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Abstract: Generalized relativistic pseudopotentials (GRPP) of atomic cores implying the use of 1
different potentials for atomic electronic shells with different principal quantum numbers give rise 2
to accurate and reliable relativistic electronic structure models of atoms, molecules, clusters, and 3
solids. These models readily incorporate the effects of Breit electron-electron interactions and one- 4
loop quantum electrodynamics effects. Here we report the computational procedure for evaluating s
one-electron integrals of GRPP over contracted Gaussian functions. This procedure was implemented
in a library of routines named LIBGRPP, which can be integrated into existing quantum chemistry 7
software, thus enabling the application of various methods to solve the many-electron problem with
GRPPs. Pilot applications to electronic transitions in the ThO and UO, molecules using the new o
library and intermediate-Hamiltonian Fock space relativistic coupled cluster method are presented. 1o
The results clearly demonstrate that rather economical tiny-core GRPP models can exceed in accuracy = 11
relativistic all-electron models defined by Dirac-Coulomb and Dirac-Coulomb-Gaunt Hamiltonians. 12

Keywords: generalized relativistic pseudopotentials; molecular integrals; Gaussian basis functions; 13
relativistic coupled cluster theory; excited states; heavy-element compounds; high-precision electronic 14
structure modeling; thorium oxide; uranium dioxide. 15

1. Introduction 16

The experience of computational quantum chemistry has clearly demonstrated the 17
great importance of accounting for relativistic effects in applied ab initio modeling, espe- s
cially when considering systems containing heavy atoms [1-4]. A series of approximate 1o
relativistic Hamiltonians with increasing accuracy was proposed (for review, see [5-7]) and 20
implemented in general-purpose electronic structure programs, first for the special case of 21
atomic problems [8-12], and then for molecular ones [13-17]. The latest developmentsin 22
this field include models consistently accounting for frequency-dependent Breit interactions  2s
as well as the one-loop quantum electrodynamic (QED) effects [18-25]. Despite the signifi- 24
cant progress in hardware and algorithms, such calculations based on a four-component 25
methodology are still very demanding. They thus can be applied only to atoms and few- 26
atomic molecular systems. The most time- and memory-consuming step in such modelsis 27
accounting for magnetic (Gaunt) or total Breit two-electron interactions, which contribute, 2e
for instance, up to several hundreds of wavenumbers to electronic excitation energies even 2o
for the systems containing six-row elements and thus cannot be omitted [2,20,26-28]. Either = 1o
the Dirac-Coulomb Hamiltonian or its effective two-component counterparts ([6,29] and s
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references therein) widely used in modern relativistic molecular calculations suffer from s
the lack of these spin-dependent two-electron interactions. 33

In parallel with the evolution of “genuine” relativistic Hamiltonians, the so-called .
pseudopotential (PP) (or, more generally, effective core potential, ECP [30]) approach s
was developed [31-37]. Originally proposed as an approximation aimed at reducing s
the computational cost of conventional non-relativistic calculations by removing core 7
electrons, the pseudopotential approach was found to be an excellent alternative to scalar- s
relativistic Hamiltonians [38]. Further, it was modified to treat spin-dependent interactions 3o
as well [39,40]. The amazing success of the relativistic pseudopotential (RPP) approximation 4o
was due to its relatively low computational cost and the development of general purpose =
codes allowing one to use RPPs in routine electronic structure calculations. Another critical 42
factor was the appearance of publicly available sets of pre-tabulated RPPs supplied by basis 43
sets explicitly designed for pseudopotential calculations. Among such pseudopotentials, 4s
the most widely used in molecular calculations nowadays are the energy-adjusted PPs of 4
Dolg et al. (see [35] and references therein), shape-consistent PPs of Christiansen, Ermler, 46
Pacios, et al. [32,41-49], Cundari and Stevens [50], and Hay and Wadt ([51] and references 47
therein). P

However, all these RPPs were represented by semilocal operators, implying the use of 4o
a sole effective potential for each partial wave with definite spatial (/) and total (j) electronic ~ so
angular momenta without discerning shells by their principal quantum numbers. Such =
an approximation seems to be quite reasonable when only outermost (valence) shells of s
atoms are treated explicitly (large core RPPs), but it becomes questionable when leaving  ss
a relatively small number of electrons in a core simulated by RPP and treating explicitly  ss
at least subvalence electrons (small core RPPs) [33,35,52,53]. The failure of semilocal RPPs  ss
occurs when valence and subvalence shells are not well separated spatially; thus, the se
valence-subvalence correlation effects are especially large. A typical example of sucha s
situation is the case of processes changing the number of f-electrons in lanthanide and  se
actinide compounds [33,36,54]. It is thus desirable to apply different potentials to the shells  so
with the same [ and j but different principal quantum numbers. This extension of the RPP  «o
model called the generalized (or Gatchina) relativistic pseudopotential model (GRPP); it &
is the most widely used form of generalized relativistic effective core potential (GRECP) e
developed by Mosyagin, Titov and co-workers in the series of papers [26,33,36,37,53—61]. e
The latest generation of GRPPs effectively includes the Breit interaction [26,62,63], the effect  «a
of the finite nuclear charge distribution [37,53] and one-loop QED contributions (vacuum s
polarization and electron self-energy) [28]. All these effects are considered explicitly only at  es
the GRPP generation step and then included into an electronic structure model completely &7
at “no charge”. o8

In order to access the full range of features of the GRPP model in high-level ab initio e
calculations, one has to implement integrals of the GRPP operator for basis sets of atom- 7
centered Gaussian functions commonly used in modern electronic structure codes. At 7
the moment, calculations involving GRPPs can be carried out only for atomic systems 7
using the modified version [57] of the HFD program [8] and for molecular systems using 7
the MOLGEP program [60,64]. The latter code operates with spin-orbitals rather than 7
two-component molecular (pseudo)spinors and thus does not allow one to treat spin- 7
orbit interaction at the SCF level. The contributions from the effective spin-orbit operator 7
are added at the stage of correlation calculation. The loss of accuracy due to a strongly 7~
non-optimal starting approximation for wave functions becomes significant already for 7
the sixth row elements of the Periodic table; furthermore, the opportunity to freeze the 7
innermost explicitly treated shells after the molecular SCF step is lost. Moreover, MOLGEP &0
is restricted to Gaussian basis functions with angular momenta only up to ! = 6 (i functions), &
whereas | > 6 functions are also indispensable for the quantitative treatment of angular
correlations in the states of heavy atoms with open d and/or f shells [27,28]. Other RPP &
integrating codes used in electronic structure simulation software can work only with e
conventional semilocal pseudopotentials. Among the most successful and widely used s
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integral programs of this type allowing the use of the effective spin-orbit interaction s
operator are ARGOS [40,65,66] and the code written by Mitin and van Wiillen [67]. Thus it e
seems reasonable to design a new modern integral code allowing the use of GRPPs and s
possessing no limitations arising from using a legacy code base. The interface of such e
a library should allow relatively simple incorporation into any widely used relativistic  so
quantum chemistry software (e. g. DIRAC [16]). 01

The paper is organized as follows. In Section 2.1 the basic theory of the generalized =
relativistic pseudopotential model is described. The following sections 2.2-2.5 outline the o3
computational procedure used to evaluate three-center GRPP integrals over contracted s
Gaussian functions (including integrals over non-local terms of a pseudopotential). Sec- s
tion 3 describes in detail the LIBGRPP library implementing GRPP integrals. Pilot applica- s
tions of the newly developed integral library are presented in Section 4. The final section o7
discusses further possible improvements of LIBGRPP, and the prospects of its applications s
and provides some conclusive remarks. Appendices contain the discussion on problems oo
closely related to the GRPP integral evaluation algorithm. Appendix A describes formulas 100
for analytic differentiation of GRPP integrals, while Appendix B presents the Obara-Saika- 101
type recurrence relations for integrals over the local part of the GRPP operator. Appendix C 102

gives analytic expressions for one-center pseudopotential integrals. 103
2. Theory 104
2.1. Generalized relativistic pseudopotentials 105

The pseudopotential model implies the description of an explicitly treated subset of
electrons with the Hamiltonian comprising the non-relativistic kinetic energy and instanta-
neous Coulomb electron-electron interactions,

