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Abstract: Generalized relativistic pseudopotentials (GRPP) of atomic cores implying the use of 1

different potentials for atomic electronic shells with different principal quantum numbers give rise 2

to accurate and reliable relativistic electronic structure models of atoms, molecules, clusters, and 3

solids. These models readily incorporate the effects of Breit electron-electron interactions and one- 4

loop quantum electrodynamics effects. Here we report the computational procedure for evaluating 5

one-electron integrals of GRPP over contracted Gaussian functions. This procedure was implemented 6

in a library of routines named LIBGRPP, which can be integrated into existing quantum chemistry 7

software, thus enabling the application of various methods to solve the many-electron problem with 8

GRPPs. Pilot applications to electronic transitions in the ThO and UO2 molecules using the new 9

library and intermediate-Hamiltonian Fock space relativistic coupled cluster method are presented. 10

The results clearly demonstrate that rather economical tiny-core GRPP models can exceed in accuracy 11

relativistic all-electron models defined by Dirac-Coulomb and Dirac-Coulomb-Gaunt Hamiltonians. 12

Keywords: generalized relativistic pseudopotentials; molecular integrals; Gaussian basis functions; 13

relativistic coupled cluster theory; excited states; heavy-element compounds; high-precision electronic 14

structure modeling; thorium oxide; uranium dioxide. 15

1. Introduction 16

The experience of computational quantum chemistry has clearly demonstrated the 17

great importance of accounting for relativistic effects in applied ab initio modeling, espe- 18

cially when considering systems containing heavy atoms [1–4]. A series of approximate 19

relativistic Hamiltonians with increasing accuracy was proposed (for review, see [5–7]) and 20

implemented in general-purpose electronic structure programs, first for the special case of 21

atomic problems [8–12], and then for molecular ones [13–17]. The latest developments in 22

this field include models consistently accounting for frequency-dependent Breit interactions 23

as well as the one-loop quantum electrodynamic (QED) effects [18–25]. Despite the signifi- 24

cant progress in hardware and algorithms, such calculations based on a four-component 25

methodology are still very demanding. They thus can be applied only to atoms and few- 26

atomic molecular systems. The most time- and memory-consuming step in such models is 27

accounting for magnetic (Gaunt) or total Breit two-electron interactions, which contribute, 28

for instance, up to several hundreds of wavenumbers to electronic excitation energies even 29

for the systems containing six-row elements and thus cannot be omitted [2,20,26–28]. Either 30

the Dirac-Coulomb Hamiltonian or its effective two-component counterparts ([6,29] and 31
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references therein) widely used in modern relativistic molecular calculations suffer from 32

the lack of these spin-dependent two-electron interactions. 33

In parallel with the evolution of “genuine” relativistic Hamiltonians, the so-called 34

pseudopotential (PP) (or, more generally, effective core potential, ECP [30]) approach 35

was developed [31–37]. Originally proposed as an approximation aimed at reducing 36

the computational cost of conventional non-relativistic calculations by removing core 37

electrons, the pseudopotential approach was found to be an excellent alternative to scalar- 38

relativistic Hamiltonians [38]. Further, it was modified to treat spin-dependent interactions 39

as well [39,40]. The amazing success of the relativistic pseudopotential (RPP) approximation 40

was due to its relatively low computational cost and the development of general purpose 41

codes allowing one to use RPPs in routine electronic structure calculations. Another critical 42

factor was the appearance of publicly available sets of pre-tabulated RPPs supplied by basis 43

sets explicitly designed for pseudopotential calculations. Among such pseudopotentials, 44

the most widely used in molecular calculations nowadays are the energy-adjusted PPs of 45

Dolg et al. (see [35] and references therein), shape-consistent PPs of Christiansen, Ermler, 46

Pacios, et al. [32,41–49], Cundari and Stevens [50], and Hay and Wadt ([51] and references 47

therein). 48

However, all these RPPs were represented by semilocal operators, implying the use of 49

a sole effective potential for each partial wave with definite spatial (l) and total (j) electronic 50

angular momenta without discerning shells by their principal quantum numbers. Such 51

an approximation seems to be quite reasonable when only outermost (valence) shells of 52

atoms are treated explicitly (large core RPPs), but it becomes questionable when leaving 53

a relatively small number of electrons in a core simulated by RPP and treating explicitly 54

at least subvalence electrons (small core RPPs) [33,35,52,53]. The failure of semilocal RPPs 55

occurs when valence and subvalence shells are not well separated spatially; thus, the 56

valence-subvalence correlation effects are especially large. A typical example of such a 57

situation is the case of processes changing the number of f -electrons in lanthanide and 58

actinide compounds [33,36,54]. It is thus desirable to apply different potentials to the shells 59

with the same l and j but different principal quantum numbers. This extension of the RPP 60

model called the generalized (or Gatchina) relativistic pseudopotential model (GRPP); it 61

is the most widely used form of generalized relativistic effective core potential (GRECP) 62

developed by Mosyagin, Titov and co-workers in the series of papers [26,33,36,37,53–61]. 63

The latest generation of GRPPs effectively includes the Breit interaction [26,62,63], the effect 64

of the finite nuclear charge distribution [37,53] and one-loop QED contributions (vacuum 65

polarization and electron self-energy) [28]. All these effects are considered explicitly only at 66

the GRPP generation step and then included into an electronic structure model completely 67

at “no charge”. 68

In order to access the full range of features of the GRPP model in high-level ab initio 69

calculations, one has to implement integrals of the GRPP operator for basis sets of atom- 70

centered Gaussian functions commonly used in modern electronic structure codes. At 71

the moment, calculations involving GRPPs can be carried out only for atomic systems 72

using the modified version [57] of the HFD program [8] and for molecular systems using 73

the MOLGEP program [60,64]. The latter code operates with spin-orbitals rather than 74

two-component molecular (pseudo)spinors and thus does not allow one to treat spin- 75

orbit interaction at the SCF level. The contributions from the effective spin-orbit operator 76

are added at the stage of correlation calculation. The loss of accuracy due to a strongly 77

non-optimal starting approximation for wave functions becomes significant already for 78

the sixth row elements of the Periodic table; furthermore, the opportunity to freeze the 79

innermost explicitly treated shells after the molecular SCF step is lost. Moreover, MOLGEP 80

is restricted to Gaussian basis functions with angular momenta only up to l = 6 (i functions), 81

whereas l > 6 functions are also indispensable for the quantitative treatment of angular 82

correlations in the states of heavy atoms with open d and/or f shells [27,28]. Other RPP 83

integrating codes used in electronic structure simulation software can work only with 84

conventional semilocal pseudopotentials. Among the most successful and widely used 85
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integral programs of this type allowing the use of the effective spin-orbit interaction 86

operator are ARGOS [40,65,66] and the code written by Mitin and van Wüllen [67]. Thus it 87

seems reasonable to design a new modern integral code allowing the use of GRPPs and 88

possessing no limitations arising from using a legacy code base. The interface of such 89

a library should allow relatively simple incorporation into any widely used relativistic 90

quantum chemistry software (e. g. DIRAC [16]). 91

The paper is organized as follows. In Section 2.1 the basic theory of the generalized 92

relativistic pseudopotential model is described. The following sections 2.2–2.5 outline the 93

computational procedure used to evaluate three-center GRPP integrals over contracted 94

Gaussian functions (including integrals over non-local terms of a pseudopotential). Sec- 95

tion 3 describes in detail the LIBGRPP library implementing GRPP integrals. Pilot applica- 96

tions of the newly developed integral library are presented in Section 4. The final section 97

discusses further possible improvements of LIBGRPP, and the prospects of its applications 98

and provides some conclusive remarks. Appendices contain the discussion on problems 99

closely related to the GRPP integral evaluation algorithm. Appendix A describes formulas 100

for analytic differentiation of GRPP integrals, while Appendix B presents the Obara-Saika- 101

type recurrence relations for integrals over the local part of the GRPP operator. Appendix C 102

gives analytic expressions for one-center pseudopotential integrals. 103

2. Theory 104

2.1. Generalized relativistic pseudopotentials 105

The pseudopotential model implies the description of an explicitly treated subset of
electrons with the Hamiltonian comprising the non-relativistic kinetic energy and instanta-
neous Coulomb electron-electron interactions,

ĤRPP = ∑
i

(
−∆i

2
+ ∑

i,γ

(
−

zc
γ

rγi
+ Ûγ(i)

))
+ ∑

i>k

1
rik

. (1)

Here γ and i, k run over the indices of atomic nuclei and electrons respectively, zc
γ stands for 106

the effective core charge (nuclear charge minus the number of excluded electrons), rγi (rik) is 107

the distance between a nuclear center and an electron (between two electrons); atomic units 108

are used throughout. It should be noted that some of the atoms γa can be described in the 109

conventional all-electron nonrelativistic way (i.e., without a pseudopotential), then it is ob- 110

vious that Ûγa(i) = 0 and zc
γa is just the nuclear charge. The one-electron field-independent 111

pseudopotential operator Ûγ(i) along with the long-range term −zc
γ/rγi simulates the 112

effect of nuclear charge and excluded electronic shells of the atom γ on the remainder 113

electrons. The operators Ûγ should bear all information on the effects of relativity. The 114

