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Abstract: The spatial heterogeneity in hydrologic simulations is a key difference between lumped
and distributed models. Not all distributed models benefit from pedo-transfer functions
based on soil properties and crop-vegetation dynamics. Mostly coarse scale meteorological
forcing is used to estimate water balance at the catchment outlet only. Mesoscale hydrologic
model (mHM) is one of the rare models that incorporates remote sensing data i.e. leaf area
index (LAI) and aspect to improve actual evapotranspiration (AET) simulations and water
balance together. The user can select either LAI or aspect to scale PET. However, herein we
introduced a new weighting parameter “alphax” that allows user to incorporate both LAI
and aspect together for PET scaling. With this mHM code enhancement, the modeler has an
also option of using raw PET with no scaling. In this study, streamflow, and AET are simu-
lated using the mesoscale Hydrological Model (mHM) in Main (Germany) basin for the pe-
riod of 2002-2014. The additional value of PET scaling with LAI and aspect for model per-
formance is investigated using Moderate Resolution Imaging Spectroradiometer (MODIS)
AET and LAI products. From 69 mHM parameters, 26 parameters are selected for calibration
using Optimization Software Toolkit (OSTRICH). For calibration and evaluation, KGE metric
is used for water balance and SPAEF metric is used for evaluating spatial patterns of AET.
Our results show that AET performance of the mHM is highest when using both LAI and
aspect indicating that LAI and aspect contain valuable spatial heterogeneity information
from topography and canopy (e.g., forests, grasslands, and croplands) that should be pre-
served during modeling. The additional “alphax” parameter makes the model physically
more flexible and robust as the model can decide the weights according to the study domain.

Keywords: cropland; evapotranspiration; LAI; aspect; remote sensing; mHM

1. Introduction

Hydrologic models are increasingly used to predict and control natural activities.
To succeed in this, one relies on model calibration [1]. There are many parameters that
affect rainfall-runoff models [2,3]. More parameters can be used, and more accurate re-
sults can be obtained with increasing computer processing power. The accuracy of one
basin model is increased by the availability of large data sets and computation methods
[4].

Various studies have assessed the importance of improving optimization proce-
dures [5], choosing proper objective functions to appraise model performance [6], using
probabilistic methods to take into account parameter uncertainty [7], calibrating the
model to accommodate multiple targets [8], and selecting group of parameters which are
part of step by step hydrologic process to meet various target [9,10]. Previous research
[11] has established that LAI effect on AET. Much uncertainty still exists about the rela-
tionship between LAI and aspect.
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Evapotranspiration plays a crucial role for water equilibrium and crop irrigation,
drought estimation, and observation. In hydrological models, there are two types of
evapotranspiration evaluation techniques. One estimates water surface evaporation, soil
evaporation, and vegetable transpiration independently before integrating them to ob-
tain basin evapotranspiration based on the land cover. The other one uses the Soil Mois-
ture Extraction Function to first estimate potential evapotranspiration (PET) and then
transform it into actual evapotranspiration (AET) [12]. We will focus on the second one,
firstly, calculation of potential evapotranspiration.

There is a growing body of literature that recognizes physics-based hydrological
models which have three types: fully distributed, semi-distributed and bulk model. In
bulk models, only output data can be evaluated. However, in fully distributed models’
results can be get from anywhere of basin and compare with satellite-based remote sens-
ing data [11].

In this study, to compare AET which is obtained from MODIS (moderate resolution
imaging spectrometer) with simulated values fully distributed the mesoscale Hydrologi-
cal Model (mHM) is preferred.

To simulate AET, the mHM consider processes such as canopy interception, infiltra-
tion, surface runoff, base flow, deep percolation, flood routing, groundwater storage,
snow-ice melting, and accumulation. Soil texture, digital elevation model, and land cov-
er are physiographical data that were used to build model. Land cover data converted 3
layer (forest permeable, and impervious cover) [13].

