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W N e

Abstract: In music, the role of the interpreter is to play her/his part manipulating the performance
parameters in order to offer a sonic rendition of the piece capable of conveying specific expressive
intentions. Since the 1980s there has been a growing interest in computational expressive music
performance (EMP). This research field has two fundamental objectives: the understanding of the
phenomenon of human musical interpretation and the automatic generation of expressive perfor-
mances. Rule based, statistical, machine and deep learning approaches have been proposed, most of
them devoted to the classical repertoire, in particular to piano pieces. On the contrary, we present an
introduction to the role of expressive performance within popular music and to the contemporary
ecology of pop music production, based on the use of Digital Audio Workstations (DAWSs) and virtual
instruments. After an analysis of the tools related to expressiveness commonly available to modern
producers we propose a detailed survey of research into the computational EMP field, highlighting
the potential and limits of what is present in literature with respect to the context of popular music,
which by its nature cannot be completely superimposed on the classical one. In the concluding
discussion we suggest possible lines of future research in the field of computational expressiveness
applied to pop music.

Keywords: computational music expressive performance, popular music, music production, Digital
Audio Workstation, virtual instruments

1. Introduction

When a skilled musician plays a piece of music, s/he usually does not do it mechan-
ically, keeping a perfectly steady timing without any concession to loudness or timbre
variations, or possibly to the use of embellishment techniques. Actually, expert musicians
commonly manipulate at least some of the performance parameters to produce expressive
sonic renditions of the pieces:

[...] performers are able to use systematic variations in performance parameters to convey
emotion and structure to listeners in a musically sensitive manner [1, pg. 64].

With regard to western classical music, traditionally expressiveness has been defined
in terms of deviations from what is prescribed in the score:

When playing a piece, expert performers shape various parameters (tempo, timing, dynamics,
intonation, articulation, etc.) in ways that are not prescribed by the notated score, in this way
producing an expressive rendition that brings out dramatic, affective, and emotional qualities that
may engage and affect the listeners [2, pg. 1].

On the other hand, in the context of popular music the traditional separation between
composer, author of the score, and performer, who interprets and gives a sonic rendition of
the same, is only rarely fully appropriate. Musical parts, for example, can be improvised,
or can be based on more or less detailed lead sheets (an essential form of musical notation
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that describes the fundamental elements of a song), or can be created and memorized by
the musician without the need of a formal notation. Moreover, with the spread of computer
assisted music production, popular music creation has shifted more and more towards a
model in which the traditional composer/performer distinction further loses meaning, in
favor of a deep integration of activities associated with music composition, engineering,
production, and performance [3].

This does not mean that the expressiveness of the performance is not relevant in popu-
lar music, although with some specific exceptions: in electro-pop "deadpan” performances,
commonly considered inexpressive and not desirable in classical music, can fall within
sought after aesthetic intentions, as well as the construction of musical parts that can only
be played by machines and not by humans [4]. Apart from these specific cases, human-like
expressivity in popular music performance plays generally a crucial role.

Within computer assisted music production the producer often creates - through
mouse and keyboard editing and/or use of dedicated hardware controllers - MIDI parts
associated with virtual instruments [5]. Clearly, simply using the mouse or the keyboard
to insert into the rhythm grid of the Digital Audio Workstation (DAW) the MIDI notes
that the virtual instrument will have to sonorize is not enough to produce something that
can be perceived as expressive, nor is it easy to obtain realistic and expressive sounding
parts using a MIDI controller, because of the possible technical limitations of the controller
and/or the skills required from the performer. Manually refining parts so that they result
more expressive is only partially possible, and it is undoubtedly tiring and time consuming,.
The commercially available tools (the ones commonly used by pop producers, see Section 2
for some examples) cover only partially the needs related to expressive performance.

Innovative solutions capable of automatically or semi-automatically conferring expres-
siveness to the MIDI parts produced would be highly valuable, and it is our opinion that
existing academic research on Expressive Music Performance (EMP) could help improve
the tools available or suggest directions to develop new ones.

The following part of this contribution is organized as follows. In Section 2, an analysis
of the strengths and limitations of what is commercially available in relation to musical
expressiveness in computer-assisted popular production is offered. In Section 3, existing
EMP literature is reviewed; the contributions are organized in thematic subsections such as
relation between expressiveness and structure, local expressiveness, relationship between
emotional intention and expressive parameters and so on. At the end of each subsection
a comment about the possible applications or limits of the EMP literature presented in
relation to popular music computer assisted production is provided. Section 4 is devoted
to general discussion and conclusions.

2. Commercial products

Digital Audio Workstations, since the early 2000s, have become central to the popular
music production workflow, and are now a fundamental working tool for professionals as
well as for “bedroom” producers [6]. Among the benefits of DAWs there is the

ability to build up complex musical arrangements using realistic-sounding virtual instruments

17, pg. 78l.

Virtual instruments can be based on audio samples of real instruments as well as on
sound synthesis techniques [8]. The Virtual Studio Technology (VST) standard is probably
the most widespread and used to build virtual instruments and audio effects [9].

When a popular music producer uses a virtual instrument in an arrangement, s/he can
program a MIDI part asynchronously, or play the part in real-time using a MIDI controller
(usually, but not necessary, a keyboard-shaped one [10]). In both cases, making the part
sound expressive is not a trivial task, despite the extensive tonal and dynamic potential of
the modern virtual instruments.
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To obtain an updated list of tools and practices commonly used in popular mu-
sic production and concerning expressiveness, we entered the following keywords in
the search fields of the websites of the most accredited sector magazines: Sound on
Sound (https:/ /www.soundonsound.com), Tape OP (https://tapeop.com/), MusicRadar
(https:/ /www.musicradar.com/) — which includes the magazines Future Music, Computer

Music, Music Tech:

e  expressiveness;

e  expressive performance;
e  virtual performance;

e  virtual performer.

Up to sixty results were consulted (when available) per search key per portal. Once
the results not relevant for the purposes of this contribution have been filtered, examples
have been selected from the rest that are useful for providing a general overview of the
sector. In the event of the presence of distinct commercial products, but similar in terms of
operating principles and construction/development logic, not all of them have necessarily
been mentioned, as the objective of this contribution is not to offer a complete overview of
what the market offers, including each individual product, but to account for the main tools
associated with expressiveness generically available to contemporary music producers.
The results of the research are categorized in thematic areas and presented in the following
subsections of Section 2.

2.1. Common tools

Among practically any recent virtual instrument there are some basic parameters
that can be controlled using MIDI messages and/or DAW automations, namely equali-
sation (EQ), high pass filter (HPF) - possibly with settable Resonance, and, sometimes,
compression. More advanced sound control potential may be present.

It's common for sampled instruments to have multiple samples of each note, usually
selected and loaded based on the MIDI velocity of the note played. Sample based virtual
instruments frequently also implement the round-robin technique (when multiple consec-
utive requests of the same note are received, the instrument loads different samples, in
random or predetermined order, to avoid the so-called “shotgun effect”, the repetition of a
series of identical sounds, an event perceived as unnatural in the musical field).

Lastly, DAWs can usually randomize MIDI data, in compliance with the range of rela-
tive values set by the user. This is sometimes done to alleviate the feeling of unnaturalness
that quantized, fixed velocity parts transmit [11].

