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Abstract: The spatial heterogeneity in hydrologic simulations is a key difference between lumped 

and distributed models. Not all distributed models benefit from pedo-transfer functions 

based on soil properties and crop-vegetation dynamics. Mostly coarse scale meteorological 

forcing is used to estimate water balance at the catchment outlet only. Mesoscale hydrologic 

model (mHM) is one of the rare models that incorporates remote sensing data i.e. leaf area 

index (LAI) and aspect to improve actual evapotranspiration (AET) simulations and water 

balance together. The user can select either LAI or aspect to scale PET. However, herein we 

introduced a new weighting parameter “alphax” that allows user to incorporate both LAI 

and aspect together for PET scaling. With this mHM code enhancement, the modeler has an 

also option of using raw PET with no scaling. In this study, streamflow, and AET are simu-

lated using the mesoscale Hydrological Model (mHM) in Main (Germany) basin for the pe-

riod of 2002-2014. The additional value of PET scaling with LAI and aspect for model per-

formance is investigated using Moderate Resolution Imaging Spectroradiometer (MODIS) 

AET and LAI products. From 69 mHM parameters, 26 parameters are selected for calibration 

using Optimization Software Toolkit (OSTRICH). For calibration and evaluation, KGE metric 

is used for water balance and SPAEF metric is used for evaluating spatial patterns of AET. 

Our results show that AET performance of the mHM is highest when using both LAI and 

aspect indicating that LAI and aspect contain valuable spatial heterogeneity information 

from topography and canopy (e.g., forests, grasslands, and croplands) that should be pre-

served during modeling. The additional “alphax” parameter makes the model physically 

more flexible and robust as the model can decide the weights according to the study domain.  
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1. Introduction 

Hydrologic models are increasingly used to predict and control natural activities. 

To succeed in this, one relies on model calibration [1]. There are many parameters that 

affect rainfall-runoff models [2,3]. More parameters can be used, and more accurate re-

sults can be obtained with increasing computer processing power. The accuracy of one 

basin model is increased by the availability of large data sets and computation methods 

[4]. 

 Various studies have assessed the importance of improving optimization proce-

dures [5], choosing proper objective functions to appraise model performance [6], using 

probabilistic methods to take into account parameter uncertainty [7], calibrating the 

model to accommodate multiple targets [8], and selecting group of parameters which are 

part of step by step hydrologic process to meet various target [9,10]. Previous research 

[11] has established that LAI effect on AET. Much uncertainty still exists about the rela-

tionship between LAI and aspect. 
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Evapotranspiration plays a crucial role for water equilibrium and crop irrigation, 

drought estimation, and observation. In hydrological models, there are two types of 

evapotranspiration evaluation techniques. One estimates water surface evaporation, soil 

evaporation, and vegetable transpiration independently before integrating them to ob-

tain basin evapotranspiration based on the land cover. The other one uses the Soil Mois-

ture Extraction Function to first estimate potential evapotranspiration (PET) and then 

transform it into actual evapotranspiration (AET) [12]. We will focus on the second one, 

firstly, calculation of potential evapotranspiration. 

There is a growing body of literature that recognizes physics-based hydrological 

models which have three types: fully distributed, semi-distributed and bulk model. In 

bulk models, only output data can be evaluated. However, in fully distributed models’ 

results can be get from anywhere of basin and compare with satellite-based remote sens-

ing data [11].  
In this study, to compare AET which is obtained from MODIS (moderate resolution 

imaging spectrometer) with simulated values fully distributed the mesoscale Hydrologi-

cal Model (mHM) is preferred. 

To simulate AET, the mHM consider processes such as canopy interception, infiltra-

tion, surface runoff, base flow, deep percolation, flood routing, groundwater storage, 

snow-ice melting, and accumulation. Soil texture, digital elevation model, and land cov-

er are physiographical data that were used to build model. Land cover data converted 3 

layer (forest permeable, and impervious cover)  [13]. 

For simulation of actual evapotranspiration 5 method is available with mHM. These 

are Penman-Monteith method [14], Priestley-Taylor method [15], Hargreaves-Sammani 

method, aspect driven and LAI driven method.[11,16] Previous research comparing LAI 

and aspect has found.[11,17,18] No previous study has investigated both LAI and aspect.  