HRPP22<_A2i+Z(_'Z%+ﬁ7(i)>> +Zi (1)
i 2 7

i>k Tik

Here y and i, k run over the indices of atomic nuclei and electrons respectively, z¢, stands for 106
the effective core charge (nuclear charge minus the number of excluded electrons), 7,,; (rjx) is 107
the distance between a nuclear center and an electron (between two electrons); atomic units 1es
are used throughout. It should be noted that some of the atoms -, can be described in the 100
conventional all-electron nonrelativistic way (i.e., without a pseudopotential), then it is ob- 110
vious that U,, (i) = 0 and z7, is just the nuclear charge. The one-electron field-independent 111
pseudopotential operator U, (i) along with the long-range term —z5,/7,; simulates the 12
effect of nuclear charge and excluded electronic shells of the atom < on the remainder 11
electrons. The operators U, should bear all information on the effects of relativity. The 1
Hamiltonian (1) is not well suited for taking into account core polarization and correlations 115
between the excluded and explicitly treated electrons. Therefore to achieve high accuracy 116
in electronic structure modeling, the number of excluded electronic shells should be smaller 117
than the number of core shells in the ordinary “chemical” sense (small-core RPP models); 11s
at least subvalence electrons are to be treated explicitly along with valence ones. Further 110
development of this idea has led to the concept of tiny-core pseudopotentials implying an 120
explicit treatment of several (more than one) subvalence atomic shells. 121
We restrict our attention to shape-consistent RPPs designed to fit the behavior of
eigenfunctions of ARFY (pseudo wavefunctions) outside of the inner core region to that of
true two-component wavefunctions or large components of four-component wavefunctions.
Note that pseudo wavefunctions within the inner core region are smooth and have no
radial nodes. The conventional shape-consistent semilocal RPP model [38,39] assumes that
an atomic contribution to molecular pseudopotential is described by the same functions
(partial potentials) Uj; (r) of the distance r from the center of the atomic nucleus (we shall
omit the indices 7, 7 for brevity) for all spinors with spatial angular momentum / and total
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angular momentum j with respect of the center of this nucleus so that the overall atomic
contribution is given by [31]

l:lsemi —loc Z ul] Pl] , ( 2)

where Pj; projects onto the subspace of spinors with definite / and j values. 122

An accurate description of several electronic shells of an atom with different principal 123
quantum numbers (at least valence and subvalence ones) simultaneously, i. e. the use of tiny- 124
core RPPs seems to be hardly compatible with the Ansatz (2). The choice of Uj; ensuring 125
a perfect reproduction of the shape of valence pseudospinors with angular momenta | 126
and j within the Hartree-Fock approximation for an isolated atom normally leads to a less 127
satisfactory description of subvalence spinors with the same / and j values. This restricts 12s
the accuracy of semilocal small-core and tiny-core RPPs, especially for describing electronic 120
structures of f-element atoms and compounds where valence and subvalence shells are not 130
well-separated spatially. An efficient and general way to remove this restriction within the 1
shape-consistent RPP framework is based on the use of different partial potentials U;(r) s
for different atomic shells (labeled by their principal quantum numbers n) [33,56,57]. The 13
action of such a generalized RPP UGRPP on an atomic pseudospinor lﬁn,jm (m stands for the 134
projection of j) centered on the same nucleus and is characterized by its angular momenta ] 13
and j and principal quantum number n should be equivalent to that of the corresponding 136

partial potential U,,;; optimized to reproduce exactly this pseudospinor: 137
UCRPP — Zl] ul]Pl] ®3)
Uljl;bnljm = nlj( )lpnljm 4)

The problem of constructing an Hermitian operator lfI,j in terms of partial potentials
Uy1j and projectors B;; onto the subspaces of pseudospinors with the same /, j, and 7 is
non-trivial since I};;; and U,,;; do not commute. Provided that atomic pseudospinors are
solutions of an atomic Hartree-Fock problem with pseudopotentials, one can demonstrate
that the Hermitian operator

I:Ilj = Z[unlj(r)Pnl] + Pnl] nl] } anl][ nl] + u /l]( )} n'lj &)
n
satisfies exactly the basic requirement (4) [33]. 138
It is normally assumed that the partial potentials for atomic virtual pseudospinors 1se
coincide with that for valence subshells, U,;; = U,,; for n’ > ny = ny(l). Furthermore, 140

in a strict analogy with conventional semilocal RPPs, partial semilocal components U, 14
for large I are assumed - and j-independent, U,,i(r) = UL(r) for all] > L, where L at 2
least should be greater than the maximum spatial angular momentum value for excluded 1ss
inner-core shells. This stratagem allows one to replace the infinite summation in (3) by a 144
finite sum [38,39]. 145
The representation of GRPP in terms of projectors onto eigenfunctions of the total
electronic angular momentum (j) is not convenient for molecular integral evaluation since
the Gaussian basis functions routinely used in quantum chemistry calculations cannot be
classified by the j quantum number. Therefore, for practical applications, this formula
should be transformed into the spin-orbital form [39,58]. The GRPP operator can be
represented as the sum of the scalar-relativistic potential (the first, second, and fourth terms
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in the rh.s. of Eq. (6) below) and the effective spin-orbit interaction operator (the third and

fifth terms):
A L—1 L
ORPP =y (r) + Y [Uy(r) = UL ()] P+ Y UfO(r) P Is
1=0 =1
L
2 Z AREP P 4 Z Zuso Pl lS, (6)
1=0 n¢ =1 nc

where P, = % [lm) (Im| and lAlifcleP and UECOI are non-local operators defined as

N I+1 l
AREP
U = T 2041 7 Vo Li+1/2 T 5 2A+1 Vnc,ll 1/2 (7)
N 2
ugco T2+1 [Vnc,l,l+1/2 - an,l,H/z] (8)

Viedj = {Uncz]'(f) - Unvz]‘(r)} Py 1j + Py [unclj(r) - unvlj(r)}

Ui (1) + Uy (r)
- anclj ! 2 rel - unvlj(r) Pnél]'/ (9)
ne
where P, ;;(r) is a projector onto subvalence pseudospinors. 146
The accuracy of the GRPP model is restricted mainly by 1a7

* an approximate nature of the many-electron Hamiltonian used to evaluate atomic 14
spinors which in turn define the potentials U,,;;(r). The construction of modern GRPPs 14
is based on atomic four-component all-electron calculations with the Dirac-Coulomb—  1s0
Breit Hamiltonian, employing Fermi nuclear charge distribution, and accounting s
for the quantum electrodynamic correction [28] by means of the Lamb shift model s
potential [18,68]; 153

* the neglect of correlations between excluded and explicitly treated electrons and inner 1sa
core polarization and smoothing of pseudo wavefunctions in the inner core area. iss
The corresponding errors naturally decrease while reducing the number of excluded s
electronic shells (so-called tiny-core and empty-core versions of GRPPs [28,61]); 187

* aroughly approximate mean-field-like simulation of Breit interactions between the 1se
explicitly treated electrons by the corresponding contributions to one-electron GRPPs.  1s0
In principle, this factor can limit the feasibility of core size reduction for heavy atoms. 1eo

For further use in molecular applications radial parts of GRPP components are expressed
as linear combinations of radial Gaussian functions,

r) = der”k_ze_ékrz, (10)
k

where r stands for the distance from the point C at which the RPP is centered, r = |[r — C|. e

The GRPPs for chemical elements from hydrogen to element 123 were derived from Dirac- 1e2

Fock(-Breit) atomic calculations in 1995-2022 and reported in the series of papers [26,33,36, 163

37,53,54,56-62,69]. The parameters ny, dy and { were tabulated and can be found in [70].  1es
To make use of the GRPP model, one has to evaluate integrals of the GRPP operator

(6) over some appropriate basis functions. Atom-centered Gaussian basis functions are the

most widely used in modern molecular electronic structure theory; a detailed discussion

can be found in the monograph [71]. Here we will discuss only Cartesian basis sets;

transformation to the spherical basis can be easily performed if necessary. Contracted basis
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Figure 1. Coordinate system used to evaluate pseudopotential integrals. Gaussian basis functions ¢4
and ¢p are re-expanded at the point C, where the center of a pseudopotential is located.

function centered at point A is constructed from normalized Cartesian primitive Gaussians
with exponential parameters a 4;:

Zcz N; szy% MA = ai(r— A)2 (11)

where x4 = x — Ay (the same for y4 and z,), ¢; stands for the contraction coefficients and
the normalization constants are given by

2 a: 34 A 5. )(matlatma)/2
Nl — aAl ( D‘Al) . (12)
s (2na —1)1(2l4 — 1)1 (2m 4 — 1)
The orbital angular momentum of such a contracted function is formally equalto Ly = 165

na + 1y + my. Similarly, another Gaussian function ¢p(r) centered at the point B can be 16
introduced. The pseudopotential operator is bound to some origin C, thus RPP integrals e
are in general three-center ones (see Fig. 1). 168