For simulation of actual evapotranspiration 5 method is available with mHM. These
are Penman-Monteith method [14], Priestley-Taylor method [15], Hargreaves-Sammani
method, aspect driven and LAI driven method.[11,16] Previous research comparing LAI
and aspect has found.[11,17,18] No previous study has investigated both LAI and aspect.

This paper examines scaling PET with both LAI and aspect and compare with it on-
ly LAI and only aspect driven cases All cases are tested in mHM spatial —pattern-
oriented calibration of a catchment model in Main basin (Germany).

2. Materials and Methods

2.1. Study Area

The study area was selected as the Main. Main is the sub-basin of the Middle Rhine
River. The Rhine is important for Europe in terms of water supply, irrigation, transpor-
tation, and industry. The Middle Rhine River consists of the Neckar, Moselle, and Main
basins. The Main River formed from the Fichte] Mountains and the Red Main runs
through Bamberg and then Wiirzburg. Mainz which is located 30 km west of Frankfurt
joins The Rhine River.

The river was canalized in 1992 which connects the Rhine and Danube rivers and
completes 3500 kilometers of the waterway from the North Sea to the Black Sea. Main-
Danube Canal provides transportation between the North Sea and the Black Sea. The
canal includes 16 locks and a hydroelectric power plant. These large engineering projects
were done between 1960 and 1992. In the Rhine basin, mean annual precipitation varies
from about 500 mm to 2000 mm (from the valley to the Alpine region). [19]

In this study, the area of the Main basin is 14117 km2. The discharge value was tak-
en from the outlet 6335500 which is in Wiirzburg. Annual discharge 243 mm. The annual
precipitation is 736 mm, and the potential evapotranspiration is 773 mm. The melting of
snow in the spring months causes high discharge values. The discharge increases be-
tween January and April and decreases between September and November. The reason
for selecting the Main basin is that the gauge station has long-term discharge data with-
out missing values. Location of Main basin in Germany, Leaf area index (LAI) in sum-
mer, elevation and gauge position in basin, river network and aspect driven from digital
elevation model (DEM) of Main basin are shown in Figure 1.
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Figure 1 Physical charactersitics (LAI, DEM and aspect maps) of the
study domain i.e. Main basin in Germany and streamflow gauge

locations on the tributaries
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2.2. AET ( Actual Evapotranspiration)

Actual evapotranspiration is the second important process of water balance. About
60% of precipitation on land is transpired back into the air via evaporation and transpi-
ration. Evaporations are water from soil, surface of water and canopy interception. Tran-
spiration comes from plant leaves.

Despite the leaf area index, vegetation type is also an effective factor on AET. Ever-
green forest contributes more annual AET than deciduous forest, but spatial analysis
shows that expository parameters alter regionally. The driving variable of AET could be
different for each basin [20].

Photosynthesis is an important factor on transpiration. Photosynthesis rate changes
with illumination angle on leaves [21]. Therefore, aspect ratio effect transpiration and
AET with leaf area index.

In mountainous basins, it is logical to use aspect ratio for AET correction, but the
basin, which has low elevation difference, is found to be unpractical. By downscaling the
referenced ET, the user may use the dynamic scaling algorithm that was proposed here
to overlay pattern of LAI on the simulated AET patterns. The idea of a crop coefficient,
which is used to transform reference ET into a potential amount of evapotranspiration
(PET) for a specific vegetation that is different from the reference crop, like as the idea of
a dynamic scaling function (DSF). DSF of LAl is shown equation at the below.

DSF=a + b(1 — e~cLAh 1)

PET=DSF * ET,; @)

a is the intercept term symbolize uniform scaling, b is the parameter symbolize
vegetation dependence, c identify the rate of nonlinearity of LAI dependence [17].

2.3. mHM (mesoscale Hydrological Model)

mHM (mesoscale Hydrological Model developed by UFZ (Helmholtz Centre for
Environmental Research). mHM is fully distributed, physically based, and continuous.
The feature that distinguishes MHM from other hydrological models is that it is distrib-
uted with cells (grids). There are many different parameters are used for each cell in the
workspace. With this feature, spatial analysis of the data used and the model run.