This paper examines scaling PET with both LAI and aspect and compare with it on-

ly LAI and only aspect driven cases All cases are tested in mHM spatial—pattern-

oriented calibration of a catchment model in Main basin (Germany).  

2. Materials and Methods 

2.1. Study Area 

The study area was selected as the Main. Main is the sub-basin of the Middle Rhine 

River. The Rhine is important for Europe in terms of water supply, irrigation, transpor-

tation, and industry. The Middle Rhine River consists of the Neckar, Moselle, and Main 

basins. The Main River formed from the Fichtel Mountains and the Red Main runs 

through Bamberg and then Würzburg. Mainz which is located 30 km west of Frankfurt 

joins The Rhine River. 

The river was canalized in 1992 which connects the Rhine and Danube rivers and 

completes 3500 kilometers of the waterway from the North Sea to the Black Sea. Main-

Danube Canal provides transportation between the North Sea and the Black Sea. The 

canal includes 16 locks and a hydroelectric power plant. These large engineering projects 

were done between 1960 and 1992. In the Rhine basin, mean annual precipitation varies 

from about 500 mm to 2000 mm (from the valley to the Alpine region). [19] 

In this study, the area of the Main basin is 14117 km2. The discharge value was tak-

en from the outlet 6335500 which is in Würzburg. Annual discharge 243 mm. The annual 

precipitation is 736 mm, and the potential evapotranspiration is 773 mm. The melting of 

snow in the spring months causes high discharge values. The discharge increases be-

tween January and April and decreases between September and November. The reason 

for selecting the Main basin is that the gauge station has long-term discharge data with-

out missing values. Location of Main basin in Germany, Leaf area index (LAI) in sum-

mer, elevation and gauge position in basin, river network and aspect driven from digital 

elevation model (DEM) of Main basin are shown in Figure 1. 
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Figure 1 Physical charactersitics (LAI, DEM and aspect maps) of the 

study domain i.e. Main basin in Germany and streamflow gauge 

locations on the tributaries 
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2.2. AET ( Actual Evapotranspiration) 

Actual evapotranspiration is the second important process of water balance. About 

60% of precipitation on land is transpired back into the air via evaporation and transpi-

ration. Evaporations are water from soil, surface of water and canopy interception. Tran-

spiration comes from plant leaves.  

Despite the leaf area index, vegetation type is also an effective factor on AET. Ever-

green forest contributes more annual AET than deciduous forest, but spatial analysis 

shows that expository parameters alter regionally. The driving variable of AET could be 

different for each basin [20]. 

Photosynthesis is an important factor on transpiration. Photosynthesis rate changes 

with illumination angle on leaves [21]. Therefore, aspect ratio effect transpiration and 

AET  with leaf area index.  

In mountainous basins, it is logical to use aspect ratio for AET correction, but the 

basin, which has low elevation difference, is found to be unpractical. By downscaling the 

referenced ET, the user may use the dynamic scaling algorithm that was proposed here 

to overlay pattern of LAI on the simulated AET patterns. The idea of a crop coefficient, 

which is used to transform reference ET into a potential amount of evapotranspiration 

(PET) for a specific vegetation that is different from the reference crop, like as the idea of 

a dynamic scaling function (DSF). DSF of LAI is shown equation at the below. 

𝐷𝑆𝐹=a + b(1 − e−c LAI) (1) 

PET=DSF ∗ ET𝑟𝑒𝑓  (2) 

 

a is the intercept term symbolize uniform scaling, b is the parameter symbolize 

vegetation dependence, c identify the rate of nonlinearity of LAI dependence [17]. 

2.3. mHM (mesoscale Hydrological Model) 

mHM (mesoscale Hydrological Model developed by UFZ (Helmholtz Centre for 

Environmental Research). mHM is fully distributed, physically based, and continuous. 

The feature that distinguishes MHM from other hydrological models is that it is distrib-

uted with cells (grids). There are many different parameters are used for each cell in the 

workspace. With this feature, spatial analysis of the data used and the model run. 