One can formally define five types of molecular integrals, corresponding to each of the 160
terms in the formula (6). However, only for the first three terms, special algorithms should 17
be designed. These algorithms will be briefly discussed below in Sections 2.2 (the local 171
term), 2.3 (the semilocal scalar term), 2.4 (the semilocal spin-orbit term). Additional types 17
of integrals arising from the last two non-local terms in (6) can be reduced to combinations 173
of integrals of the first type and overlap integrals (see Sect. 2.5). 178

2.2. Scalar-relativistic part: integrals over the local potential 175

Intergals (¢4 |UL(r)|¢pp) over the first (local) term in Eq. (6) are usually referred to as 17
type 1 integrals. The most widely used algorithm for calculation of these integrals was 177
proposed in [65] and is based on the re-expansion of Gaussian functions ¢4 and ¢p at the 17e
origin C where the RPP operator is centered (see Fig. 1). This approach heavily suffers 7
from numerical instabilities for the case of large exponential parameters and large angular 1s0
momenta of basis functions [72]. At the same time, such basis functions have to be used in  1e1
calculations with small-core and tiny-core pseudopotentials. Thus an alternative approach s
is highly desirable. 163
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The type 1 integral can be expressed in terms of integrals over unnormalized primitive
Gaussian functions:

_y 2
(9alUL(rc)|gn) ZzzchNdk Crailrd e xy), (13)
<XAi|er72€_§kr2C|XBj> = /XZAyijf MAp=hAi % ré‘ze_gk% X ngy?nge_"‘BJ’dr, (14)

rc = |r— C|. In the rest of this section we will discuss only integrals over primitive s

functions x and thus will use for brevity the notation a4, ap, {, n instead of a,;, « Bj, 18
Ck, ng. For the overwhelming majority of pseudopotentials used nowadays (including 1ss
GRPPs) the power parameter n = 0,1,2. Moreover, since a product of Gaussian functions  1s
is again a Gaussian function one can try to adopt the classical recurrence McMurchie- 1ss
Davidson algorithm! [73] for overlap integrals (the case of n = 2) and integrals over s
the (n = 1) [73] and 1 (n = 2) [74,75] operators to calculate desired pseudopotential 10

mtegrals The correspondmg recurrence relations have to be shghtly modified to integrate 101
2

the “exponentially scaled” analogs of these operators, e g, e e € To the authors’ 2

best knowledge such an approach was not reported in the hterature before 193

The main idea of the McMurchie-Davidson algorithm [71,73] for non-PP integrals
consists in the re-expansion of Gaussian overlap distributions (};, , , . in the basis of Hermite
Gaussian functions A;:

np+ng
Oy = XX WM = ) EMA,, (15)
t=0
2\ e

A = —PXP, 16

0= (55 ) ¢ (16)

where p = a4 + ap is the total exponent and P = {P,, Py, P,} stands for the weighted
center of two primitive Gaussians, P = w The re-expansion coefficients E;4"® are
obtained using upward recurrence relations [71,73] starting from the base value EJ° = K5,

where K% ; is defined as:

Kip=e "X, y= A% x - A B, 17

AB M xp+ ag AB X X ( )

The same relations are obviously held for the y and z components of the integrand in (14).

If one introduces the exponential factor e":’ZC related to the third center C then the basic
expansion (15) is rewritten as:

np+ng

Oy, = xAxgle —a%} oL MBYG — Z EYA"EAy. (18)

nang
t=0

There is a product of three Gaussian functions on the right-hand side. It can be shown that
the functional form of all the McMurchie-Davidson relations remains the same, but one
must replace the p, P and K’ ; parameters with their counterparts for the three-center case:

P g = tap+l, (19)
apA+agB+CC

P = 20

—Q ap+oapg+ (20)

1 Should not be confused with the McMurchie-Davidson algorithm for pseudopotential integrals proposed

in [65].
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2 2 2
KTAB N KI{\BC — e*P‘ABXABe*#BcXBce*HACXAC, (21)

XAXB
ap+ap’

where pp = etc. The base of recurrence relation should be modified accordingly:

Ep° — EY° = Kjipc. (22)

Pseudopotential integrals with n = 2 are in fact simply three-center overlap integrals, and
the working formula for them is the most compact one:

3/2
<XA|e—§r2C |XB> — EgAnB EéAlB EOmAmB (7;) . (23)

The expressions for the n = 0, 1 cases are more complicated:

eiéré Fnang glalg pmamp 0
(xal ] IxB) = ZEt Ei*PEy Riior (24)
C tuv
Rhy = [ 120 A () Aol2)dr 5)

Auxiliary integrals R can also be calculated via recurrence relations depending on the

value of n. For n = 1 one actually has the expressions which are identical (except for the
P — Q, p — g substitution) to those for ordinary nuclear-attraction integrals [71,73]:

R?]H,uv = tR?gl,luv + XQCRE/]{jl’ (26)
Robo = (—29)N - Fn(qRGe), (27)

where F,(x) stands for the Boys function, Fy(x) = e~ 12Nt (relations for the u and v 1oe

o .

indices are similar). 105
For the n = 0 case the recurrence relations are similar to those previously published
for the inverse square potential riz [74,75]:
C

Rﬁl,uv = tRi\LJE,luv + XQCR%;Ll - Zq(tR?Ifl,uv + XQCRl{\l]w)' (28)
Rigo = (29)" - GN(9Rpc), (29)

where the function Gy (x) is defined as:

1
Gn(x) = / X1 2N gy (30)
0
and relations for the u and v indices are similar. 106

Equations (14) and (23)—(29) completely define the computational algorithm used to o7
evaluate integrals over the local part of GRPP. It is beneficial to calculate the E{'4"? and R
entities simultaneously for all the Cartesian components (114,14, m4) and (np, 1, mp) in 100
the shell pair and store them in multidimensional arrays. Even for the quite large values zo0
of angular momenta of basis functions the amount of memory required is moderate. Itis 20
worth noting that alternative recurrence relations (Obara-Saika-like) can be obtained (their 202
derivation is given in Appendix B), but they are less convenient for programming since all 203
six indices denoting powers of Cartesian components are not decoupled from each other in  z0s
the upward recursion formula (A29). 205

Approaches to stable evaluation of the Fy(x) and Gy(x) special functions are well-

established and their description can be found elsewhere [71,73-75]. Unlike the paper [75]
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in the actual program implementation to calculate the Gy(x) values at x > 12 we use the
relation employing the Dawson function D :

Golx) = D*\%@ (1)

instead of Padé approximants to achieve accuracy of order 1071 — 10716, At the same time, 206
the Gy(x) values for N > 0 are still obtained within the upward recurrence relation (which 207
is completely stable in this range of arguments). 208

2.3. Scalar-relativistic part: integrals with angular projectors 200

The semilocal scalar term with angular projector P; gives more complicated type 2 210
integrals (¢4 |AU;(r)P;|$p) (here and below we use for brevity AU, to denote the difference 211
potential U;(r) — UL (r)). The scheme of evaluation of type 2 integrals employed in the =
present work reproduces in general the half-numerical approach presented in [76,77]. It 213
is based on the classical algorithm of McMurchie and Davidson for PP integrals [65], but  21a
radial integrals are evaluated numerically on a grid in order to overcome the well-known 215
problem of numerical instabilities in the analytical approach. 216

The general idea of the algorithm consists in the re-expansion of Gaussian functions
¢4 and ¢p at the origin C where the pseudopotential operator is centered (see Fig. 1).
Then the integration is performed over angular and radial variables separately [65]. The
re-expansion yields:

(palAUL(r)Py|¢pp) = / (PalSim)q - AU(r) - Y (@8I Spw ) oy rPdlr =
0

ml

znA lp my ng lg mp ny ma\ (ng\ (Ig\ [ mp
=167 ZEZEZE( >( ><c)<d)<€><f>x
a=00b=0c=0d=0e=0 f=0
x CAIM™ CAlp = cama= e el CBI'  x

)\l,max Al,max

+btetdtet d
< Y X T (gagn)- Z O (s ) 04, (ks), (32)
Az
Mmax =1+a+b+c, Aymax = l‘|‘d+€+f
A CA A CB
ko= ——, kp
|CA| |CB|

where CA = C — A, etc, and M) (x) stands for the modified spherical Bessel function. Q‘ﬁfn
stands for angular integrals defined via real spherical harmonics S;,,, by the equation

7 A dQC 24 ~b

Q4 (k) 2 T X 2°5,,(Qc) S1m (Qc)- (33)

The radial integral T)I\\{ A, is given by

e}

TN (94, 08) = / N2 AU (r) X () B2 (r) dr (34)
0

where FI{} (r) and F{B\ (r) are auxiliary functions absorbing contraction coefficients of ¢4 and
¢p, respectively:
FA(r Zc Nie %iICAP—kair M (K ir), (35)

kai = —20p4;- CA, kai = |kal- (36)
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Evaluation of angular integrals (33) is rather straightforward, the details of the procedure
can be found elsewhere [65,77]. The key step in their evaluation is to expand real spherical
harmonics involved in the basis of Cartesian unitary sphere polynomials (USPs)

Sm(®) =Y ymaps, f:ﬂ (37)
r+s+t=I r

and then evaluate integrals over USPs analytically. We obtain:

b = 3 Subx Tl [arrrighisrozetie gp - (3g)

H=—A r+s+t=A
u+v+w=I

Integrals over unitary sphere polynomials are given by

(i—1)!1 (j=1)!1 (k=1)!! ..
/fig]ékd? = 4 (i+jTk+Dl eveni,jk, (39)
0 otherwise.