All these expressive tools and tricks need to be triggered (in a static or — when possible
and appropriate - dynamic fashion) using offline editing or MIDI controllers [12]. That
translates into a wide range of possible sound nuances, that anyway must be controlled
manually by the producer, being it in real time or not.

2.2. Triggerable instrument-specific patterns

Especially among virtual instruments that model physical ones, the presence of pat-
terns that can be recalled by the user is frequent. These are normally pre-recorded or
pre-programmed performances of short parts, usually structured so that they can be re-
peated in a seamless loop. Sometimes, but not necessarily, these patterns can be customized
by the user, directly within the virtual instrument or using the MIDI editing tools of the
DAW.

Some of the products that include this functionality - among many others - are:

e  Steinberg Groove Agent 5;
e  UJAM collection (Virtual Guitarist, Virtual Bassist, Virtual Drummer, Virtual Pianist);
e Native instruments Action Strings and Emotive Strings.

This approach - that could be considered somehow an evolution of traditional arpeggiators
- can be useful among producers that are not able or interested in writing the instrument
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parts note by note. Moreover, some degree of expressivity can be included in the patterns,
what kind exactly depending on how the pattern was realized and on the sonic capabilities
of the virtual instrument. Sometimes the patterns can be modified in real-time setting
parameters such as Complexity and Intensity in Steinberg’s percussive oriented sampler
Groove Agent 5 (Figure 1): there Complexity (x-axis) loads richer, more nuanced patterns
as you move to the right, while Intensity (y-axis) affects the MIDI velocity of the strokes.
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Figure 1. The pattern management area in Steinberg Groove Agent 5. On the right it can be seen
the two-dimensional control surface (that works also in real time) dedicated to the Intensity and
Complexity parameters. Courtesy of Steinberg Media Technologies GmbH.

Significantly, the review of the UJAM Virtual Bassist Collection published on Sound
on Sound [13, pg. 130] says:

[...]1 my completely virtual band of session musicians just needing pointing in the right
direction. Add in some "human’ with a few guitar overdubs and some vocals, and a song idea can be
fleshed out very quickly. What's more, the virtual band sounds very polished indeed.

This quotation highlights two common limitations of the pre-made patterns approach:
they can hardly be completely “tuned” to the expressive intention of the specific piece of
music under processing (making a human contribution necessary, in the form of human
played added parts or manual editing of the patterns), and they usually sound very
polished, maybe even too polished to be perceived as truly “real”. Moreover, having pre-
established patterns, albeit sometimes customizable, places this type of resource between
expressiveness and automatic/assisted music generation, touching territories outside the
boundaries of this contribution.

2.3. Triggerable instrument articulations

In the jargon of contemporary music production, articulations mean different timbres
or performative techniques that can be associated with the virtual instrument. For example,
the same notes can be played by a virtual violin (among other possibilities) with detaché,
staccato, or col legno articulations.
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This approach is very common among sample based virtual instruments belonging to
the classical orchestra category (strings, brasses, woodwinds), but can potentially be found
in about any kind of virtual instrument.

Commercial products falling into this category are offered by manufacturers such
as EastWest, IK Multimedia, Vienna Symphonic Library, Steinberg, Native Instruments,
Spitfire Audio. Similarly to what has been said in the Common Tools section 2.1, also in
articulations triggering a manual intervention of the producer is always needed.

2.4. Advanced hardware timbre and expressivity control

On the controller front, many attempts to produce innovative and powerful MIDI de-
vices, sometimes called hyper-instruments (term used in particular in the case of traditional
instruments modified to act as MIDI controllers [14]), capable of manipulating multiple
parameters in real time, can be cited:

e the pioneering Kurzweil XM1 Expression Mate, that dates to 2000;

e ROLI Seaboard family, whose operation is traditionally based on the MPE (MIDI
Polyphonic Expression) protocol (Figure 2);

e  Expressive E Touché and Osmose;

e  Keith McMillen SoftStep 2;

e Erae Touch (which makes use of MIDI 2.0).

Figure 2. The MIDI controller ROLI Seaboard Rise. Courtesy of ROLI Ltd.

These tools can be touch and/or velocity-sensitive, and often allow control of pitch
bend, polyphonic aftertouch, microtonal slides, and in general MIDI Control Changes/Continuous
Controllers (CCs) through gestures.

In academia, that can anyway have direct impact on commercial products, the Interna-
tional Conference on New Interfaces for Musical Expression (NIME - https:/ /www.nime.org/),
held since 2001, is of particular relevance [15].

Once again, these tools are designed to allow the producer direct control of the
parameters of the virtual instrument; they are not able to generate autonomously musical
expressiveness, nor they are usually aimed at that.

2.5. Automatic analysis of the harmonic structure and generation of new musical parts

In some cases, not particularly widespread, the virtual instrument is able to automati-
cally generate parts on the basis of the data obtained from the analysis of the parts of other
instruments or of the harmonic progression.

One of the best representatives of this approach is Toontrack EZ Bass (Figure 3),
that can analyse MIDI or audio parts and generate matched bass lines, highly expressive
thanks to the use of different articulations, embellishments, velocity variations, etc. Sim-
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ilarly to what has been said about pattern based virtual instruments, also in this case it
is questionable whether this kind of capability should be included in the automatic com-
position/arrangement area, or in the expressive performance one. Nonetheless the bass
lines generated by the software present expressiveness, and — even more important — are
context-aware, at least with regard to some parameters/musical dimensions, things that
are of prime relevance in the field under consideration.
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Figure 3. Toontrack EZ Bass. Courtesy of Toontrack Music AB.

2.6. The missing link

From what has been observed in the previous subsections it is evident that, in the
current panorama, extremely sonically versatile virtual instruments with rich expressive
potential are available on a commercial level, which must however be controlled in real time
(there is no shortage of hardware tools for sophisticated real-time control) or through offline
MIDI sequencing by the producer. Many of them provide pre-established - sometimes
customizable - patterns, and some can generate context aware ones. However, these last
features, more than in EMP, fall within an area on the border between expressiveness
and automatic or computer aided composition. What is missing here are tools capable
of processing musical parts provided by the producer - potentially time-quantized and
fixed-velocity ones - making them expressive acting automatically on tone parameters
of the virtual instrument, time deviations and - possibly - on the automatic selection
of the appropriate articulations or embellishments. To be completely effective, these
potentials should then be sensitive to the context, and possibly to high-level indications
(for example, to emotional intention) provided by the producer. Could academic research
in computational expressive music performance help? Considering also that historically
EMP has addressed mostly classical music for solo instruments (see below), which research
lines could find direct application in popular music? Which adaptations, if any, would be
needed?
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3. Research products
3.1. A multifaceted field of research

Computational Expressive Music Performance (EMP) is a particularly rich and multi-
faceted field of research, which sits at the intersection of different approaches and areas
of expertise. Several academic disciplines are involved (computer science, musicology,
psychology). It is therefore not surprising that academic research has generated diverse
approaches with respect to the type(s) of technology employed and the specific aspect(s) of
computational EMP addressed.