As the resolution of the basin increases, the variability of the characteristics of the
basin in the computer environment can be well represented. Spatial variables of inputs
and state variables are analyzed on their resolution in three different layers, at different
scales: Level 0 (morphology), Level 1 (hydrology), and Level 2 (meteorology) as Figure
2.

Level-2 (meteorology)

Level-1 (hydrology)

Level-0 (morphology)

Figure 2 Spatial scales in model structure i.e. L0 is morphology, L1 is hydrology and L2 is

coarse meteorologic forcing scale
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Level 0 is the most detailed scale of these layers. At this level, ground characteris-
tics, morphological variables, land cover, and vegetation are processed. Spatial resolu-
tion processing is performed up to about 100 m at level 0 is done. Level 1 is the level
where hydrological processes are processed. The process is performed at spatial resolu-
tions between 1 km — 16 km. Finally, in Level 2, meteorological inputs and variables are
processed. The resolution of level 2 is between 1 km and 25 km. Examination of the ba-
sins based on cells can reflect the heterogeneous nature of the land. Ordinary differential
equations (ODE) were used to overcome the continuity problem, which is an examina-
tion of basin based on cells. Each cell with ODEs simulates the following processes: soil
moisture dynamics, snow accumulation and melting, canopy interception, infiltration
and surface runoff, evapotranspiration, subsurface storage and discharge generation,
deep percolation and baseflow, and discharge attenuation and flood routing [22].

The execution of output-generating hydrological model routines occurs at a scale in
between that of high-resolution watershed features and that of low-resolution meteoro-
logical forcing. Model parameters are regionalized by simple and built-in transfer func-
tions that relate spatially scattered watershed properties to continuous parameter fields.
With just a few calibration parameters, efficient model calibration is possible because to
the control of transfer functions by global parameters. Additionally, it has been estab-
lished that the mHM parameters are scale-independent, making it possible to calibrate
the model at low spatial resolution and subsequently apply it at high spatial resolution
using the same parameters. mHM has two transfer functions to increase the output of
the geographically distributed model's realism even further. To consider for diverse land
cover, it first couples completely dispersed vegetation features, namely the remotely
sensed Leaf Area Index (LAI), to a spatially distributed crop coefficient. Second, it de-
rives a field capacity based on a regionally variable root depth parameter using spatially
distributed information on soil texture. For a spatial model-oriented calibration frame-
work that seeks to improve the realism of spatially distributed model simulations, both
transfer functions are crucial for the efficient integration of satellite-based measure-
ments, such as evapotranspiration [23].

As a result of the ODEs analyzed for these processes, the hydrograph for each cell is
obtained. The resulting hydrographs are between cells in Level 1.

The Muskingum method is used between cells and flow routing are obtained with
this translation until the outlet. Instead of outlet flow, all cell flow can be seen in pattern