Explicit expression for the ¥/ expansion coefficients can be found in [77]. Evaluation of 27
radial integrals (34) is the most expensive step of RPP integration. However, radial integrals = z1s
do not depend on powers in Cartesian multipliers of contracted Gaussian functions (11). =21e
Thus the set of radial integrals is the same for all functions belonging to a given shell and 2z
can be pre-tabulated as the first step of the RPP integration algorithm. Angular integrals 2z
can in principle also be pre-tabulated, but practical experience shows that a large fraction 222
of these integrals is not actually used in contractions with radial integrals. Thus it is more 223
computationally beneficial to calculate them “on the fly”. 224
In the present work, radial integrals are evaluated numerically on a grid using the
Log3 scheme of Mura et al [78]. This radial quadrature is widely used in density functional
theory for integration of exchange-correlation potentials [79] and was successfully applied
for evaluation of pseudopotential integrals [76]. Within this approach, the radial integral is
approximated by the finite sum

+c0 .
/ f(r)rzdr ~ Z; w;f(r;). (40)
0 =

Explicit expressions for the grid points r; and weights w; can be found elsewhere [76,78].
The most notable and useful feature of the Log3 quadrature (and similar schemes like
the Gauss-Chebyshev quadrature [77]) is the possibility of expanding the integration grid
without recalculation of integrand values. While expanding the grid from n, to 2n, + 1
points to refine the integral I one has to calculate only 1, 4 1 integrand values f(r;):

I 21’17+1
=5+ wif (r;) (41)
i=1,35,.
This scheme allows one to evaluate radial integrals with controllable accuracy. 226

The success and stability of the numerical integration using the quadrature formula
imply the stability of the evaluation of the integrand function in the whole range of
€ (0,400). Modified spherical Bessel functions are monotonically increasing at r — 400,
and grow very fast (see Fig. 2a). This is an obstacle to the direct use of the expression in
the quadrature formula. To avoid numerical instabilities it was proposed [77] to switch to
the scaled modified spherical Bessel function K, (x) = e~ *M, (x) with the restricted value
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(a) modified spherical Bessel function (b) modified spherical scaled Bessel function
Mp(x) = V1/(2X) In+172(x) Kn(x) =e™ Mp(x)
1000 1 —— My(x)
— Mix)
goo{ — M0
— Ms(x)
— Ma(x)
600
400 A
200
0
0 2 4 6 8 10

Figure 2. Plots of modified spherical Bessel function (left) and its exponentially scaled counterpart
(right). I,;11/2(x) stands for a modified Bessel function of the first kind.

construction of radial grid of n, points

(ri,w;), i=1,...,n (w — point weight)

| | |

M Ui(n) FaL(r) Fa*(ri)

A =0, La+] A =0,..,Lg+1

J J |
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T = > i UI(n) FaM(r) Fai(ni) wi
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converged?
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contraction with angular integrals
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Figure 3. Flowchart of the algorithm used for integration of the semilocal scalar part (type 2 integrals).

range [0, 1] (see Fig. 2b). Thus the expression for the auxuliary function F} (r) (and also
Fé‘ (r)) absorbing contraction coefficients of basis functions (Eq. (35)) is modified as:

Fi(r) =Y ciN;- e~ Al CAP—Kar* thair K\ (k yir). (42)
7

One can readily show that the exponential parameter in (42) is always negative at large 226
values of r, and thus the whole integrand function tends to zero at r — +-co. 227
The flowchart of the algorithm used to evaluate type 2 integrals (Eq. (32)) is shown on

Fig. 3. The first approximation to radial integrals is obtained using the grid with n, = 31
points. Then the arrays containing values of the N U, (r) and F*(r) functions at grid points
with corresponding quadrature weights w; are pre-tabulated. Radial integrals T){\i A, are

assembled from these arrays using the formula

Ny
A A
T, & Z;VZN AU (r;) Fy* (1) Fg® (ri)w; (43)
=
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for N < Lg+Lp, A <Lg+1, Ay <Lp+1and packed into the three-dimensional array =zzs
for further use in Eq. (32). Then the grid is expanded and the next approximation to the set 220
of radial integrals is calculated using the relation (41). 230

It also seems advantageous to carry out a prescreening of radial integrals before their 2a:
exact evaluation. Different screening schemes were proposed in the literature [80-83]. In 232
the present work we have employed the quite accurate scheme proposed by Shaw and  2s:
coworkers [82]. 234

For the fast and stable evaluation of the Bessel function values, the computational =2ss
scheme from [77] was adopted . The implementation of the scaled modified spherical s
Bessel function from the GSL library [84] was used to pre-tabulate reference values of K (x) 237
and its first four derivatives further used in the Taylor expansion. 238

2.4. Integrals over the effective spin-orbit interaction operator 230

The third term in the expression (6) representing the effective spin-orbit operator is
quite similar to the second one. Thus one can expect that the evaluation of corresponding
molecular integrals should be only slightly more difficult than for the semilocal scalar term.
Employing the relation s = %(7 we find that one should calculate integrals which include

Cartesian components of the orbital momentum operator I = {Iy, 1,1, }:

(PalUPC(r)P Lyl pB), 1 =2x,y,z. (44)

and then combine these integrals with the Pauli matrices to construct the final molecular
Hamiltonian matrix (a comprehensive discussion can be found in [15]). Integrals (44)
are sometimes referred to as the type 3 integrals [40]. Using the idempotence property
P? = P, the fact that P, commutes with the angular momentum operator I, and the explicit
expression for P;, one obtain the general relation for the integrals (44):

(pa|UFC (r) Pil| p5) / 3 (9ISt UPC () Syl 1S} Y (@8] Sir) oy 7. (45)
0 m
Following the logic of the McMurchie-Davidson approach (see Sect. 2.3), one arrives at the
expression generally reproducing Eq. (32) for type 2 integrals except for the angular part,
which is transformed in the following way:

+1
d d
§ : g\liclm(k/i) /\ezj;m kB = E § l, Q?\lﬁm Sliﬂ|l|slm’> )\ejlrm (kB> (46)

m=—I m=—Im'=—1

This formula seems to be more obvious and suitable for further programming than the
expression for SO integrals given in [40]. The angular momentum operator matrix elements
(Sim|1|Sp) in the basis of real spherical harmonics can be readily evaluated using simple
textbook formulas. In the actual implementation we construct the I matrices in the basis
of complex spherical harmonics Y}, and then transform it to the basis of S;,, using the
relations [71]:

55 (Yim = (1)) m <,

Sim =9 Yo m=0, (47)
%(Yl,—m + (_1)mYl,m) m > 0.

Note that there is a misprint in [77] in Eq. (45). The correct recurrence relation for the (1 + 1)-th order derivative
of the K (x) function is:

1 A A+1
K () = 2A+1K(f)1(")+ ZAHKg’Ql(x) W (x).
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Matrix elements (Sy,,|1;|Sp,y) are real for the I, operator and imaginary for the Iy and I; 240
operators. However, the final SO integrals are purely imaginary for all three Cartesian 24
components x, y, z, since in (6) the real integral over the [,-component is multiplied by the s
oy Pauli matrix which is imaginary. 243

2.5. Integrals over non-local terms of GRPP 244

The radial non-locality of the last two terms of (6) is due to the presence of projectors
onto the outercore shells P, j;. It is clear from Egs. (7) and (8) that the integrals over these
last terms should be assembled from the integrals over the auxiliary non-local operator

Vnclj:
(palVajlop) and  (palViiP Up) (48)

