direct, indirect and progressing consequential impact of the DIs for125

sustainable development.126

In this paper, we explore the operationalization of DAF digital technologies in a real-world127

scenario and how it paves the way towards mindfulness in applying a DI for sustainable development.128

We operationalize the DAF to assess the digitainability of the DIs to encourage mindfulness in their129

application. The paper presents the outcome of the Digitainable Spring School 2022 (DSS), which130

involved four groups thoroughly analyzing the digitainability of a specific DI in light of the SDGs. The131

DSS aimed to bring together a diverse group of experts and practitioners from different disciplines132

having experience working at the intersection of digitalization and sustainability. In order to fully133

explore and identify the strengths and weaknesses of the DAF and the impacts of a DI on SDGs, a134

study-based analysis of the methodology was deemed appropriate. The primary outcome of the DSS135

was a practical application of digitainability as a concept and an enriched analysis of the impacts of136

DIs for SDGs, considering different perspectives and contributions using the DAF as a methodology.137

The paper is structured as follows: Section 2 elaborates on the methodology we have undertaken138

for this study and further expands on the methodological consideration of the DIs. in Section 3, we139

present the results after operationalizing the DAF for selected DIs, followed by a detailed discussion140

on the findings of 4 studies in Section 4; finally, conclusions are drawn in the Section 5.141

2. Method: Digitainability assessment142

Considering the overarching topic of digitalization and sustainability, diverse stakeholders such143

as practitioners are usually not typically inclined to engage with research that they consider the realm144

of specialized academic researchers. They are more favorably prone to ‘doing’ and experimenting145

using trial and error, discussions, reflection in, on, and after taking action, considering the action146

cycles for transformation. To foster sustainable development, it is paramount to promote exchanges147

between diverse disciplines and the research community to convert concepts into practices focusing on148

inclusion, collaboration, and participation. This is all the more important considering the importance of149

digitainability for mindful sustainable digital transformation. Identifying and defining the key aspects150

and processes of digitalization and sustainability that are interdependent and vital for maximizing151

holistic sustainable development is essential.152

In order to conduct the digitainability assessment, we utilized the action learning approach [25], a153

participatory approach that drew on the expertise of participants of the Digitainable Spring School154

(DSS). Action learning is a group-based process of engaging, learning, and reflecting, where a group of155

peers interact under the guidance of a facilitator for a given time-frame to address a specific real-world156

issue in real-time [26]. Participants identify real problems in the discussion from their experience157

and seek to develop innovative and creative ways to solve them [27]. The DSS brought together an158

international group of real-life practitioners and experts in digitalization and sustainability for action159

learning. Based on their experience with certain technologies, they operationalized the DAF as a tool160

for understanding the complex impact of the DIs on sustainability. In this section, we discuss the161

detailed assessment and evidence they have gathered based on the DAF methodology. Given their162

diverse background, disciplines, and expertise, the DSS participants combined into a single arena their163

multidisciplinary views on standardization processes, reflections, and perspectives on the theoretical164

and practitioner contexts that supported the process of digitainability assessment. This paper brings165

forth the operationalization process, how expert groups approached the digitainability assessment166

process, and their recommendations for digitalization and sustainability practicing communities.167
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The DAF is used to systematically analyze the intra- and interlinked impacts of DIs on SDGs168

[23]. It is designed to help perform technology impact assessments and map them considering various169

synergies, trade-offs, and complex interlinkages between SDGs at the indicator level within certain170

contexts. The analysis results are visualized in the form of a heatmap or matrix, presenting not only the171

impact results (synergy, ambivalent, trade-off, bi-directional or uncertain) but also including the context172

and the main SDG indicators under focus. Four groups conducted the digitainability assessment173

using various forms of evidence from a multidisciplinary perspective and identified strengths and174

weaknesses in the methodology and data gaps regarding DI and SDGs. The four DIs are: Smart Home175

Technologies (SHT) for energy efficiency, Blockchain for Food Security, AI for Land Use Cover and176

Changes (LUCC), and Big data for International Law.177

2.1. Group 1: Smart Home Technologies (SHTs) as DI for energy efficiency178

The concept of “data-driven smart sustainable cities” has emerged from the advancements in179

information and communications technology (ICT), particularly big data, coupled with alarming180

worldwide challenges related to the environment, climate change, natural resources and energy181

consumption [28]. In this context, numerous strategies are presented in order to reach resource182

efficiency and climate responsibility through modern technologies. These include “smart grid and183

advanced metering infrastructure”, “smart buildings”, “smart home appliances and devices”, and184

“environmental control and monitoring” [29]. In particular, energy efficiency represents a crucial,185

effective method to overcome environmental challenges and meet the growing demands in energy186

[30].187

In this respect, SHTs for energy efficiency exhibit many opportunities for innovative technological188

solutions by combining big data analytics, the IoT and associated smart sensors and meters, and189

machine learning technologies and techniques. Thus, this technology provides better monitoring,190

control and conservation of energy [31].191

From the perspective of household residents, the implication would be greater awareness, control,192

and efficient monitoring of energy/electricity consumption. From the operator’s perspective, this193

approach allows not only for precise monitoring and analysis of electricity consumption but also194

enables forecasting electrical energy consumption using data mining and machine learning methods;195

this is beneficial specifically when power is drawn from renewable power plants that are highly196

dependent on the weather [32].197

Group 1 focused on the question of how STHs impact the achievement of SDGs considering198

digitainability? To answer the question, the DAF methodology was applied. The analysis mainly199

focuses on the SDGs 7, 8, 9, 10, and 11 considering their relevance to the intended application of DI. In200

order to analyze using the DAF, grey literature was used.201

2.2. Group 2: Blockchain as a DI for food security202

Recent trends in global food sustainability and improved nutrition show growing concern, and203

food security is far from guaranteed for all [33]. Following several decades of substantial progress204

in reducing hunger by several hundred thousand people [34], food insecurity is regaining ground205

year after year [35]. When world grain prices soared in 2007-2008, the Malthusian spectre of a "global206

food crisis" was brandished by the media. Ever since, the problem of food insecurity has returned to207

the agenda while the rise in the price of food commodities, of which Russia and Ukraine are major208

producers, is at its highest level since 2008 [36].209

DI can help transitions for addressing the challenges of food and agricultural systems, supporting210

the timely achievement of SDG 2 (End Hunger) and 12 (Responsible Consumption and Production).211

The DI, such as blockchain, brings commercial transaction standardization to improve security and212

reduce costs. Several recent studies (e.g., Tyczewska et al. [33], Feng et al. [37], Nurgazina et al.213

[38], Patidar et al. [39]) have highlighted the positive and potentially transformational nature of214

blockchain, particularly concerning the reconfiguration of market exchange. Research suggests that215

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 December 2022                   doi:10.20944/preprints202212.0565.v1

https://doi.org/10.20944/preprints202212.0565.v1


blockchain systems may reduce uncertainty, insecurity, and ambiguity in transactions by providing216

full transactional disclosure and unified truth to all participants in the network Zhao et al. [40], Xu et al.217

[41], van Hilten et al. [42]. The blockchain is also increasingly deployed in areas where traceability and218

product auditing is essential, such as the supply chain in food systems [38]. Group 2 focused on the219

question of how blockchain technology can support the fulfillment of goals 2 and 12 while considering holistic220

sustainability, socio-economic and environmental aspects?221

2.3. Group 3: AI as a DI for Land Use Cover and Changes (LUCC)222

Given the high level of interest and the need to understand various processes that are triggered in223

one part of the globe and affect certain processes in another part of the globe, AI has been introduced224

as a powerful information tool to address this issue. Many approaches, such as Machine Learning,225