The first scientific contributions to the topic date back at least to the 80s, and more
than one review work has already been published [2,16-20]. There are two main purposes
associated with EMP computational models: they can be used as an analytical tool for
understanding how humans perform music, or to generate new performances of musical
pieces, in many different contexts [2]. Actually, the two things are connected: to develop
models capable of credible virtual performances it is necessary to understand what makes
human performances worthy of interest and expressive. Also for what concerns the tech-
nologies involved in the existing models we can identify, generally speaking, two areas:
data driven and rule based models [2]. The former category relies on machine learning,
probabilistic, and Artificial Neural Networks (ANNs) approaches (and consequently on
large collections of data), the latter on manually designed rules, based on musical hypothe-
sis. Another commonly used nomenclature is the one that contrasts analysis by synthesis
to analysis by measurement: the former indicates the implementation of rules obtained
from the dialogue with human experts, the latter the use of real performances parameters
measurements to extract rules or other significant regularities.

Below, the main research lines that have been followed by scholars will be presented,
at a medium to high level of abstraction. They will be divided into the following thematic
areas:

visual representation of expressive performances features;

relation between expressiveness and structure of the musical piece;

local expressiveness;

score markings interpretation;

relationship between emotional intention and expressive parameters;
relationship between sensorial experiences and expressive parameters;
identification and modelling of the performative styles of real musicians;
identification of physical and psychological limits of the performer;
ensemble music modelling;

conductor systems.

We believe that this subdivision into thematic macro areas could prove to be particu-
larly functional to a clear understanding of the computational EMP field, despite the fact
that the musical parameters investigated may be common to all areas (timing, loudness,
timbre, etc.). What changes is the logic that leads an approach to study or modify in
a certain way specific parameters. Moreover, some of the research lines reviewed here
address more than one area at the same time, and can therefore appear several times in the
course of the treatment, in different subsections.

The main computational EMP systems under examination will then be recalled in
Section 3.12, where for each of them a summary of the main characteristics will be provided
in table form, specifically with regard to:

technologies involved;
e  user interaction;

main goal(s).

A color based association of the systems in relation to the thematic macro areas will
also be included.

Before getting to the heart of the discussion we consider relevant offering some general
insights obtained through a meta reading of the recent literature review published by C.E.
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Cancino-Chacén and co-authors [2], regarding the broad characteristics of the existing
research about computational EMP. The following data are based on the summary tables
presented there.

Total number of reported models: 18;

e Reported expressive parameters: metronomic tempo, timing (notes onset deviations),
dynamics (most of the times linked to MIDI velocity), articulation. Only once the
ornamentation parameter is present [21] ;

e  Total number of datasets reported: 12;

Music genres of the datasets: classical (10), popular (2);

e  Sources of the datasets: computer-controlled piano (8), audio recordings (3), audio
recordings and computer-controlled piano (1) - the fact that the piano is the instru-
ment of choice for research on musical expressiveness can be traced back to technical
reasons: being based on the percussion of the strings and not allowing a continuous
control of the timbre, as it happens for example in the violin, it is relatively simple
to build functional expressive models taking into account a minimum number of
parameters (timing and dynamics/velocity) [22,23]. Moreover, hybrid acoustic/digital
instruments such as the Yamaha Disklavier allow for easy recording of MIDI data from
human performances.

By no means the above summary should be considered exhaustive, but it gives a first
rough idea of the field. What this entails on the subject of this contribution will be discussed
later.

3.2. Visual representation of expressive performances features

Although a visual representation of expressive performance features is not a com-
putational model for expressiveness, its relevance in the understanding of the human
performing dynamics and subsequent construction of models must not be underestimated.
For this reason we considered justified the inclusion of a dedicated subsection, comprising
at least some of the most relevant experiences in the field.

Despite the fact that there are many examples of technical solutions for the detec-
tion and representation of single performative parameters, the overall perception of the
performance is linked to the interaction of several parameters rather than to decontextu-
alised, individual ones. A system for the real-time representation of performances in a
two-dimensional graph, with tempo (bpm) on the x-axis and loudness on the y-axis was
proposed by J. Langner and W. Goebl [24]. Along the two axis, a dot moves in synchrony
with sound. The materials analyzed are piano performances played on a Bosendorfer
computer-controlled grand piano (SE290). Timing information is extracted from MIDI data,
while loudness data is extracted from the audio files of the performances. The trajectory of
the dot (that gradually fades away, leaving behind a visible tail) is a visual description of
the two most important parameters of the performance, tempo and loudness.
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Figure 4. A screenshot of the performance worm. On the x-axis it is shown the tempo in beats per
minute; on the y-axis the loudness in decibel [25].

This kind of visual representation has been subsequently taken up and evolved, with
the extraction of time information directly from audio, and not from MIDI data, and the
coinage of the term performance worm [26], which has also been used in other scientific
publications [25] (see Figure 4).

Non-standard music transcription techniques, indicated for repertoires handed down
orally or to report dimensions that escape standard Western notation, are for obvious rea-
sons of primary interest in the field of ethnomusicology [27]. With the necessary differences
(symbolic representation instead of direct analogical representation of the phenomenon [28]),
it is also in this case a question of moving performative sound dimensions into the visual
sphere. It does not seem unreasonable to us to think that reflections of this kind could have
positive repercussions also in the EMP field, although the goals are clearly different in the
two cases. A way of representing unambiguously the desired prosodic interpretation of
melodies using a dedicated small alphabet A = {1, 1¥,1*,1,1,1'} and a deterministic mapping
from the prosodically labeled score to sound synthesisis has been proposed by Christopher
Raphael [22] (see Figure 5).

A — - — —> —> - X —>

U U T — T

Figure 5. The melody of the popular tune Amazing Grace showing a custom note-level prosodic
labeling (reconstruction of part of an example present in [22]).

Integrated graphical representations of expressive parameters such as the ones related
to the performance worm [24-26] could be relevant in the implementation of popular music
expressive models not only because they offer an intuitive and immediate tool for under-
standing expression dynamics that may be hard to catch otherwise by a human observer,
but also because they could simplify the intuition and understanding of the analogies and
differences between musical expressiveness in the historical /stylistic/instrumental fields to
which academic research has traditionally turned and what happens in a popular context.

Also the reflection on the notation of dimensions of the musical performance not
included in the Western standard writing can offer useful insights for the development


https://doi.org/10.20944/preprints202212.0494.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 December 2022 d0i:10.20944/preprints202212.0494.v1

10 of 30

of EMP models. In particular, we imagine possible applications in the field of conductor
systems (see Section 3.11).

3.3. Relation between expressiveness and structure of the musical piece

Pieces of music can be described in terms of form or structure at different levels of
abstraction. At the highest level we have the sections of the piece, as in the classic sonata
form, divided into introduction, exposition, development, recapitulation and coda sections.
At a lower - and probably more relevant for computational music expression - level we
can identify structural elements such as motifs, phrases, and periods. These are defined
in Grove Music Online (based on the renowned Oxford Dictionary of Music and Oxford
Companion to Music) [29-31] respectively as:

A short musical idea, melodic, harmonic, rhythmic, or any combination of these three. A motif
may be of any size, and is most commonly regarded as the shortest subdivision of a theme or phrase
that still maintains its identity as an idea.

A term adopted from linguistic syntax and used for short musical units of various lengths; a
phrase is generally regarded as longer than a Motif but shorter than a Period. It carries a melodic
connotation, insofar as the term ‘phrasing’ is usually applied to the subdivision of a melodic line.

[...] a musical statement terminated by a cadence or built of complementary members, each
generally two to eight bars long and respectively called ‘antecedent’ and ‘consequent’.

Generally speaking, quite often the clarification of the piece structure is considered one
of the main aims of expressive performance [32]. A radical (non-computational) approach,
that substantially brings the performative expressiveness back to the structure of the piece,
is that of E.F. Clarke [33], who bases the discussion on generative principles [34], in turn
influenced by Schenkerian analysis.

