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Abstract: Face detection is an important problem in computer vision because it enables a wide range of 
applications, such as facial recognition and analysis of human behavior. The problem is challenging 
because of the large variations in facial appearance across different individuals and different lighting and 
pose conditions. One way to detect faces is to utilize a highly advanced face detection method, such as 
RetinaFace, which uses deep learning techniques to achieve high accuracy in various datasets. However, 
even the best face detectors can produce false positives, which can lead to incorrect or unreliable results. 
In this paper, we propose a method for reducing false positives in face detection by using information 
from a depth map. A depth map is a two-dimensional representation of the distance of objects in an image 
from the camera. By using the depth information, the proposed method is able to better differentiate 
between true faces and false positives. The authors evaluate their method on a combined dataset of 549 
images, containing a total of 614 upright frontal faces. The results show that the proposed method is able 
to significantly reduce the number of false positives without sacrificing the overall detection rate. This 
indicates that the use of depth information can be a useful tool for improving face detection performance.  
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1. Introduction 

 
The development of face detection algorithms has been motivated by the need to automate the process 

of identifying and locating faces in digital images [1]–[3]. These algorithms have evolved over time, starting 
with knowledge-based methods that relied on human expertise to define the features of a face. These were 
followed by feature invariant approaches, which sought to identify faces based on their geometric 
characteristics, such as the relative positions of the eyes, nose, and mouth. To tackle the problem of face 
detection, researchers have developed a number of approaches based on both traditional computer vision 
techniques and more recent deep learning methods [4], [5]. Traditional techniques often rely on hand-
crafted features and ensembles of classifiers to detect faces in images. These methods are typically 
computationally efficient but can struggle with variations in face appearance and are sensitive to changes 
in illumination and pose. More recent approaches based on deep learning have shown great promise in 
overcoming these limitations. These methods use convolutional neural networks (CNNs) trained on large 
datasets of face images to learn highly discriminative features for face detection. CNNs have the advantage 
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of being able to automatically learn features from data, which can be more robust and generalizable than 
hand-crafted features. Additionally, CNNs can be trained using large-scale parallel computing, which 
allows for efficient training of very deep and complex models [14]. 

One of the most well-known face detection systems based on deep learning is the Single Shot Detector 
(SSD) [6], which uses a CNN to predict bounding boxes and class probabilities for faces in an image. SSDs 
are known for their high speed and real-time performance, making them well-suited for applications such 
as video surveillance and face tracking. Another popular approach to face detection is the Multi-task 
Cascade Convolutional Neural Network (MTCNN) [7], which uses a cascade of three CNNs to first identify 
potential face regions, then refine the bounding boxes and facial landmarks, and finally classify the detected 
faces. MTCNNs have been shown to achieve high accuracy on a range of face detection benchmarks. 

Overall, face detection remains a challenging problem due to the wide variations in face appearance 
and the need for real-time performance. However, the development of deep learning methods has greatly 
improved the state-of-the-art in face detection and has opened up new possibilities for applications that 
rely on the detection and analysis of faces. 

Template matching methods [5], on the other hand, use a pre-defined template of a face to search for 
matches in an image. These methods can be effective, but they are limited by the fact that the template must 
be carefully designed to account for variations in face appearance. Appearance-based methods, also known 
as holistic methods, have become increasingly popular in recent years. These methods use machine 
learning techniques to learn the characteristic features of a face from a large dataset of labeled images. 
Because these methods can learn to recognize faces automatically, they are not limited by the constraints 
of template matching approaches.  

The Viola-Jones algorithm (VJ) [8] is a popular and effective method for detecting objects in images. It 
was specifically designed for real-time object detection and achieved this using three key techniques: an 
integral image strategy for efficient Haar feature extraction [9], a boosting algorithm called AdaBoost for 
combining a set of weak classifiers, and an attentional cascade structure for fast negative rejection. 

One of the key advantages of the Viola-Jones algorithm is its efficiency, which allows it to run in real-
time on standard hardware. This is achieved through the use of Haar-like features, which are simple, 
rectangular shapes that can be calculated quickly and easily. The boosting algorithm is also effective at 
reducing false positives, which can be a common problem in object detection algorithms. 