Substituting the definition of Vnc 1j (Eq. (9)) into (48) and taking into the consideration that = zes
projectors P, j; do not commute with the Unlj(r) potentials, we formally arrive at six new  2a6
types of integrals. However, they can be reduced to integrals over a local operator (type 1 = 24
integrals) discussed above in Sect. 2.2. The reduction is possible due to the fact that P, j;, P;, 24
and orbital angular momentum operator I commute with each other; at the same time, P; 240
and I commute with the partial (local) potential U(r). Furthermore, we have an obvious  zs
relation P, j;P; = P, ;. Outercore pseudospinors P, 1j used to construct the P, ;; projectors  zs:
are given simply by Gaussian expansions, therefore the evaluation of overlap integrals 2s2
(¢l Pnj) and (Pn.1jl¢B) presents no problem (in the LIBGRPP library the Obara-Saika 253
algorithm [85] is used for fast analytical evaluation of these overlap integrals). The final = 2s

expressions for the non-local terms constituting scalar-relativistic integrals in (48) are: 285
+1 ~ .
(Pal (unclj - unvlj)Pnclel|§bB> = Y. (palUnsj — Uil @nctjm) (Puctjm|dB) , (49)
=1
" type 1 integral
+1 } }
<¢A|Pnclj<unclj - Unvlj> Plgp) = Y (PalPucijm) (Pntjm|Unij — UnyijlPB), (50)
=1
" type 1 integral
Up,1j + Uy &l B _ Up.1j + Uy ~ N
(pa|Pyj (zn] - Unvlj) PoiiPilgs) = Y (PalPuijm) <¢ncljm|fn] = UnytjlPuzijm) (Puzijm|P8) ,  (51)
m=—1
purely radial integral
(52)
and for the spin-orbit part: 286
+1 i +1 i
(¢al (Unclj - Um,lj) PuaiPillgs) = Y (PalUntj = Unijluctjim) Y (Stml!Sime) (Buctjoe |p8),  (53)
=1 =1
" type 1 integral "
+1 . +1 ~
(@l Pucti (Ut = Uty ) PEL#B) = Y (@alGutim) Y (Sl USumer) (Gctim Uty = Uil ps),  (54)
=—1 I=—1
" " type 1 integral
Upj + Uy H - - Up.j + Uy y
(PP <2n] - unvlj) PyyiPil|¢pp) = Zz (PalPuctjm) <¢ncljm|% = Unylj|Purjm) ¥
—
purely radial integral
+1 .
X Z <Slm|l|slm’> <¢néljm’¢3> . (55)
m'=—1

The integral arising in the r.h.s. of formulas (51) and (55) is purely radial: 257
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—+o00
. Upj + Uy . Upj + Uy
<<Pncljm|f] = Uyl Purijm) = / (2] - unvlj> Ry 1j(r) Ryypyi(r) ridr, (56)
0

where R;, j; (r) stand for radial parts of subvalence (outercore) atomic pseudospinors ¢, lim 258
expressed as linear combinations of Gaussians. This integral is obviously independent  2s
on m and can be taken out of the summation, leaving only the multiplication of overlap ze0
matrices in (51) or two consecutive multiplications involving overlap and angular mo- ze:
mentum operator matrices in (55). Note that in the reference implementation of GRPP 262
integrals (MOLGEP package) matrix elements (51) and (55) which are off-diagonal in the 7, 262
quantum number are omitted. However, they can be of the same magnitude as the diagonal  zes
elements (for example, this occurs for the uranium GRPP from [70]). Integrals (56) are zes
evaluated analytically (see Appendix C). Gaussian expansions of radial functions Ry, jj(r) zes
are obtained only once at the GRPP generation stage and are listed in GRPP data files 267
published online [58,70]. 268

Similarly to local and semilocal terms of GRPDP, all integrals over non-local terms are 260
also calculated in batches for all pairs of Cartesian Gaussians in a shell pair simultaneously. 27
In practice integration of non-local terms is even faster than the integration of the “conven- =7
tional” semilocal RPP operator due to the use of type 1 integrals in all working formulas. 272
These formulas are pretty simple and can be readily coded in any other quantum chem- 27
istry software provided that the code for evaluation of scalar-relativistic pseudopotential 27
integrals is available. 275

3. The LIBGRPP library 276

Subroutines for evaluating molecular integrals of the generalized relativistic pseu- =z
dopotential operator over contracted Gaussian functions based on the algorithms described  27s
in Sections 2.2-2.5 were implemented and collected into a library named LIBGRPP. We =7
used earlier implementations of RPP integrals to check the validity of the developed codes, 2e0
namely, the RECP module of the DIRAC software [16,66] (semilocal RPP integrals) and  zs:
the MOLGEP program [64] (generalized RPP, but without cross-terms between shells with  zs2
different n. quantum numbers in Eq. (6)). The general structure of the LIBGRPP library is zes
presented on Fig. 4. The LIBGRPP library is written from scratch in the C99 programming  zes
language, but the Fortran 90 interface is provided to simplify access to its subroutines from  zss
projects written in Fortran. Moreover, two sample programs in C99 and Fortran 90 demon-  zs6
strating invocation of LIBGRPP subroutines are included into the LIBGRPP distributive. 2e7
Some subroutines from the open-source GNU Scientific Library (GSL) [84] are employed  2ss
to calculate values of scaled modified spherical Bessel functions K) (x), the Dawson func- zse
tion D (x) and the incomplete gamma function I'(#, x). GSL is distributed together with  2e0
LIBGRPP and thus does not introduce any new external dependencies complicating the 2o
building of the library. 202

The C interface to the integration routines provides tools for the evaluation of integrals 203
between pairs of shells. A shell with angular momentum [ contains w Cartesian 204
basis functions; an order of Cartesian components within a particular shell can be selected  2os
by the user, the order adopted in DIRAC is implied by default. Shells are represented by C 206
structures of the 1ibgrpp_shell_t type (see Fig. 5a). Each shell is attached to some point o7
in space, normally coinciding with the atom to which this batch of basis functions belongs. 2es
Quite a similar data structure 1ibgrpp_potential_t is provided to represent components ze0
of a pseudopotential (see Fig. 5b). LIBGRPP also contains “constructor” and “destructor” oo
routines to simplify respectively construction and deallocation of objects of these two basic o
data types. All data structures and subroutines of LIBGRPP start with the 1ibgrpp_ prefix. so
After the objects representing atom-centered shells of basis functions and a pseudopotential  zos
operator have been created, integrals for a given shell pair are to be calculated. For this sos
purpose special subroutines representing different terms in Eq. (6) are provided. Resulting  sos
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C interface Fortran interface
sample programs i i
ple prog implementation tests
GNU Scientific Library
Figure 4. The general structure of the LIBGRPP library.
(a.) Npri ) (b) Nprim )
/ —aj|r—A i—2 _—&;
XA(I') = E ci - N; XZyAZAn e ajlr—Al U,j(r) = E d; r' e Sir
i=1 i=1
typedef struct { typedef struct {
int L; int L;
int cart_size; int J;
int *cart_list; int num_primitives;
int num_primitives; double *coeffs;
double *coeffs; int *powers;
double *alpha; double *alpha;
double origin[3]; } libgrpp_potential_t;

} libgrpp_shell_t;

Example: d-shell

cart_size =6

cart_list = [2,0,0, 1,1,0, 1,0,1, 0,2,0, 0,1,1, 0,0,2 ]

R i N N N
dxx dxy dxz dyy dyz dzz

Figure 5. (a) Data structure representing a shell of contracted Gaussian basis functions. The cart_list
field contains a pointer to an array in which all possible Cartesian combinations with the given angular
momentum L are stored. (b) Data structure representing the component U,;(r) of the GRPP operator.

The field J is not used for local and semilocal terms of GRPP; L is not used for local terms.

integrals between Cartesian components are packed into a one-dimensional array, which is  soe

assumed to be pre-allocated (see Fig. 6). 307

The newly developed LIBGRPP library was interfaced into the DIRAC19 program sos
package [86]. 309
4. Pilot applications 310

Pilot applications reported in this Section were designed to compare the accuracy of 1
the GRPP approach with its semilocal counterpart and all-electron relativistic calculations. 312
The analysis of the accuracy of GRPPs in atomic calculations accounting for electronic 1
correlation was carried out in [59,69,87,88] (and references therein). Some molecular ap- 14
plications were also reported previously, e. g. relativistic coupled cluster calculations of s
the HgH, HgH™ [60], TIF [89], TIF~ [90], PbO [91], HI* [92], CnH, CnH™ [93], Yby[94], 316
Cay [95], RaO [96], and RaF [97] molecules, but no applications to molecular electronic sz
transitions involving f electrons were described. Thus the benchmark calculations for such = s1s
molecules seem to be essential to shed light on the accuracy of the GRPP method supplied 10
with the high-level correlation treatment. Here we present the results of such benchmarks sz
for the two actinide molecules, ThO and UO,. 321

The direct comparison of the results of calculations employing RPPs and the all- sz
electron Dirac-Coulomb-Gaunt model as implemented in the DIRAC program suite [6,16, 323


https://doi.org/10.20944/preprints202212.0530.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 28 December 2022 d0i:10.20944/preprints202212.0530.v1

(a) (b) matrix:
fxxx ﬁ(xy fxxz fxyy f;<yz f;<zz f;/yy ﬂ/yz f;/zz fzzz
void libgrpp_typel_integrals( e
libgrpp_shell_t *shell_A, dx
libgrpp_shell_t *shell_B, Y
double *rpp_origin, dxz
libgrpp_potential_t *potential,
double *matrix dyy
)
dy;
dzz

Figure 6. (a) Declaration of the LIBGRPP subroutine designed to evaluate type 1 integrals (over the
local part of RPP). Other LIBGRPP subroutines have essentially the same interface. Matrix elements
between primitive Gaussians with different Cartesian parts are packed into a one-dimensional array
matrix of type double (linear indices of each matrix element are given inside the cells). (b) The array
of calculated RPP matrix elements exemplified for the case of the d-f shell pair.