[4]-

2.4. Meterologic, morphologic and hydrologic data

Meteorology data taken from E-OBS (European observation) and MODIS (moderate
resolution imaging spectroradiometer), morphology from SRTM (shuttle radar topogra-
phy mission), ESD (European soil database) and HWSD (harmonized world soil data-
base), hydrology from GRDC (global runoff data center). E-OBS is daily gridded dataset
which observes daily precipitation sum, daily mean temperature, daily maximum tem-
perature, and minimum temperature. Temperature and precipitation, is taken from E-
OBS. Files are provided in netCDF-4 format and cover area is between 25N-71.5N x
25W-45E [24]. Leaf area index (LAI) and land cover data was received from MODIS da-
taset. The best image is selected by algorithm from sensors which are placed on NASA’s
Terra and Aqua satellites within 8-day periods [25,26]. DEM (digital elevation model) is
received from SRTM (The Shuttle Radar Topography Mission). SRTM compare slightly
different angles comes from two radar signals to calculate surface elevation. SRTM cover
80% of earth between 60N-56S [27]. Soil classes received from ESDB. ESDB is basic rep-
resentation of soil classes on spatial pattern in Europe. The ESDB has 73 features of soil
classes such as parent material, impermeable layer, restriction on agricultural use, soil
water regime, altitude, slope, and physical, chemical, mechanical, and hydrological
characteristics [28]. Soil classes information is also gotten from HWSD. HWSD is a
worldwide combination of soil maps has more than 16000 soil attribute units. The raster
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map of HWSD has 21600 rows and 43200 columns which have characterization such as
organic Carbon, pH, soil depth, total exchangeable nutrients, gypsum and lime concen-
tration, sodium exchange percentage, salinity, textural class, and granulometry [29]. Dai-
ly discharge values of 6 gauge (#6335500, #6335301, #6335303, #6335800, #6335530,
#6335540) are received from GRDC. All inputs are summarized in Table 1.

Table 1 Description Morphologic and meteorologic inputs of mHM and their resolution and

dataset resources[27,29-33]

Resoluti
Variable Description esolution Source
Degree
Q (daily) Streamflow Point GRDC
P (daily) Precipitation 0.0625 EOBS
Actual -
AETwi(daily) @ evapotran- . o5 MODIS
spiration
. Potential evapo-
PETret (daily) o 0.0625 E-OBS
transpiration
Tug (daily) ~ /VETAgeAIrtem= 0 E-OBS
perature
Fully distributed
12 monthly values
Lar  pasedonanday o, h01955105  MoDIS
time-varying Leaf
Area Index (LAI)
dataset
Land cover | OrSUPEIVIOUS g 601953195 MODIS
and urban
Slope, aspect, flow
DEhﬁ;f;ated accumulation, and  0.001953125  SRTM

direction

Geology  Two main geologi- 1953155 UFZ-Leipig

class cal formations
Soil class T ully distributed ) 5 55195 HWSD and
soil texture data ESD

2.5. Leaf Area Index (LAI) and Actual Evapotranspiration (AET)
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MODIS global ET algorithm in NASA's earth observation system. It was developed
for hydrological and ecological research using remote sensing data. During the calibra-
tion process of this study, the monthly MOD16 AET was used. LAI was used. ET data
was obtained from the MOD15 algorithm at 8-day, monthly, and yearly intervals. Avail-
able in 1 km spatial resolution. MODIS LAI product as a long-term monthly average was
inserted into the model. LAI maps plant growth on low-resolution PET data. It is used to
introduce the dynamics of PET and directly affects the results of AET [11]. Leaf Area In-
dex (LAI) is taken into consideration at the L0 level and up-scaling from L0 to the L1
level. LAI is calculated as in equation below [34]:

Leaf area per plant = Leaf area per plant x Number of plants per unit area 3)

2.6. Aspect and Actual Evapotransporation (AET)

Aspect is a Digital Elevation Model (DEM) related data. Aspect is a very effective
parameter for snow distribution with slope, elevation, and insolation [35]. The LAI is
considered with aspect to obtain more accurate prediction of evapotranspiration in both
mountain and low elevation variety basins.

The original scaling factor in mHM is based on an aspect-driven term and a lumped
minimum correction. In mountainous areas, considering aspect ratio for AET correction
is very logical; but, this is found to be irrelevant for basin which has a low elevation dif-
ference [17].

2.7. Objective Functions
2.7.1. Kling-Gupta (KGE)
KGE takes values equal or smaller than 1.

KGE=1-ED )

ED=\/(1 -2+ (1-a)2+(1- [5)2 )
" 1" is the Pearson correlation coefficient. " a" is the ratio between the average of the fore-
cast values and the average of the observed values. "B" is the ratio between standard de-
viation of forecast values and standard deviation of observation [36]. 1-KGE=ED=0 is the
objective function.