Hamiltonian (1) is not well suited for taking into account core polarization and correlations 115

between the excluded and explicitly treated electrons. Therefore to achieve high accuracy 116

in electronic structure modeling, the number of excluded electronic shells should be smaller 117

than the number of core shells in the ordinary “chemical” sense (small-core RPP models); 118

at least subvalence electrons are to be treated explicitly along with valence ones. Further 119

development of this idea has led to the concept of tiny-core pseudopotentials implying an 120

explicit treatment of several (more than one) subvalence atomic shells. 121

We restrict our attention to shape-consistent RPPs designed to fit the behavior of
eigenfunctions of ĤRPP (pseudo wavefunctions) outside of the inner core region to that of
true two-component wavefunctions or large components of four-component wavefunctions.
Note that pseudo wavefunctions within the inner core region are smooth and have no
radial nodes. The conventional shape-consistent semilocal RPP model [38,39] assumes that
an atomic contribution to molecular pseudopotential is described by the same functions
(partial potentials) Ul j(r) of the distance r from the center of the atomic nucleus (we shall
omit the indices γ, i for brevity) for all spinors with spatial angular momentum l and total
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angular momentum j with respect of the center of this nucleus so that the overall atomic
contribution is given by [31]

Ûsemi−loc = ∑
l j

Ul j(r)Pl j, (2)

where Pl j projects onto the subspace of spinors with definite l and j values. 122

An accurate description of several electronic shells of an atom with different principal 123

quantum numbers (at least valence and subvalence ones) simultaneously, i. e. the use of tiny- 124

core RPPs seems to be hardly compatible with the Ansatz (2). The choice of Ul j ensuring 125

a perfect reproduction of the shape of valence pseudospinors with angular momenta l 126

and j within the Hartree–Fock approximation for an isolated atom normally leads to a less 127

satisfactory description of subvalence spinors with the same l and j values. This restricts 128

the accuracy of semilocal small-core and tiny-core RPPs, especially for describing electronic 129

structures of f -element atoms and compounds where valence and subvalence shells are not 130

well-separated spatially. An efficient and general way to remove this restriction within the 131

shape-consistent RPP framework is based on the use of different partial potentials Unlj(r) 132

for different atomic shells (labeled by their principal quantum numbers n) [33,56,57]. The 133

action of such a generalized RPP ÛGRPP on an atomic pseudospinor ψ̃nljm (m stands for the 134

projection of j) centered on the same nucleus and is characterized by its angular momenta l 135

and j and principal quantum number n should be equivalent to that of the corresponding 136

partial potential Unlj optimized to reproduce exactly this pseudospinor: 137

ÛGRPP = ∑l j Ûl jPl j (3)

Ûl jψ̃nljm = Unlj(r)ψ̃nljm (4)

The problem of constructing an Hermitian operator Ûl j in terms of partial potentials
Unlj and projectors Pnlj onto the subspaces of pseudospinors with the same l, j, and n is
non-trivial since Pnlj and Unlj do not commute. Provided that atomic pseudospinors are
solutions of an atomic Hartree-Fock problem with pseudopotentials, one can demonstrate
that the Hermitian operator

Ûl j = ∑
n

[
Unlj(r)Pnlj + PnljUnlj(r)

]
− 1

2 ∑
nn′

Pnlj

[
Unlj(r) + Un′ l j(r)

]
Pn′ l j (5)

satisfies exactly the basic requirement (4) [33]. 138

It is normally assumed that the partial potentials for atomic virtual pseudospinors 139

coincide with that for valence subshells, Un′ l j = Unv l j for n′ > nv = nv(l). Furthermore, 140

in a strict analogy with conventional semilocal RPPs, partial semilocal components Unv l j 141

for large l are assumed l- and j-independent, Unv l j(r) = UL(r) for all l > L, where L at 142

least should be greater than the maximum spatial angular momentum value for excluded 143

inner-core shells. This stratagem allows one to replace the infinite summation in (3) by a 144

finite sum [38,39]. 145

The representation of GRPP in terms of projectors onto eigenfunctions of the total
electronic angular momentum (j) is not convenient for molecular integral evaluation since
the Gaussian basis functions routinely used in quantum chemistry calculations cannot be
classified by the j quantum number. Therefore, for practical applications, this formula
should be transformed into the spin-orbital form [39,58]. The GRPP operator can be
represented as the sum of the scalar-relativistic potential (the first, second, and fourth terms
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in the r.h.s. of Eq. (6) below) and the effective spin-orbit interaction operator (the third and
fifth terms):

ÛGRPP = UL(r) +
L−1

∑
l=0

[Ul(r)− UL(r)] Pl +
L

∑
l=1

USO
l (r) Pl ls

+
L

∑
l=0

∑
nc

ÛAREP
nc l Pl +

L

∑
l=1

∑
nc

ÛSO
nc l Pl ls, (6)

where Pl = ∑
m
|lm⟩ ⟨lm| and ÛAREP

nc l and ÛSO
nc l are non-local operators defined as

ÛAREP
nc l =

l + 1
2l + 1

V̂nc ,l,l+1/2 +
l

2l + 1
V̂nc ,l,l−1/2 (7)

ÛSO
nc l =

2
2l + 1

[
V̂nc ,l,l+1/2 − V̂nc ,l,l−1/2

]
(8)

V̂nc ,l,j =
[
Unc l j(r)− Unv l j(r)

]
Pnc l j + Pnc l j

[
Unc l j(r)− Unv l j(r)

]
− ∑

n′
c

Pnc l j

[
Unc l j(r) + Un′

c l j(r)
2

− Unv l j(r)

]
Pn′

c l j, (9)

where Pnc l j(r) is a projector onto subvalence pseudospinors. 146

The accuracy of the GRPP model is restricted mainly by 147

• an approximate nature of the many-electron Hamiltonian used to evaluate atomic 148

spinors which in turn define the potentials Unlj(r). The construction of modern GRPPs 149

is based on atomic four-component all-electron calculations with the Dirac–Coulomb– 150

Breit Hamiltonian, employing Fermi nuclear charge distribution, and accounting 151

for the quantum electrodynamic correction [28] by means of the Lamb shift model 152

potential [18,68]; 153

• the neglect of correlations between excluded and explicitly treated electrons and inner 154

core polarization and smoothing of pseudo wavefunctions in the inner core area. 155

The corresponding errors naturally decrease while reducing the number of excluded 156

electronic shells (so-called tiny-core and empty-core versions of GRPPs [28,61]); 157

• a roughly approximate mean-field-like simulation of Breit interactions between the 158

explicitly treated electrons by the corresponding contributions to one-electron GRPPs. 159

In principle, this factor can limit the feasibility of core size reduction for heavy atoms. 160

For further use in molecular applications radial parts of GRPP components are expressed
as linear combinations of radial Gaussian functions,

U(r) = ∑
k

dkrnk−2e−ζkr2
, (10)

where r stands for the distance from the point C at which the RPP is centered, r = |r − C|. 161

The GRPPs for chemical elements from hydrogen to element 123 were derived from Dirac- 162

Fock(-Breit) atomic calculations in 1995-2022 and reported in the series of papers [26,33,36, 163

37,53,54,56–62,69]. The parameters nk, dk and ζk were tabulated and can be found in [70]. 164

To make use of the GRPP model, one has to evaluate integrals of the GRPP operator
(6) over some appropriate basis functions. Atom-centered Gaussian basis functions are the
most widely used in modern molecular electronic structure theory; a detailed discussion
can be found in the monograph [71]. Here we will discuss only Cartesian basis sets;
transformation to the spherical basis can be easily performed if necessary. Contracted basis
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Figure 1. Coordinate system used to evaluate pseudopotential integrals. Gaussian basis functions ϕA

and ϕB are re-expanded at the point C, where the center of a pseudopotential is located.

function centered at point A is constructed from normalized Cartesian primitive Gaussians
with exponential parameters αAi:

ϕA(r) = ∑
i

ci Ni xnA
A ylA

A zmA
A e−αAi(r−A)2

, (11)

where xA = x − Ax (the same for yA and zA), ci stands for the contraction coefficients and
the normalization constants are given by

Ni =
2αAi

π

3/4 (4αAi)
(nA+lA+mA)/2

(2nA − 1)!!(2lA − 1)!!(2mA − 1)!!
. (12)

The orbital angular momentum of such a contracted function is formally equal to LA = 165

nA + lA + mA. Similarly, another Gaussian function ϕB(r) centered at the point B can be 166

introduced. The pseudopotential operator is bound to some origin C, thus RPP integrals 167

are in general three-center ones (see Fig. 1). 168

One can formally define five types of molecular integrals, corresponding to each of the 169

terms in the formula (6). However, only for the first three terms, special algorithms should 170

be designed. These algorithms will be briefly discussed below in Sections 2.2 (the local 171

term), 2.3 (the semilocal scalar term), 2.4 (the semilocal spin-orbit term). Additional types 172

of integrals arising from the last two non-local terms in (6) can be reduced to combinations 173

of integrals of the first type and overlap integrals (see Sect. 2.5). 174

2.2. Scalar-relativistic part: integrals over the local potential 175

Intergals ⟨ϕA|UL(r)|ϕB⟩ over the first (local) term in Eq. (6) are usually referred to as 176

type 1 integrals. The most widely used algorithm for calculation of these integrals was 177

proposed in [65] and is based on the re-expansion of Gaussian functions ϕA and ϕB at the 178

origin C where the RPP operator is centered (see Fig. 1). This approach heavily suffers 179

from numerical instabilities for the case of large exponential parameters and large angular 180

momenta of basis functions [72]. At the same time, such basis functions have to be used in 181

calculations with small-core and tiny-core pseudopotentials. Thus an alternative approach 182

is highly desirable. 183
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The type 1 integral can be expressed in terms of integrals over unnormalized primitive
Gaussian functions:

⟨ϕA|UL(rC)|ϕB⟩ = ∑
i

∑
j

∑
k

cicjNi Njdk ⟨χAi|r
nk−2
C e−ζkr2

C |χBj⟩ , (13)