Deep Learning, Agent-Based models, and others are used to empower AI for better tracking of Land226

Cover/Use patterns.227

Implementing machine learning algorithms can help to detect the land type, as well as spatial and228

temporal trends in land class/type over time. Machine learning algorithms can be used to assess the229

accuracy and validate the results of land classification. Thus, the method can benefit from predicting230

future scenarios of land use change and implementing an accurate and reliable system to monitor land231

class and type. It has the potential to allow large-scale interventions across space and time. In this232

study, we consider the following SDG Indicators: Forest area as a proportion of total land area (SDG233

15.1.1) and the Proportion of land that is degraded over total land area (SDG 15.3.1).234

Halting and restoring land degradation is a crucial priority to protect biodiversity and ecosystem235

services that support life on planet Earth [43]. AI is heralded to serve this purpose by encouraging236

“conservation biology” [44]. According to Vinuesa et al. [6], AI could bring positive contributions for237

88% of the targets related to the SDG 15 (life in land), and negative impacts for 33% of them; however,238

sound empirical evidence is lacking so far [21]. The main contribution of AI relies on enhancing239

the monitoring and surveillance systems by leveraging multiple data sources from remote sensing240

[45] and satellite-based earth observation and geospatial information [21,43,46,47]. Global datasets241

suffer limitations in terms of resolution and accuracy, while EO information (e.g., LandSat, Sentinel) is242

mostly free and open access, available for large regions, providing long time series and data continuity,243

representing a complement to traditional statistics for the SDGs monitoring [46,47].244

Therefore, merging AI and EO provides reliable and disaggregated data for better monitoring245

of the SDGs [48,49] facilitates data analysis, capacity for measurement and efficient interventions246

[50]. Nevertheless, despite the progress in geoscience, the net impact of AI on SDG 15 is still poorly247

understood. Yu et al. [51] claim that the use of AI to determine land use and cover change (LUCC) in arid248

ecosystems has not been sufficiently researched but can provide predictions about land degradation249

and guide policies to mitigate potential issues. Isabelle and Westerlund [52] explore AI’s role in250

positively contributing to the SDG 15 targets. Indeed, the literature evidence contributions of AI to251

several SDG 15 targets (SDG 15.2, 15.3, 15.5, 15.7, 15.8) ranging from predicting deforestation and252

enhancing forest management [53–56], managing land degradation [43,56], combating poaching and253

protecting endangered species [57,58]; halting biodiversity loss and habitat degradation [44], reducing254

invasive species [59,60], spotting plant diseases and fires or identity seeds [61]. Kolevatova et al. [62]255

claim the relevance of explainable AI (XAI) to support the climate effects of land changes (land cover,256

deforestation, urbanization) with enhanced computational time and data usage. Palomares et al. [61]257

underscore the great potential of AI systems for SDG 15 while claiming the need for high-quality open258

data and infrastructures.259

Nonetheless, some limitations are also observed. Isabelle and Westerlund [52] stress that ML and260

DL training is complex and time-consuming, demanding large amounts of data and skills which are261

not always available (e.g., endangered species), particularly in the least developed countries with a262

lack of universal access to datasets, computing power and capacity. High-resolution data is needed,263

but its costs are beyond the reach of small farmers. Using AI for deforestation or even maintaining264
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digital infrastructures are perceived as a challenge in these contexts due to logistic problems. Besides,265

major forests/habitats (e.g., Amazonia) are also subjected to restrictive national policies [52,61]. Group266

3 focused on the question of, how AI for LUCC monitoring impacts the holistic SDGs achievement? In this267

study, we applied and complemented the DAF with literature from the Scopus database.268

2.4. Group 4: Big Data as DI for International Law269

The analysis of Big Data as DIs in the context of International Law is intended to examine its270

potential role in designing treaties and how it impacts the progressing SDGs. In the field of International271

Law, there is a growing academic interest in the phenomenon of "big data." However, the relationship272

between International Law and the massive use of data has not yet been explored [63]. "Big data" is a273

broad concept that cannot be reduced only to the notion of an extensive data set because this concept274

includes (among other things) the analysis techniques applied to the data [64]. Similarly, Boyd and275

Crawford [48] concluded that "less about data that is big than it is about a capacity to search, aggregate,276

and cross-reference large data sets." Under those considerations, carrying out the analysis of the SDGs277

in the light of Big Data and International Law is an opportunity to study and propose an effective278

mechanism for compliance with the SDGs. When two or more States agree on a specific object and279

wish to give legally binding value to said agreement, they conclude a treaty [65]. In that sense,D280

Target 2.5 and its indicators propose international cooperation at various levels. It aims to promote281

access to fair and equitable education as well as share the benefits derived from the use of genetic282

resources and associated traditional knowledge. It also seeks to increase investment, correct and283

prevent trade restrictions and distortions in world agricultural markets, adopt measures to guarantee284

the proper functioning of the markets for primary food products and their derivatives, and facilitate285

timely access to information on the market, including on food stocks, to help limit extreme volatility in286

food prices [66]. Unfortunately, according to the United Nations [67] the quantity of people suffering287

from hunger and food insecurity has been rising continuously since 2014. Due to the inadequate288

solutions at the international level, it is urgent to update and adjust the mechanisms of international289

law in order to achieve SDGs [68]. The group focused on the question of what are the possible impact of290

Big Data could have on the achievement of the SDG 2 through international policies’ platforms? The analysis291

explores the state-of-the-art within the framework of the DAF methodology.292

3. Result/Outcome293

3.1. Group 1: Smart Home Technologies (SHTs) as DI294

The results of the digitainability assessment conducted by performing the literature review295

illustrate (Figure 1) that indicators 7.1.1, 7.1.2, 7.2.1, and 7.3.1 have a synergistic impact. Data-driven296

solutions hold great potential for energy security, energy equity, and environmental sustainability297

[69,70]. Energy savings of 12%-20% can be obtained by introducing smart household products [71].298

According to an Australian study, SHTs can identify the best energy sources at the right time, reduce299

costs and optimize accessibility and sustainability [72,73]. Another synergetic impact shows that it300

is possible to identify and predict energy poverty based on satellite images accessible through big301

data technologies [74]. Considering the long-term impact of SHTs, their use over the next ten years302

will allow us to achieve the objectives of reducing CO2 emissions at the global level [75,76], enabling303

households to operate in "zero emission" mode [77]. Further, data-driven solutions through IoT are a304

potential way to increase the share of renewable energy. Smart information systems (smart grids) allow305

the integration of renewable energies and can ensure energy security and sustainability[71,78,79]. In306

the renewable energy context, meteorological data can be used to forecast production and thus support307

the decision-making of the energy systems [80].308

Nevertheless, the question of whether data-driven solutions promote energy sustainability309

remains. This question highlights the ambivalent and bi-directional impact of the different data-driven310

solutions on the energy sector, focusing on 7.1.2 and 7.2.1 indicators. In fact, data-driven solutions311
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require high energy requirements and carbon footprints [6]. Notwithstanding the above, indicators312

7.a.1 and 7.b.1 are considered to have an uncertain impact on the DI.313

Figure 1. DAF outcome of Smart Home Technologies as DI.