As the resolution of the basin increases, the variability of the characteristics of the 

basin in the computer environment can be well represented. Spatial variables of inputs 

and state variables are analyzed on their resolution in three different layers, at different 

scales: Level 0 (morphology), Level 1 (hydrology), and Level 2 (meteorology) as Figure 

2. 

 

 
Figure 2 Spatial scales in model structure i.e. L0 is morphology, L1 is hydrology and L2 is 

coarse meteorologic forcing scale 
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Level 0 is the most detailed scale of these layers. At this level, ground characteris-

tics, morphological variables, land cover, and vegetation are processed. Spatial resolu-

tion processing is performed up to about 100 m at level 0 is done. Level 1 is the level 

where hydrological processes are processed. The process is performed at spatial resolu-

tions between 1 km – 16 km. Finally, in Level 2, meteorological inputs and variables are 

processed. The resolution of level 2 is between 1 km and 25 km. Examination of the ba-

sins based on cells can reflect the heterogeneous nature of the land. Ordinary differential 

equations (ODE) were used to overcome the continuity problem, which is an examina-

tion of basin based on cells. Each cell with ODEs simulates the following processes: soil 

moisture dynamics, snow accumulation and melting, canopy interception, infiltration 

and surface runoff, evapotranspiration, subsurface storage and discharge generation, 

deep percolation and baseflow, and discharge attenuation and flood routing [22]. 

The execution of output-generating hydrological model routines occurs at a scale in 

between that of high-resolution watershed features and that of low-resolution meteoro-

logical forcing. Model parameters are regionalized by simple and built-in transfer func-

tions that relate spatially scattered watershed properties to continuous parameter fields. 

With just a few calibration parameters, efficient model calibration is possible because to 

the control of transfer functions by global parameters. Additionally, it has been estab-

lished that the mHM parameters are scale-independent, making it possible to calibrate 

the model at low spatial resolution and subsequently apply it at high spatial resolution 

using the same parameters. mHM has two transfer functions to increase the output of 

the geographically distributed model's realism even further. To consider for diverse land 

cover, it first couples completely dispersed vegetation features, namely the remotely 

sensed Leaf Area Index (LAI), to a spatially distributed crop coefficient. Second, it de-

rives a field capacity based on a regionally variable root depth parameter using spatially 

distributed information on soil texture. For a spatial model-oriented calibration frame-

work that seeks to improve the realism of spatially distributed model simulations, both 

transfer functions are crucial for the efficient integration of satellite-based measure-

ments, such as evapotranspiration [23]. 

As a result of the ODEs analyzed for these processes, the hydrograph for each cell is 

obtained. The resulting hydrographs are between cells in Level 1. 

The Muskingum method is used between cells and flow routing are obtained with 

this translation until the outlet. Instead of outlet flow, all cell flow can be seen in pattern 

[4]. 

2.4. Meterologic, morphologic and hydrologic data 

Meteorology data taken from E-OBS (European observation) and MODIS (moderate 

resolution imaging spectroradiometer), morphology from SRTM (shuttle radar topogra-

phy mission), ESD (European soil database) and HWSD (harmonized world soil data-

base), hydrology from GRDC (global runoff data center). E-OBS is daily gridded dataset 

which observes daily precipitation sum, daily mean temperature, daily maximum tem-

perature, and minimum temperature. Temperature and precipitation, is taken from E-

OBS. Files are provided in netCDF-4 format and cover area is between 25N-71.5N x 

25W-45E [24]. Leaf area index (LAI) and land cover data was received from MODIS da-

taset. The best image is selected by algorithm from sensors which are placed on NASA’s 

Terra and Aqua satellites within 8-day periods [25,26]. DEM (digital elevation model) is 

received from SRTM (The Shuttle Radar Topography Mission). SRTM compare slightly 

different angles comes from two radar signals to calculate surface elevation. SRTM cover 

80% of earth between 60N-56S [27]. Soil classes received from ESDB. ESDB is basic rep-

resentation of soil classes on spatial pattern in Europe. The ESDB has 73 features of soil 

classes such as parent material, impermeable layer, restriction on agricultural use, soil 

water regime, altitude, slope, and physical, chemical, mechanical, and hydrological 

characteristics [28]. Soil classes information is also gotten from HWSD. HWSD is a 

worldwide combination of soil maps has more than 16000 soil attribute units. The raster 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 December 2022                   doi:10.20944/preprints202212.0535.v1

https://doi.org/10.20944/preprints202212.0535.v1


 

 

map of HWSD has 21600 rows and 43200 columns which have characterization such as 

organic Carbon, pH, soil depth, total exchangeable nutrients, gypsum and lime concen-

tration, sodium exchange percentage, salinity, textural class, and granulometry [29]. Dai-

ly discharge values of 6 gauge (#6335500, #6335301, #6335303, #6335800, #6335530, 

#6335540) are received from GRDC. All inputs are summarized in Table 1. 