⟨χAi|r
nk−2
C e−ζkr2

C |χBj⟩ =
∫

xnA
A ylA

A zmA
A e−αAi × rn−2

C e−ζkr2
C × xnB

B ylB
B zmB

B e−αBj dr, (14)

rC = |r − C|. In the rest of this section we will discuss only integrals over primitive 184

functions χ and thus will use for brevity the notation αA, αB, ζ, n instead of αAi, αBj, 185

ζk, nk. For the overwhelming majority of pseudopotentials used nowadays (including 186

GRPPs) the power parameter n = 0, 1, 2. Moreover, since a product of Gaussian functions 187

is again a Gaussian function one can try to adopt the classical recurrence McMurchie- 188

Davidson algorithm1 [73] for overlap integrals (the case of n = 2) and integrals over 189

the 1
rC

(n = 1) [73] and 1
r2

C
(n = 2) [74,75] operators to calculate desired pseudopotential 190

integrals. The corresponding recurrence relations have to be slightly modified to integrate 191

the “exponentially scaled” analogs of these operators, e−ζr2
C , e−ζr2

C
rC

and e−ζr2
C

r2
C

. To the authors’ 192

best knowledge such an approach was not reported in the literature before. 193

The main idea of the McMurchie-Davidson algorithm [71,73] for non-PP integrals
consists in the re-expansion of Gaussian overlap distributions Ωx

nAnB
in the basis of Hermite

Gaussian functions Λt:

Ωx
nAnB

= xnA
A xnB

B e−αAx2
A e−αBx2

B =
nA+nB

∑
t=0

EnAnB
t Λt, (15)

Λt(x) =
(

∂

∂Px

)t
e−px2

P , (16)

where p = αA + αB is the total exponent and P = {Px, Py, Pz} stands for the weighted
center of two primitive Gaussians, P = αA A+αBB

p . The re-expansion coefficients EnAnB
t are

obtained using upward recurrence relations [71,73] starting from the base value E00
0 = Kx

AB,
where Kx

AB is defined as:

Kx
AB = e−µX2

AB , µ =
αAαB

αA + αB
, XAB = Ax − Bx. (17)

The same relations are obviously held for the y and z components of the integrand in (14).
If one introduces the exponential factor e−ζr2

C related to the third center C then the basic
expansion (15) is rewritten as:

Ω̃x
nAnB

= xnA
A xnB

B e−αAx2
A e−ζx2

C e−αBx2
B =

nA+nB

∑
t=0

ẼnAnB
t Λt. (18)

There is a product of three Gaussian functions on the right-hand side. It can be shown that
the functional form of all the McMurchie-Davidson relations remains the same, but one
must replace the p, P and Kx

AB parameters with their counterparts for the three-center case:

p → q = αA + αB + ζ, (19)

P → Q =
αA A + αBB + ζC

αA + αB + ζ
, (20)

1 Should not be confused with the McMurchie-Davidson algorithm for pseudopotential integrals proposed
in [65].
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Kx
AB → Kx

ABC = e−µABX2
AB e−µBCX2

BC e−µACX2
AC , (21)

where µAB = αAαB
αA+αB

, etc. The base of recurrence relation should be modified accordingly:

E00
0 → Ẽ00

0 = Kx
ABC. (22)

Pseudopotential integrals with n = 2 are in fact simply three-center overlap integrals, and
the working formula for them is the most compact one:

⟨χA|e−ζr2
C |χB⟩ = ẼnAnB

0 ẼlA lB
0 ẼmAmB

0

(
π

q

)3/2
. (23)

The expressions for the n = 0, 1 cases are more complicated:

⟨χA|
e−ζr2

C

rn
C

|χB⟩ = ∑
tuv

ẼnAnB
t ẼlA lB

u ẼmAmB
v R0

tuv, (24)

R0
tuv =

∫
rn−2

C Λt(x)Λu(y)Λv(z)dr (25)

Auxiliary integrals R0
tuv can also be calculated via recurrence relations depending on the

value of n. For n = 1 one actually has the expressions which are identical (except for the
P → Q, p → q substitution) to those for ordinary nuclear-attraction integrals [71,73]:

RN
t+1,uv = tRN+1

t−1,uv + XQCRN+1
tuv , (26)

RN
000 = (−2q)N · FN(qR2

QC), (27)

where Fn(x) stands for the Boys function, FN(x) =
1∫

0
e−xt2

t2Ndt (relations for the u and v 194

indices are similar). 195

For the n = 0 case the recurrence relations are similar to those previously published
for the inverse square potential 1

r2
C

[74,75]:

RN
t+1,uv = tRN+1

t−1,uv + XQCRN+1
tuv − 2q(tRN

t−1,uv + XQCRN
tuv), (28)

RN
000 = (2q)N · GN(qR2

QC), (29)

where the function GN(x) is defined as:

GN(x) =
1∫

0

e−x(1−t2)t2Ndt, (30)

and relations for the u and v indices are similar. 196

Equations (14) and (23)–(29) completely define the computational algorithm used to 197

evaluate integrals over the local part of GRPP. It is beneficial to calculate the ẼnAnB
t and RN

tuv 198

entities simultaneously for all the Cartesian components (nA, lA, mA) and (nB, lB, mB) in 199

the shell pair and store them in multidimensional arrays. Even for the quite large values 200

of angular momenta of basis functions the amount of memory required is moderate. It is 201

worth noting that alternative recurrence relations (Obara-Saika-like) can be obtained (their 202

derivation is given in Appendix B), but they are less convenient for programming since all 203

six indices denoting powers of Cartesian components are not decoupled from each other in 204

the upward recursion formula (A29). 205

Approaches to stable evaluation of the FN(x) and GN(x) special functions are well-
established and their description can be found elsewhere [71,73–75]. Unlike the paper [75]
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in the actual program implementation to calculate the G0(x) values at x > 12 we use the
relation employing the Dawson function D+:

G0(x) =
D+(

√
x)√

x
(31)

instead of Padé approximants to achieve accuracy of order 10−15 − 10−16. At the same time, 206

the GN(x) values for N > 0 are still obtained within the upward recurrence relation (which 207

is completely stable in this range of arguments). 208

2.3. Scalar-relativistic part: integrals with angular projectors 209

The semilocal scalar term with angular projector Pl gives more complicated type 2 210

integrals ⟨ϕA|∆Ul(r)Pl |ϕB⟩ (here and below we use for brevity ∆Ul to denote the difference 211

potential Ul(r)− UL(r)). The scheme of evaluation of type 2 integrals employed in the 212

present work reproduces in general the half-numerical approach presented in [76,77]. It 213

is based on the classical algorithm of McMurchie and Davidson for PP integrals [65], but 214

radial integrals are evaluated numerically on a grid in order to overcome the well-known 215

problem of numerical instabilities in the analytical approach. 216

The general idea of the algorithm consists in the re-expansion of Gaussian functions
ϕA and ϕB at the origin C where the pseudopotential operator is centered (see Fig. 1).
Then the integration is performed over angular and radial variables separately [65]. The
re-expansion yields:

⟨ϕA|∆Ul(r)Pl |ϕB⟩ =
∞∫

0

∑
m
⟨ϕA|Slm⟩Ω · ∆Ul(r) · ∑

m′
⟨ϕB|Slm′⟩Ω′ r2dr =

= 16π2
nA

∑
a=0

lA

∑
b=0

mA

∑
c=0

nB

∑
d=0

lB

∑
e=0

mB

∑
f=0

(
nA
a

)(
lA
b

)(
mA

c

)(
nB
d

)(
lB
e

)(
mB

f

)
×

× CAnA−a
x CAlA−b

y CAmA−c
z CBnB−d

x CBlB−e
y CBmB− f

z ×

×
λ1,max

∑
λ1

λ2,max

∑
λ2

Ta+b+c+d+e+ f
λ1λ2

(ϕA, ϕB) ·
+l

∑
m=−l

Ωabc
λ1lm(k̂A) Ωde f

λ2lm(k̂B), (32)

λ1,max = l + a + b + c, λ2,max = l + d + e + f

k̂A =
CA
|CA| , k̂B =

CB
|CB|

where CA = C − A, etc, and Mλ(x) stands for the modified spherical Bessel function. Ωabc
λlm

stands for angular integrals defined via real spherical harmonics Slm by the equation

Ωabc
λlm(k̂) =

λ

∑
µ=−λ

Sλµ(k̂)
∫ dΩC

4π
x̂aŷb ẑcSλµ(ΩC)Slm(ΩC). (33)

The radial integral TN
λ1λ2

is given by

TN
λ1λ2

(ϕA, ϕB) =

∞∫
0

rN+2 ∆Ul(r) Fλ1
A (r)Fλ2

B (r) dr (34)

where Fλ
A(r) and Fλ

B (r) are auxiliary functions absorbing contraction coefficients of ϕA and
ϕB, respectively:

Fλ
A(r) = ∑

i
ci Nie−αi |CA|2−kAir2

Mλ(kAir), (35)

kAi = −2αAi · CA, kAi = |kAi|. (36)
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Evaluation of angular integrals (33) is rather straightforward, the details of the procedure
can be found elsewhere [65,77]. The key step in their evaluation is to expand real spherical
harmonics involved in the basis of Cartesian unitary sphere polynomials (USPs)

Slm(r̂) = ∑
r+s+t=l

ylm
rst x̂r ŷs ẑt, r̂ =

r
|r| (37)

and then evaluate integrals over USPs analytically. We obtain:

Ωabc
λlm(k̂) =

+λ

∑
µ=−λ

Sλµ(k̂)× ∑
r+s+t=λ
u+v+w=l

yλµ
rst ylm

uvw ×
∫

x̂a+r+uŷb+s+v ẑc+t+w dr̂. (38)

Integrals over unitary sphere polynomials are given by

∫
x̂i ŷj ẑkdr̂ =

{
4π

(i−1)!! (j−1)!! (k−1)!!
(i+j+k+1)!! even i, j, k,

0 otherwise.
(39)