With regard to SDG 8, a synergistic impact supported by the literature has been reported for314

the indicators 8.1.1., 8.2.1., 8.3.1., 8.4.1., 8.4.2., 8.5.1., 8.5.2.; whereas no impact was noted for the315

other indicators. Previous evidence showed that household energy efficiency could help boost the316

economy and increase national GDP; this was conveyed in studies and use cases from the UK and317

Canada [81–84]. For instance, in the UK, a potential 5% improvement in energy efficiency (through318

technological improvements), would result in an increase in the national GDP by 0.10% in the long319

term [81]. In Canada, researchers also found that "investing in energy efficiency is a significant net320

benefit to the economy”. It will add 118,000 jobs (average annual full-time equivalent), and increase321

GDP by 1% over the baseline forecast over the study period (2017-2030) [82]. Moreover, the impact of322

SHTs is observed in creating jobs and employment. Direct jobs will arise from recalling energy service323

companies, as well as indirect jobs for skilled professionals along the supply chain, such as energy324

auditors and home energy raters, contractors, as well as retailers, and product distributors. In addition,325

workers hired into new direct and indirect jobs would spend their income on goods and services in the326

local economy, hence positively impacting the economy through the redistribution of savings [81,83].327
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Nevertheless, other authors suggested that "the introduction of increased energy efficiency should328

be spread over all or at least a wider range of households for more effective impacts on energy329

efficiency" [85]. The reason for this suggestion is the “rebound effect” (when an item price decreases,330

users tend to use it more, eroding the benefits of household energy efficiency). Furthermore, energy331

efficiency would indeed have a positive impact on the economy if users were correctly educated on the332

effective ways of dealing with energy efficiency, i.e., not using the income coming from energy saving333

to buy appliances that are not energy-efficient. Some studies also showed a more positive impact when334

in-home displays were available [84,86].335

The literature review did not disclose a strong correlation between SHT and SDG 9. SHT impact336

is ambivalent owing to potential new business models that can again have positive as well as negative337

impacts on the value-added by manufacturing processes. Indeed, Smart Home systems are often part of338

a larger socio-technical system of the Smart Home bubble that triggers the introduction of other systems339

into the ’home’ (indicator 9.2.1) [87–89]. In addition, the impact of DI on indicator 9.2.2 is ambivalent340

due to the new demand for smart home energy experts and the way the system is maintained and341

produced. This leads to other trigger effects of household demand for traditional heating/energy342

systems and consumers take over work from service providers [90]. Another ambivalent impact is for343

indicator 9.c.1 due to controversy in the inequality and accessibility of modern mobile infrastructure,344

knowing that the Smart Home system needs a modern mobile infrastructure to communicate and345

receive data via IoT or 5G network [91]. From the point of view of synergistic impact, smart energy346

management at home and the need for a transition to renewable energy are more probable, especially347

since the overall growth in ICT energy demand is increasing dramatically (indicator 9.4.1) [87,92,93].348

Indicators 9.5.1, 9.5.2, and 9.b.1 have a synergistic impact based on opinion due to public and private349

sector funding and research, as well as the high interest in implementing these systems, as they are350

deemed necessary for the energy transition. The DI is being implemented by large energy providers351

and established technology providers, with little room for smaller-scale industries. It is possible to352

create start-ups or new digital business models that can leverage smart home energy. This aspect353

brings an uncertain impact based on opinion (indicators 9.3.1, 9.3.2).354

Regarding SDG 10, more studies are needed on a national level in order to prove a synergy355

impact of the DI overall. Nevertheless, if implemented within a well-crafted national policy, one356

could argue for such a positive impact (based on opinion, indicators 10.1.1, 10.2.1). The same could357

be argued for the labor share of GDP, especially when it comes to the green jobs created through this358

technology. However, the consequent loss of traditional jobs should also be accounted for, hence359

leading to a potentially ambivalent impact of the DI (based on opinion, indicator 10.4.1.). In addition,360

an uncertain long-term impact of the DI could be observed regarding the proportion of discrimination361

or harassment, alongside the total flow of development resources between countries and the costs of362

remittances (based on opinion, indicators 10.3.1., 10.b.1., and 10.c.1.).363

In the context of SDG 11, i.e., to “make cities and human settlements inclusive, safe, resilient and364

sustainable”, the SHT included within the setting of “data-driven smart sustainable cities” seems to be365

an optimal representation, thus explaining the synergy impact on indicator 11.1.1 (based on opinion).366

A bi-directional impact is also presented for indicator 11.3.1, the “ratio of land consumption rate to367

population growth rate”, given that it could influence and be influenced by the DI (based on opinion).368

One additional interesting synergy impact of this DI is on indicator 11.6.2 (annual mean levels of fine369

particulate matter (e.g., PM2.5 and PM10) in cities (population weighted), literature-backed); previous370

evidence showed the positive impact of building energy efficiency measures on air quality [94]. While371

this DI is promising on the environmental and sustainable development level in smart cities, much372

more is needed to observe an impact on the other indicators in this goal, showcasing other crucial -373

even more urgent - problems that this particular DI could not solve, namely disaster risk reduction,374

providing personal safety, especially for women, children, older persons and persons with disabilities,375

waste management, and supporting least developed countries.376
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As such, the smart-grid energy-efficient technology may best be introduced as part of377

a comprehensive national policy, along with other smart home digital interventions such as378

energy-efficient appliances and monitoring water and air quality, while also integrating renewable379

energy resources. In addition, this DI needs to be established in a wider range of households for an380

optimal impact. Further, policies are needed to ensure the SHTs are implemented in the right way381

while respecting the ethical aspect of the DI, including the privacy and security of residents.382

At the indicator level, there are few similarities between several indicators of the same goal,383

while the potential for synergy and trade-offs between them has not been considered. In addition, the384

multidimensional aspect of the indicators makes their interpretation ambiguous and contradictory.385

Another aspect of the different limitations is that the indicators have been formulated at a global386

level, with countries having different, sometimes contradictory, interests, actors, and technologies.387

The independence between national statistical offices, the prioritization of the SDGs, and the different388

reporting systems of the countries are also aspects that limit SDGs and potential indicators.389

The DAF helped to assess the impact of the SHT on the SDGs and provided a means of examining390

this association more scientifically and adopting a broader, multidimensional perspective of analysis.391

Hence, it provides the foundation for a more purposeful, wiser, and inclusive implementation of digital392

interventions for sustainability.393

3.2. Group 2: Block chain as a DI394

To investigate potential responses to food production, distribution, and consumption challenges,395

the group undertook an exploratory approach to understanding state-of-the-art regarding the potential396

of blockchain technology as a DI in the context of food systems using DAF. To make the data interact,397

the group undertook a literature review at the intersection of these three contexts: distributed ledger398

technology (blockchain), zero hunger, and sustainable consumption and production. We focused on399

the context of developing countries with a significant number of consumers, producers, and retailers400

participating in the process. E.g., household food waste could indeed increase by 50% by 2030 due401

to the growing consumption of the middle classes in developing countries [95]. We examined the402

interactions between the various goals and targets and the extent to which they reinforce or conflict403

with each other.404

Overall, the result (Figure 2) of this group exercise demonstrates that food traceability with405

distributed ledger technology enables verification of food provenance by immutably recording406

end-to-end transactions, which could prevent food waste and improve trust among stakeholders407

[96]. The technology can help achieve food safety and establish trust between actors by increasing408

the number of trusted transactions and verifying food provenance [97]. Application of the DI put in409

place an infrastructure that fosters a more responsible production and consumption pattern in the food410

supply chain to reduce food waste [40]. Monitoring and traceability of food can ensure the food is411

marketed within its life cycle [97].412

For SDG 2, we identified four indicators that were found to be relevant but were somewhat413

ambiguous as to their potential impact. For indicator 2.3.2 (Average income of small-scale food414

producers, by sex and indigenous status), the literature pointed to the empowerment of farmers (e.g.,415