2.7.2. Spatial Efficiency Metric (SPAEF)
In this case aspect driven results have been checked. SPAEF metric consist of corre-

lation, coefficient of variation and histogram match. These components help to over-
come sophisticated hydraulic models [37].

SPAEF-=1- \/ (@-1)2+ (B-1 )+ (y-1)2 (6)
_ . _,0s 0y _Zn=1 min (KJ' L]')
o=p(obs,sim), B=(- ) /(). Y—’}T %

"o is the Pearson correlation coefficient which show correlation between observed
and simulated values. "B" symbolizes spatial variability which is the fraction of the coef-

ficient of variation. “y “stands for histogram intersection, K refers to observed pattern,
and L refers to simulated pattern.

2.8. Model Calibration and Validation
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For 5 different cases sensitive parameters are calibrated with 750 iterations by OS-
TRICH (Optimization Software Toolkit). There is more than one objective function,
therefore, the PADDS (Pareto Archived Dynamically Dimensioned Search) algorithm is
preferred. Pareto-front select non-dominated runs in 750 runs. Non-dominated runs
provide choice to user between objective functions to select a parameter set and group
for next model application. Non-dominated runs maintain improvement on both objec-
tive functions simultaneously. The PADDS produces components randomly in the dis-
tribution of runs along the pareto front. The tradeoff between the spatial ET perfor-
mance and the temporal discharge performance is clearly shown in all cases as a pareto
front. The SPAEF residuals for the normalized the simulated patterns after normaliza-
tion are more different to the normalized target pattern than the original ET patterns.
However, the performance of the water balance is comparable between cases [23].
Scheme of calibration for cases are shown in Figure 3.

PET scaling Calibration iterations
schemes Pareto
new 3 :
Case 0 : none - parameter front for Point Mopis
set two OFs gauge TS AET
Casze 1. only aspect _ KGE
F—  Qup  <=_> Qobs
Case 2: only LAl >
Y > mHM SPAEF
Case 3 aspect and LAl » AET., <J=—=> AET;p
(weighted average) monthly
maps

Case 4: aspect and LAl (product)

P Ta.ﬂ.=| and other static maps

Figure 3. Calibration scheme

OSTRICH minimizes objective function of KGE and SPAEF. Optimal value for KGE
and SPAEF is 1. Square residual defined for SPAEF for spatial pattern of AET (8) and
sum of 6-gauge square residual defined for KGE (9).

SR,zr=(1 — SPAEF)? (8)

6
SSRQ=Zi (1 — KGE;)? ©)

MODIS AET values are monthly maps between 2002 and 2014. These maps were
added to the model taking quarterly terms as March-April-May (MAM), June-July-
August (JJA), and September-October-November (SON). End of the iteration best pa-
rameter sets selected for every case and run once more to validate results. Best parame-
ter sets selected smallest value of sum of objective function of KGE and SPAEF. To vali-
date results best parameter run again then SPAEF and KGE values are checked [38].

Case 0, PET correction driven by neither LAI nor aspect. The purpose of adding this
case to see the vegetation and aspect effect by comparing other cases. Case 1, aspect
driven results have been checked. Aspect defines direction of slope faces. Aspect is a de-
gree that takes values from 0 to 360. Case 2, LAI driven results have been checked. LAl is
the ratio between the vegetation area and the total area. Therefore, LAI is a unitless pa-
rameter.
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Case 3, the LAIL and aspect driven by the weight number results have been
checked. LAI and aspect driven by the weight parameter between LAI and aspect. The
weight parameter between LAI and aspect is a number between 0 and 1. LAI multiplied
by weight parameter and aspect multiplied by (1- weight parameter) and summed for
AET correction. PET correction method added mHM source file like in Equation 10 [39].

pet = pet_in(k) * ((petLAlcorFactorL1(k) * alphax) + (fAsp(k) * (1 — alphax))) (10)

Case 4; the LAI and aspect correction numbers are multiplied for PET correction
and the results have been checked. This case added to search effect of aspect on photo-
synthesis and effect of both on actual evapotranspiration. Equation 11 is added to meth-
ods of mHM [39].

pet = pet_in(k) * petLAlcorFactorL1(k) * fAsp(k) (11)

3. Results

3.1. Model Sensitivity Analysis

Hydrological modeling is necessary for most determinations about managing re-
sources quantitatively. The functions of a natural system are often represented by highly
parameterized, physically justified, process-based numerical models. This allows the
models to be used to assess the effectiveness of management tactics or the system's re-
sponse to environmental changes [40].