Explicit expression for the ylm
rst expansion coefficients can be found in [77]. Evaluation of 217

radial integrals (34) is the most expensive step of RPP integration. However, radial integrals 218

do not depend on powers in Cartesian multipliers of contracted Gaussian functions (11). 219

Thus the set of radial integrals is the same for all functions belonging to a given shell and 220

can be pre-tabulated as the first step of the RPP integration algorithm. Angular integrals 221

can in principle also be pre-tabulated, but practical experience shows that a large fraction 222

of these integrals is not actually used in contractions with radial integrals. Thus it is more 223

computationally beneficial to calculate them “on the fly”. 224

In the present work, radial integrals are evaluated numerically on a grid using the
Log3 scheme of Mura et al [78]. This radial quadrature is widely used in density functional
theory for integration of exchange-correlation potentials [79] and was successfully applied
for evaluation of pseudopotential integrals [76]. Within this approach, the radial integral is
approximated by the finite sum

+∞∫
0

f (r)r2dr ≈
nr

∑
i=1

wi f (ri). (40)

Explicit expressions for the grid points ri and weights wi can be found elsewhere [76,78].
The most notable and useful feature of the Log3 quadrature (and similar schemes like
the Gauss-Chebyshev quadrature [77]) is the possibility of expanding the integration grid
without recalculation of integrand values. While expanding the grid from nr to 2nr + 1
points to refine the integral I one has to calculate only nr + 1 integrand values f (ri):

I′ =
I
2
+

2nr+1

∑
i=1,3,5,...

wi f (ri) (41)

This scheme allows one to evaluate radial integrals with controllable accuracy. 225

The success and stability of the numerical integration using the quadrature formula
imply the stability of the evaluation of the integrand function in the whole range of
r ∈ (0,+∞). Modified spherical Bessel functions are monotonically increasing at r → +∞,
and grow very fast (see Fig. 2a). This is an obstacle to the direct use of the expression in
the quadrature formula. To avoid numerical instabilities it was proposed [77] to switch to
the scaled modified spherical Bessel function Kλ(x) = e−x Mλ(x) with the restricted value
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Figure 2. Plots of modified spherical Bessel function (left) and its exponentially scaled counterpart
(right). In+1/2(x) stands for a modified Bessel function of the first kind.

contraction with angular integrals

construction of radial grid of nr points

converged?

yes

no
expand radial grid

Figure 3. Flowchart of the algorithm used for integration of the semilocal scalar part (type 2 integrals).

range [0, 1] (see Fig. 2b). Thus the expression for the auxuliary function Fλ
A(r) (and also

Fλ
B (r)) absorbing contraction coefficients of basis functions (Eq. (35)) is modified as:

Fλ
A(r) = ∑

i
ci Ni · e−αAi |CA|2−kAir2+kAirKλ(kAir). (42)

One can readily show that the exponential parameter in (42) is always negative at large 226

values of r, and thus the whole integrand function tends to zero at r → +∞. 227

The flowchart of the algorithm used to evaluate type 2 integrals (Eq. (32)) is shown on
Fig. 3. The first approximation to radial integrals is obtained using the grid with nr = 31
points. Then the arrays containing values of the rNUl(r) and Fλ(r) functions at grid points
with corresponding quadrature weights wi are pre-tabulated. Radial integrals TN

λ1λ2
are

assembled from these arrays using the formula

TN
λ1λ2

≈
nr

∑
i=1

rN
i ∆Ul(ri) Fλ1

A (ri)Fλ2
B (ri)wi (43)
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for N ≤ LA + LB, λ1 ≤ LA + l, λ2 ≤ LB + l and packed into the three-dimensional array 228

for further use in Eq. (32). Then the grid is expanded and the next approximation to the set 229

of radial integrals is calculated using the relation (41). 230

It also seems advantageous to carry out a prescreening of radial integrals before their 231

exact evaluation. Different screening schemes were proposed in the literature [80–83]. In 232

the present work we have employed the quite accurate scheme proposed by Shaw and 233

coworkers [82]. 234

For the fast and stable evaluation of the Bessel function values, the computational 235

scheme from [77] was adopted 2. The implementation of the scaled modified spherical 236

Bessel function from the GSL library [84] was used to pre-tabulate reference values of Kλ(x) 237

and its first four derivatives further used in the Taylor expansion. 238

2.4. Integrals over the effective spin-orbit interaction operator 239

The third term in the expression (6) representing the effective spin-orbit operator is
quite similar to the second one. Thus one can expect that the evaluation of corresponding
molecular integrals should be only slightly more difficult than for the semilocal scalar term.
Employing the relation s = 1

2 σ we find that one should calculate integrals which include
Cartesian components of the orbital momentum operator l = {lx, ly, lz}:

⟨ϕA|USO
l (r)Pl lη |ϕB⟩ , η = x, y, z. (44)

and then combine these integrals with the Pauli matrices to construct the final molecular
Hamiltonian matrix (a comprehensive discussion can be found in [15]). Integrals (44)
are sometimes referred to as the type 3 integrals [40]. Using the idempotence property
P2

l = Pl , the fact that Pl commutes with the angular momentum operator l, and the explicit
expression for Pl , one obtain the general relation for the integrals (44):

⟨ϕA|USO
l (r)Pll|ϕB⟩ =

∞∫
0

∑
m
⟨ϕA|Slm⟩Ω USO

l (r) ⟨Slm|l|Slm′⟩∑
m′

⟨ϕB|Slm′⟩Ω′ r2dr. (45)

Following the logic of the McMurchie-Davidson approach (see Sect. 2.3), one arrives at the
expression generally reproducing Eq. (32) for type 2 integrals except for the angular part,
which is transformed in the following way:

+l

∑
m=−l

Ωabc
λ1lm(k̂A) Ωde f

λ2lm(k̂B) ⇒
+l

∑
m=−l

+l

∑
m′=−l

Ωabc
λ1lm(k̂A) ⟨Slm|l|Slm′⟩ Ωde f

λ2lm′(k̂B) (46)

This formula seems to be more obvious and suitable for further programming than the
expression for SO integrals given in [40]. The angular momentum operator matrix elements
⟨Slm|l|Slm′⟩ in the basis of real spherical harmonics can be readily evaluated using simple
textbook formulas. In the actual implementation we construct the l matrices in the basis
of complex spherical harmonics Ylm and then transform it to the basis of Slm using the
relations [71]:

Slm =


i√
2

(
Ylm − (−1)|m|Yl,−m

)
m < 0,

Yl0 m = 0,
1√
2
(Yl,−m + (−1)mYl,m) m > 0.

(47)

2 Note that there is a misprint in [77] in Eq. (45). The correct recurrence relation for the (n+ 1)-th order derivative
of the Kλ(x) function is:

K(n+1)
λ (x) =

λ

2λ + 1
K(n)

λ−1(x) +
λ + 1

2λ + 1
K(n)

λ+1(x)− K(n)
λ (x).
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Matrix elements ⟨Slm|lη |Slm′⟩ are real for the ly operator and imaginary for the lx and lz 240

operators. However, the final SO integrals are purely imaginary for all three Cartesian 241

components x, y, z, since in (6) the real integral over the ly-component is multiplied by the 242

σy Pauli matrix which is imaginary. 243

2.5. Integrals over non-local terms of GRPP 244

The radial non-locality of the last two terms of (6) is due to the presence of projectors
onto the outercore shells Pnc l j. It is clear from Eqs. (7) and (8) that the integrals over these
last terms should be assembled from the integrals over the auxiliary non-local operator
V̂nc l j:

⟨ϕA|V̂nc l j|ϕB⟩ and ⟨ϕA|V̂nc l jPl l|ϕB⟩ (48)

Substituting the definition of V̂nc l j (Eq. (9)) into (48) and taking into the consideration that 245

projectors Pnc l j do not commute with the Unlj(r) potentials, we formally arrive at six new 246

types of integrals. However, they can be reduced to integrals over a local operator (type 1 247

integrals) discussed above in Sect. 2.2. The reduction is possible due to the fact that Pnc l j, Pl , 248

and orbital angular momentum operator l commute with each other; at the same time, Pl 249

and l commute with the partial (local) potential U(r). Furthermore, we have an obvious 250

relation Pnc l jPl = Pnc l j. Outercore pseudospinors ϕ̃nc l j used to construct the Pnc l j projectors 251

are given simply by Gaussian expansions, therefore the evaluation of overlap integrals 252

⟨ϕA|ϕ̃nc l j⟩ and ⟨ϕ̃nc l j|ϕB⟩ presents no problem (in the LIBGRPP library the Obara-Saika 253

algorithm [85] is used for fast analytical evaluation of these overlap integrals). The final 254

expressions for the non-local terms constituting scalar-relativistic integrals in (48) are: 255

⟨ϕA|
(

Unc l j − Unv l j

)
Pnc l jPl |ϕB⟩ =

+l

∑
m=−l

⟨ϕA|Unc l j − Unv l j|ϕ̃nc l jm⟩︸ ︷︷ ︸
type 1 integral

⟨ϕ̃nc l jm|ϕB⟩ , (49)

⟨ϕA|Pnc l j

(
Unc l j − Unv l j

)
Pl |ϕB⟩ =

+l

∑
m=−l

⟨ϕA|ϕ̃nc l jm⟩ ⟨ϕ̃nc l jm|Unc l j − Unv l j|ϕB⟩︸ ︷︷ ︸
type 1 integral

, (50)