 

 

 

Variable Description 
Resolution 

Degree 
Source 

Q (daily) Streamflow Point GRDC 

P (daily) Precipitation 0.0625 EOBS 

AETref (daily) 
Actual evapotran-

spiration 
0.0625 MODIS 

PETref (daily) 
Potential evapo-

transpiration 
0.0625 E-OBS 

Tavg (daily) 
Average air tem-

perature 
0.0625 E-OBS 

LAI 

Fully distributed 

12 monthly values 

based on an 8-day 

time-varying Leaf 

Area Index (LAI) 

dataset 

0.001953125 MODIS 

Land cover 
Forest, pervious 

and urban 
0.001953125 MODIS 

DEM related 

data 

Slope, aspect, flow 

accumulation, and 

direction 

0.001953125 SRTM 

Geology 

class 

Two main geologi-

cal formations 
0.001953125 UFZ-Leipzig 

Soil class 
Fully distributed 

soil texture data 
0.001953125 

HWSD and 

ESD 

 

 

 

 

2.5. Leaf Area Index (LAI) and Actual Evapotranspiration (AET) 

Table 1 Description Morphologic and meteorologic inputs of mHM and their resolution and 

dataset resources[27,29–33] 
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MODIS global ET algorithm in NASA's earth observation system. It was developed 

for hydrological and ecological research using remote sensing data. During the calibra-

tion process of this study, the monthly MOD16 AET was used. LAI was used. ET data 

was obtained from the MOD15 algorithm at 8-day, monthly, and yearly intervals. Avail-

able in 1 km spatial resolution. MODIS LAI product as a long-term monthly average was 

inserted into the model. LAI maps plant growth on low-resolution PET data. It is used to 

introduce the dynamics of PET and directly affects the results of AET [11]. Leaf Area In-

dex (LAI) is taken into consideration at the L0 level and up-scaling from L0 to the L1 

level. LAI is calculated as in equation below [34]: 

𝐿𝑒𝑎𝑓 𝑎𝑟𝑒𝑎 𝑝𝑒𝑟 𝑝𝑙𝑎𝑛𝑡 =  𝐿𝑒𝑎𝑓 𝑎𝑟𝑒𝑎 𝑝𝑒𝑟 𝑝𝑙𝑎𝑛𝑡 𝑥 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑙𝑎𝑛𝑡𝑠 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎 (3) 

 

 

2.6. Aspect and Actual Evapotransporation (AET) 

Aspect is a Digital Elevation Model (DEM) related data. Aspect is a very effective 

parameter for snow distribution with slope, elevation, and insolation [35]. The LAI is 

considered with aspect to obtain more accurate prediction of evapotranspiration in both 

mountain and low elevation variety basins. 

The original scaling factor in mHM is based on an aspect-driven term and a lumped 

minimum correction. In mountainous areas, considering aspect ratio for AET correction 

is very logical; but, this is found to be irrelevant for basin which has a low elevation dif-

ference [17]. 

2.7. Objective Functions 

2.7.1. Kling-Gupta (KGE) 

KGE takes values equal or smaller than 1.  

KGE=1-ED (4) 

ED=√(1 - r)2 + (1 - α)2 + (1 - β)
2
 (5) 

" r" is the Pearson correlation coefficient. " α" is the ratio between the average of the fore-

cast values and the average of the observed values. "β" is the ratio between standard de-

viation of forecast values and standard deviation of observation [36]. 1-KGE=ED=0 is the 

objective function.  

2.7.2. Spatial Efficiency Metric (SPAEF)  

In this case aspect driven results have been checked. SPAEF metric consist of corre-

lation, coefficient of variation and histogram match. These components help to over-

come sophisticated hydraulic models [37]. 