All morphological and meteorological data transform to appropriate resolution and
time scale. Instead of using all 69 parameters of mHM, most sensitive 26 parameter used
for this study. Considering all parameters may cause time consumption therefore, sensi-
tivity analysis based on AET, and discharge was calculated with PEST [40] (Model-
Independent Parameter Estimation and Uncertainty Analysis) by objective function of
SPAEF and KGE metrics. Objective functions are SPAEF for the spatial pattern of actual
evapotranspiration, and KGE for 6 discharge gauges.

26 most sensitive parameters are shown in Figure 4. These parameters selected
based on the combined sensitivity of KGE and SPAEF. Based on KGE most sensitive 10
parameters controlling water balance are rotfrcofclay, rotfrcoffore, pet_apervi, ptflow-
const, ptfksconst, infshapef, ptflowdb, alphax, pet_bb, mincorfacpet. The other bjective
function SPAEF is most sensitive to the parameters rofrcofclay, orgmatimper, rotfrcof-
fore, pet_apervi, slwintreceks, rotfrcofimp, pet_aimpervi, alphax, pet_bb, infshapef,
which has some similar parameters with KGE also has more PET parameters. Soil prop-
erties effect on SPAEF is remarkable result.

All sensitive parameters normalized between 0 and 1. Description and range of pa-
rameter are shown in Table 2. As shown in Figure 4 weight parameter between LAI and
aspect (alphax) is eight most sensitive parameter not only for KGE for gauges but also
for SPAEF for actual evapotranspiration.
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ptflowconst
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ptflowdb
alphax
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Figure 4. Most Sensitive 26 Parameters according to objective function of SPAEF and KGE. Sensitivity
calculated by PEST.
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Table 2 Description of 26 selected sensitive parameters and their range in mHM

Parameter Name Description Min Max
rotfrcofclay root fraction coefficient clay 0.9 0.999
rotfrcoffore root fraction coefficient forest 0.9 0.999
pet_apervi PET scaling: pervious -0.3 1.3
ptflowconst PTF saturated water content: constant 0.6462  0.9506
ptfksconst PTF hydraulic conductivity: constant -1.5 -1.2
infshapef Infiltration shape factor 1 4
ptflowdb PTF satura‘ited water content: coefficient 03727  -01871
bulk density
alphax Weight parameter between LAI and aspect 0 1
pet_bb PET scaling: range 0 1.5
mincorfacpet minimum correction factor of PET 0.7 1.3
. Organic matter content for impervious
orgmatimper Jone 0 1
rotfrcofimp Root fraction coefficient impervious 0.9 0.999
ptfkssand PTF hydraulic conductivity: Sand 0.0042 0.01
pet_cc PET scaling: shape -2 0
canintfact Canopy interception factor 0.15 0.4
rcfactkars Recharge factor karstic -5 5
pet_aimpervi PET scaling: impervious 0.3 1.3
ptflowclay PTF saturated water content: clay 0.0001  0.0029
ptfksclay PTF hydraulic conductivity: clay 0.003  0.0129
Snow temperature threshold for rain and
snotrestemp . -2 2
snow separation
ptfkscurvslp PTF hydraulic conductivity: curve slope 51 56
slwintreceks Slow interception 1 30
impstorcapa Impervious storage capacity 0 5
pet_aforest PET scaling: forest 0.3 1.3
aspectreshpet Aspect threshold PET 160 200
maxcorfacpet Maximum correction factor of PET 0 0.2

3.2. Spatial Pattern Result of AET

In Germany, Main basin is modeled by fully distributed hydrologic model mHM.
For two objective functions (KGE and SPAEEF), the best-balanced solution is chosen for
visualization. SPAEF value for AET and KGE value for outlet discharge are calculated
with three-month period for evaluated cases. Three-month periods are MAM (March,
April, and May), JJA (June, July, and August), and SON (September, October, and No-

vember).