⟨ϕA|Pnc l j

(Unc l j + Un′
c l j

2
− Unv l j

)
Pn′

c l jPl |ϕB⟩ =
+l

∑
m=−l

⟨ϕA|ϕ̃nc l jm⟩ ⟨ϕ̃nc l jm|
Unc l j + Un′

c l j

2
− Unv l j|ϕ̃n′

c l jm⟩︸ ︷︷ ︸
purely radial integral

⟨ϕ̃n′
c l jm|ϕB⟩ , (51)

(52)

and for the spin-orbit part: 256

⟨ϕA|
(

Unc l j − Unv l j

)
Pnc l jPll|ϕB⟩ =

+l

∑
m=−l

⟨ϕA|Unc l j − Unv l j|ϕ̃nc l jm⟩︸ ︷︷ ︸
type 1 integral

+l

∑
m′=−l

⟨Slm|l|Slm′⟩ ⟨ϕ̃nc l jm′ |ϕB⟩ , (53)

⟨ϕA|Pnc l j

(
Unc l j − Unv l j

)
Pll|ϕB⟩ =

+l

∑
m=−l

⟨ϕA|ϕ̃nc l jm⟩
+l

∑
m′=−l

⟨Slm|l|Slm′⟩ ⟨ϕ̃nc l jm′ |Unc l j − Unv l j|ϕB⟩︸ ︷︷ ︸
type 1 integral

, (54)

⟨ϕA|Pnc l j

(Unc l j + Un′
c l j

2
− Unv l j

)
Pn′

c l jPll|ϕB⟩ =
+l

∑
m=−l

⟨ϕA|ϕ̃nc l jm⟩ ⟨ϕ̃nc l jm|
Unc l j + Un′

c l j

2
− Unv l j|ϕ̃n′

c l jm⟩︸ ︷︷ ︸
purely radial integral

×

×
+l

∑
m′=−l

⟨Slm|l|Slm′⟩ ⟨ϕ̃n′
c l jm|ϕB⟩ . (55)

The integral arising in the r.h.s. of formulas (51) and (55) is purely radial: 257
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⟨ϕ̃nc l jm|
Unc l j + Un′

c l j

2
− Unv l j|ϕ̃n′

c l jm⟩ =
+∞∫
0

(Unc l j + Un′
c l j

2
− Unv l j

)
Rnc l j(r) Rn′

c l j(r) r2dr, (56)

where Rnc l j(r) stand for radial parts of subvalence (outercore) atomic pseudospinors ϕ̃nc l jm 258

expressed as linear combinations of Gaussians. This integral is obviously independent 259

on m and can be taken out of the summation, leaving only the multiplication of overlap 260

matrices in (51) or two consecutive multiplications involving overlap and angular mo- 261

mentum operator matrices in (55). Note that in the reference implementation of GRPP 262

integrals (MOLGEP package) matrix elements (51) and (55) which are off-diagonal in the nc 263

quantum number are omitted. However, they can be of the same magnitude as the diagonal 264

elements (for example, this occurs for the uranium GRPP from [70]). Integrals (56) are 265

evaluated analytically (see Appendix C). Gaussian expansions of radial functions Rnc l j(r) 266

are obtained only once at the GRPP generation stage and are listed in GRPP data files 267

published online [58,70]. 268

Similarly to local and semilocal terms of GRPP, all integrals over non-local terms are 269

also calculated in batches for all pairs of Cartesian Gaussians in a shell pair simultaneously. 270

In practice integration of non-local terms is even faster than the integration of the “conven- 271

tional” semilocal RPP operator due to the use of type 1 integrals in all working formulas. 272

These formulas are pretty simple and can be readily coded in any other quantum chem- 273

istry software provided that the code for evaluation of scalar-relativistic pseudopotential 274

integrals is available. 275

3. The LIBGRPP library 276

Subroutines for evaluating molecular integrals of the generalized relativistic pseu- 277

dopotential operator over contracted Gaussian functions based on the algorithms described 278

in Sections 2.2–2.5 were implemented and collected into a library named LIBGRPP. We 279

used earlier implementations of RPP integrals to check the validity of the developed codes, 280

namely, the RECP module of the DIRAC software [16,66] (semilocal RPP integrals) and 281

the MOLGEP program [64] (generalized RPP, but without cross-terms between shells with 282

different nc quantum numbers in Eq. (6)). The general structure of the LIBGRPP library is 283

presented on Fig. 4. The LIBGRPP library is written from scratch in the C99 programming 284

language, but the Fortran 90 interface is provided to simplify access to its subroutines from 285

projects written in Fortran. Moreover, two sample programs in C99 and Fortran 90 demon- 286

strating invocation of LIBGRPP subroutines are included into the LIBGRPP distributive. 287

Some subroutines from the open-source GNU Scientific Library (GSL) [84] are employed 288

to calculate values of scaled modified spherical Bessel functions Kλ(x), the Dawson func- 289

tion D+(x) and the incomplete gamma function Γ(n, x). GSL is distributed together with 290

LIBGRPP and thus does not introduce any new external dependencies complicating the 291

building of the library. 292

The C interface to the integration routines provides tools for the evaluation of integrals 293

between pairs of shells. A shell with angular momentum l contains (l+1)(l+2)
2 Cartesian 294

basis functions; an order of Cartesian components within a particular shell can be selected 295

by the user, the order adopted in DIRAC is implied by default. Shells are represented by C 296

structures of the libgrpp_shell_t type (see Fig. 5a). Each shell is attached to some point 297

in space, normally coinciding with the atom to which this batch of basis functions belongs. 298

Quite a similar data structure libgrpp_potential_t is provided to represent components 299

of a pseudopotential (see Fig. 5b). LIBGRPP also contains “constructor” and “destructor” 300

routines to simplify respectively construction and deallocation of objects of these two basic 301

data types. All data structures and subroutines of LIBGRPP start with the libgrpp_ prefix. 302

After the objects representing atom-centered shells of basis functions and a pseudopotential 303

operator have been created, integrals for a given shell pair are to be calculated. For this 304

purpose special subroutines representing different terms in Eq. (6) are provided. Resulting 305
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C interface
libgrpp.h

implementation
core of the library:

high-level routines: AREP, SO, nonlocal integrals
McMurchie-Davidson scheme for type 1 integrals

radial and angular (type 2) integrals
overlap integrals
radial quadrature

GNU Scientific Library
high-performance implementation

of scaled modified spherical
Bessel functions

Fortran interface
libgrpp.f90

sample programs
in C and Fortran:

test_libgrpp_c
test_libgrpp_f90

tests

Figure 4. The general structure of the LIBGRPP library.

Figure 5. (a) Data structure representing a shell of contracted Gaussian basis functions. The cart_list
field contains a pointer to an array in which all possible Cartesian combinations with the given angular
momentum L are stored. (b) Data structure representing the component Unlj(r) of the GRPP operator.
The field J is not used for local and semilocal terms of GRPP; L is not used for local terms.

integrals between Cartesian components are packed into a one-dimensional array, which is 306

assumed to be pre-allocated (see Fig. 6). 307

The newly developed LIBGRPP library was interfaced into the DIRAC19 program 308

package [86]. 309

4. Pilot applications 310

Pilot applications reported in this Section were designed to compare the accuracy of 311

the GRPP approach with its semilocal counterpart and all-electron relativistic calculations. 312

The analysis of the accuracy of GRPPs in atomic calculations accounting for electronic 313

correlation was carried out in [59,69,87,88] (and references therein). Some molecular ap- 314

plications were also reported previously, e. g. relativistic coupled cluster calculations of 315

the HgH, HgH+ [60], TlF [89], TlF− [90], PbO [91], HI+ [92], CnH, CnH+ [93], Yb2[94], 316

Ca2 [95], RaO [96], and RaF [97] molecules, but no applications to molecular electronic 317

transitions involving f electrons were described. Thus the benchmark calculations for such 318

molecules seem to be essential to shed light on the accuracy of the GRPP method supplied 319

with the high-level correlation treatment. Here we present the results of such benchmarks 320

for the two actinide molecules, ThO and UO2. 321

The direct comparison of the results of calculations employing RPPs and the all- 322

electron Dirac-Coulomb-Gaunt model as implemented in the DIRAC program suite [6,16, 323
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matrix:(a) (b)

Figure 6. (a) Declaration of the LIBGRPP subroutine designed to evaluate type 1 integrals (over the
local part of RPP). Other LIBGRPP subroutines have essentially the same interface. Matrix elements
between primitive Gaussians with different Cartesian parts are packed into a one-dimensional array
matrix of type double (linear indices of each matrix element are given inside the cells). (b) The array
of calculated RPP matrix elements exemplified for the case of the d- f shell pair.