However, there are also some limitations to the Viola-Jones algorithm. One of these is that it is not 
always effective in detecting objects in unconstrained environments, such as those found in the Face 
Detection Dataset and Benchmark (FDDB) [10], where it sometimes fails to detect faces [11]. This is because 
the Haar-like features used by the algorithm can struggle to handle variations in pose, lighting, facial 
expression, and other factors that can affect the appearance of a face.  

To overcome these limitations, several extensions and enhancements to the original Haar-like features 
have been proposed. These include rotated Haar-like features, which are designed to be more robust to 
rotation, and sparse features, which are designed to be more efficient to compute. Additionally, more 
powerful image descriptors, such as LBP [12] and HoG [13], have been developed and used as alternatives 
to Haar-like features in some object detection algorithms. 

The work of Li et al. at Intel Labs focused on improving the convergence speed of SURF cascade [14], 
a common technique used in face detection algorithms, by using multidimensional SURF features [15] and 
logistic regression instead of single-dimensional Haar features and decision trees. This approach was 
shown to be effective in improving the speed and accuracy of face detection algorithms. 

The work of Mathias et al. [16] also focused on improving the performance of face detection 
algorithms, but from a different angle. They proposed two simple approaches that were shown to 
outperform several commercial face detectors, including those from Google Picasa, Face.com, Intel 
Olaworks, and Face++. The first approach was based on rigid templates, similar to the VJ algorithm, and 
the second used a deformable part model (DPM), which is a more generalizable object detection approach 
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that combines latent variable estimation and clustering with multiple components and deformable parts to 
better handle intra-class variance. Both of these approaches showed promise in improving the performance 
of face detection algorithms. 2D face detectors are usually different in the techniques they use to detect 
faces in images. Nilsson et al. [17] use a method called Successive Mean Quantization Transform (SMQT) 
to extract features from the image, which they then apply to a classifier called a Split up Sparse Network 
of Winnows (SN). Asthana et al. [18] use a technique called face fitting, which involves modeling a face 
shape using a set of parameters that control a deformable model of the face. Markuš et al. [19] combine a 
modified version of the Viola-Jones (VJ) method with an algorithm for detecting salient facial landmarks. 
Liao et al. [11] propose a new feature called scale-invariant NPD, and also expand the VJ tree classifier to 
have a deeper quadratic tree structure. 

While older techniques, such as for instance combining boosting with Modified Census Transform 
(MCT) [28], were successful in improving face detection algorithms, more recent techniques have continued 
to advance the field. For example, convolutional neural networks (CNNs) have become increasingly 
popular for face detection and have shown impressive results in terms of accuracy and speed [20]–[23]. 
These networks are able to learn complex patterns in data and can be trained on large datasets, which has 
helped improve the performance of face detection algorithms. Additionally, techniques such as transfer 
learning, which involves using pre-trained CNNs on large datasets and fine-tuning them for specific tasks, 
have further improved the performance of face detection algorithms. In the context of 2D face detection, 
deep learning methods have been shown to be effective in detecting faces in images and videos. These 
methods, such as R-CNN [24] and Deep Dense Face Detector (DDFD) [21], use convolutional neural 
networks (CNNs) to extract features from images and then classify them using support vector machines 
(SVMs). These methods have the advantage of being able to handle a wide range of face orientations and 
sizes, without requiring pose or landmark annotations. They have been shown to outperform traditional 
face detection methods in terms of accuracy and speed. 

RetinaFace [25] is a face detection algorithm considered to be a state-of-the-art face detector because it 
is able to combine high-level and low-level semantic information in order to perform single-shot multi-
level face localization. This means that it is able to detect faces in a single stage, using a 5-level feature 
pyramid network (FPN) that allows it to process multiscale feature maps. This improves the detection 
speed of the algorithm, making it faster and more efficient than many other face detection algorithms. 

The use of 3D information in face detection can improve accuracy by providing additional cues about 
the shape and structure of the face, which can be used to differentiate it more effectively from other objects 
in the scene. Depth information can also help resolve occlusions, where part of the face may be obscured 
by another object, by allowing the algorithm to infer the shape of the face behind the occluder. 