Ekawati et al. [98]) and other stakeholders (e.g., Kochupillai et al. [99], Patel et al. [100]) through data416

as well as the potential increase of farmers’ income [101]. Regarding indicator 2.4.1 (Proportion of417

agricultural area under productive and sustainable agriculture), several papers underscored that food418

safety traceability systems which are backed up by big data and the IoT ensure agility, transparency,419

integrity, reliability, and safety of traceability information (e.g., Feng et al. [37], Vivaldini [102], Zheng420

et al. [103]). Furthermore, the connections between food security and climate change, as well as related421

risks and their respective stress on water and soil resources, are acknowledged [104]. A particular422

emphasis in this regard was placed on the context of developing countries such as India, where the423

public distribution system (PDS) could be explored [105]. Regarding the indicator 2.5.1 (Number424

of (a) plant and (b) animal genetic resources for food and agriculture secured in either medium- or425
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long-term conservation facilities), Rao et al. [106] highlight the need for DNA-based technologies426

in, e.g., in meat markets. In terms of the 2.c.1 Indicator of food price anomalies, traceability across427

an extended number of stakeholders improves blockchain-based trust management [40], bargaining428

power, and democratization [107], which can be fostered through the involvement of state actors [108].429

Additionally, competition between traditional and online channels may prove valuable [109], although430

the cross-channel information strategy and its relation to performance remain unclear [110].431

Figure 2. DAF outcome of Blockchain as DI.

For SDG 3, 3.9.3 (Mortality rate attributed to unintentional poisoning), blockchain yields a dubious432

impact on food selection and the spread of polluted foods (e.g., Nurgazina et al. [38], Behnke and433

Janssen [111]), wrongly labeled foods that caused death to customers [41] or improved efficiency434

while also addressing concerns about animal welfare, environmental sustainability, and public health435

[112]. As for SDG 6, 6.3.2 (Proportion of bodies of water with good ambient water quality), blockchain436

shows limited evidence of impact on real-time water quality monitoring [113]. There is potential437

for synergistic effects with the indicators 6.4.1 (Change in water-use efficiency over time), and 6.4.2438

(Level of water stress: freshwater withdrawal as a proportion of available freshwater resources), as439

crops can be irrigated and managed with higher precision (e.g., Arsyad et al. [114], Duan et al. [115]).440

Additionally, blockchain may be instrumental in generating insights on the characteristics of soil and441
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water, climate conditions, treatment with pesticides and fertilizers, production process, traceability,442

transparency, labor and human rights, quality and safety, waste reduction, authenticity, relationship443

with stakeholders, etc. (e.g., Iftekhar et al. [104], Luzzani et al. [116]).444

The impact on SDG 8 is stated but not definite by the indicators 8.1.1 (Annual growth rate of445

real GDP per capita) and 8.2.1 (Annual growth rate of real GDP per employed person), although the446

potential for a major impact on employment in the agriculture sector is discernible (e.g., Nurgazina447

et al. [38], Chen et al. [117], Fan et al. [118], Guo et al. [119]). The indicator 8.3.1 (Proportion of informal448

employment in total employment, by sector and sex) highlights the diversity of affected actors who449

could nonetheless be expected to benefit from the blockchain technology [120], such as SMEs [121].450

Using blockchain can improve the indicators 8.4.1 (Material footprint, material footprint per capita, and451

material footprint per GDP) and 8.4.2 (Domestic material consumption, domestic material consumption452

per capita, and domestic material consumption per GDP) insofar as it improves supply chain operations453

economic, social, and environmental efficiency (e.g., Nurgazina et al. [38], Fan et al. [118], Tripoli and454

Schmidhuber [122], Yadav et al. [123]).455

For SDG9, 9.2.1 (Manufacturing value added as a proportion of GDP and per capita) elaborates456

on the potential of blockchain technologies for the procurement contract and industrial added value457

and operational performance [124–126].458

For SDG 12, 12.1.1 (Number of countries developing, adopting, or implementing policy459

instruments aimed at supporting the shift to sustainable consumption and production), integrating460

organic, kosher, or halal certification into the blockchain could reassure stakeholders [127] and ensure461

fairer supply chains [128]. In that line, indicators 12.2.1 (Material footprint, material footprint per462

capita, and material footprint per GDP), e.g., optimizing energy consumption [129], 12.3.1 ((a) Food loss463

index and (b) food waste index) and 12.5.1 (National recycling rate, tons of material recycled) highlight464

food waste issues [130–133]. As such, blockchain is seen as a potential solution to contribute to the465

circular economy (e.g., Tripoli and Schmidhuber [122], Rejeb et al. [134]). The indicator 12.7.1 (Degree of466

sustainable public procurement policies and action plan implementation) discusses blockchain-based467

digital contracts and its contribution to public procurement [101]. For the indicator 12.8.1 (Extent to468

which (i) global citizenship education and (ii) education for sustainable development are mainstreamed469

in (a) national education policies; (b) curricula; (c) teacher education; and (d) student assessment), the470

work of agricultural development cooperatives has been mentioned [135].471

For SDG 14, 14.2.1 (Number of countries using ecosystem-based approaches to managing marine472

areas), examples outlined in the literature demonstrate the use of blockchain technology to inform473

consumers and society, providing more transparency throughout the fish product value chain [136,137].474

For the indicator 14.4.1 (Proportion of fish stocks within biologically sustainable levels), blockchains475

provide added value to determine the provenance and authenticity of seafood [138,139].476

However, when we contrast these research findings with the general expectations regarding the477

potential of blockchain technology in this particular field, we find that the evidence is still lacking.478

Thus, our assessment mostly sits in the “uncertain” impact category. Additionally, SDGs 1-3 (no479

poverty, zero hunger, health and well-being) were rather underrepresented compared to the purported480

potential in these domains.481

The SDGs are universal in their application and their scope aims to transcend the boundaries482

between the developed and developing world. They provide a policy framework that aims to ensure483

greater coherence between social, environmental and economic objectives, where such issues had484

previously been addressed in various diplomatic, political and institutional arenas. However, keeping485

track of progress is hampered by the difficulty of measuring sustainable development in all its486

complexity, partially due to broadly defined objectives, the achievement of which is measured through487

a wide array of narrowly outlined indicators. However, gathering data to monitor these indicators,488

intended to assess the achievement of the SDGs, is a major data challenge that fails to account for489

local contexts: available data are, in many instances, outdated [140] and, therefore unusable, as490

it was with the decennial agricultural census in Lebanon, for instance, [141]. Moreover, the sheer491
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number of indicators risks tilting the implementation of the SDGs into a technocratic exercise far from492

the transformative ambition it was set out to achieve. Finally, besides its technological challenges,493

blockchain raises legal and regulatory issues, which lawmakers are only beginning to tackle: the494

cross-border aspect of the technology hinders the enforcement of set rules.495

Transforming and improving the efficiency, inclusiveness, and sustainability of agricultural and496

food systems is necessary to ensure that food loss and waste do not undermine efforts to eradicate497

hunger, improve nutrition, and reduce pressure on natural resources and the environment. To reconcile498

the challenges of food security and equity, decision-makers must be able to make informed strategic499

choices among a range of options for managing food systems. However, the knowledge gaps found500

in the literature impede estimates of the sustainable exploitation potential of blockchain technology.501