The results are according to the best case in non-dominated solutions. If there is no
other better solution in two objective functions is called non-dominated. All cases com-
pared with MODIS AET data in Figure 5. Best non-dominated solution (minimum
summation of KGE and SPAEF) nearest to origin selected to visualize.
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Figure 5. Spatial pattern results of average 3-month periods compared with observed MODIS AET
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According to result (Figure 5), ignoring aspect and LAI for AET in case 0 cause the
worst result in three terms (SPAEFs are 0.50, 0.54 and 0.07). KGE is 0.73. KGE of base
case performs better than case 1. Spatial pattern performances are also not too bad based
on JJA and MAM because there are more sensitive parameters than LAI and aspect.
Therefore, we did not expect it to be irrelevant to observed MODIS AET, even it is driv-
en neither LAI nor aspect.

According to the result (Figure 5) of Case 1 (aspect driven), the aspect correction
improves the AET performance. Three-term SPAEF results are 0.29, 0.56 and 0.13). KGE
result is 0.56. Case 1 spatial pattern results are slightly better than case 0. For snow-
dominated mountain basin, aspect-driven case may give better result than this.

According to result (Figure 5) of Case 2 (LAI driven), gives much better perfor-
mance than Case 0 and Case 1. LAI effect is more significant than aspect in Main basin.
Three-term SPAEF results are 0.61, 0.47 and 0.52). KGE result is 0.77. Case 2 result is
much better than case 0 and case 1. This result is very similar to previous studies [11,17].

Case 3 performance better than other cases. Three-term SPAEF results are 0.59, 0.71
and 0.62. KGE result is 0.84 is much better than other cases. Weight parameter helped
better constrain the model parameters connected to actual evapotranspiration when
compared to cases based on only LAI and only aspect.

Case 4 is also show good results like Case 3. SPAEF values for spatial pattern of
AET are 0.56, 0.62 and 0.64. KGE is 0.64. LAI driven correction parameter multiplied
with aspect and PET. “alphax”parameter is not used in this case. This shows that with-
out adding new parameter, just influencing LAI and aspect to model enough to get
much better result. The spatial pattern of Case 3 and Case 4 spatial pattern and water
balance performance are very close.

3.3. Water Balance result of gauges

Simulated KGE result according to observed discharges are shown in Table 3. Vali-
dations are run also with 6 gauges. Case 3 and case 4 show better KGE performance in
most of gauges. Location of gauges are shown in Figure 1. Based on these gauges, KGE
discharge result compared to observed data is shown in Table 3. Improved performance
of case 3 and case 4 are also can be seen in most of the gauges. The most surprising as-
pect of the data is that water balance score of case 3 is better than case 4. Instead of single
outlet gauge validation, case 3 is more compatible for multigauge calibration than case 4.

Table 3. Model validation gauges from internal tributaries of the Main basin

KGE
Gauges CASE0 CASE1 CASE2 CASE3 CASE4
6335500 0.14 0.3 0.07 0.55 0.30
6335301 0.13 0.28 0.04 0.54 0.28
6335303 -0.03 0.21 -0.24 0.48 0.07
6335530 -0.67 -0.03 -0.85 -0.01 -0.46
6335800 0.57 0.53 0.45 0.67 0.52
6335540 -4.38 -3.49 -4.62 -4.07 -4.94