There are several different 3D sensors and devices on the market that can be used for face detection, 
each with its own unique set of strengths and limitations. The Kinect [26], for example, is a popular choice 
due to its low cost and ease of use, but its performance is limited by the resolution of its depth map and the 
fact that it can only capture a single depth value per pixel. More advanced sensors, such as the MU-2 stereo 
imaging system [27] and the Minolta Vivid 910 range scanner [28], can provide higher resolution depth 
maps and more accurate depth measurements, but they are typically more expensive and more difficult to 
use. 

Overall, the use of 3D information in face detection can significantly improvement accuracy, but it also 
introduces additional challenges and complexities in terms of both hardware and software. As 3D sensing 
technology continues to advance and become more affordable, it is likely that we will see more widespread 
adoption of 3D face detection techniques in various of applications. 

The work of Shotton et al. [29] used pairwise pixel comparisons in depth images to classify body joints 
and parts for pose recognition. Mattheij et al. [30] compared square regions in a pairwise fashion for face 
detection. Jiang et al. [31] integrated texture and stereo disparity information to filter out locations unlikely 
to contain a face. Anisetti et al. [32] a located faces by applying a coarse detection method followed by a 
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technique based on a 3D morphable face model. Taigman et al. [3] found that combining a 3D model-based 
alignment with DeepFace, trained on the Labeled Faces in the Wild dataset [33], generalized well for 
detecting faces in an unconstrained environment. Nanni et al. [1] overcame the problem of increased false 
positives when combining different face detectors by applying different filtering steps based on 
information in the Kinetic depth map. 

The best performing system developed in this work is validated on a challenging dataset [1] that 
contains depth and 2D images, with contains 549 samples including 614 upright frontal faces. The filtering 
steps used in the system successfully decrease the number of false positives without significantly affecting 
the detection rate of Retina Face. The paper describes the face detection strategy in Section 2, presents the 
experiments in Section 3, and provides a summary and notes on future directions in Section 4. The code 
and dataset used in the paper are available on GitHub at https://github.com/LorisNanni. 

 

2. Materials and Methods 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. A general illustration of the proposed face detection approach. First, the input image 

undergoes a first round of detection RetinaFace (top). Second, segmentation is performed using the depth 
map of the image (bottom). Finally, the candidate faces undergo a filtering process to select regions with 
faces (right). 

 
The face detection system developed in this work is illustrated in Figure 1. First, face detection with 

the face detector RetinaFace is performed on the raw color images (see the top two boxes in Figure 1). 
RetinaFace selects many candidate regions that contain no faces. Second, the number of false positives is 
reduced by aligning the depth maps (see the bottom two boxes). Alignment is accomplished by calibrating 
the color and depth information, as explained in [34]. Briefly, the positions of the depth samples in 3D space 
are calculated using the intrinsic camera parameters of focal length and principal point of the depth camera. 
These intrinsic parameters, along with the extrinsic parameters of the camera pair system, are then 
projected onto 2D space. Next, color and depth values are associated with each sample, as described in 

Input image 

Depth map Depth map 
segmentation 

Face detection 
by RetinaFace 

Candidate faces 

Filtering steps 

Size, Flatness, 
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section 2.1. To reduce computation time, we apply this process only to those regions containing the 
candidate faces. Finally, these regions are filtered (see the box on the right of Figure 1) to remove false 
positives. The details of this last process are described in section 2.3. 
 

2.1. Depth map alignment and segmentation 

The raw color images and depth maps are segmented in tandem using a procedure similar to that 
described in [35], which involves transforming each sample into a six-dimensional vector and then 
clustering the point set using the Mean Shift algorithm [36]. One of the benefits of this algorithm is that it 
provides an excellent trade-off between segmentation accuracy and computational complexity. 