86] offers the possibility to separate the errors arising from the pseudopotential approxi- sza
mation per se. Two variants of GRPP for thorium and uranium, both replacing the inner sz
core shells with principal quantum numbers n < 3, were constructed. The first one which 326
we shall denote GRPP/Gaunt was generated using the reference atomic data obtained sz
within the four-component Dirac-Coulomb-Gaunt approximation and Gaussian nuclear s2e
charge distribution (to be fully consistent with the electronic structure model available in 32
DIRAC). The second variant accounts for the full zero-frequency Breit interactions and 330
one-loop QED effects within the model Lamb shift operator approximation [18,68]; it also 331
assumes the Fermi approximation for nuclear charge distribution. The detailed scheme of 332
generating the latter GRPPs which will be further denoted as GRPP/QED is described in 333
Ref. [28]. 334

All coupled cluster calculations reported below were carried out within the EXP-T 35
program package [98-100]. Molecular integrals over the GRPP operators were calculated 336
using the LIBGRPP library interfaced to the DIRAC19 program package [16,86]. Solution sz
of a relativistic SCF problem and further transformation of molecular integrals were also s
performed using DIRAC19. 330

4.1. Electronic states of the ThO molecule 340

The vertical excitation spectrum of the ThO molecule was calculated at the experi- s
mental ground-state internuclear separation, R, = 1.840 A [101], using the intermediate- s
Hamiltonian Fock space relativistic coupled cluster method (IH-FS-RCC) [28] within the s
singles-and-doubles approximation (CCSD) to solve the many-electron problem. All elec- 344
trons except for those of Th shells with n# < 4 and 1s-shell of O were correlated. The s
vacuum state and one-electron spinors were defined by the solutions of the Hartree-Fock 346
problem for the ground state of the closed-shell ThO?* ion whereas the target states of sz
the neutral ThO molecule were treated within the two-particle (0h2p) Fock space sector. s
All-electron Dirac-Coulomb and Dirac-Coulomb-Gaunt calculations were performed using s
the non-contracted s, p, d and f components of Dyall’s thorium quadruple-zeta basis [102] 350
augmented with a single f-function manifold (exponential parameter 0.050404710) and 352
(7¢6h5i) / [5g4h3i] scalar-relativistic averaged atomic natural orbitals (see Supplementary s
Materials). For the oxygen atom, a relativistic recontraction [103] of the aug-cc-pVQZ basis  3ss
sets [104,105] was employed. The GRPP-adapted equivalent of the all-electron Th basis set  3ss
was obtained by rejecting the most compact and reoptimizing several largest exponential = sss
parameters of the remainder spd f functions, keeping untouched high-angular-momentum  sse
components (all parameters are provided in Supplementary Materials); the same basis for s
oxygen was used along with the empty-core GRPP [61] for this atom. The complete model sse
space at the FS-RCC stage was defined by 24 Kramers pairs of lowest-energy virtual spinors — sse
of ThO**; the incomplete main model space [28] for the (0h2p) sector was spanned by all e
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Figure 7. Top: Deviations of IH-FS-RCC vertical excitation energies (Ty) in ThO computed within
the GRPP/Gaunt model and its semilocal “valence” component (v-RPP) from their counterparts
obtained with all-electron Dirac-Coulomb-Gaunt Hamiltonian, T, (AE DCG). Bottom: contributions
of Gaunt interactions (A(Gaunt)) and retardation plus QED effects (A(R+QED)) to T,.

distributions of two active electrons among 6 lowest-energy pairs (roughly corresponding
to 7s and 6d atomic spinors of Th) and all determinants with orbital energy sums in the
same range. The algorithm defining the intermediate-state shift parameters was described
in detail previously for the Ra atom and TI", Lu*t atomic ions in Ref. [28]. For 31 lowest-
energy eigenvectors of the intermediate Hamiltonian (excitation energies up to ca. 25000
cm 1) the fractions within the main model space exceed 95 %, indicating the adequacy of
the chosen intermediate-Hamiltonian scheme for the corresponding electronic states.

The resulting vertical excitation energies T, evaluated with different relativistic Hamil-
tonians are compared in Fig. 7. The deviation of T, values obtained with GRPP/Gaunt
from the corresponding results of all-electron calculations with Dirac-Coulomb-Gaunt
Hamiltonian employing the X2C MMF transformation [6] (T, (AE DCG)) are always less
than 50 cm ™! (rms deviation 29 cm~!). This deviation is significantly smaller than the
contribution of retardation and QED effects to excitation energies (A(R+QED)) estimated
as the difference between the results of calculations with GRPP/QED and GRPP/Gaunt
(104 — 212 cm~}; note that the contribution arising from the use of different finite nuclear
models in GRPP/QED and GRPP/Gaunt is negligibly small, less than one wavenumber).
It is thus clear that the use of the tiny-core GRPP/QED approach should be preferred to the
all-electron Dirac-Coulomb-Gaunt model not only because of significant computational
savings but also for reasons of accuracy. As follows from the magnitudes of contribu-
tions from Gaunt interactions (Fig. 7, bottom), one can make an even stronger statement
concerning the reliability of the GRPP/QED model versus the Dirac-Coulomb one. The
replacement of the full GRPP/Gaunt by its valence semilocal component (v-RPP) leads to a
significant deterioration of results (the deviation of v-RPP/G excitation energies from their
all-electron counterparts can exceed 300 cm 1), so that the incorporation of interactions
beyond the Dirac-Coulomb-Gaunt approximations into semilocal pseudopotentials hardly
seems reasonable, except for the cases of s and p block elements.

reprints202212.0530.v1
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Figure 8. Top: Deviations of IH-FS-RCC vertical excitation energies (T;) in UO, computed within
the GRPP/Gaunt model and its semilocal “valence” component (v-RPP) from their counterparts
obtained with all-electron Dirac-Coulomb-Gaunt Hamiltonian, T, (AE DCG). Bottom: contributions
of Gaunt interactions (A(Gaunt)) and retardation plus QED effects (A(R+QED)) to Ty,.
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4.2. Electronic states of the UO molecule 387

The UO;, molecule is an example of a heavy polyatomic molecule with a quite diverse ses
set of electronic states. It was extensively studied both theoretically and experimentally in  seo

the last two decades (see [106—-110] and references therein). 300
In the present work, the vertical excitation spectrum of UO; was calculated for the 0
linear geometry and at the experimental ground-state internuclear separation R,(U — O) = 302

1.790 A [110]. Low-lying electronic states of UO, can be accessed in the (0h2p) Fock space  sos
sector. The IH-FS-RCCSD method with single and double excitations was used [28]. The 304
complete model space was defined by 24 Kramers pairs of lowest-energy virtual spinors ses
of the closed-shell UO%+ ion. The thorough analysis [107] of the composition of electronic e
states below 30000 cm ! shows that all these states can be obtained within the incomplete o7
main model space intermediate-Hamiltonian technique. For this purpose, we split the 10
manifold of virtual active spinors of UO%+ into three groups (the notation is adopted e

from [107], see this paper for the detailed picture of one-electron states): (a) 7s , o5 f5¢ Jour 400