3.4. Non-Dominated Result and best parameter of cases
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After 750 iterations, selected non-dominated solutions and marked best cases are
represented in Figure 6.
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Figure 6. Non-dominated results of cases compared with OSTRICH and best result of each cases marked

Objective function of KGE and SPAEF are shown in axis. Closest point of each cases
marked as best parameter set of those cases. Case 0 (blue) and case 1 (green) has very
poor SPAEF performance and poor KGE performance as expected. Increased perfor-
mance with LAl is also clearly visible on case 2 (yellow). Performance of Case 3 and case
4 are better than all other cases. Best result of case 3 is slightly better than case 4. How-
ever, spatial pattern score of case 4 is better in many calculations. On the contrary,
streamflow score of case 3 is better in some of the calculations. Taken together, these re-
sults suggest that there is an association between LAI and aspect to calibrate hydrologic
model.

4. Discussion

Hydrological models are widely used across the world due to the requirement to
forecast how changes in the climate and in land use would affect the discharge regime,
particularly given their capacity to forecast flows in both metered and unmetered water-
sheds. These estimators do, however, carry some risk because of model bias, inaccurate
input data, and inaccurate model parameter values. Decisions concerning hydrological
fluxes are based on model results, which hydrological modelers use to affect impulses.
Numerous research has examined and estimated a range of input data that reflect those
in conceptual and physically distributed models to better understand the various ways
that models work [1,3,4,11,12,17,18,41].

Models like mHM are distributed spatially and comprise equations with one or
more region coordinates for simulating the volume of discharges and bulk storage as
well as the spatial production of hydrological variables across a basin. These types of
models are inherent to their design and operation and place heavy demands on both
computing time and data specifics. The outcomes of this study show how the geograph-
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ical model responds to the operational characteristics of the input data depending on the
research aim.

The present study was designed to determine the effect of LAI and aspect on hy-
drologic models. For this purpose, cases labeled as case 0 to case 4 with different input
and varying equation. Case 0 configured without LAI and aspect correction. Case 1 is
designed with aspect and Case 2 with LAI only. In Case 3 coefficient added to LAI and
aspect correction and summed. Case 4 is built by multiplying LAI and aspect correction
which makes it possible to observe model performance without adding parameter.

The most obvious finding that the emerges from the analysis is that simulation per-
forms better when LAI and aspect are used together. Spatial pattern of AET of case 2 is
much more similar than case 0 and case 1. This result seem to be consistent with other
research which found in [11,18]. It seems possible that these results are due to properties
of Main basin. Snow dominated, rain dominated or basins which have different type
vegetation may differ rate of effect between aspect and LAIL. However, in any case, both
LAI and aspect effect will be important.

Our next research will be about to run case 3 and case 4 in different type of basin.
For example, mountainous areas, snow dominated areas or in basin which have differ-
ent climate type.

5. Conclusion

The main goal of this study is to assess the effect of LAI and aspect together on the
model simulated AET and water balance. For this purpose, 5 cases (experiments) are de-
signed for the Main basin (Germany) with fully distributed hydrologic model mHM.
Firstly, source code of mHM is modified and added a new parameter i.e. alphax. Then,
sensitive parameters are determined for calibration. For each case, discharge calibrated
with KGE metric by comparing with measured outlet discharge, and spatial pattern of
AET calibrated with objective function of SPAEF by comparing with MODIS AET
monthly data. The following conclusions are drawn based on the calibration and valida-
tion results:

e Using unscaled PET is sufficient for a reasonable water balance like in
lumped models.
e Using only aspect for PET scaling deteriorates water balance performance
and not improves the AET performance.
e Using only 12 monthly LAI maps for dynamic PET scaling significantly im-
proves AET and water balance performance of the mHM.
e The product of LAI and aspect without weighting also improves the AET
and water balance performance of mHM.
o The weighting LAI and aspect using alphax parameter reveals slightly bet-
ter performance than the product of LAI and aspect.
Further research should explore the added value of daily LAI maps instead of monthly
maps on dynamic PET correction.
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