To this end, international and interdisciplinary applied research from a broad spectrum of thematic502

expertise is needed to fill the knowledge gaps on ecological, economic, and social processes interacting503

with blockchain technology in the context of food security. At the same time, we need to critically504

assess the usefulness of specific indicators which lack contextual country-level application potential or505

explore avenues for qualitative assessment which could complement the picture. Thus, a more holistic506

impact assessment using the SDGs as a compass or navigating framework is deemed an advisable507

starting point which, however, needs to be enhanced through qualitative means of SDG assessment.508

However, we believe that the SDGs and the associated focus on the indicators provide an interesting509

avenue for further exploration, as the indicators offer an impact-based assessment and contribution to510

the grand challenges of our time.511

3.3. Group 3: AI as a DI512

The digitainability assessment observed mainly synergistic impacts with on SDG 15 targets, as513

well as relevant connections with many of the SDGs, especially with SDG 6 (water), SDG 2 (agriculture),514

SDG 13 (climate), and SDG 11 (cities).515

For SDG 1 (End poverty of all forms everywhere), we found by applying the DAF methodology516

(Figure 3) that most of the indicators of SDG 1 are not relevant to Land Management, with the exception517

target 5, where AI can perform a vital role in terms of the exposure to Climate extreme events, and518

environmental disasters. For example, AI can predict floods using the Artificial Neural Network519

(ANN), which runs hydrological models [142] and can model heat waves as used by Vautard et al.520

[143].521

In the case of SDG 2, which is related to the function of our soil and its productivity for crop522

production, and the fairness of its distribution, we found that all targets related to land use, such as523

target 2.3 of increasing agricultural productivity. AI tools are used for crop monitoring as the model524

done by Singh et al. [144], who used AI and IoT (Internet of Things) to detect the most suitable land525

and conditions for plant growth. AI has shown to be a powerful tool in terms of big data analysis for526

soil quality, as shown in the review by Eli-Chukwu and Ogwugwam [145].527

For SDG 3 to ensure healthy lives and better well-being is cross-cutting with land management528

in some of its targets. Consequently, there may be potential trade-offs in the application of AI on529

these indicators. SDG 3 is targeted to ensure good mental health for all, mental health is directly530

associated with recreational activities which are directly affected by Land management. Therefore,531

AI is being used to quantify and map recreational sites for better well-being and good health [146].532

Not only this, but since SDG 3 targets reducing deaths caused by road injuries, AI-enhanced models533

in road management, predictions, and transportation are offered for safety and for tracking injuries534

[147,148]. One of the most important factors for better health is accessibility, either for education,535

medical services, or mental improvement. AI (ANN) models are used for measuring land accessibility536

rates in urban areas where it serves as the main factor for better well-being [148]. As shown in SDG 2,537

Soil pollution is being quantified, which serves as some of SDG 3 indicators for reducing the death rate538

as a result of food pollution [144].539
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Figure 3. DAF outcome of AI as DI.

For SDG 5, synergistic impacts exist between three of the indicators and AI use in relation to540

only one indicator relevant to land and its ownership. These include 5.2.1 [149], 5.5.2 [150] and 5.c.1541

[151,152]. Considering SDG 7 (sustainable energy) and SDG 13 (climate action), the energy sector542

is enduring a disruptive transformation towards a more decentralized, digitalized, decarbonized,543

climate-neutral and green future, with strong synergies with the building, transport, and infrastructure544

sectors [153], and large impacts on climate. AI brings huge potential to accelerate the green energy545

transition [154–156], but its current application is limited to pilots, with barriers to scaling up. AI546

applications for energy cover consist of high-fidelity models for predicting renewable generation547

and demand, grid and systems optimization, operation and maintenance, demand management and548

innovation [157–159]. Virtual Power Plants can boost distributed energy and automation of small,549

distributed devices such as electric vehicles [153,160].550

Vinuesa et al. [6] claim that AI has the potential to contribute to all SDG 7 ambitions positively but551

at the same time might be an inhibitor for 40% of the same targets. According to the group analysis, AI552

could contribute positively to enhancing access to electricity (7.1.1.) and clean fuels (7.1.2). Particularly,553

AI for land management can help to identify better supply needs and coverage of clean energy facilities554

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 December 2022                   doi:10.20944/preprints202212.0565.v1

https://doi.org/10.20944/preprints202212.0565.v1


(e.g., solar roofs) and match them according to the population and available resources in the area555

[161–166].556

Besides, AI might bring bi-directional impacts on SDG 7.2.1 (renewable energy share) and SDG557

7.b.1 (installed renewable energy capacity in developing countries). Firstly, ML and DL could help558

assess the availability of renewable energy resources (e.g., wind and solar irradiation) [167–170] as well559

as supporting enhanced planning and monitoring of energy facilities [153,160]. Secondly, it is widely560

recognized that AI drives resource efficiency gains and enables the flexible matching of supply and561

demand in real-time through smart grids and microgrids [14,153,163,171–173]. Nevertheless, smart562

grids can suffer cyber-attacks and are prone to blackouts in the least developed contexts [61]. On the563

other hand, renewable energy could help curb the growing carbon footprint of energy-intensive564

algorithms (e.g., Deep Learning) and facilitate more sustainable use of digital technologies by565

integrating green energy in data centers toward carbon neutrality and green AI [160].566

However, an ambivalent impact is observed on SDG 7.3.1 dedicated to energy intensity (primary567

energy) which merits further analysis since the related net effect remains unclear. AI for land568

management can support efficient use of resources leading to lower energy consumption and intensity569

of the economy [174,175]. However, potential rebound effects [176] may arise along with growing570

energy demand from the DL algorithms [177,178], which might outweigh the benefits. AI systems,571

particularly Deep Learning, require mitigating strategies to reduce their large carbon emissions572

[179–181]. Besides, a lack of transparency and accountability is observed regarding carbon emissions573

[182], which are generated in three ways: by its use for applications with negative impacts (e.g., Oil574

and Gas); system-level impacts; the life cycle of software and hardware [158].575

Regarding SDG 13, AI brings huge potential for understanding the climate crisis, and the literature576

provides evidence of its positive role in supporting crisis and disaster management, early prediction of577

natural events, as well as opportunities for education on climate responsibility and action [157,158,163].578

Sætra [183] claims that AI shines in dealing with complexity and enhancing climate science and policy,579

but the political harms of algorithmic governance should be avoided. Vinuesa et al. [6] argue that AI580

systems could bring benefits to 70% of the targets, causing negative effects on 20% of them.581

According to our analysis, AI systems bring positive synergies to SDG 13.1.1 (deaths and missing582

persons due to disasters), providing enhanced disaster prediction and management [157,160,163,583

184,185]. An ambivalent impact is identified regarding SDG 13.2.2 on GHG emissions, in analogy584

with SDG 7, due to the yet unclear net effects of AI systems in terms of energy consumption and585

related carbon footprint. In combination with earth observation (i.e., Land and Sentinel Satellites), AI586

could help assess the emissions and their effects, while algorithms generate a high carbon footprint.587