Many attempts at modeling expressive parameters based on structure analysis are
present in the literature. Tempo changes related to phrase structure in tonal music have
been at the center of the seminal research of N.P.M. Todd [35]. The author’s approach
is based again on Lerdahl and Jackendoft’s generative theory [34]. The piece is divided
into nested hierarchical organized time spans. The model reflects the structure of the
piece slowing at structural endings, in a more or less pronounced way depending on the
hierarchical importance of the syntactic break (see Figure 6). Subsequently, Todd expanded
his approach to include the computational modeling of rubato in relation to music structure
[36] and the dynamics, based on the assumption that there is a correspondence between
speed and intensity (the faster, the louder) [37]. Although subsequent publications have
shown the relevant limitations of Todd’s model [38,39], this remains a cardinal point in the
evolution of the research field of computational musical expressiveness.
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Figure 6. A tree diagram representing the hierarchical structure of the piece and, below, the corre-
sponding tempo variations generated by the model (the higher the value on the y-axis, the more
pronounced the slowdown) [35].

G. Grindlay and D. Helmbold proposed a hierarchical hidden Markov model (HHMM)
to extract statistical data about the relations between score structure and associated per-
formances (in particular with regard to time deviations) [40]. The model is based on a
two-level hierarchical structure, with the top-level representing the musical phrase context,
while the lower one is associated with note-level contexts. Once trained, the model is
able to generate expressive performances, but can also be used to recognize individual
performers.

A similar approach, based on the distinction and relation between a phrase level and
a note level, can also be declined in a rule-based system, as shown by G. Widmer and A.
Tobudic [41,42]. Note-level and phrase-level expressive patterns are combined there to
generate predictions about complex composite expression curves for new pieces.

One of the most relevant EMP lines of research is that of the KTH rule system for
musical performance [43]. Substantially based on the analysis-by-synthesis approach [44]
(simplifiable into: selection and analysis of the performances and of the variables to study
tentative synthesis of varying versions through the definition of rules human judgement
of the performance and iterative return to the previous phase to improve the model),
the system also provides a complementary analysis-by-measure approach (the rules are
designed based on objective data derived from real performances). The rules affect various
parameters such as timing, dynamics and articulation, and they are weighted. They are
organized in the categories Phrasing, Micro-level timing, Metrical patterns and grooves,
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Articulation, Tonal tension, Intonation, Ensemble timing, and Performance noise; therefore
they cover the piece of music at different levels. Specifically, in relation to the structural
dimension, the KTH system suggests rules for the creation of phrase arch-like tempo and
loudness contours, and for the insertion of a ritardando in the end of the piece.

F. Carnovlalini and A. Roda proposed a system capable of generating brief melodies
together with their expressive performance, all based on a multilayered hierarchical subdi-
vision of the notes reminiscent of the Schenkerian approach [45]. The length and loudness
of the notes are automatically set according to their hierarchical relevance, within a three
levels model. The KTH phrase-arc rule is also implemented.

The structure of a piece can also often be analysed in terms of construction and resolu-
tion of tensions (a task usually easier within tonal music, associated with a more general
logic of construction and resolution of expectations [46,47]). Computational expression
models can refer to those tension patterns.

A three dimensional spiral representation of pitch classes, chords and keys to compute
variations in tension during the piece of music was introduced by D. Herremans and E.
Chew [48]; based on that, a computational study of the role of tonal tension in the prediction
of expressive performances of classical piano music was presented by C. Cancino-Chacén
and M. Grachten [49]. A computational model for the calculation of tempo and dynamic
variations is there implemented using a bidirectional LSTM Recurrent Neural Network
(which processes both backwards and forwards information). It is noted that the use of
tonal tension as defined by Herremas and Chew is useful to predict expressive changes in
tempo and dynamics, but not to predict specific values for those parameters. Tonal tension
seems to be an additional, but not self-sufficient, resource in the creation of models for
musical expressiveness.

The relation between music performance expressiveness and piece structure could
be as relevant in popular as it is in classical music, but the subject needs deep analysis
and investigation before being able to draw any conclusions, since the two contexts are
only partially superimposable from a structural perspective. Moreover, the tonality related
dynamics enhanced in classical music by some researchers could be relevant only in specific
popular contexts, but would probably be out of focus and of little help in many others [50].
For this reason, the applicability of computational solutions for the automatic identification
of the structure of the piece (aimed at the subsequent use of expressive models) based on
tonal music theories [51,52], may not be ideal in many cases in popular music. The melodic
analysis model suggested by Carnovalini and Roda [45], based on the previous works of
theirs and N. Orio and F. Simonetta [53,54], seems to be much more promising with regard
to popular music, since it represents a more theory-agnostic approach. It classifies the notes
of the piece within a three levels hierarchical structure based on metric position, relevance
of the underlying chord with regard to tonality (but this could be easily adapted also to the
modern modal approach to popular music composition), and relevance of the melodic note
within the underlying chord.

3.4. Local expressiveness

Musical expressiveness can also be observed and modelled locally, note-wise or in
relation to small groupings of notes.

Fundamental in this perspective were the seminal studies of A. Gabrielsson - among
many others [44,55-57]. Gabrielsson’s approach is measure-based: an analysis of real
performances, looking for relevant performance variables, makes it possible to detect sys-
tematic variations (SYVARs) related to some type of norm. These variations, or deviations
from the mechanical regularity, may vary according to the specific context (type of music,
performer etc.). Gabrielsson investigated in particular rhythmic micro structures (e.g. a
half note followed by a quarter one, or a dotted chrome followed by a sixteenth note, etc.),
as well as deviations at half and full measure level, finding significant regularities, at least
given the same context. Gabrielsson observed that:
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It seems safe to assume that such differences in performance are not primarily made in order to
affect the perceived structure, but rather to contribute to a proper motional-emotional character of
the music in question. [44, pg. 79]

Generating systematically varying sound sequences based on the findings of analysis
and subjecting them to a human evaluation allows the testing of the validity of the detected
SYVARSs and of the relationship between them and the experiential psychological variables
associated with the listener.

The expert system approach has also been investigated. In M.L. Johnson’s model
for the expressive rendition of Bach’s fugues [58] the rules, based on the expertise of two
professional performers, affect tempo and articulation, and are associated with specific
rhythmic patterns.

Many of the rules of the KTH system [43] also address the local EMP area. For example,
the Duration contrast rule does "Shorten relatively short notes and lengthen relatively long
notes", the Double duration one does "Decrease duration ratio for two notes with a nominal value
of 2:1". A combination of the rule based approach with Artificial Neural Networks and user
interaction has also been tried [59].