86] offers the possibility to separate the errors arising from the pseudopotential approxi- 324

mation per se. Two variants of GRPP for thorium and uranium, both replacing the inner 325

core shells with principal quantum numbers n ≤ 3, were constructed. The first one which 326

we shall denote GRPP/Gaunt was generated using the reference atomic data obtained 327

within the four-component Dirac-Coulomb-Gaunt approximation and Gaussian nuclear 328

charge distribution (to be fully consistent with the electronic structure model available in 329

DIRAC). The second variant accounts for the full zero-frequency Breit interactions and 330

one-loop QED effects within the model Lamb shift operator approximation [18,68]; it also 331

assumes the Fermi approximation for nuclear charge distribution. The detailed scheme of 332

generating the latter GRPPs which will be further denoted as GRPP/QED is described in 333

Ref. [28]. 334

All coupled cluster calculations reported below were carried out within the EXP-T 335

program package [98–100]. Molecular integrals over the GRPP operators were calculated 336

using the LIBGRPP library interfaced to the DIRAC19 program package [16,86]. Solution 337

of a relativistic SCF problem and further transformation of molecular integrals were also 338

performed using DIRAC19. 339

4.1. Electronic states of the ThO molecule 340

The vertical excitation spectrum of the ThO molecule was calculated at the experi- 341

mental ground-state internuclear separation, Re = 1.840 Å [101], using the intermediate- 342

Hamiltonian Fock space relativistic coupled cluster method (IH-FS-RCC) [28] within the 343

singles-and-doubles approximation (CCSD) to solve the many-electron problem. All elec- 344

trons except for those of Th shells with n ≤ 4 and 1s-shell of O were correlated. The 345

vacuum state and one-electron spinors were defined by the solutions of the Hartree-Fock 346

problem for the ground state of the closed-shell ThO2+ ion whereas the target states of 347

the neutral ThO molecule were treated within the two-particle (0h2p) Fock space sector. 348

All-electron Dirac-Coulomb and Dirac-Coulomb-Gaunt calculations were performed using 349

the non-contracted s, p, d and f components of Dyall’s thorium quadruple-zeta basis [102] 350

augmented with a single f -function manifold (exponential parameter 0.050404710) and 351

(7g6h5i)/[5g4h3i] scalar-relativistic averaged atomic natural orbitals (see Supplementary 352

Materials). For the oxygen atom, a relativistic recontraction [103] of the aug-cc-pVQZ basis 353

sets [104,105] was employed. The GRPP-adapted equivalent of the all-electron Th basis set 354

was obtained by rejecting the most compact and reoptimizing several largest exponential 355

parameters of the remainder spd f functions, keeping untouched high-angular-momentum 356

components (all parameters are provided in Supplementary Materials); the same basis for 357

oxygen was used along with the empty-core GRPP [61] for this atom. The complete model 358

space at the FS-RCC stage was defined by 24 Kramers pairs of lowest-energy virtual spinors 359

of ThO2+; the incomplete main model space [28] for the (0h2p) sector was spanned by all 360
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Figure 7. Top: Deviations of IH-FS-RCC vertical excitation energies (Tv) in ThO computed within
the GRPP/Gaunt model and its semilocal “valence” component (v-RPP) from their counterparts
obtained with all-electron Dirac-Coulomb-Gaunt Hamiltonian, Tv(AE DCG). Bottom: contributions
of Gaunt interactions (∆(Gaunt)) and retardation plus QED effects (∆(R+QED)) to Tv.

distributions of two active electrons among 6 lowest-energy pairs (roughly corresponding 361

to 7s and 6d atomic spinors of Th) and all determinants with orbital energy sums in the 362

same range. The algorithm defining the intermediate-state shift parameters was described 363

in detail previously for the Ra atom and Tl+, Lu+ atomic ions in Ref. [28]. For 31 lowest- 364

energy eigenvectors of the intermediate Hamiltonian (excitation energies up to ca. 25000 365

cm−1) the fractions within the main model space exceed 95 %, indicating the adequacy of 366

the chosen intermediate-Hamiltonian scheme for the corresponding electronic states. 367

The resulting vertical excitation energies Tv evaluated with different relativistic Hamil- 368

tonians are compared in Fig. 7. The deviation of Tv values obtained with GRPP/Gaunt 369

from the corresponding results of all-electron calculations with Dirac-Coulomb-Gaunt 370

Hamiltonian employing the X2C MMF transformation [6] (Tv(AE DCG)) are always less 371

than 50 cm−1 (rms deviation 29 cm−1). This deviation is significantly smaller than the 372

contribution of retardation and QED effects to excitation energies (∆(R+QED)) estimated 373

as the difference between the results of calculations with GRPP/QED and GRPP/Gaunt 374

(104 – 212 cm−1; note that the contribution arising from the use of different finite nuclear 375

models in GRPP/QED and GRPP/Gaunt is negligibly small, less than one wavenumber). 376

It is thus clear that the use of the tiny-core GRPP/QED approach should be preferred to the 377

all-electron Dirac-Coulomb-Gaunt model not only because of significant computational 378

savings but also for reasons of accuracy. As follows from the magnitudes of contribu- 379

tions from Gaunt interactions (Fig. 7, bottom), one can make an even stronger statement 380

concerning the reliability of the GRPP/QED model versus the Dirac-Coulomb one. The 381

replacement of the full GRPP/Gaunt by its valence semilocal component (v-RPP) leads to a 382

significant deterioration of results (the deviation of v-RPP/G excitation energies from their 383

all-electron counterparts can exceed 300 cm−1), so that the incorporation of interactions 384

beyond the Dirac-Coulomb-Gaunt approximations into semilocal pseudopotentials hardly 385

seems reasonable, except for the cases of s and p block elements. 386

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 December 2022                   doi:10.20944/preprints202212.0530.v1

https://doi.org/10.20944/preprints202212.0530.v1


-2
0

0
0

2
0

0

d
e

v
ia

ti
o

n
, 

c
m

-1
 

GRPP
v-RPP

0 5000 10000 15000 20000 25000 30000

T
v 
(AE DCG), cm

-1 

-4
0

0
-2

0
0

0
2

0
0

4
0

0
6

0
0

∆
, 

c
m

-1
 

∆(Gaunt)

∆(R+QED)

Figure 8. Top: Deviations of IH-FS-RCC vertical excitation energies (Tv) in UO2 computed within
the GRPP/Gaunt model and its semilocal “valence” component (v-RPP) from their counterparts
obtained with all-electron Dirac-Coulomb-Gaunt Hamiltonian, Tv(AE DCG). Bottom: contributions
of Gaunt interactions (∆(Gaunt)) and retardation plus QED effects (∆(R+QED)) to Tv.
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4.2. Electronic states of the UO2 molecule 387

The UO2 molecule is an example of a heavy polyatomic molecule with a quite diverse 388

set of electronic states. It was extensively studied both theoretically and experimentally in 389

the last two decades (see [106–110] and references therein). 390

In the present work, the vertical excitation spectrum of UO2 was calculated for the 391

linear geometry and at the experimental ground-state internuclear separation Re(U − O) = 392

1.790 Å [110]. Low-lying electronic states of UO2 can be accessed in the (0h2p) Fock space 393

sector. The IH-FS-RCCSD method with single and double excitations was used [28]. The 394

complete model space was defined by 24 Kramers pairs of lowest-energy virtual spinors 395

of the closed-shell UO2+
2 ion. The thorough analysis [107] of the composition of electronic 396

states below 30000 cm−1 shows that all these states can be obtained within the incomplete 397

main model space intermediate-Hamiltonian technique. For this purpose, we split the 398

manifold of virtual active spinors of UO2+
2 into three groups (the notation is adopted 399

from [107], see this paper for the detailed picture of one-electron states): (a) 7sσ
1/2g, 5 f ϕ

5/2u, 400

6dδ
3/2g, 5 f δ

3/2u, 6dδ
5/2g, 5 f ϕ

7/2u, 5 f δ
5/2u spinors; (b) 5 f π

1/2u, 5 f π
3/2u, 7pπ

1/2u, 7pπ
3/2u, 6dπ

1/2g, 6dπ
3/2g, 401

5 f σ
1/2u, 7pσ

1/2u spinors; (c) the remaining set of virtual active spinors used as buffer ones. 402

Wavefunctions of target states are dominated either by determinants with two electrons 403

distributed over spinors from the first group or by determinants with one electron on the 404

first group spinor and the other electron on the second group spinor. The adequacy of 405

the chosen IH model is confirmed by the fact that for 79 electronic states below 30000 406

cm−1 fractions of main model space determinants exceed 94%. All-electron Dirac-Coulomb 407

and Dirac-Coulomb-Gaunt calculations were performed within the exact two-component 408

molecular mean field (X2C MMF) approximation [6]. The basis set for U was derived 409

from the exponents from the Dyall’s quadruple-zeta basis set [102] for the s, p, d, and f 410

functions and then augmented with (7g6h4i)/[5g4h3i] scalar-relativistic atomic natural 411

orbitals (see Supplementary Materials). For the pseudopotential calculations, the most 412

compact primitive Gaussian functions were rejected, keeping untouched high-angular- 413

momentum (g, h, i) functions. For the O atom, the aug-cc-pVQZ-DK basis set [103] was 414

used in both all-electron and RPP calculations; in the latter case, the empty-core (no core 415

electrons) pseudopotential of Mosyagin et al [61] was also used. Shells of U with the 416

principal quantum number n ≤ 4 as well as the 1s shell of O were frozen at the IH-FS-RCC 417

stage. 418

The resulting vertical excitation energies evaluated with different relativistic Hamil- 419

tonians are compared in Fig. 8. The patterns are pretty similar to those obtained for the 420

ThO molecule (Sect. 4.1). The deviation of GRPP/Gaunt excitation energies from the refer- 421

ence DCG values does not exceed 110 cm−1 (rms deviation 51 cm−1, mean absolute error 422

45 cm−1). This is larger, than for ThO, but is fully consistent with estimates at the SCF 423

level. One can see from Table S2 in the Supplementary materials that the GRPP errors 424

are naturally arranged according to the changes in the occupation number of the 5 f shell. 425

Thus, these errors are of the order of +50 cm−1 for the transitions with the decrease of this 426

occupation number by one (and the rough proportionality holds for the other transitions), 427

whereas they are within 10 cm−1 for the transitions without the change in this occupation 428

number. Similarly to the case of ThO, the error introduced by the GRPP approximation is 429

smaller than the contribution of retardation and QED effects (up to 140 cm−1). It is worth 430

noting that the ∆(R+QED) contribution strongly depends on the fraction of configurations 431

involving the 7sσ
1/2g spinor (∼ +120 cm−1 per one electron). In particular, the dropdown 432

value of ∆(R+QED)= +102 cm−1 corresponds to the (2)0g state dominated by the (7sσ
1/2g)