SPAEF=1-√(α-1)2 + (β-1 )
2
 + (ɣ-1 )2  (6) 

α=ρ(obs,sim), β=(
𝜎𝑠

𝜇𝑠

) /(
𝜎𝑜

𝜇𝑜

), ɣ=
∑ min (𝐾𝑗 , 𝐿𝑗)𝑛

𝑗=1

∑ 𝐾𝑗
𝑛
𝑗=1

 (7) 

"α" is the Pearson correlation coefficient which show correlation between observed 

and simulated values. "β" symbolizes spatial variability which is the fraction of the coef-

ficient of variation. “ɣ “stands for histogram intersection, K refers to observed pattern, 

and L refers to simulated pattern. 

2.8. Model Calibration and Validation 
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For 5 different cases sensitive parameters are calibrated with 750 iterations by OS-

TRICH (Optimization Software Toolkit). There is more than one objective function, 

therefore, the PADDS (Pareto Archived Dynamically Dimensioned Search) algorithm is 

preferred. Pareto-front select non-dominated runs in 750 runs. Non-dominated runs 

provide choice to user between objective functions to select a parameter set and group 

for next model application. Non-dominated runs maintain improvement on both objec-

tive functions simultaneously. The PADDS produces components randomly in the dis-

tribution of runs along the pareto front. The tradeoff between the spatial ET perfor-

mance and the temporal discharge performance is clearly shown in all cases as a pareto 

front. The SPAEF residuals for the normalized the simulated patterns after normaliza-

tion are more different to the normalized target pattern than the original ET patterns. 

However, the performance of the water balance is comparable between cases [23]. 

Scheme of calibration for cases are shown in Figure 3. 

 

 

OSTRICH minimizes objective function of KGE and SPAEF. Optimal value for KGE 

and SPAEF is 1. Square residual defined for SPAEF for spatial pattern of AET (8) and 

sum of 6-gauge square residual defined for KGE (9).  

 

𝑆𝑅𝐴𝐸𝑇=(1 − 𝑆𝑃𝐴𝐸𝐹)2 (8) 

 𝑆𝑆𝑅𝑄= ∑ (1 − 𝐾𝐺𝐸𝑖)2
6

𝑖
 

(9) 

 

MODIS AET values are monthly maps between 2002 and 2014. These maps were 

added to the model taking quarterly terms as March-April-May (MAM), June-July-

August (JJA), and September-October-November (SON). End of the iteration best pa-

rameter sets selected for every case and run once more to validate results. Best parame-

ter sets selected smallest value of sum of objective function of KGE and SPAEF. To vali-

date results best parameter run again then SPAEF and KGE values are checked [38]. 

Case 0, PET correction driven by neither LAI nor aspect. The purpose of adding this 

case to see the vegetation and aspect effect by comparing other cases. Case 1, aspect 

driven results have been checked. Aspect defines direction of slope faces. Aspect is a de-

gree that takes values from 0 to 360. Case 2, LAI driven results have been checked. LAI is 

the ratio between the vegetation area and the total area. Therefore, LAI is a unitless pa-

rameter.  

 

Figure 3. Calibration scheme 
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Case 3, the LAI, and aspect driven by the weight number results have been 

checked. LAI and aspect driven by the weight parameter between LAI and aspect. The 

weight parameter between LAI and aspect is a number between 0 and 1. LAI multiplied 

by weight parameter and aspect multiplied by (1- weight parameter) and summed for 

AET correction. PET correction method added mHM source file like in Equation 10 [39]. 

 

𝑝𝑒𝑡 =  𝑝𝑒𝑡_𝑖𝑛(𝑘) ∗ ((𝑝𝑒𝑡𝐿𝐴𝐼𝑐𝑜𝑟𝐹𝑎𝑐𝑡𝑜𝑟𝐿1(𝑘) ∗ 𝑎𝑙𝑝ℎ𝑎𝑥) + (𝑓𝐴𝑠𝑝(𝑘) ∗ (1 − 𝑎𝑙𝑝ℎ𝑎𝑥))) (10) 

 

 

Case 4; the LAI, and aspect correction numbers are multiplied for PET correction 

and the results have been checked. This case added to search effect of aspect on photo-

synthesis and effect of both on actual evapotranspiration. Equation 11 is added to meth-

ods of mHM [39]. 