Generally speaking, it seems that structure based expressiveness (see previous section)
can be more easily appreciated by following an analysis by synthesis approach, while local
expressiveness is more prone to data driven approaches, at least taking into consideration
current technologies and the studies already carried out. This is confirmed in S. Oore
and co-authors” work [23], where an LSTM network used to generate both piano solo
musical parts (automatic composition) and their expressive performance shows better
results on a local basis, more than in long term structure. In K. Teramura and co-authors’
proposal [60] a Machine Learning Gaussian Process Regression predominantly based on
local input data (durations and pitches of the notes concerned and of those belonging to the
previous and subsequent measures are analyzed, as well as more general indicators such
as meter and belonging to the melodic line) is used to render expressive performances of
music scores. Similar parameters are considered in the statistical model YQX [61], together
with principles taken from E. Narmour’s implication-realization model [47]. Binary tree
based clustering has been explored by K. Okumura and co-authors to classify the local
context of the notes; to each context is then applied a specific stochastic model (see Figure
7) [62,63]. Also the Maximum Entropy model proposed by S. Moulieras and F. Pachet [64]
is explicitly based on the assumption that musical expression refers to local texture, rather
than long-range correlations. In this case the reference repertoires are jazz, pop, and latin
jazz.
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application of
questions about context
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to all context-dependent Yes (root) node no
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Figure 7. Binary tree based clustering of the local context [63].
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Although in-depth studies are necessary before reaching any conclusion, it is our
opinion - also based on preliminary informal pop performances analyses - that in the field
of popular music the study of local expressiveness could prove to be of extreme relevance.
Most of the research cited in this subsection could find direct application or could be
adapted to work also in a popular music context.

3.5. Score markings interpretation

Quite peculiarly, M. Grachten and G. Widmer focused their attention on a very specific
and limited area of performative musical expressiveness: the interpretation of dynamic
score markings [65]. Their model (which must not be considered limited to dynamics alone,
but can also be applied to other musical expressive categories) is focused on the explicit
expressive markings written in the score (e.g. crescendo/diminuendo signs, accents, dynamic
markings such as p, f, mf, directly linked to basis functions - numeric descriptors that
represent specific components of the score), and investigates how the combination of these
markings/basis functions influences specific target parameters. In other words, expressive
parameters (e.g note dynamics) are modelled after a weighted linear combination of score
information, plus noise. In a subsequent work a Bayesian probabilistic alternative to the
original approach to weights estimation (based on least squares regression) was proposed,
together with a new set of basis functions and the contextualization of gradual loudness
annotations (crescendo /diminuendo) in relation with the preceding and following notated
loudness levels (e.g. p crescendo f) [66]. An ANN based approach (Non Linear Basis
Model - NBM) was then investigated [67,68]. In these last contributions, instead of using a
simple weighted linear combination of the basis functions (LBM - Linear Basis Model), Feed
Forward Neural Networks (FFNNSs), bidirectional Recurrent Neural Networks (RNNs - see
[69]), a combination of FENN and RNN, and a Long Short Term Memory network are tried
on piano solo and symphonic repertoires, showing better prediction accuracy than the orig-
inal LBM. Another development of the model therefore took place with the addition of the
relationship between the formation of musical expectations and the corresponding musical
performances to the analysis of score features based on basis functions, with significantly
positive results [70].

The KTH rule system [43] provides articulation rules, and in particular it takes into
account the markings of legato and staccato present in the score.

While attention to indications present in the score similar or such as those mentioned
above could prove useful in popular music production, it must be noted that the MIDI
protocol does not natively provide the tools to describe the score markings, being it a
performance description language more than a symbolic prescriptive language (like the
score). In any case, the score features could be included in MIDI in the form of CCs, or
out-of-range notes, as commonly happens in virtual instruments with multiple articulations.
MusicXML or similar approaches may be difficult to integrate in popular music producers’
workflow, but innovative ways to harmonize them with MIDI could produce positive
results.

3.6. Relationship between emotional intention and expressive parameters

Much of the interest shown by people in music is due to the emotional dimension [71].
The research field that investigates music and emotion has seen a relevant and growing
interest in the last decades. An excellent general introduction to the topic was offered by
PN. Juslin and P. Laukka [72]. A relatively recent but deep review of the state of the art
was presented by T. Eerola and J K. Vuoskoski [73].

Before delving into more computational oriented approaches that focus on the relation
between music expressiveness and emotion, it seems appropriate to outline the essential
characteristics of general reflection on music and emotions.
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A first distinction to be made is the one between emotions expressed by the music
and identified by the listener, and music-inducted emotions (felt by the listener). A.
Gabrielsson observed that there is not necessarily a positive correlation between perceived
and felt emotions in music [74]. P. Evans and E. Schubert further investigated the possible
relationships between the emotional quality attributable to musical materials (expressed
emotion, called external locus of emotion) and the subjective emotional response to music
(felt emotion, called internal locus), describing the simple hypothesis of equality between
the two as overly simplistic [75]. Moreover, P.N. Juslin observed that emotions perceived
and expressed in music may be different from each other, and that not always does music
arouse an emotional response in the listener [71].

Of fundamental importance in any approach to the description of the relationship be-
tween emotion and music is the emotion model adopted. In [73] four models are proposed:
discrete model (all emotions can be derived from a limited set of basic emotions, usually
fear, anger, disgust, sadness, and happiness); dimensional model (frequently traceable
back to J. Russell’s circumplex model [76], still relevant today, where emotions can be
represented as a mixture of the core dimensions of valence and arousal, in a bidimensional
space); miscellaneous models (based on a collection of concepts such as preference, similar-
ity, tension); music specific models (that focus on emotions that are directly relevant for
music, while the other approaches are more general-purpose and may not be fully suited
to the music field).

Numerous (configurations of) music features have been linked in past studies to
the expression of discrete emotions (for example, fast tempo, major mode, simple and
consonant harmony, and ascending pitch are positively correlated with happiness) [71].
A. Gabrielsson published some of the the seminal papers concerning the relation between
parameters such as timing, dynamics, intonation and expressed emotion [77,78].

S.R. Livingstone and co-authors proposed a rule system based on the previous studies
about music parameters and expressed emotions, capable of modifying not only perfor-
mance parameters but also score indications according to the desired emotion [79].

R. Bresin and A. Friberg presented a synthesis approach to the topic: 20 performers
were asked to intervene on seven musical variables (tempo, sound level, articulation,
phrasing, register, timbre, and attack speed) simultaneously - and not, as it often happens,
one at a time - for communicating five different emotional intentions (neutral, happy, scary,
peaceful, sad). For each of the five emotions the mean values and ranges of the musical
variables are detected (see Figure 8). It is noted that these expressive parameters are not
dependent on the score to be played [80].
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Figure 8. Relation between register and expressed emotion (mean values and range) [80].

The ability of the KTH rule system and of Director Musices to produce virtual perfor-
mances that can be associated with different emotional states was investigated by R. Bresin
and A. Friberg [81].

Several musical cues were analyzed through systematic parameters variations with
respect to the emotion expressed by T. Eerola and co-authors: tempo, register, dynamics,
articulation, and timbre. The detected relevance of each cue corresponds to the order in
which they are listed above. Another finding is that the musical cues seem not to have
significant interactions; their contribution to the overall expressed emotion appears to be
based on simple linear combination [82].

The origins of these associations may be traced back to analogies with emotional
speech [83], to human movement [84], to personal and/or cultural associations.

For what concerns the induction of emotions, one of the seminal approaches is the
one of L.B. Meyer [46], which bases it on the creation and subsequent confirmation or
disruption of expectations, an approach later deepened and extended in E. Narmour’s
work [47]. PN. Juslin proposed a unified framework called BRECVEMA, that takes into
account eight emotion induction mechanisms, to be added to the cognitive one: brain
stem reflex (an emotion is evoked when one or more music parameters exceed a specific
threshold), rhythmic entrainment (the rhythm of the music influences some internal bodily
rhythm of the listener, e.g. the heart rate), evaluative conditioning (specific traits of the music
are associated with emotions because they were heard many times in specific contexts),
emotional contagion (the brain responds to specific music stimuli as if they were coming from
a human voice that expresses emotion, and mimics that emotion), visual imagery (music
stimulates imagery of bodily experiences with which it has something in common), episodic
memory (there’s a connection between the music and personal memories of the listener),
music expectancy (see above the Meyer approach), and aesthetic judgement (the evaluation of
the aesthetic value of the piece makes the listener feel an emotion) [85].