Several experts call for more transparency in terms of the climate impacts of AI. Regarding the588

contribution to SDG 13.3.1 (education for sustainable development), AI has indeed the potential to589

analyze massive educational data (e.g., MOOC), adapt educational programmes to the needs of the590

students, and provide augmented reality [157]. At the same time, nonetheless, it could aggravate591

extant inequalities and biases. However, limitations are observed with regard to most SDG 13 metrics592

as they are considered narrow and mainly focused on the countries with established climate strategies593

and financial resources. SDG 13 targets and indicators do not reflect the complexity of this crucial594

goal and do not provide suitable means for measuring progress. Even when AI has the potential to595

contribute to a better understanding and monitoring of SDG 13.1.2, 13.1.3, 13.2.1, and 13.b.1 focused596

on the availability of disaster risk strategies and plans, little evidence is provided in the literature and597

these impacts remain uncertain.598

With regards to SDG 9 (industry, infrastructure, innovation) and SDG 11 (sustainable cities), AI599

systems in combination with Big Data, IoT, and Digital Twins, could contribute to support both a600

resilient, sustainable, and circular industry and smart manufacturing [186] by monitoring pollution601

and resource efficiency, enhancing transport and communication infrastructures and boosting research602

and innovation across all the domains [159,163]. In the urban sphere, the great potential of AI in603

combination with the Internet of People (IoP) for smart and low-carbon cities is widely recognized604
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[14,61,187]. Therefore, a positive contribution to SDG 9 and SDG 11 is evinced with benefits to SDG 12605

by a more sustainable production supply chain.606

In our analysis, a synergic impact is observed in relation to SDG 9.1.1 (rural population near an607

all-season road) and SDG 9.1.2 (transport) since AI for land management might support the mapping608

and monitoring of population close to road facilities [51,188,189] as well as the volume of passengers609

and freight from Big Data coming from transportation systems [190–192], and their evolution patterns610

over time. An ambivalent impact regarding the contribution to SDG 9.4.1 (CO2 emissions) is observed611

since AI for land could be useful to calculate the carbon footprint based on LCAs from different612

activities, forest extension, and soil features acting as carbon sinks [193,194]. At the same time,613

however, large GHG emissions are associated with AI systems, as aforementioned. AI could support614

the optimization of supply chains and energy systems, improve quality, and reduce defects, leading615

to resource efficiency but rebound effects could increase the net emissions and material footprint616

[163,195,196]. Nonetheless, cyber-security and privacy represent critical risks that should be wisely617

considered in critical facilities. Besides, its impact is unclear with regard to SDG 9.5.2 since AI could618

foster scientific discovery, benefiting many researchers in the realm of SD [197], but no clear evidence619

has been provided in the literature so far. A bi-directional impact is proved regarding SDG 9.c.1620

(population covered by the mobile network) since AI for land can help monitor the mobile network621

and population coverage while better mobile connectivity could also be an enabler for enhancing622

AI capabilities and better access to mobile Big Data [198,199]. AI systems are already contributing623

to SDG 11 in numerous cities around the world, but their use for smart cities has been criticized for624

lacking genuine sustainability and citizen-centric approach as well as for being focused on highly625

developed economies [187]. Moreover, several targets (11.1, 11.4, 11.a, 11.c) have been overlooked in626

the literature on AI for cities, which has been mainly focused on: mobility, environmental management,627

and monitoring (water, air, waste, energy), disaster responsiveness. Therefore, significant gaps remain628

in ensuring the social good of AI towards sustainable smart cities for all. Despite the potential benefits,629

SDG9 and SDG 11 metrics represent a fragmented and incomplete perspective of infrastructures,630

industry, and cities, hindering the outstanding potential of AI and digital paradigms in these domains631

and lacking evidence for a relevant number of indicators.632

For SDG 10 (inequality), one of the well-known menaces of AI systems is its potential to exacerbate633

inequalities, bias, and discrimination. Vinuesa et al. [6] argue that in SDG 10, most impacts of AI634

systems are considered negative, causing trade-offs in 55% of the targets. Admittedly, uncertain635

impacts are identified in most targets, and a potential trade-off in terms of potential discrimination636

is caused by extant algorithms. Again, limitations are observed in relation to narrow targets and637

metrics. AI systems could support better and more efficient monitoring of metrics about people638

below-median income (SDG 10.1.1, 10.2.1), migration and refugees tracking (SDG 10.7.2, 10.7.3, 10.7.4),639

fiscal control of markets, financial and economic indicators (SDG 10.4.2, 10.5.1, 10.a.1., ODA flows,640

remittances) but a clear, direct impact is not evidenced in the literature due to a lack of empirical641

evidence. The most relevant impact of AI systems on SDG 10 is a trade-off related to discrimination642

(SDG 10.3.1.) and potential bias [192,200–205]. Indeed, AI has been widely criticized for augmenting643

inequality, bias, discrimination, and reproducing hierarchies [204]. Even when AI could contribute to644

fighting discrimination by analyzing massive amounts of data (e.g., social networks, PNL, sentiment645

analysis), the negative impact outweighs any benefit. Besides, access to AI systems and digital skills646

is uneven across geographies [206], and AI-based automated work could also amplify inequalities647

against vulnerable people.648

According to Vinuesa et al. [6], AI systems can be expected to have a positive impact on 59% of649

SDG 12 targets and a negative impact on 16% of them. They could support tracking consumption650

towards sustainable patterns and better ESG monitoring, facilitating a circular economy. However,651

severe uncertainties emerge regarding the well-known negative trade-offs of digitalization in terms of652

material footprint and e-waste. Saetra argues that the positive effects seem negligible with a lack of653

evidence and empirical data, and the negative impacts outweigh the benefits. Di Vaio et al. [207] claim654
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that AI could drive a cultural drift in SDG 12 by enabling sustainable business models, but relevant655

gaps remain, and ethical considerations should be integrated to ensure the proper use of this paradigm656

for the 2030 Agenda. Indeed, we observe three ambivalent impacts regarding the contribution of AI657

systems to SDG 12.2.1 (material footprint), SDG 12.4.2 (hazardous waste), and SDG 12.5.1. (Recycling658

rate). AI could increase the need for data centers and related digital infrastructures leading to an659

increase in material footprint, land use, and e-waste, while at the same time, ML and DL systems could660

support an optimized production system, resource efficiency, and environmental awareness [208,209].661

AI for land management could improve the monitoring of waste treatment facilities and the detection662

of illegal landfills [190,210–215]. But it might also lead to increased waste due to the required digital663

infrastructures and the digital-induced overconsumption [21].664

In contrast, synergic impacts are found in relation to the application of AI systems to SDG 12.3.1665

(Food Loss and waste), SDG 12.6.1 (corporate sustainability reporting), and SDG 12.b.1 (accounting666

tools for sustainable tourism). Indeed, AI for land management can help to monitor agricultural667

fields and crops, influencing the availability of food on the market. Yet, the relationship between food668

supply chains and related losses is not clearly established [134,216–218]. AI for land management669

could be useful to support the ESG reporting [219,220], particularly regarding land and soil [221,222]670

as well as to bring information about the potential impacts of tourism on land and environment [223].671

Bi-directional impacts are observed regarding SDG 12.a.1, linked to SDG 7.b.1 (installed renewable672

energy in developing countries). AI for land management could help map and monitor renewable673

energy facilities by using Geospatial Big Data and distilling it into knowledge [224]. Besides, more674

renewable energy could help AI to be more sustainable by reducing its carbon footprint. Again, SDG 12675

metrics are considered narrow and unable to represent the complexity of the sustainable consumption676

and production paradigm, hindering the potential of AI to contribute to the 2030 Agenda.677

Considering SDG 17 (means of implementation and partnerships), Sætra [21] underlines the678

relevance of the partnerships’ support for monitoring systems and compliance but claims that despite679

its outstanding relevance for governance, the role of AI in SDG 17 has been overlooked. Vinuesa et al.680

[6] argue that AI could positively contribute to just 15% of the subgoals while causing a negative681

contribution to 5% of them. We observed that most impacts are uncertain due to a lack of evidence682

and empirical data, along with strong limitations and shortcomings featuring SDG 17 targets and683

metrics. AI systems could support SDG 17.6.1 (fixed Internet broadband subscriptions) and SDG 17.8.1.684