 

𝑝𝑒𝑡 =  𝑝𝑒𝑡_𝑖𝑛(𝑘)  ∗ 𝑝𝑒𝑡𝐿𝐴𝐼𝑐𝑜𝑟𝐹𝑎𝑐𝑡𝑜𝑟𝐿1(𝑘)  ∗   𝑓𝐴𝑠𝑝(𝑘) (11) 

 

3. Results 

3.1. Model Sensitivity Analysis 

Hydrological modeling is necessary for most determinations about managing re-

sources quantitatively. The functions of a natural system are often represented by highly 

parameterized, physically justified, process-based numerical models. This allows the 

models to be used to assess the effectiveness of management tactics or the system's re-

sponse to environmental changes [40]. 

All morphological and meteorological data transform to appropriate resolution and 

time scale. Instead of using all 69 parameters of mHM, most sensitive 26 parameter used 

for this study. Considering all parameters may cause time consumption therefore, sensi-

tivity analysis based on AET, and discharge was calculated with PEST [40] (Model-

Independent Parameter Estimation and Uncertainty Analysis) by objective function of 

SPAEF and KGE metrics. Objective functions are SPAEF for the spatial pattern of actual 

evapotranspiration, and KGE for 6 discharge gauges.  

26 most sensitive parameters are shown in Figure 4. These parameters selected 

based on the combined sensitivity of KGE and SPAEF. Based on KGE most sensitive 10 

parameters controlling water balance are rotfrcofclay, rotfrcoffore, pet_apervi, ptflow-

const, ptfksconst, infshapef, ptflowdb, alphax, pet_bb, mincorfacpet. The other bjective 

function SPAEF is most sensitive to the parameters rofrcofclay, orgmatimper, rotfrcof-

fore, pet_apervi, slwintreceks, rotfrcofimp, pet_aimpervi, alphax, pet_bb, infshapef, 

which has some similar parameters with KGE also has more PET parameters. Soil prop-

erties effect on SPAEF is remarkable result.  

All sensitive parameters normalized between 0 and 1. Description and range of pa-

rameter are shown in Table 2. As shown in Figure 4 weight parameter between LAI and 

aspect (alphax) is eight most sensitive parameter not only for KGE for gauges but also 

for SPAEF for actual evapotranspiration. 
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Figure 4. Most Sensitive 26 Parameters according to objective function of SPAEF and KGE. Sensitivity 

calculated by PEST. 
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Table 2 Description of 26 selected sensitive parameters and their range in mHM 

     

Parameter Name Description Min Max 

rotfrcofclay root fraction coefficient clay 0.9 0.999 

rotfrcoffore root fraction coefficient forest 0.9 0.999 

pet_apervi PET scaling: pervious -0.3 1.3 

ptflowconst PTF saturated water content: constant 0.6462 0.9506 

ptfksconst PTF hydraulic conductivity: constant -1.5 -1.2 

infshapef Infiltration shape factor 1 4 

ptflowdb 
PTF saturated water content: coefficient 

bulk density 
-0.3727 -0.1871 

alphax Weight parameter between LAI and aspect 0 1 

pet_bb PET scaling: range 0 1.5 

mincorfacpet minimum correction factor of PET 0.7 1.3 

orgmatimper 
Organic matter content for impervious 

zone 
0 1 

rotfrcofimp Root fraction coefficient impervious 0.9 0.999 

ptfkssand PTF hydraulic conductivity: Sand 0.0042 0.01 

pet_cc PET scaling: shape -2 0 

canintfact Canopy interception factor 0.15 0.4 

rcfactkars Recharge factor karstic -5 5 

pet_aimpervi PET scaling: impervious 0.3 1.3 

ptflowclay PTF saturated water content: clay 0.0001 0.0029 

ptfksclay PTF hydraulic conductivity: clay 0.003 0.0129 

snotrestemp 
Snow temperature threshold for rain and 

snow separation 
-2 2 

ptfkscurvslp PTF hydraulic conductivity: curve slope 51 56 

slwintreceks Slow interception 1 30 

impstorcapa Impervious storage capacity 0 5 

pet_aforest PET scaling: forest 0.3 1.3 

aspectreshpet Aspect threshold PET 160 200 

maxcorfacpet Maximum correction factor of PET 0 0.2 

 

3.2. Spatial Pattern Result of AET 

In Germany, Main basin is modeled by fully distributed hydrologic model mHM. 