Transformation into a six-dimensional vector is accomplished as follows. Every sample in the Kinetic 
depth map is a 3D point: 𝑝𝑝𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁, with 𝑁𝑁 the number of points. As described in [34], the joint 
calibration of the depth and color cameras facilitates a reprojection of the depth samples over the 
corresponding pixels in the color image. In this way, each point can be associated with the 3D spatial 
coordinates (x, y, and z) of 𝑝𝑝𝑖𝑖  and the RGB color components. However, these two representations are not 
directly comparable because they lie in entirely different spaces, and all components must be comparable 
to extract multidimensional vectors for the Mean Shift clustering algorithm. Thus, a conversion must be 
performed so the color values lie in the CIELAB uniform color space. This space represents color in a 3D 
space with values representing lightness (L) ranging from black (0) to white (100), values (a) ranging from 
green (-) to red (+), and (b) from blue(-) to yellow (+). With this conversion, the Euclidean distance between 
the color vectors can now be used in the Mean Shift algorithm. 

The algorithm can be described more formally as follows. The color information of each scene point 
in the CIELAB color space, 𝑐𝑐, is defined as the 3D vector: 

𝑝𝑝𝑖𝑖𝑐𝑐 = �
L(𝑝𝑝𝑖𝑖)
a(𝑝𝑝𝑖𝑖)
b(𝑝𝑝𝑖𝑖)

� ,      𝑖𝑖 = 1, … ,𝑁𝑁. (1) 

 
The geometry, 𝑔𝑔, is defined by the 3D coordinates of each point as: 

𝑝𝑝𝑖𝑖
𝑔𝑔 = �

x(𝑝𝑝𝑖𝑖)
y(𝑝𝑝𝑖𝑖)
z(𝑝𝑝𝑖𝑖)

� ,      𝑖𝑖 = 1, … ,𝑁𝑁. (2) 

 
Because the scene segmentation algorithm must be insensitive to the relative scaling of the point-cloud 

geometry and the color distances and geometry must be consistent, all components of 𝑝𝑝𝑖𝑖
𝑔𝑔  are normalized 

with respect to the average of the standard deviations of the point coordinates in the three dimensions 𝜎𝜎𝑔𝑔 =
(𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑦𝑦 + 𝜎𝜎𝑧𝑧)/3, which results in the following vector: 

�
x�(𝑝𝑝𝑖𝑖)
y�(𝑝𝑝𝑖𝑖)
z�(𝑝𝑝𝑖𝑖)

� = 3
𝜎𝜎𝑥𝑥+𝜎𝜎𝑦𝑦+𝜎𝜎𝑧𝑧

�
x(𝑝𝑝𝑖𝑖)
y(𝑝𝑝𝑖𝑖)
z(𝑝𝑝𝑖𝑖)

� = 1
𝜎𝜎𝑔𝑔
�
x(𝑝𝑝𝑖𝑖)
y(𝑝𝑝𝑖𝑖)
z(𝑝𝑝𝑖𝑖)

�. (3) 

 
The color information vectors are normalized as well. The average of the standard deviations of the L, 

a, and b color components are computed to produce the final color representation: 

�
L�(𝑝𝑝𝑖𝑖)
a�(𝑝𝑝𝑖𝑖)
b�(𝑝𝑝𝑖𝑖)

� = 3
𝜎𝜎𝐿𝐿+𝜎𝜎𝑎𝑎+𝜎𝜎𝑏𝑏

�
L(𝑝𝑝𝑖𝑖)
a(𝑝𝑝𝑖𝑖)
b(𝑝𝑝𝑖𝑖)

� = 1
𝜎𝜎𝑐𝑐
�
L(𝑝𝑝𝑖𝑖)
a(𝑝𝑝𝑖𝑖)
b(𝑝𝑝𝑖𝑖)

�. (4) 

 
Now that the color information vectors and geometry are normalized, they can be combined to 

produce the final representation 𝑓𝑓: 
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𝑝𝑝𝑖𝑖
𝑓𝑓 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡L
�(𝑝𝑝𝑖𝑖)
a�(𝑝𝑝𝑖𝑖)
b�(𝑝𝑝𝑖𝑖)
𝜆𝜆x�
𝜆𝜆y�
𝜆𝜆z� ⎦

⎥
⎥
⎥
⎥
⎥
⎤

, (5) 

where the parameter 𝜆𝜆 adjusts the contribution to the final segmentation of color and geometry: low values 
of 𝜆𝜆 represent high color relevance, and low values indicate high geometry relevance. By varying the 
parameter 𝜆𝜆 the algorithm can become a color-based segmentation (𝜆𝜆 = 0) or a geometry (depth) only 
segmentation (𝜆𝜆 → ∞) (see [35] for a complete discussion on automatically tuning 𝜆𝜆 to an optimal value). 