(Individuals using the Internet) by enhancing the monitoring and operating of digital infrastructures685

[225–227]. On the other side, proper Internet broadband coverage supports cloud-based AI systems.686

However, the literature in this area is sparse. Synergies can be observed regarding SDG 17.16.1687

(monitoring frameworks) and SDG 17.18.1. (Statistical capacity for SDGs monitoring), since AI systems688

in combination with Big Data (e.g., earth observation, sensors, IoP) can be a relevant tool for enhancing689

statistical capacity and monitoring all the SDGs [69,228–230] and particularly SDG 15 targets.690

Overall, AI offers exceptional potential for enhancing land-related metrics (SDG 15) in691

combination with remote sensing and satellite earth observation data. However, several limitations,692

barriers, and risks remain to leverage and mainstream the full potential of AI systems for social good,693

particularly in the least developed countries constrained by a lack of resources and capacities and694

unsuitable logistics and regulations. AI requires synergic integration with other digital paradigms695

(e.g., IoT, Digital Twins, Big Data, 5G, blockchain), trustworthy regulation, transparent accountability,696

and cross-fertilization with multidisciplinary domains such as climate change agriculture, water, ocean697

ecosystems, and urban planning. The impacts of AI on land management are mainly positive synergies,698

but several trade-offs and ambivalent impacts are also evidenced. This is particularly the case with699

regard to the net carbon footprint, material footprint, as well as unsolved social dilemmas and ethical700

implications [67,231].701

In relation to the potential impacts that AI for land management brings across the whole SDG702

indicators, most observed interactions can be considered synergies and ambivalent impacts, including703

trade-offs with unclear net impact. These ambivalent impacts are mainly related to the “Janus faced”704
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nature of AI in terms of the carbon footprint from energy-eager algorithms (e.g., DL), material footprint,705

and e-waste from supporting data-driven infrastructures subjected to early obsolescence, rebound706

effects causing overconsumption, cyber-security vulnerabilities, but also social and ethical threats such707

as capacity constraints, asymmetry of power, malicious use [232], misinformation, discrimination,708

inequalities, bias, security, safety, privacy and greenwashing. A few interesting bi-directional impacts709

are also observed due to the enabling nature of both digitalization (broadband and mobile connectivity)710

and renewable energy, which deserve further exploitation.711

In addition, a significant number of uncertain impacts have been identified due to the intrinsic712

limitations of the SDGs targets and indicators and the lack of literature and empirical data for many of713

them. One of the main barriers to the application of AI to SD and the 2030 Agenda stems from the714

drawbacks of the SDGs targets and indicators themselves. It is widely accepted that SDG indicators715

are narrow and reductionist and do not reflect the complexity of the domains they are expected to716

cover [18].717

In addition, a relevant limitation of this analysis relies on the potential bias induced when selecting718

datasets [159], applying black-box algorithms and when evaluating interactions and impacts based719

on expert opinions and pilots whose results are difficult to extrapolate and could lead to spurious720

conclusions [52]. In conclusion, there exists a burgeoning research landscape and huge opportunities721

but also several caveats, data and reporting gaps, lack of accountability, and limited literature on722

the contribution of AI to most SDG metrics that merit further research. Besides, contexts are highly723

relevant, and further research is needed in underrepresented countries, especially from the Global724

South.725

Ensuring a sustainable, responsible, and inclusive application of AI for the 2030 Agenda will726

require trustworthy regulation beyond human-centric principles [233] and ethical standards [6,234,235]727

to halting the “wild west” of the unregulated AI [206]. Besides, greening AI is an urgent priority and728

might be achieved by policy incentives for green algorithms [236], renewable energy and efficiency729

in data infrastructures, standardized methodologies for carbon and energy accountability embedded730

within the whole life cycle of AI systems [181] and environmental education. Accountability and731

transparency should be encouraged using FAIR data, trustworthy and Explainable AI (XAI) to fight732

discrimination and biased outcomes. Further research on social dilemmas and ambivalent impacts733

is needed and should cover all relevant contexts and communities, particularly the Global South, to734

reduce digital divides. Alliances for social good might bring relevant stakeholders together, including735

civil society and vulnerable communities, to share data [157] and overcome current capacity and736

accessibility constraints such as the non-universal access to data sets [237]. Finally, the SDG framework737

and metrics should be revisited through the lenses of digitalization to accommodate the opportunities738

brought by AI in combination with EO and Big Data. This evolution of the 2030 Agenda monitoring739

should bear in mind the systemic nature of sustainability and digitalization; therefore, methodologies740

and standardization are needed for this purpose [238].741

3.4. Group 4: Big Data as DI for International Law742

The results of this study demonstrate (Figure 4) the opportunities provided by Big Data to achieve743

the SDGs. It showcases the benefits of action learning by taking a futuristic perspective about the744

potential impact of DIs. This study aims to demonstrate how DAF can help innovate while anchoring745

insights in a mindful consideration of DI impacts on SDGs.746

Implementing Big Data to achieve SDG2 to create binding international treaties would allow747

direct compliance with indicator 2.5, which seeks to promote access to fair and equitable sharing of748

benefits arising from the utilization of genetic resources and internationally recognized traditional749

knowledge. Its implementation is primarily aligned with the "means of implementation" targets.750

It would allow to increase and facilitate investments to improve international cooperation in751

rural infrastructure, agricultural research facilities, technology and research development, research,752

and gene banks to increase agricultural productive catalyzing target 2a. Proper management of Big753
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Data can facilitate access to transparent, updated, and complete information for trade and global754

agricultural markets and fair prices aligned with Target 2c. The information and improvement of the755

markets can help to eliminate export subsidies in line with the Doha Development Round and 2b756

Target.757

Figure 4. DAF outcome of Big Data as DI.

Beyond SDG 2, Big data and international law can be adopted for other targets, especially the758

"means of implementation" targets, that seek to ensure significant mobilization of resources. For SDG 1759

(1.a and 1.b) on policy-making and investment in developing countries, SDG 3 (3.d) to reduce risks and760

health risks, SDG 7 (7.a) for clean energy investments, SDG8 (8.a) aid trade for developing countries,761

SDG 9 (9.b) for technology development, SDG 11 (11.c) for sustainable and resilient buildings, SDG 13762

(13.a) to implement committees under the UNFCCC, SDG 15 (15.1) for conservation and restoration763

of ecosystems inland, SDG 16 (16.3, 16.8, 16.10) to ensure access to justice, participation in global764

institutions and governance particularly of developing countries, and fundamental freedom, and SDG765

17 (17.2, 17.4, 17.6, 17.9, 17,10, 17.13, 17.16) to aid countries to implement the assistance commitments,766

coordinate coherent policies for long-term sustainability, enhance international cooperation and767

capacity building, implement the non-discriminatory multilateral trading system, improve global768

macroeconomic stability and enhance the Global Partnership for Sustainable Development.769
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One of the most important characteristics of International Law Treaties is that they are concluded770

by the will of the parties. According to Linares [239], an international treaty "is an instrument where771

provisions are freely agreed between two or more subjects of International Law to create, modify or772

extinguish obligations and rights." Therefore, if the developing States do not have the will to sign773

treaties, the countries that need help and cooperation will not be able to implement the proposed774

measure even when big data demonstrate to the parties the benefits of signing the treaty. Pulido-Ortiz775

et al. [240], mention that "normative language suffers from indeterminacies caused by the ambiguities,776

vagueness, and inaccuracies of the words and sentences, and by the contradictions, redundancies, and777

gaps in the set of legal norms". In this order of ideas, the indeterminacy of the language of the SDGs778

can mean that the creation of a binding international treaty does not achieve its objective; even with779

the help of Big Data, the indeterminacy of the ODS would prevent meeting some of the 2030 goals,780

and nothing ensures compliance with the goals.781

Another great challenge is that the States provide the correct and adequate information to be782

able to create the database of the needs that some States have in order to carry out a treaty and783

obtain a benefit. Additionally, developing countries do not have sufficient technology to collect the784

necessary information to identify their needs and eventually create an international treaty. As long as785

the technology gap is not overcome, big data for International Treaties may be ineffective.786