For two objective functions (KGE and SPAEF), the best-balanced solution is chosen for 

visualization. SPAEF value for AET and KGE value for outlet discharge are calculated 

with three-month period for evaluated cases. Three-month periods are MAM (March, 

April, and May), JJA (June, July, and August), and SON (September, October, and No-

vember).  

The results are according to the best case in non-dominated solutions. If there is no 

other better solution in two objective functions is called non-dominated. All cases com-

pared with MODIS AET data in Figure 5. Best non-dominated solution (minimum 

summation of KGE and SPAEF) nearest to origin selected to visualize. 
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               Figure 5. Spatial pattern results of average 3-month periods compared with observed MODIS AET 
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According to result (Figure 5), ignoring aspect and LAI for AET in case 0 cause the 

worst result in three terms (SPAEFs are 0.50, 0.54 and 0.07). KGE is 0.73. KGE of base 

case performs better than case 1. Spatial pattern performances are also not too bad based 

on JJA and MAM because there are more sensitive parameters than LAI and aspect. 

Therefore, we did not expect it to be irrelevant to observed MODIS AET, even it is driv-

en neither LAI nor aspect. 

According to the result (Figure 5) of Case 1 (aspect driven), the aspect correction 

improves the AET performance. Three-term SPAEF results are 0.29, 0.56 and 0.13). KGE 

result is 0.56. Case 1 spatial pattern results are slightly better than case 0. For snow-

dominated mountain basin, aspect-driven case may give better result than this.  

According to result (Figure 5) of Case 2 (LAI driven), gives much better perfor-

mance than Case 0 and Case 1. LAI effect is more significant than aspect in Main basin. 

Three-term SPAEF results are 0.61, 0.47 and 0.52). KGE result is 0.77. Case 2 result is 

much better than case 0 and case 1. This result is very similar to previous studies [11,17]. 

Case 3 performance better than other cases. Three-term SPAEF results are 0.59, 0.71 

and 0.62. KGE result is 0.84 is much better than other cases. Weight parameter helped 

better constrain the model parameters connected to actual evapotranspiration when 

compared to cases based on only LAI and only aspect.  

Case 4 is also show good results like Case 3. SPAEF values for spatial pattern of 

AET are 0.56, 0.62 and 0.64. KGE is 0.64. LAI driven correction parameter multiplied 

with aspect and PET. “alphax“parameter is not used in this case. This shows that with-

out adding new parameter, just influencing LAI and aspect to model enough to get 

much better result. The spatial pattern of Case 3 and Case 4 spatial pattern and water 

balance performance are very close. 

3.3. Water Balance result of gauges 

Simulated KGE result according to observed discharges are shown in Table 3. Vali-

dations are run also with 6 gauges. Case 3 and case 4 show better KGE performance in 

most of gauges. Location of gauges are shown in Figure 1. Based on these gauges, KGE 

discharge result compared to observed data is shown in Table 3. Improved performance 

of case 3 and case 4 are also can be seen in most of the gauges. The most surprising as-

pect of the data is that water balance score of case 3 is better than case 4. Instead of single 

outlet gauge validation, case 3 is more compatible for multigauge calibration than case 4. 

 

 

Table 3. Model validation gauges from internal tributaries of the Main basin  

 KGE 

Gauges CASE 0 CASE 1 CASE 2 CASE 3 CASE 4 

6335500 0.14 0.3 0.07 0.55 0.30 

6335301 0.13 0.28 0.04 0.54 0.28 

6335303 -0.03 0.21 -0.24 0.48 0.07 

6335530 -0.67 -0.03 -0.85 -0.01 -0.46 

6335800 0.57 0.53 0.45 0.67 0.52 

6335540 -4.38 -3.49 -4.62 -4.07 -4.94 

 

 

 

3.4. Non-Dominated Result and best parameter of cases 
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After 750 iterations, selected non-dominated solutions and marked best cases are 

represented in Figure 6.  