6d§/2g/ 5f§5/2u/ 6dg/2g’ Sf;P/Zu’ 5f§5/2u spinors; (b) 5£775,r 5£372ur 7PT 20 7P3 j2ur 097297 64520, a2
5f7/2ur 7P1 /2, SPINOTS; (c) the remaining set of virtual active spinors used as buffer ones. s
Wavefunctions of target states are dominated either by determinants with two electrons  4os
distributed over spinors from the first group or by determinants with one electron on the 404
first group spinor and the other electron on the second group spinor. The adequacy of 05
the chosen IH model is confirmed by the fact that for 79 electronic states below 30000 406
cm~! fractions of main model space determinants exceed 94%. All-electron Dirac-Coulomb  sor
and Dirac-Coulomb-Gaunt calculations were performed within the exact two-component  aos
molecular mean field (X2C MMF) approximation [6]. The basis set for U was derived a0
from the exponents from the Dyall’s quadruple-zeta basis set [102] for the s, p, d, and f 410
functions and then augmented with (7¢6h41)/[5¢4h3i] scalar-relativistic atomic natural 41
orbitals (see Supplementary Materials). For the pseudopotential calculations, the most a2
compact primitive Gaussian functions were rejected, keeping untouched high-angular- 4
momentum (g, ki, i) functions. For the O atom, the aug-cc-pVQZ-DK basis set [103] was  «14
used in both all-electron and RPP calculations; in the latter case, the empty-core (no core a1
electrons) pseudopotential of Mosyagin et al [61] was also used. Shells of U with the 4.
principal quantum number 1 < 4 as well as the 1s shell of O were frozen at the IH-FS-RCC 417
stage. 418

The resulting vertical excitation energies evaluated with different relativistic Hamil- 410
tonians are compared in Fig. 8. The patterns are pretty similar to those obtained for the 420
ThO molecule (Sect. 4.1). The deviation of GRPP/Gaunt excitation energies from the refer- 42
ence DCG values does not exceed 110 cm~! (rms deviation 51 cm ™!, mean absolute error sz
45 cm_l). This is larger, than for ThO, but is fully consistent with estimates at the SCF  42s
level. One can see from Table S2 in the Supplementary materials that the GRPP errors aza
are naturally arranged according to the changes in the occupation number of the 5f shell. 425
Thus, these errors are of the order of +50 cm ™! for the transitions with the decrease of this sz
occupation number by one (and the rough proportionality holds for the other transitions), a2z
whereas they are within 10 cm ™! for the transitions without the change in this occupation  azs
number. Similarly to the case of ThO, the error introduced by the GRPP approximation is s2e
smaller than the contribution of retardation and QED effects (up to 140 cm ™). Itis worth s
noting that the A(R+QED) contribution strongly depends on the fraction of configurations 4s:
involving the 7s7 , o spinor (~ +120 cm ™! per one electron). In particular, the dropdown 432

value of A(R+QED)= +102 cm ™! corresponds to the (2)0g state dominated by the (7s{ , g)2 a33
configuration. It should be emphasized that Gaunt contributions to the excitation energies 3a
considered (reaching 767 cm !, rms deviation 316 cm 1) exceed the GRPP error by an order a3
of magnitude (Fig. 8, bottom). This clearly indicates that the use of the four-component s
Dirac-Coulomb approximation does not make sense for this system and should not be 437
preferred over the tiny-core pseudopotential approach. Note that even for the conventional s
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semilocal (valence) RPP maximal deviation is twice smaller (345 cm ™) than for the DC 43
Hamiltonian. aa0

5. Conclusion and prospects a1

The version of the LIBGRPP library presented in the paper provides universal tools for 4=
the evaluation of all types of molecular integrals arising within the generalized relativistic 4as
pseudopotential (GRPP) model. 444

The numerical scheme for integrals over the local term of the pseudopotential based on s
the one-center re-expansion of basis functions is not recommended due to severe numerical 446
instabilities arising for large values of exponential parameters in Gaussian basis functions. 4az
This problem can be overcome by switching to other computational scheme based on 4
numerically stable recurrence relations analogous to the McMurchie-Davidson relations for —ass
nuclear attraction integrals. 450

It should be pointed out that the semi-numerical scheme used in the present work s
to evaluate integrals with projectors after some modifications can be used to calculate ass2
molecular integrals over any arbitrary atom-centered potential. An important example 4s:
of such an operator is the electrostatic potential generated by some finite nuclear charge ass
distribution, e.g. the Fermi distribution [111,112], which is not currently available for ass
molecular calculations due to the absence of corresponding nuclear attraction integrals 4se
in electronic structure packages. Such a feature will be demanded in the framework of sz
four-component relativistic calculations on superheavy element compounds. The other ass
example of such a non-local potential is the model Lamb shift operator [18,68]. 459

Pilot applications of the developed LIBGRPP library in conjunction with the relativistic  4so
coupled cluster theory to electronic transitions in the ThO and UO; molecules clearly ss:
demonstrate that the rather economical tiny-core pseudopotential model can exceed in ez
accuracy relativistic all-electron models defined by Dirac-Coulomb and Dirac-Coulomb- 63
Gaunt Hamiltonians, especially for the f-block elements. Generalized pseudopotentials ses
also provide an attractive opportunity to include QED and Breit effects into the relativistic es
electronic structure model completely at no cost. Further experiences with the GRPP 46
model are desirable to elucidate its capabilities in molecular problems and its scope of 467
applicability. There could be some possible future developments that are expected to aes
improve the code of the library and extend the scope of its applicability. In particular, the 4so
use of more efficient radial quadratures and more robust schemes for pre-screening of 470
radial integrals (like that developed in [80,81]) appears to be the most promising direction a7
for further developments. It also seems reasonable to provide the Python interface to 472
LIBGRPP routines to increase interoperability with modern electronic structure packages 47s
like PySCF [113]. The other possible direction of future work on will address further 47
integration with solid-matter quantum chemistry codes in order to explore the power of 475
the generalized relativistic pseudopotential model not only in atomic and molecular but 47
also in solid state problems [114-116]. We finally note that the computational scheme of 477
evaluation of integrals over GRPP-specific non-local terms presented in the paper does not a7s
actually introduce any fundamentally new types of RPP integrals. Thus it can be readily 7o
implemented within any existing code for pseudopotential integration (given that the code 4s0
for overlap integrals is naturally presented in almost every quantum chemistry package). e
This paves the way to routine calculations with one of the most comprehensive relativistic ss2
Hamiltonians at the moment, completely bypassing any complicated four-component ass

calculations. 484
Supplementary Materials: The following supporting information can be downloaded online. 485
Table S1: Excitation energies derived from all- 486

electron numerical SCF calculations for the states averaged over nonrelativistic configurations of the  4s7
Th™ cation with DCB Hamiltonian and accounting for the finite nuclear size and QED effects; Table sss
S2: SCF excitation energies for the U?t cation; Table S3: Basis set for Th (adapted for all-electron  aso
calculations); Table S4: Basis set for Th (adapted for GRPP calculations); Table S5: Basis set for U 490
(adapted for all-electron calculations); Table S6: Basis set for U (adapted for GRPP calculations). a01
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Abbreviations 515
The following abbreviations are used in this manuscript: 516

FS-RCCSD  Fock space relativistic coupled cluster method with single and double excitations

GRPP Generalized relativistic pseudopotential

IH Intermediate Hamiltonian

QED Quantum electrodynamics o
SO Spin-orbit

v-RPP valence (semilocal) part of GRPP

Appendix A Analytic gradients of GRPP integrals 519

To investigate potential energy surfaces of large objects composed of several dozens of sz
atoms, including cluster model of defects in solids [114-116], one has to apply techniques sz
based on analytic rather than numerical evaluation of energy derivatives with respect to  sz:
nuclear coordinates, e. g. gradients and Hessians. Thus the recipe for differentiating GRPP  s2s
integrals analytically is highly desirable. s24

Despite the GRPP operator (6) is more complicated than its semilocal counterpart, all  s2s
one-electron integrals are still three-center ones. The approach to analytic differentiation of sze
such integrals based on the translational invariance of AO integrals is well-known since 27
1970s [117] and was successfully applied to calculate gradients and Hessians of scalar- sz
relativistic PP integrals [80,118-122]. The most comprehensive discussion can be found sz
in [120] 530

Without any loss of generality consider the scalar-relativistic part of GRPP (6) (all
expressions for gradients of spin-orbit integrals are completely the same). We differentiate
the integral

Incp = (palUc|¢p), (A1)

with respect to the coordinates of nuclei A and B on which the basis functions ¢4 and ¢p
are centered, respectively, and with respect to the coordinates C of the nucleus at which the
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GRPP operator U is placed. Obviously, if one performs differentiation with respect to some
other point D, and one obtains zero since the integral doesn’t depend on D:

9lacs
=0 D # A,B,C. A2
a D 7 # sy ( )
Differentiation with respect to the coordinates of the nuclei A and B presents no difficulties
since the derivative of the Gaussian function (Eq. (11)) is a linear combination of two other
Gaussians with lowered and raised total angular momentum:

a(PA _ na—1,m na+1,1,m
A, " AP4 + Py

I’lA 1111’! ZCN.X”A 1 lA mAefaAi(r*A)z

¢nA+1lm _ Z<2“ )C anAJrly% ma *“Ai(”*A)z (A3)

i

(and the similar expressions for the y and z directions). Thus the a{{‘% and alg‘% gradients
can be constructed for all GRPP integrals in the shell pair simultaneously using the relation:

dlacp _ <3<PA

na+1,1,m
e )+ (¢

|Uc|gpp) = —na (g "