Probably, most of the research described above could find direct application in popular
music oriented EMP models or could be adapted for this purpose. Popular music seems
to be able to evoke and express emotions that are equally powerful to high-art (classical)
music, at least when only liked or loved pieces are taken into consideration [86]. Anyway,
although some research from different perspectives has been conducted on emotion and
popular music (see for example Y. Song and co-authors’ research [87]), the commitment is
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certainly much lower than what it has been done in the field of classical music [86]. Much
research is needed, but it could definitely be worth it.

3.7. Relationship between sensorial experiences and expressive parameters

The expressive intention of a performance can be traceable back also to the desire of
expressing sensorial perceptions. S. Canazza and co-authors asked a professional clarinet
player to play multiple times the same excerpt taken from the W.A. Mozart’s Clarinet
Concert in E Major (K622), once in a scholastic, normal way and the other times trying to
express the adjectives light, heavy, soft, hard, bright, dark. The recordings were analysed with
regard to time (correlated to amplitude and duration) and frequency (timbre) domains.
The data collected were then used to synthesize virtual performances aimed at expressing
the above adjectives. A panel of musicians correctly recognized the expressive intention of
the computational renditions [88]. In this work we can already see the bases on which the
CaRo system [18,89-91] would later be developed. CaRo will be addressed in detail below,
in Section 3.11.

In the pDM system, a real time sequencer integrated with the KTH rule system - see
Section 3.11, a virtual performance can be manipulated through a set of mappers that
translate high-level indications into rule parameters. Among them there are descriptive
adjectives such as hard, light, heavy or soft [92].

A. Friberg and J. Sundberg compared the stopping of running and the final ritar-
dando that marks the termination of a piece of music, noting that they present significant
similarities [93].

The association between sensorial or physical experiences and performance param-
eters could be of prime relevance in the development of popular music oriented EMP
systems. Within pop music production teams this kind of linguistic parallels seems to be
often used [94], and it could be more easily interpretable by producers and better convey
expressive intentions than other terminological families. More in-depth research on the
subject, whose surface has only been scratched by the academy, would certainly be valuable
to clarify the real scope of this approach to computational expressiveness applied to the
popular context.

3.8. Identification and modelling of the performative styles of real musicians

The study of a specific performer’s style can serve multiple purposes: automatic
artist recognition, quantitative analysis of the individual style of his/hers, creation of real
human-based expressive models.

Visualization and analysis of the performance style of famous artists is one of the
explicit objectives mentioned in the work of S. Dixon and co-authors [26].

Different weight distributions among the rules of the KTH system can be used to
represent different performers’ styles [43]. Director Musices, a software available for
GNU/Linux, Macintosh and Windows that implements most of the KTH rule system, was
used to try and reproduce a specific pianist’s expressive timing, with good but not optimal
results [95]. From the study it emerges that rule combinations have to change between
sections in order to better match the pianist’s actual deviations. In the above mentioned
hybridation of KTH rules and ANN [59], after a first step in which the ANN is trained to
emulate a selection of the KTH rules, a more complex version of the system, aware of the
local context (n — 1, n + 1 and n + 2 notes parameters contribute to the definition of the
parameters of the current note 7), is proposed to learn the playing style of a specific pianist.
In informal listening tests, better judgment were obtained by the ANN trained with the
real pianist, compared to the one trained with the KTH rules.

S.I. Giraldo and R. Ramirez worked on a machine learning system for performative
rules discovering and modeling of expressive jazz guitar performances [21,96]. The ML
approach to feature selection, rules discovering and performance modelling is suitable for
research applied to specific individual musicians.
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In C. Saunders and co-authors’ research tempo and loudness deviations of multi-
ple performers playing the same piece of music are translated into performance worms;
from there general performance alphabets can be derived, and the performances can be
represented as strings [97].

Generally speaking, Machine Learning techniques lend themselves well to the identifi-
cation of performers. That is the case, for example, of the contributions of E. Stamatatos
and G. Widmer [98] and of R. Ramirez and co-authors [99], respectively dedicated to piano
and saxophone performers automatic identification.

The attempt to imitate specific musicians, potentially very different from each other
by their nature, imposes an approach to the management of performative parameters that
tends to be more agnostic than what occurs in the general modeling of expressiveness in
specific stylistic or historical contexts. Therefore, we see no reason why the research already
carried out in the field of recognition and modeling of specific performers should not be
applicable also in the field of popular music, possibly with some minor adaptations.

3.9. Identification of physical and psychological limits of the performer

While on the one hand a lot of attention (see previous paragraphs) has been paid to
the observation of the deviations of the performers attributable to structural high level or
to local musical logics, to emotional rendering intentions, and to sensory references, on the
other hand little research was devoted to understanding the implications of biomechanical
constraints and internal processes of the musician in the implementation of expressive
music performance models, an approach - the latter - that has been called Performer-Based
Modelling [100]. L.L. Costalonga and co-authors observed that

physical manipulation of an instrument by the performer is often neglected in previous research
[100, pg. 332]

and that the data and evidences collected by the authors in this perspective

provide important insights for the development of Expressive Music Performance Models,
specifically for guitar performance. In our point of view, such comprehension is essential for better
proposing Digital Musical Instruments and EMP systems [...].

In fact, many studies have been carried out to better understand - among other perfor-
mance characteristics - motor control, hand dexterity, and timing precision in musicians
[101], but it is very rare to see the fallout from these studies on EMP modelling research.
The most common objectives in this kind of studies are, for example, the prevention of
injuries [102] or the study of optimal fingerings from the biomechanical point of view
[103,104].

One excellent exception is the above mentioned work of L.L. Costalonga and co-
authors [100], where biomechanical constraints, errors, noise generated, muscle strength,
speed and endurance are deeply investigated in relation to the guitar, with the declared
intention of producing data potentially useful for the development of EMP models.

Another work that we think could be particularly inspiring in an EMP development
perspective (although its declared objectives are not related to that) is the one by P. Visentin
and co-authors about the biomechanics of left-hand position changes (shifting) in violin
performance [105]. There, violinists” left hand position shifts are investigated, with specific
regard to EST (end of shift) and DOS (duration of shift) parameters, measured in millisec-
onds. It is demonstrated that each performer tends to develop a more or less fixed left
hand shifting time (given the space covered by the move is the same), independent of
the metronomic tempo and the specific context. This seems to partially contradict B.H.
Repp’s research [106], in which two pianists are analysed. The results suggest here that
while major (cognitively controlled) temporal and dynamic parameters of a performance
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change substantially in proportion with tempo, minor features tend to be determined by
tempo-independent motor constraints.