After the vectors 𝑝𝑝𝑖𝑖
𝑓𝑓 are calculated, they can be clustered by the Mean Shift algorithm [36] to segment 

the sampled scene. Further refinement is possible by removing regions smaller than some threshold since 
these regions are usually the result of noise. An example of a segmented image using this method of 
segmentation is provided in Figure 2.  

 

 
Figure 2. Raw color image (left), depth map (middle), and segmentation map (right). 

2.2. Face detector: RetinaFace 

RetinaFace [25] is a recent pixel-wise face detection method that, along with box classification and 
regression branches, applies extra-supervised and self-supervised techniques/learning tasks. The 
combination of these different tasks allows the detector to predict a face score, face box, five facial 
landmarks, and the 3D position and correspondence of each facial pixel. A schematic structure of the 
system is provided in Figure 3.  

 

 
Figure 3. RetinaFace detector. 

 
RetinaFace is based on three main modules made by a feature pyramid network, the context head 

module, and the cascade multi-task loss. The first module is composed of a pyramid network that digests 
the input images by computing five different feature maps, each one at a different scale. These are then 
used by the context head modules to compute, for each of the feature maps, the multi-task loss described 
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below. The first context head module makes a first bounding box for the anchor, which is fine-tuned by the 
second context head module to generate a more accurate bounding box. 

Feature pyramid levels are computed using ResNet residuals, while the multi-task loss is computed as 
follows: 

ℒ = ℒ𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝𝑖𝑖 , 𝑝𝑝𝑖𝑖∗)  + 𝜆𝜆1 𝑝𝑝𝑖𝑖∗ℒ𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖∗) + 𝜆𝜆2 𝑝𝑝𝑖𝑖∗ℒ𝑝𝑝𝑝𝑝𝑝𝑝(𝑙𝑙𝑖𝑖 , 𝑙𝑙𝑖𝑖∗) + 𝜆𝜆3 𝑝𝑝𝑖𝑖∗ℒ𝑚𝑚𝑚𝑚𝑚𝑚ℎ(𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖∗)  

where 𝑝𝑝𝑖𝑖  is the predicted probability that the i-th anchor is a face, while 𝑝𝑝𝑖𝑖∗ is the ground-truth value (1 if it 
is a face, 0 otherwise); 𝑡𝑡𝑖𝑖  is a vector with the predicted coordinates for the bounding box of the i-th anchor, 
and 𝑡𝑡𝑖𝑖∗ is the vector with the coordinates of the real bounding box. The vector 𝑙𝑙𝑖𝑖  contains the predicted 
coordinates of the five facial landmarks, while 𝑙𝑙𝑖𝑖∗ is the vector with the coordinates for the five ground-truth 
facial landmarks. The vector, 𝑣𝑣𝑖𝑖 , has the 1068 vertices used for the mesh that represents the 3D face, and 𝑣𝑣𝑖𝑖∗ is 
the corresponding ground-truth. The variables 𝜆𝜆1 , 𝜆𝜆2, and 𝜆𝜆3 are loss-balancing parameters. ℒ𝑚𝑚𝑚𝑚𝑚𝑚ℎis a 
combination of a vertex loss and an edge loss used to compute a 2D projection of a 3D representation of the 
face; ℒ𝑐𝑐𝑐𝑐𝑐𝑐 is the classification loss for the binary classes of face/not face. ℒ𝑏𝑏𝑏𝑏𝑏𝑏 is the regression loss for the 
bounding box, and ℒ𝑝𝑝𝑝𝑝𝑝𝑝 is the regression component used to compute the five facial landmarks. 