2
433

configuration. It should be emphasized that Gaunt contributions to the excitation energies 434

considered (reaching 767 cm−1, rms deviation 316 cm−1) exceed the GRPP error by an order 435

of magnitude (Fig. 8, bottom). This clearly indicates that the use of the four-component 436

Dirac-Coulomb approximation does not make sense for this system and should not be 437

preferred over the tiny-core pseudopotential approach. Note that even for the conventional 438
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semilocal (valence) RPP maximal deviation is twice smaller (345 cm−1) than for the DC 439

Hamiltonian. 440

5. Conclusion and prospects 441

The version of the LIBGRPP library presented in the paper provides universal tools for 442

the evaluation of all types of molecular integrals arising within the generalized relativistic 443

pseudopotential (GRPP) model. 444

The numerical scheme for integrals over the local term of the pseudopotential based on 445

the one-center re-expansion of basis functions is not recommended due to severe numerical 446

instabilities arising for large values of exponential parameters in Gaussian basis functions. 447

This problem can be overcome by switching to other computational scheme based on 448

numerically stable recurrence relations analogous to the McMurchie-Davidson relations for 449

nuclear attraction integrals. 450

It should be pointed out that the semi-numerical scheme used in the present work 451

to evaluate integrals with projectors after some modifications can be used to calculate 452

molecular integrals over any arbitrary atom-centered potential. An important example 453

of such an operator is the electrostatic potential generated by some finite nuclear charge 454

distribution, e.g. the Fermi distribution [111,112], which is not currently available for 455

molecular calculations due to the absence of corresponding nuclear attraction integrals 456

in electronic structure packages. Such a feature will be demanded in the framework of 457

four-component relativistic calculations on superheavy element compounds. The other 458

example of such a non-local potential is the model Lamb shift operator [18,68]. 459

Pilot applications of the developed LIBGRPP library in conjunction with the relativistic 460

coupled cluster theory to electronic transitions in the ThO and UO2 molecules clearly 461

demonstrate that the rather economical tiny-core pseudopotential model can exceed in 462

accuracy relativistic all-electron models defined by Dirac-Coulomb and Dirac-Coulomb- 463

Gaunt Hamiltonians, especially for the f -block elements. Generalized pseudopotentials 464

also provide an attractive opportunity to include QED and Breit effects into the relativistic 465

electronic structure model completely at no cost. Further experiences with the GRPP 466

model are desirable to elucidate its capabilities in molecular problems and its scope of 467

applicability. There could be some possible future developments that are expected to 468

improve the code of the library and extend the scope of its applicability. In particular, the 469

use of more efficient radial quadratures and more robust schemes for pre-screening of 470

radial integrals (like that developed in [80,81]) appears to be the most promising direction 471

for further developments. It also seems reasonable to provide the Python interface to 472

LIBGRPP routines to increase interoperability with modern electronic structure packages 473

like PySCF [113]. The other possible direction of future work on will address further 474

integration with solid-matter quantum chemistry codes in order to explore the power of 475

the generalized relativistic pseudopotential model not only in atomic and molecular but 476

also in solid state problems [114–116]. We finally note that the computational scheme of 477

evaluation of integrals over GRPP-specific non-local terms presented in the paper does not 478

actually introduce any fundamentally new types of RPP integrals. Thus it can be readily 479

implemented within any existing code for pseudopotential integration (given that the code 480

for overlap integrals is naturally presented in almost every quantum chemistry package). 481

This paves the way to routine calculations with one of the most comprehensive relativistic 482

Hamiltonians at the moment, completely bypassing any complicated four-component 483

484

485

calculations.

Supplementary Materials: The following supporting information can be downloaded online. 
Table S1: Excitation energies derived from all- 486

electron numerical SCF calculations for the states averaged over nonrelativistic configurations of the 487

Th+ cation with DCB Hamiltonian and accounting for the finite nuclear size and QED effects; Table 488

S2: SCF excitation energies for the U2+ cation; Table S3: Basis set for Th (adapted for all-electron 489

calculations); Table S4: Basis set for Th (adapted for GRPP calculations); Table S5: Basis set for U 490

(adapted for all-electron calculations); Table S6: Basis set for U (adapted for GRPP calculations). 491

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 December 2022                   doi:10.20944/preprints202212.0530.v1

https://www.mdpi.com/article/10.3390/sym1010000/s1
https://doi.org/10.20944/preprints202212.0530.v1


Author Contributions: Conceptualization, A.O., A.Z., N.M. and A.T.; methodology, A.O., N.M. and 492

A.T.; software, A.O.; validation, A.O. and A.Z.; formal analysis, A.O., A.Z. and A.T.; investigation, 493

A.O., A.Z., N.M. and A.T.; resources, A.T. and E.E.; data curation, A.O. and N.M.; writing—original 494

draft preparation, A.O., A.Z. and N.M.; writing—review and editing, A.O, A.Z., N.M., A.T., A.P. 495

and E.E.; visualization, A.O. and A.Z. supervision, A.T., A.P. and E.E.; project administration, A.T. 496

and E.E.; funding acquisition, A.T. All authors have read and agreed to the published version of the 497

manuscript. 498

Funding: The work of A.O., A.Z., and A.T. at NRC “Kurchatov Institute” – PNPI was supported 499

by the Russian Science Foundation (Grant No. 20-13-00225). The tiny core GRPP generation for Th 500

and U was performed by N.S.M. at NRC “Kurchatov Institute” - PNPI. The contribution of EE was 501

partially financed by the Ministry of Science and Higher Education of the Russian Federation within 502

Grant No. 075-10-2020-117. 503

Data Availability Statement: The source code of the LIBGRPP library developed in the present work 504

will be publicly available on GitHub (https://github.com/aoleynichenko) after the publication of 505

the article. Generalized relativistic pseudopotentials for O, Th and U used in pilot applications are 506

publicly available at http://www.qchem.pnpi.spb.ru/recp. 507

Acknowledgments: We are grateful to I. V. Abarenkov, L. N. Labzowsky, Y. V. Lomachuk, A. Panin 508

and L. V. Skripnikov for useful discussions. Calculations have been carried out using computing 509

resources of the federal collective usage center Complex for Simulation and Data Processing for 510

Mega-science Facilities at National Research Centre “Kurchatov Institute”, http://ckp.nrcki.ru/. 511

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design 512

of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or 513

in the decision to publish the results. 514

Abbreviations 515

The following abbreviations are used in this manuscript: 516

517

FS-RCCSD Fock space relativistic coupled cluster method with single and double excitations
GRPP Generalized relativistic pseudopotential
IH Intermediate Hamiltonian
QED Quantum electrodynamics
SO Spin-orbit
v-RPP valence (semilocal) part of GRPP

518

Appendix A Analytic gradients of GRPP integrals 519

To investigate potential energy surfaces of large objects composed of several dozens of 520

atoms, including cluster model of defects in solids [114–116], one has to apply techniques 521

based on analytic rather than numerical evaluation of energy derivatives with respect to 522

nuclear coordinates, e. g. gradients and Hessians. Thus the recipe for differentiating GRPP 523

integrals analytically is highly desirable. 524

Despite the GRPP operator (6) is more complicated than its semilocal counterpart, all 525

one-electron integrals are still three-center ones. The approach to analytic differentiation of 526

such integrals based on the translational invariance of AO integrals is well-known since 527

1970s [117] and was successfully applied to calculate gradients and Hessians of scalar- 528

relativistic PP integrals [80,118–122]. The most comprehensive discussion can be found 529

in [120]. 530

Without any loss of generality consider the scalar-relativistic part of GRPP (6) (all
expressions for gradients of spin-orbit integrals are completely the same). We differentiate
the integral

IACB = ⟨ϕA|ÛC|ϕB⟩ , (A1)

with respect to the coordinates of nuclei A and B on which the basis functions ϕA and ϕB
are centered, respectively, and with respect to the coordinates C of the nucleus at which the

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 December 2022                   doi:10.20944/preprints202212.0530.v1

https://github.com/aoleynichenko
http://www.qchem.pnpi.spb.ru/recp
https://doi.org/10.20944/preprints202212.0530.v1


GRPP operator Û is placed. Obviously, if one performs differentiation with respect to some
other point D, and one obtains zero since the integral doesn’t depend on D:

∂IACB
∂D

= 0, D ̸= A, B, C. (A2)

Differentiation with respect to the coordinates of the nuclei A and B presents no difficulties
since the derivative of the Gaussian function (Eq. (11)) is a linear combination of two other
Gaussians with lowered and raised total angular momentum:

∂ϕA
∂Ax

= −nAϕ
nA−1,l,m
A + ϕ

nA+1,l,m
A

ϕ
nA−1,l,m
A = ∑

i
ci Nix

nA−1
A ylA

A zmA
A e−αAi(r−A)2

ϕ
nA+1,l,m
A = ∑

i
(2αi)ci Nix

nA+1
A ylA

A zmA
A e−αAi(r−A)2

(A3)

(and the similar expressions for the y and z directions). Thus the ∂IACB
∂A and ∂IACB

∂B gradients
can be constructed for all GRPP integrals in the shell pair simultaneously using the relation:

∂IACB
∂Ax

= ⟨ ∂ϕA
∂Ax

|ÛC|ϕB⟩ = −nA ⟨ϕnA−1,l,m
A |ÛC|ϕB⟩+ ⟨ϕnA+1,l,m

A |ÛC|ϕB⟩ . (A4)

Note that numerical differentiation using the second-order symmetric difference quotient 531

formula will require evaluation of six GRPP integrals instead of two in (A4). Thus one can 532

argue that analytic differentiation of GRPP integrals is not only numerically stable, but also 533

much faster than the numerical one. 534

The challenging point is the differentiation with respect to the coordinates C at which
the GRPP operator is centered. The straightforward differentiation of GRPP will inevitably
lead to very cumbersome expressions, which is clearly an impractical way. Fortunately,
GRPP integrals possess the property of translational invariance, i. e. they don’t change
when shifting all the three centers A, B and C in the same direction. This means that