4. Discussion787

DIs has the potential to accelerate sustainable development. However, implementation actions still788

need to be improved in several areas for some technologies to fully utilize their potential for achieving789

the SDGs. Results from the case studies highlight the differences between countries in the use and790

maturity of the technology. Groups 1, 2, and 3 identify impacts at indicator levels covering synergies,791

ambivalent impacts, trade-offs, bidirectional impacts, and uncertainties, showing the interlinkages792

that SDGs have at an indicator level and the diverse impact that DI can have depending on the context793

where those DI are applied. The results of Group 4 pointed out that beyond the application of the DI794

towards the achievement of the SDGs, the legal wording and language used in the 2030 Agenda may795

hinder the application of the DI and collaboration at the international level. Results also showed the796

scarcity of literature when it comes to evaluating and supporting the DAF analysis. Furthermore, the797

interlinkages between SDGs have yet to be fully understood, which hampers a fully comprehensive798

DAF analysis. For example, the interlinkages between targets and indicators of SDG 1, 8, 9, 11, 13,799

and 15 are unclear but seem to have affinities in broader contexts because of the social, environmental,800

and economic dependencies. For instance, SDG 7 has complex linkages with SDG 12 regarding801

industrial development and clean energy to sustain a green transition. Achieving SDG 6 may affect802

the progress of SDG 3 targets, as access to clean water and sanitation is fundamental to delivering803

health services. In addition, in the case of group 4, outcomes on Big Data for International Law results804

showed that the potential of DI remains unexplored. The analysis of group 4 also demonstrated two805

crucial aspects, first the methodological aspect about how lack of clarity on indicators and context lead806

to a surface interpretation of DI implications, and second the advantage of the method to help identify807

the importance of big data to facilitate the identification of partners and pathways to create robust808

policies to advance the SDGs.809

The action learning undertaken through the DAF tool, as presented in this paper, has facilitated810

the in-depth identification of the complex and interrelated impacts of DI for sustainable development.811

The process helped peers in each group to question, reflect and generate actionable learning that would812

flow into the mindful application of DIs. The process also helped improve the current understanding813

of the peers in a multidisciplinary manner and kindled a new strategic approach for sustainable814

transformation. Throughout the DSS, participants worked on their identified DI for digitainability815

assessment with the support of other participants and insights from experts and advisors on various816

aspects at the intersection of sustainability and digitalization. Feedback from guest specialists during817

the DSS also helped participants make sense of their multidimensional experiences through real-time818
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reflection and relevant theories. The flexibility to incorporate information from scientific literature,819

grey literature, and other potential sources also helped in mapping the multidisciplinary knowledge820

and existing gaps. Thus, operationalizing DAF for action learning with feedback enriches participants’821

practices and values to ensure that any multidimensional actions identified in the assessment are seen822

not as neutral or positive stances but as positions with specific impacts. As can be noticed from the823

group work and outcomes, each group used different techniques for evidence gathering and analysis.824

Despite this, the result demonstrates the versatility of DAF in facilitating inclusive, diverse voices to825

be heard at different levels during the digitainability assessment of technology, leaving no one behind826

for sustainable development.827

The findings also demonstrate the extent to which analysis of the actual impacts on the SDGs828

is limited. It is crucial to navigate between intra- and inter-administrative boundaries at the micro,829

meso, and macro levels to analyze the DIs impact in a specific context with stakeholders’ intent830

in implementing DI. It helps realize the scale and dependence between administrative levels and831

the overall impact those have on the target and goal, with hints to understanding the impacts of832

administrative boundaries. Results also indicate that analysis focusing on varying levels and contexts833

should consider the information in great detail to understand the short and long-term impacts of the834

DIs in intra- and interdependent forms and contexts.835

When considering sustainable development, it is also crucial to balance the progress towards all836

the key dimensions of sustainability because substantial adverse effects in one could lead to a chain837

reaction of repercussions on overall progress. DAF provides a method for assessing impact along838

several dimensions. However, current data gaps pose several limitations to a comprehensive analysis.839

Furthermore, the crucial trade-offs and ambiguities between the different pillars of sustainability840

should not be overlooked due to the focus on a narrow or isolated assessment of the impact of DIs.841

Evaluating the impact of the DIs considering the SDGs help address potential gaps that arise between842

various multi-stakeholder actions for sustainable development. However, due to the complexity of the843

SDGs, there is some overlap between the different DIs applications and indicators. At the indicator844

level, there are few similarities among indicators of the same goal, and the potential for synergy and845

trade-offs between them has not been adequately investigated. The interdisciplinary aspect of the SDG846

indicators also makes their interpretation ambiguous or even contradictory. Another aspect that needs847

consideration in the assessment is formulating the indicator in a global perspective, with different848

and sometimes conflicting interests, actors, and technologies. In addition, different reporting systems849

sometimes limit assessment processes. While the DAF helps to overcome these gaps and disparities to850

some extent, it is also valuable for identifying them and highlighting research imperatives.851

The DAF provides a methodology for assessing the impact of DIs, allowing for a more robust852

evidence-based scientific approach to identifying spatial and temporal effects from a broader853

multidimensional perspective. These critical and holistic assessments of the DIs’ usefulness help854

to address significant challenges we all face in achieving Agenda 2030. As we move towards the855

2030 Agenda milestone, the evolution of new goals needs to consider the digitainability aspect more856

systemically, towards sustainability in the digital age, stressing the need for more robust methodologies,857

indicators, standardization processes, and policies accordingly. In that sense, the analysis of DIs impact858

on SDGs through the DAF can point to hotspots and opportunities tailored to specific contexts and859

areas, promoting local adaptation and actions required for sustainable development more inclusively860

and holistically. We believe that DAF can complement other analyses as a valuable tool for performing861

the ex-ante and ex-post consequential analysis considering all 17 SDGs.862

5. Conclusion and Outlook863

This paper demonstrates the operationalization of the DAF for encouraging mindfulness in the864

application of the DIs for sustainable development. It has emphasized how a multidisciplinary865

perspective, with experts from diverse backgrounds, can operationalize the framework to866

systematically gather evidence reflecting gaps and opportunities DIs can offer for sustainable867
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development, supporting action learning. The paper’s outcome firstly demonstrates the practical868

approach to digitainability. Secondly, it reflects on the digitainability assessment of diverse DIs869

in specific contexts recognizing interlinkages for the holistic impact on SDGs. Thirdly, the paper870

demonstrates the need for a more inclusive and integrated assessment with practical tools for871

encouraging mindfulness in diverse stakeholders acting toward sustainable development. Future872

work should focus on automating some of the DAF procedures, alleviating the labor-intensive task873

of evidence-gathering using tools and techniques recognized by various stakeholders. Expanding874

the framework with capabilities to interconnect data sources and empirical evidence could make875

assessment more robust and informative. Furthermore, developing global data sets based on DAF876

inputs with diverse actors and DIs can help guide context-driven mindful decisions for sustainability877

in the digital age.878
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