 

2.3. Filtering steps 

As noted in Figure 1, some false positives are removed by applying several filtering approaches that 
take advantage of the depth maps. Each of these filtering techniques is described below. For some examples 
of candidate faces that were rejected by the filters, see Figure 4. 

 
 

 
 
Figure 4. Examples of images rejected by the filtering methods. 

2.3.1. Filter based on image size (SIZE) 

As mentioned above, filtering can be refined even more by evaluating the size of the face region 
extracted from the depth map as proposed in [37]. Size is initially based on the 2D position and dimension 
(𝑊𝑊2𝐷𝐷, ℎ2𝐷𝐷) of the pixels in a given candidate face region. This information can then provide an estimate the 
corresponding 3D physical dimension in mm (𝑊𝑊3𝐷𝐷, ℎ3𝐷𝐷) as follows: 

𝑊𝑊3𝐷𝐷 = 𝑊𝑊2𝐷𝐷
𝑑𝑑�

𝑓𝑓𝑥𝑥
    and ℎ3𝐷𝐷 = ℎ2𝐷𝐷

𝑑𝑑�

𝑓𝑓𝑥𝑥
, (6) 

where 𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑦𝑦 are the Kinect camera focal lengths calculated by the calibration algorithm detailed in [34], 
and 𝑑̅𝑑 is the average depth of the samples in the bounding box of the candidate face. Regions are rejected 
when they lie outside the fixed range [0.075 cm, 0.45 cm]. Of note is that 𝑑̅𝑑 is the median of the depth 
samples. 

2.3.2. Flatness\unevenness filter (STD) 
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STD [38] extracts flatness and uneveness information from the depth maps : regions with high flatness 
and uneveness are removed. 

 STD is a two-step filtering process: 
Step 1: segmentation using the depth map is applied;  
Step 2: the standard deviation (STD) of the pixels of the depth map belonging to the largest region 

obtained by the segmentation procedure is calculated from each face candidate region. If the STD lies 
outside the range of [0.01, 2.00], those regions are rejected. 

2.3.3. Segmentation-based filtering (SEG and ELL) 

SEG and ELL [1] compare the dimension of the segmented version of the depth image to its bounding 
box, in the case of SEG, or to its shape, in the case of ELL. In the latter case, the shape should be elliptical. 
Two evaluations can be made from the information extracted from SEG and ELL. SEG makes possible a 
comparison of the relative dimension of the larger area to the entire candidate image. Regions where the 
area of the larger region is less than 40% of the entire area are rejected. ELL can provide the larger region 
with a fitness score using the Least-Squares criterion to evaluate its closeness to an elliptical model. In this 
work, the fitness score is calculated with MATLAB’s function fit_ellipse [39].  

2.3.4. Filtering based on the analysis of the depth values (SEC) 

SEC [1] is based on the observation that faces are most commonly located on the top of the body and 
that the surrounding volume of a face is typically empty. When candidate faces produce a different pattern 
than expected, it is rejected. To calculate whether the pattern differs from what is expected, the rectangular 
region defining a candidate face is enlarged so that the depth map surrounding the face can be analyzed. 
In this work, the expanded region is partitioned into eight radial sectors, each radiating from the center of 
the candidate face. Figure 4 shows an example. For each sector 𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 , the number of pixels 𝑛𝑛𝑖𝑖 are counted 
whose depth value 𝑑𝑑𝑝𝑝 is close to the average depth value of the face 𝑑̅𝑑, as follows: 
  

𝑛𝑛𝑖𝑖 = �{𝑝𝑝: |𝑑𝑑𝑝𝑝 − 𝑑𝑑| < 𝑡𝑡𝑑𝑑 ∧ 𝑝𝑝 ∈ 𝑆𝑆𝑆𝑆𝑆𝑆1������������������������}�, (7) 

where 𝑡𝑡𝑑𝑑 (equals 50cm here) is the measure of closeness. 
 The number of pixels per sector is averaged on the two lower sectors (𝑆𝑆𝑆𝑆𝑆𝑆4 and 𝑆𝑆𝑆𝑆𝑆𝑆5) and on the 
remaining sectors. The ratio between the two averages, 𝑛𝑛𝑢𝑢 and 𝑛𝑛𝑙𝑙, is calculated as: 