∂IACB
∂A

+
∂IACB

∂C
+

∂IACB
∂B

= 0, (A5)

and, hence, the gradient with respect to the center C can be expressed in terms of derivatives
of basis functions with respect to the other centers (A4):

∂IACB
∂C

= −∂IACB
∂A

− ∂IACB
∂B

. (A6)

If some centers coincide with each other, we have two-center IACA, IACC, ICCB and
one-center ICCC integrals. The derivatives of the latter integrals are always zero due to the
translational invariance. For the former we need to reformulate the relation (A5) as

∂IACA
∂A

+
∂IACA

∂C
= 0. (A7)
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Now the expressions for gradients for the remaining types of integrals are readily obtained:

∂IACA
∂A

= ⟨∂ϕA
∂A

|ÛC|ϕA⟩+ ⟨ϕA|ÛC|∂ϕA
∂A

⟩ , (A8)

∂IACA
∂C

= −∂IACA
∂A

, (A9)

∂IACC
∂A

= ⟨∂ϕA
∂A

|ÛC|ϕA⟩ (A10)

∂IACC
∂C

= −∂IACC
∂A

, (A11)

(and the analogous relation for ICCB). 535

Since no fundamentally new types of integrals emerge, the program implementation 536

of the described scheme presents no difficulty. The subroutines for calculation of gradients 537

of GRPP integrals are also included into the LIBGRPP library. Their correctness was 538

verified by comparison with results of numerical differentiation using the second-order 539

finite-difference formula. 540

The extension of the differentiation scheme described here to the case of second 541

derivatives of GRPP integrals is quite straightforward [119,121,122]. Note that the overall 542

angular momentum of Gaussians involved will raise by 2 according to the formula (A3) 543

(for example, evaluation of Hessians of a GRPP integral involving i-functions will require 544

integration of l-functions, and so on). However, this presents no problem for the LIBGRPP 545

library since it does not imply any restrictions on the maximum value of angular momentum 546

of basis functions. 547

Appendix B Obara-Saika recurrence relations for the local part of the GRPP operator 548

The McMurchie-Davidson-type recurrence relations for the integrals (14) were pre- 549

sented in Sect. 2.2. Here we present the Obara-Saika-type relations which also can be used 550

to evaluate integrals over the local part of the GRPP operator. 551

As it was mentioned previously in Sect. 2.2, integrals corresponding to the case of
n = 2 are actually three-center overlap ones, for which the Obara-Saika recurrence relations
can be obtained directly from the property of translational invariance [85]. Such an integral
is assembled from one-dimensional overlap integrals along the x, y, z-directions:

⟨χA|e−ζr2
C |χB⟩ = Sx

nAnB
Sy

lA lB
Sz

mAmB
, (A12)

Sx
nAnB

=

+∞∫
−∞

xnA
A xnB

B · e−αAx2
A e−αBx2

B e−ζx2
C dx (A13)

(the same for the y, z directions). These one-dimensional overlap integrals can be obtained
using the upward recurrence relations (for example, for the x direction):

Sx
i+1,j = XQASij +

1
2q
(
iSi−1,j + jSi,j−1

)
, (A14)

Sx
i,j+1 = XQBSij +

1
2q
(
iSi−1,j + jSi,j−1

)
, (A15)

(0 ≤ i ≤ nA, 0 ≤ j ≤ nB). The base of recursion is given by the expression:

S00 =

√
π

q
· Kx

ABC. (A16)
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If the power in the pseudopotential primitive is equal to 1, the integral will closely
resemble the integral over 1

rC
:

⟨χA|
e−ζr2

C

rC
|χB⟩

def
= Θ0

nAnB lA lBmAmB
. (A17)

The derivation of the Obara-Saika recurrence relations for the 1
rC

operator was discussed

in details in the monograph [71]. For the case of e−ζr2
C

rc
one should modify these relations

according to the considerations for the McMurchie-Davidson scheme (see Sect. 2.2):

ΘN
i+1,jklmn = XQAΘN

ijklmn +
1
2q

(
iΩN

i−1,jklmn + jΩN
i,j−1,klmn

)
− XQCΘN+1

ijklmn +
1
2q

(
iΩN+1

i−1,jklmn + jΩN+1
i,j−1,klmn

)
, (A18)

(and five analogous relations for the j,k,l,m,n indices).

ΘN
000000 =

2π

q
Kx

ABCKy
ABCKz

ABCFN(qR2
QC). (A19)

The remaining type of local terms of GRPP arise if n = 0:

⟨χA|
e−ζr2

C

r2
C

|χB⟩
def
= Ξ0

nAnB lA lBmAmB
. (A20)

To derive Obara-Saika-type recurrence relations one can follow step-by-step the scheme 552

described in details in [71] for nuclear-attraction integrals. It is based on results of the 553

McMurchie-Davidson scheme [73] rather than the translational invariance property. 554

We start from the definition of auxiliary integrals:

ΞN
ijklmn =

2π3/2
√

q
(2q)−N ∑

tuv
Eij

t Ekl
u Emn

v RN
tuv, (A21)

Obviously, for the base of recursion we have:

ΞN
000000 =

2π3/2
√

q
Kx

ABCKy
ABCKz

ABCGN(qR2
QC). (A22)

Let us increase the first index in (A21) by one, i → i + 1:

ΞN
i+1,jklmn =

2π3/2
√

q
(2q)−N ∑

tuv
Ei+1,j

t Ekl
u Emn

v RN
tuv. (A23)

Then we use the upward recurrence relation for the Ei+1,j
t coefficient (see Eq. 9.5.20 in [71]):

Ei+1,j
t = XQAEij

t +
1
2q

(iEi−1,j
t + jEi,j−1

t + Eij
t−1), (A24)

ΞN
i+1,jklmn = XQA ΞN

ijklmn +
1
2q

(i ΞN
i−1,jklmn + j ΞN

i,j−1,klmn)+
1
2q

2π3/2
√

q
(2q)−N ∑

tuv
Eij

t−1Ekl
u Emn

v RN
tuv.

(A25)
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By substitution t → t + 1, we obtain:

ΞN
i+1,jklmn = XQA ΞN

ijklmn +
1
2q

(i ΞN
i−1,jklmn + j ΞN

i,j−1,klmn)+
2π3/2
√

q
(2q)−N−1 ∑

tuv
Eij

t Ekl
u Emn

v RN
t+1,uv.

(A26)
Let us focus on the last term of this expression. We use the relation (28) to decrease the
index t in RN

t+1,uv:

2π3/2
√

q
(2q)−N−1 ∑

tuv
Eij

t Ekl
u Emn

v RN
t+1,uv =

=
2π3/2
√

q
(2q)−N−1 ∑

tuv
(tEij

t )Ekl
u Emn

v RN+1
t−1,uv + XQC

2π3/2
√

q
(2q)−N−1 ∑

tuv
Eij

t Ekl
u Emn

v RN+1
tuv

+
2π3/2
√

q
(2q)−N−1 ∑

tuv
(−2qt · Eij

t )Ekl
u Emn

v RN
t−1,uv − 2qXQC

2π3/2
√

q
(2q)−N−1 ∑

tuv
·Eij

t Ekl
u Emn

v RN
tuv.

(A27)

Each of these four terms can be further simplified. For the first and the third term one
should use the other recurrence relation for the Eij

t coefficient (see Eq. (9.5.14) in [71]):

2qtEij
t = iEi−1,j

t−1 + jEi,j−1
t−1 (t > 0). (A28)

Accounting for the obvious relation XQA − XQC = XCA one arrive at the desired recurrence
relation:

ΞN
i+1,jklmn = XCA ΞN

ijklmn + XQC ΞN+1
ijklmn +

1
2q

(i ΞN+1
i−1,jklmn + j ΞN+1

i,j−1,klmn). (A29)

(and five analogous relations for the j,k,l,m,n indices). It is interesting that this relation is 555

more simple that its counterpart (A18) for the operator e−ζr2
C

rC
. It is worth noting that this 556

result closely resembles the relation (3.5) reported in the recent PhD thesis of McKenzie [83]. 557

Appendix C Analytic evaluation of one-center RPP integrals 558

Working expressions (51) and (55) for integrals over non-local GRPP terms include
radial integrals of type (see Eq. (56)):

∆ncn′
c
=

+∞∫
0

(
Unc l j(r) + Un′

c l j(r)
2

− Unv l j(r)

)
Rnc l j(r) Rn′

c l j(r) r2dr, (A30)

where Rnc l j, Rn′
c l j are radial parts of atomic outercore pseudospinors with principal quan-

tum numbers nc, n′
c, respectively, and angular quantum numbers l and j. These radial

functions are represented by contracted radial Gaussians [71]:

Rnc l j(r) = ∑
i

ci Ni rle−αir2
, (A31)

Ni =
2(2αi)

3/4

π1/4

√
2l

(2l + 1)!!

(√
2αi

)l
. (A32)

Provided that pseudopotential multiplier in (A30) is represented by the functional form (10)
we arrive at the relation

∆ncn′
c
= ∑

ijk
cicj Ni Nj dk ·

+∞∫
0

r2l+nk e−(αi+αj+ζk)r2
dr. (A33)
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The latter integral is a generalization of the Gaussian integral and can be evaluated analyti-
cally using the well-known formula [123]:

+∞∫
0

rNe−ar2
dr =


(2k−1)!!
2k+1ak

√
π
a , N = 2k (even N),

k!
2ak+1 , N = 2k + 1 (odd N).

(A34)
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