B) - (Ad)

Note that numerical differentiation using the second-order symmetric difference quotient s
formula will require evaluation of six GRPP integrals instead of two in (A4). Thus one can  ss2
argue that analytic differentiation of GRPP integrals is not only numerically stable, but also  sss
much faster than the numerical one. 534
The challenging point is the differentiation with respect to the coordinates C at which
the GRPP operator is centered. The straightforward differentiation of GRPP will inevitably
lead to very cumbersome expressions, which is clearly an impractical way. Fortunately,
GRPP integrals possess the property of translational invariance, i. e. they don’t change
when shifting all the three centers A, B and C in the same direction. This means that

dlace , 9lacp | dlacp
0A aC JB =0 (A5)

and, hence, the gradient with respect to the center C can be expressed in terms of derivatives
of basis functions with respect to the other centers (A4):

dlacg  9lacp  9dlacs
a9C JA 0B (A6)

If some centers coincide with each other, we have two-center Ioca, Iacc, Iccp and
one-center Iccc integrals. The derivatives of the latter integrals are always zero due to the
translational invariance. For the former we need to reformulate the relation (A5) as

dlaca | dlaca
0A oC

=0. (A7)
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Now the expressions for gradients for the remaining types of integrals are readily obtained:

PACA _ 1 %A10Cp,) + (pal 0| %A, (A8
Pacc _ (%4 10Cp,) (A10)
(and the analogous relation for Iccp). 535

Since no fundamentally new types of integrals emerge, the program implementation sse
of the described scheme presents no difficulty. The subroutines for calculation of gradients ss7
of GRPP integrals are also included into the LIBGRPP library. Their correctness was sss
verified by comparison with results of numerical differentiation using the second-order sss
finite-difference formula. 540

The extension of the differentiation scheme described here to the case of second sa
derivatives of GRPP integrals is quite straightforward [119,121,122]. Note that the overall ss
angular momentum of Gaussians involved will raise by 2 according to the formula (A3) ses
(for example, evaluation of Hessians of a GRPP integral involving i-functions will require  sas
integration of [-functions, and so on). However, this presents no problem for the LIBGRPP  sss
library since it does not imply any restrictions on the maximum value of angular momentum  sas
of basis functions. 547

Appendix B Obara-Saika recurrence relations for the local part of the GRPP operator s

The McMurchie-Davidson-type recurrence relations for the integrals (14) were pre- seo
sented in Sect. 2.2. Here we present the Obara-Saika-type relations which also can be used  sso
to evaluate integrals over the local part of the GRPP operator. 551

As it was mentioned previously in Sect. 2.2, integrals corresponding to the case of
n = 2 are actually three-center overlap ones, for which the Obara-Saika recurrence relations
can be obtained directly from the property of translational invariance [85]. Such an integral
is assembled from one-dimensional overlap integrals along the x, y, z-directions:

_7y2
<XA|€ CrC|XB> - SﬁAnBSlyAZBS%AmB/ (A12)

Sppng = / L P PR (A13)

(the same for the y, z directions). These one-dimensional overlap integrals can be obtained
using the upward recurrence relations (for example, for the x direction):

1
Sit1j = XoaSij+ q(le 1j+7Sij-1), (A14)

1
Sl]+1 XQBSZ] + — 27 (le 1 +]S ij— 1) (A15)

(0 <i<ny,0<j<np). The base of recursion is given by the expression:

7T
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If the power in the pseudopotential primitive is equal to 1, the integral will closely

resemble the integral over %:

2

,gr
e ~cC def
(xal=—Ixs) = @ : (A17)

nanglalgmamg

The derivation of the Obara-Saika recurrence relations for the i ¢ operator was discussed

e grz

in details in the monograph [71]. For the case of one should modify these relations
according to the considerations for the McMurchie- Dav1dson scheme (see Sect. 2.2):

N -~ N . ~N
®i+1,jklmn XQA®1]klmn zq (ZQi—l,jklmn + ]Qi,j—l,klmn>
1 N+1
XQC®1]klmn zq <101 1,jklmn + ]Q ij—1 klmn) (A18)

(and five analogous relations for the j,k,/,m,n indices).

27
Ofboooo = 7K23CK£BCKZBCF N(GRGC)- (A19)

The remaining type of local terms of GRPP arise if n = 0:

)
e~ 0rc def —o
> T “ngnglplgmyamp*

(A20)

<XA
c

To derive Obara-Saika-type recurrence relations one can follow step-by-step the scheme  ss:

described in details in [71] for nuclear-attraction integrals. It is based on results of the sss

McMurchie-Davidson scheme [73] rather than the translational invariance property. 554
We start from the definition of auxiliary integrals:

N, = 72”3/2 “NY EJENEMRN (A21)
“ijklmn \/ﬁ s tuvs
Obviously, for the base of recursion we have:
2773/2
=N
E000000 = Vi ——KhpcK e Kapc Gn (9RG)- (A22)

Let us increase the first index in (A21) by one, i — i + 1:

=N 27T3/2 -N i+1,j pkl pmn
S jkmn = \[ Y EEJEYRE,- (A23)
q tuv

Then we use the upward recurrence relation for the E 7 coefficient (see Eq. 9.5.20 in [71]):

E;TY = XoaE) + Z(in T +iET +EL), (A24)

1 1 27% 2
=N _ =N imN =N —N Z] kl pmn
8N = XoA Evimn + = GEN 1 igmn T S )+ =— E/ |E, E; RN
i+1,jkImn Q ijklmn 2g i—1,jklmn i,j—1,klmn 2g ﬂ ; tuv-

(A25)
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By substitution ¢+ — t 4 1, we obtain:

1 2773/2
=N =N =N —N-1 l] kl
Bt jkimn = XQA B 1]klmn+2q( Bl jktmn + 1 81 kimn) + —=— NG (29) Y EVESESRY o
tuv

(A26)
Let us focus on the last term of this expression. We use the relation (28) to decrease the
index t in RN

t+1, uo*
2732 N1 N il ek
e (ag) N VBB R =
\/‘7 tuo "

27.[3/

— —N-1 Z tEIJ EklEmnRi\]-tiluv + XQC (zq —N-1 Z EZ]EklEmnRg\[lj;l
ﬂ tuo \[ tuo

27‘[3/2 27-[3/2

+ (2‘7 - Z th El])EklEmnRt 1,uv 2qXQC (2‘7 - Z El]EklEmnRtuv

\/ﬁ tuv \/ﬁ tuv
(A27)

Each of these four terms can be further simplified. For the first and the third term one
should use the other recurrence relation for the E;] coefficient (see Eq. (9.5.14) in [71]):

2qtE] = iE| Y +EV T (> 0). (A28)

Accounting for the obvious relation X4 — Xgc = Xca one arrive at the desired recurrence
relation:

Ei1jkimn = Xca E ‘—‘zjklmn + Xoc & '_'l]klmn + Zq( Bkt T E ,] 1, L ki) (A29)

(and five analogous relations for the j k,[,m,n indices). It is interesting that this relation is  sss

result closely resembles the relation (3.5) reported in the recent PhD thesis of McKenzie [83]. ss7

@

6

Appendix C Analytic evaluation of one-center RPP integrals 558

Working expressions (51) and (55) for integrals over non-local GRPP terms include
radial integrals of type (see Eq. (56)):

—+o0
Ui (r) + Uy (r)
Ancné = / ( i 2 rel - unvlj<r) Rncl]'(r) Rnélj(r) r2d7’, (A30)
0

where R, jj, R,y;; are radial parts of atomic outercore pseudospinors with principal quan-
tum numbers 7., n., respectively, and angular quantum numbers ! and j. These radial
functions are represented by contracted radial Gaussians [71]:

Ry ij(r Zc N; e, (A31)
_ 2(20)3 2 ),
Ni == (21+1)!!( 2"") ' (A32)

Provided that pseudopotential multiplier in (A30) is represented by the functional form (10)
we arrive at the relation
+o0
2
Ay = Y cici NiNj di - / P2l (@t gy (A33)
ijk 0
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The latter integral is a generalization of the Gaussian integral and can be evaluated analyti-
cally using the well-known formula [123]:

400 —_1)1
/ Nt _ (gllf(lﬂla)k ﬁ, N =2k (evenN), (A34)
, ST, N =2k+1 (oddN).
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