𝑛𝑛𝑙𝑙
𝑛𝑛𝑢𝑢

=
1
2(𝑛𝑛4+𝑛𝑛5)

1
6(𝑛𝑛1+ 𝑛𝑛2+𝑛𝑛3+𝑛𝑛6+𝑛𝑛7+𝑛𝑛8)

 . (8) 

 A candidate face is removed if the ratio drops below a threshold, 𝑡𝑡𝑟𝑟 (𝑡𝑡𝑟𝑟 = 0.8 here).  
 

  

Figure 4. Example of how the expanded neighborhood of a candidate face region can be partitioned into 
eight sectors (the gray areas). Sectors 𝑆𝑆𝑆𝑆𝑆𝑆4 and 𝑆𝑆𝑆𝑆𝑆𝑆5, depicted in dark gray, should contain the body [1]. 

3. Results and Discussion 

3.1. Datasets 
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These are the four datasets we used to derive our system: 1) Microsoft Hand Gesture (MHG) [40], 2) 
Padua Hand Gesture (PHG) [41], 3) Padua FaceDec (PFD) [37], and 4) Padua FaceDec2 (PFD2) [1]. All four 
captured colored images of faces in unconstrained environments and included their corresponding depth 
maps. The faces are all frontal and upright and have constrained degrees of rotation. A separate dataset of 
faces was collected from the Padua FaceDec dataset [37] to run some preliminary tests and tune parameters. 
As explained in [1], these four datasets were merged to form a challenging dataset for face detection.  

Here is a brief description of each dataset. A summary of features is presented in Table 1. 
MHG [40] was originally intended for gesture recognition but contains an excellent collection of frontal 

faces taken from ten people. Forty-two images were selected from MHG for this study and manually 
labeled with the face position (see [1] for more details). 

PHG [41] was also initially intended for gesture recognition and contains face images of ten different 
people, with each image having only one face. Fifty-nine PHG images were selected from this dataset, and 
face positions were manually labeled. 

PFD [37] was created for face detection and contains 132 labeled images. Photographs were taken in 
the wild, both indoors and outdoors, with the Kinect 1 sensor. Any given image can have zero or more 
faces. If an image contains people, they are shown performing various daily activities throughout the day. 
Thus, lighting conditions vary greatly, and faces are often occluded by multiple degrees. 

PFD2 [1] is similar to PFD but is larger and far more challenging. PFD2 contains 316 images captured 
with the Kinect 2 sensor. A 512×424 depth map and a 1920×1080 color image were obtained for each scene. 
Some images have zero faces; others show people whose faces are in atypical positions, i.e., with their heads 
tilted or adjacent to objects. Compared to Kinect 1, the outdoor depth data recorded by Kinect 2 are 
extremely noisy, making PFD2 an even more challenging dataset. The depth data was projected over the 
color frame and interpolated to the same resolution. This process produced two aligned depth and color 
fields. 

MERGED contains 549 images with 614 faces, collected from the above datasets as described in [1]. 
This is the dataset used in the experiments reported in section 3.3. The intention behind this dataset was to 
form a larger and somewhat more challenging dataset. However, only fully upright frontal faces with less 
than ±30°rotation were included. 
 
 
 
 
 
 
 
 

Table 1. Main characteristics of the datasets. 

Dataset Number 
Images 

Number 
 Faces 

Depth  
Resolution 

Color 
Resolution 

Difficulty 
 Level 

MHG 42 42 640×480 640×480 Low 
PHG 59 59 640×480 1280×1024 Low 
PFD 132 150 640×480 1280×1024 High 
PFD2 316 363 512x424 1920×1080 High 
MERGED 549 614 --- --- High 
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3.2. Performance indicators 