Objective function of KGE and SPAEF are shown in axis. Closest point of each cases 

marked as best parameter set of those cases. Case 0 (blue) and case 1 (green) has very 

poor SPAEF performance and poor KGE performance as expected. Increased perfor-

mance with LAI is also clearly visible on case 2 (yellow). Performance of Case 3 and case 

4 are better than all other cases. Best result of case 3 is slightly better than case 4. How-

ever, spatial pattern score of case 4 is better in many calculations. On the contrary, 

streamflow score of case 3 is better in some of the calculations. Taken together, these re-

sults suggest that there is an association between LAI and aspect to calibrate hydrologic 

model. 

4. Discussion 

Hydrological models are widely used across the world due to the requirement to 

forecast how changes in the climate and in land use would affect the discharge regime, 

particularly given their capacity to forecast flows in both metered and unmetered water-

sheds. These estimators do, however, carry some risk because of model bias, inaccurate 

input data, and inaccurate model parameter values. Decisions concerning hydrological 

fluxes are based on model results, which hydrological modelers use to affect impulses. 

Numerous research has examined and estimated a range of input data that reflect those 

in conceptual and physically distributed models to better understand the various ways 

that models work [1,3,4,11,12,17,18,41]. 

Models like mHM are distributed spatially and comprise equations with one or 

more region coordinates for simulating the volume of discharges and bulk storage as 

well as the spatial production of hydrological variables across a basin. These types of 

models are inherent to their design and operation and place heavy demands on both 

computing time and data specifics. The outcomes of this study show how the geograph-

Figure 6. Non-dominated results of cases compared with OSTRICH and best result of each cases marked 
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ical model responds to the operational characteristics of the input data depending on the 

research aim. 

The present study was designed to determine the effect of LAI and aspect on hy-

drologic models. For this purpose, cases labeled as case 0 to case 4 with different input 

and varying equation. Case 0 configured without LAI and aspect correction. Case 1 is 

designed with aspect and Case 2 with LAI only. In Case 3 coefficient added to LAI and 

aspect correction and summed. Case 4 is built by multiplying LAI and aspect correction 

which makes it possible to observe model performance without adding parameter. 

The most obvious finding that the emerges from the analysis is that simulation per-

forms better when LAI and aspect are used together. Spatial pattern of AET of case 2 is 

much more similar than case 0 and case 1. This result seem to be consistent with other 

research which found in [11,18]. It seems possible that these results are due to properties 

of Main basin. Snow dominated, rain dominated or basins which have different type 

vegetation may differ rate of effect between aspect and LAI. However, in any case, both 

LAI and aspect effect will be important. 

Our next research will be about to run case 3 and case 4 in different type of basin. 

For example, mountainous areas, snow dominated areas or in basin which have differ-

ent climate type.  

 

5. Conclusion 

The main goal of this study is to assess the effect of LAI and aspect together on the 

model simulated AET and water balance. For this purpose, 5 cases (experiments) are de-

signed for the Main basin (Germany) with fully distributed hydrologic model mHM. 

Firstly, source code of mHM is modified and added a new parameter i.e. alphax. Then, 

sensitive parameters are determined for calibration. For each case, discharge calibrated 

with KGE metric by comparing with measured outlet discharge, and spatial pattern of 

AET calibrated with objective function of SPAEF by comparing with MODIS AET 

monthly data. The following conclusions are drawn based on the calibration and valida-

tion results: 

• Using unscaled PET is sufficient for a reasonable water balance like in 

lumped models. 

• Using only aspect for PET scaling deteriorates water balance performance 

and not improves the AET performance. 

• Using only 12 monthly LAI maps for dynamic PET scaling significantly im-

proves AET and water balance performance of the mHM. 

• The product of LAI and aspect without weighting also improves the AET 

and water balance performance of mHM.  

• The weighting LAI and aspect using alphax parameter reveals slightly bet-

ter performance than the product of LAI and aspect. 

Further research should explore the added value of daily LAI maps instead of monthly 

maps on dynamic PET correction.  
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