It is our opinion that Performer-Based Modelling could play a key-role in the future
development of EMP models, in particular if they were oriented to attempts at creating
computational models of real musicians. This could be particularly true in the popular
music EMP field, since from certain points of view the degree of freedom of the performer
is more limited there than what happens in western classical music, if only for the fact that
generally the timing of the performance is bound to a fixed metronomic tempo, or in any
case to drums and percussion parts. Some of the previous approaches to expressive timing
may not be fully applicable, resulting in the need to follow other strategies to investigate
and model performative expressiveness, and Performer-Based Modelling seems particularly
promising in this perspective.

3.10. Ensemble music modelling

As seen above, most of the computational EMP publications deals with solo - usually
piano - music. Only few steps regarding expressive ensemble performance have been taken
[107]. Among the very few approaches to the topic it can be cited the one of J. Sundberg
and co-authors [108], where an embryonic version of the soon to be KTH rule system
is proposed, together with a hardware/software system capable of receiving in input a
music score complemented with phrasing boundaries, harmonies, ties, etc., and returning
to output (through the Rulle software) an expressive rendition of the piece. Ensemble
synchronization and intonation issues are here taken into account. Perfect synchronization
between the notes belonging to different instruments but contemporaneous in the score was
better judged by a panel of musician than the competing synchronization solution, based
on the freedom of the various instruments, that anyway had to be perfectly in sync once
for each bar. The former approach provides that all the musical parts have to synchronize
each time to the most significant one (the one that executes the shortest note) for each note.
For what concerns the tuning, a general preference for the equal temperament over other
solutions is detected.

The modest attention paid by research to expressiveness in the context of ensemble
performance represents a strong limitation in the field of contemporary popular music
production, where generally more instruments and voices are present at the same time.
Any approach to computational expressiveness must be context-sensitive here, and the
deviations produced cannot be thought of as if the instrument of interest operated alone.

3.11. Conductor systems

Solutions that involve meaningful user interaction are categorized as conductor sys-
tems. In conductor systems the user can apply, either asynchronously or in real-time,
changes to the expressive rendering of the musical piece. Two aspects are frequently high-
lighted in conductor systems research: the capability for users without specific musical
training to interact with music, focusing on the creative dimension [91], and the possibility
for the user of concentrating on the expressive component of the music, without having to
worry about the technical difficulties inherent in playing musical instruments [109].

The association between conductor systems and traditional orchestra conducting
inspired some of the earlier research in this area. In M.V. Mathews and J. Lawson work
a radio baton capable of controlling expressive parameters of a synthesizer (timing and
dynamics) through the dedicated software Conductor is presented [109-111]. Another
example of virtual orchestra conduction system is E. Lee and co-authors” one [112], based
on the recognition of baton gestures and associated time-stretching on the audiovisual
recording of a performing orchestra (see Figure 9). A more recent implementation of virtual
orchestral conduction was proposed by T. Baba and co-authors [113].
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WAITING
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START for baton movement
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players tune their
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baton movement controls the
orchestra’s tempo and volume

Figure 9. State machine for You're the conductor [112].

In [114] M.V. Mathews and co-authors suggested an integration between Conductor
software and Director Musices. A real time extension in Pure Data language of Director
Musices is presented by A. Friberg and co-authors in [115]. Also correlated to the KTH rule
system is the already mentioned work of R. Bresin [59], where the user can interact with the
system directly providing input data to the ANN or acting on some of the rules involved in
the model. R. Bresin also proposed a system for the real time control of pDM parameters
[92]. The system provides for the visual recognition of human gestures, used to control
music parameters at three possible abstraction levels: listener level - the controlling activity
is based on basic emotions (happy, sad, angry); simple conductor level - basic overall
musical features are controlled using the energy-kinematics space or similar solutions;
advanced conductor level - level 1 and 2 are combined with the explicit control of each beat.
In [116] S. Canazza and co-authors proposed an integration between the KTH rule system
and the expressiveness model and two-dimensional real-time control space developed at
the CSC (Centro di Sonologia Computazionale) of the University of Padua (see below).

Of particular relevance is the CaRo system [18,89,90]. The system is based on the
idea that there are two main sources for musical expression: structure of the piece (see
subsection 3.3) and expressive intention (e.g. bright, dark, hard, see subsection 3.7). Asking
professional musicians to play the same melody in a neutral, scholastic way, and with a
definite set of expressive intentions, it is possible to estimate how performing parameters
(e.g. intensity, legato, attack duration, brightness) are affected by the expressive intention of
the musician. For each expressive parameter and each expressive intention two parameters
are extracted: k (associated with the mean value) and m (the range of the values, affecting
the variance). The factor loadings obtained from factor analysis (with a two dimension
solution) are then used as coordinates capable of describing the expressive parameters of
the performances in a two-dimensional space. Reversing the process, the two-dimensional
space can be used to control the expressive intention of neutral performances (see Figure
10). The CaRo system can operate directly on audio signals, but also on MIDI data. Years
after the initial release, the CaRo system was adapted to work in a Web 2.0 environment
[91].
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Figure 10. The control space movements and the corresponding intensity parameter trend in CaRo
[90].

In [117], S. Dixon and co-authors resumed the metaphor of the performance worm
[25,26], inverting it, so that tempo and loudness can be controlled in real time by the
user. This can be done using hand movements and a digital theremin (Air Worm), or the
computer mouse (Mouse Worm). In the same contribution the Air Tapper and Mouse
Tapper systems are also presented. These can be traced back to the more traditional control
of the metronomic tempo, through hand gestures or use of the mouse.

Generally speaking, conductor systems seem to be of great interest from the point
of view of the possible applications in the field of popular music production. Given that
in popular music the metronomic tempo is generally tied to a steady beat, or to drums
and percussions parts, direct control of the same (like in virtual orchestra conduction
solution) appears to be of little relevance here. On the other hand, the control of the
loudness parameter, or of the high level expressive intention of the performance (sensorial
or emotional terms were used in scientific literature, but their appropriateness in the pop
world should be verified) should be more relevant.

3.12. Table summary

Within the following table the main features of the most relevant EMP systems re-
viewed are summarized. In the first cell on the left, after the recall of the research line and
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the references, a color coded indication of the thematic areas covered is provided. The
correspondences are the following:

e  Visual representation: -

e  Structure based expressiveness: -

e  Local based expressiveness: Loc

e  Score markings: -

e  Emotion: -

e  Sensorial experience: -

e Identification and modelling of performers: Per
e  Physical and psychological limits: | Lim

e  Ensemble modelling: | Ens

e  Conductor systems: Con
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References Technologies User interaction Main goal(s)
KTH rule system Interaction with the ANN [59], or f]j:il:ji‘;e izrrligsrl:tion
[43,59,81,95,108,115,118] [ il Rules, ANN [59] Director Musices and pDM P 8 ’

- Loc - Per Con

LNM and NBM [65-68] Loc

Performance worm
[24-26,117) NS

Tonal tension in expressive

piano performance [49] -
Loc

CaRo and CaRo 2.0 |18,89—91]

Con Loc

SYVARs [44,55-57] Loc

This time with feeling [23]
Loc

Expert system [58] Loc

ML approach to jazz guitar
solos [21,96,119] Loc 'Lim

Rule system for modifying
score and performance to

express emotions [79] Loc

ESP [40] |88 Loc

Gaussian process regression
[60] Loc

YQX [47] Loc

Laminae [62,63] Loc

Maximum entropy [64] Loc

Linear weighted combination
of parameters [65,66], FFNN
RNN LSTM [67,68,70]

MIR through analysis of MIDI
or audio data

RNN LSTM

Statistical analysis (principal
component)