Two popular performance indicators are reported: 
• Detection rate (DR): this is the ratio of the number of faces correctly detected and the total 

number of faces in the dataset. Recall that all faces were manually labeled. DR is evaluated at 
different precision levels in relation to eye distance formally as follows. Let 𝑑𝑑𝑙𝑙 , (𝑑𝑑𝑟𝑟) be the 
Euclidean distance between the manually extracted centered left and right, 𝐶𝐶𝑙𝑙(𝐶𝐶𝑟𝑟) positions 
and let 𝐶𝐶′𝑙𝑙 , (𝐶𝐶′𝑟𝑟) be the detected centered left and right eye positions. The relative error of 
detection (ED) is defined as max(𝑑𝑑𝑙𝑙 ,𝑑𝑑𝑟𝑟) /𝑑𝑑𝑙𝑙𝑟𝑟 , where the normalization factor 𝑑𝑑𝑙𝑙𝑙𝑙  is the 
Euclidean distance of the expected eye centers meant to provide measurement independent 
of the scale of the face in the image in relation to the image size. In this work, ED ≤ 0.35 is the 
value used as a criterion to claim a right eye detection. 

• False positives (FP): this is the number of candidate faces with no face. 

3.3. Experiments 

The goal of the first experiment was to compare the detection rates of RetinaFace by adjusting the 
sensitivity threshold values of s (on the score output of RetinaFace), the default sensitivity threshold value 
in RetinaFace toolbox is s=0.9, the value of which is provided in parentheses in Table 2. It will be observed 
that setting the threshold for increasing the detection rate generates more false positives. 

The results obtained by RetinaFace are clearly better than previous face detectors based on 
handcrafted methods or shallow neural networks, see [1] for details. RetinaNet can still be considered a 
state-of-the-art face detector. 

Table 2. Performance of RetinaFace.  

Face Detector(s)  DR   FP  
RetinaFace (0.02) 95.93 1152 
RetinaFace (0.2) 95.93 281 
RetinaFace (0.5) 95.93 227 
RetinaFace (0.9) 95.60 171 
RetinaFace (0.98) 94.79 119 

 
 
In Table 3, we evaluate the filtering steps, as detailed in section 2.3, along with their combinations on 

the MERGED dataset.  
 
 

 
Table 3. Performance of RetinaFace obtained by combining different filtering steps on MERGED. 

 Filter combination DR   FP 
Retina (0.98) none 94.79 119 

SIZE 94.63 84 
SIZE + SEC 94.14 75 
SIZE + STD + SEG + ELL + SEC  92.67 71 

Retina (0.5) none 95.93 227 
SIZE 95.77 111 
SIZE + SEC 95.11 95 
SIZE + STD + SEG + ELL + SEC  93.65 85 
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The following conclusions can be drawn from the above table: 
 The best trade-off of DR and FP is obtained by RetinaFace (0.5) with the SIZE filter applied. Clearly, 

SIZE increases the effectiveness of RetinaFace on the test set; 
 The other filters reduce the number of FP but also decrease DR; 
 Coupling SIZE and SEC is the best approach for minimizing FP without a considerable reduction of 

DR. 
 

Even though the proposed approach has only been evaluated on a single dataset, we believe it would 
perform well in real-world conditions, because the MERGED dataset is highly realistic. It contains many 
images collected from the wild, many of which include multiple frontal faces, not just a single one. 

 

4. Conclusions 

In this paper, we combine a state-of-the-art face detector, RetinaFace, with a set of filters generated 
from the depth map. We demonstrate that the filters reduce the false positives produced by RetinaFace 
while maximizing the detection rate. Our method for reliable face detection uses information in the depth 
maps and filters to  increase effectiveness, measured as a high detection rate with a lower number of false 
positives compared to a standalone RetinaFace. This effectiveness was demonstrated on a challenging 
dataset that was generated by combining frontal images from several datasets  with different illumination 
settings, both indoors and outdoors. Many of the images in this dataset also contained multiple faces, often 
located in cluttered environments.  

Although we use a state-of-the-art face detector, it produced many false positives on our dataset. When 
a low detection threshold is applied to increase the detection rate, the reported experiments show that the 
filters based on depth maps are a feasible way to increase the trade-off between detection rate ( DR) and 
false positives (FP) with a state-of-the-art face detector. 
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