Statistical research of
regularities

LSTM

Analysis by synthesis rule
based expert system

ML ANN, decision trees,
SVM, feature selection

Rules

Hierarchical Hidden Markov
Model (HHMM)

Gaussian process ML

Bayesian networks

Tree-based clustering,
Gaussian distributions

Maximum entropy

applications [95,115,118]

Tempo and loudness control
using hand gestures or PC
mouse [117]

Real-time interaction through
an abstract two-dimensional
control space

modelling of real performers
or music performing styles

Modelling of the influence of
explicit score markings on
expressive parameters. Music
expectations consedered in
[70]

Real time graphical
representation of tempo and
loudness, user control of
tempo and loudness

Expressive music
performances generation
based on the analysis of tonal
tensions

Graphical description of
performances, generation of
expressive music
performances starting from
neutral ones, through user
interaction

Find and validate systematic
expressive variations in
specific contexts

Generation of solo piano
musical parts and their
expressive performance at the
same time

Rendition of expressive
performances of Bach’s fugues

Discover of rules for
expressive performance in
jazz guitar and expressive

models creation through ML
techniques

Express emotions modifying
not only performance
parameters but also score ones

Expressive performance
generation based on the score
structure

Expressive performance
generation

Expressive performance
generation

Expressive performance
generation

Expressive performance
generation given a specific
musical style

reprints202212.0494.v1
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4. Conclusions

In this paper we briefly presented the tools available today to modern popular music
producers that can help in building an expressive virtual music performance. We noticed
that, although powerful tools for synthesis and sound sampling are commercially available,
and although there is the possibility to freely vary many of the most relevant expressive
parameters, what is missing is the ability to automatically process musical parts provided
by the producer - potentially time-quantized and fixed-velocity ones - making them expres-
sive, acting automatically on tone parameters of the virtual instrument, time and loudness
deviations, articulation, embellishments, or even errors and noise traceable back to per-
former’s constraints, all of that possibly in a context-aware manner. In the second part of
the paper we conducted a reasoned review of the scientific literature dedicated to the EMP
sector, evaluated from the point of view of its potential impact on contemporary popular
music production. What emerged is that more than one research line could prove useful in
helping modern producers. Graphical representations of expressive parameters can help in
the understanding of expression dynamics that may be hard to catch otherwise by a human
observer, and of analogies and differences between musical expressiveness in popular
music and in other contexts. Much attention has been paid in EMP research to the relation
between structure and expressiveness. Part of this research could probably be adapted and
applied to popular music, but more investigation is needed before being able to draw any
conclusions. Automatic structure identification solutions not based on classical tonality
seem to be promising with regard to pop music. Much more relevant in view of possible
applications to pop music is the local expressiveness approach. Generally speaking, the
data driven solutions introduced could all find applications in pop music. The same can
be told about identification and modelling of the performative styles of real musicians.
The emotional intention and sensorial parallelisms related research could find positive
applications in popular music, but first of all it would be necessary to better clarify the
role of these associations in pop, also from the production practise, psychological, cultural,
linguistic and anthropological points of view. The identification of physical and psycholog-
ical limits of the performer is a topic not particularly well-trodden in EMP research. What
has already been done can be of great significance in pop music applications, and more
research in the field would be highly desirable. The same can be said about expressive
ensemble modelling. Conductor systems are of prime relevance here, because they offer
several examples of how it is possible to decline the control of performative expressiveness.
The score markings interpretation topic could be included in conductor systems, as a kind
of offline conduction tool.

The main reasons because of which past EMP studies outcomes often cannot be di-
rectly applied, or at least not before being rethought and adapted, to the typical workflow
of a modern music producer, are:

e most of the times the reference repertoire is the classical eurocultural one, which
presumably may be subject to different rules and practices than popular music. This
seems to be confirmed by the fact that similarities and differences between machine
learning induced rules in expressive jazz guitar and rules reported in the literature
were found [21];

e the role of music scores is also profoundly different between the classical and pop-
ular contexts. While in classical music the performer offers an interpretation of the
composer’s intention (given through the score written by the latter), in popular music
there can be many different situations. Musical parts can be improvised, or there
can be only chord charts or lead sheets, which respectively show only the harmonic
skeleton or the reference melody, which can be embellished and modified even in
depth during the performance. Anyway;, if we take into account the declared objective
of this contribution, that is to understand which research products could be useful to
the contemporary producer in conferring expressiveness to pre-defined parts, and not
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in the automatic generation of new parts, it is possible to leave out the specific case of
free improvisation. As for the relationship and alignment between real performance
and lead sheet, the topic was dealt with in relation to jazz guitar by S.I. Giraldo and R.
Ramirez [96,119];

e  while musical expression is partly instrument-specific, most of the past research deals
with classical solo piano [22];

e inart music and particularly in classical music artists have a lot of freedom to express
their individuality [26], while in popular music production there tend to be more con-
straints, if only for the fact that often the pieces are recorded with constant metronome
tempo;

e  while usually in modern popular music there are many instruments and vocal parts
played or sung at the same time, many past studies on EMP deal with solo instruments
(notably solo piano), that for obvious reasons have greater freedom of expression, in
particular with respect to tempo and timing.

In conclusion, it is our hope that in the future studies on musical expression will
involve more the field of popular music. Part of what has been done in computational
EMP can be directly applied or adapted to this specific context, but much remains to be
done. This need is justified not only by an expansion of the academic understanding of
the phenomenon of musical expressiveness, but also by the possible positive effects in the
daily work of popular producers and by potential commercial applications.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network

CC Continuous Controller/Control Change
DAW Digital Audio Workstation

DOS Duration Of Shift)

EMP Expressive Music Performance
EQ EQualization
EST End of ShifT

FFNN Feed Forward Neural Network
HHMM  Hierarchical Hidden Markov model
HPF Hi Pass Filter

LBM Linear Basis Model

LSTM Long Short Term Memory

MIR Music Information Retrieval
ML Machine Learning

MPE Midi Polyphonic Expression
NBM Non linear Basis Model

RNN Recurrent Neural Network
SVM Support Vector Machine
SYVAR  SYstematic VARiations

References

1. Juslin, PN.; Friberg, A.; Bresin, R. Toward a computational model of expression in music performance: the GERM model. Musicae
Scientige 2001, 5, 63-122. https://doi.org/10.1177/102986490200505104.


https://doi.org/10.1177/10298649020050S104
https://doi.org/10.20944/preprints202212.0494.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 December 2022 d0i:10.20944/preprints202212.0494.v1

26 of 30

2. Cancino-Chacén, C.E.; Grachten, M.; Goebl, W.; Widmer, G. Computational models of expressive music performance: a
comprehensive and critical review. Frontiers in Digital Humanities 2018, 5. https://doi.org/10.3389/fdigh.2018.00025.

3.  Moir, Z.; Medboe, H. Reframing popular music composition as performance-centred practice. Journal of Music, Technology &
Education 2015, 8, 147-161. https://doi.org/10.1386/jmte.8.2.147_1.

4. Dibben, N. Understanding performance expression in popular music recordings. Expressiveness in music performance: Empirical

approaches across styles and cultures 2014, pp. 117-132. https://doi.org/10.1093 /acprof:oso/9780199659647.003.0007.

Collins, M. A professional guide to audio plug-ins and virtual instruments; Routledge, 2012.

Owsinski, B.; Hal Leonard, 2016.

Marrington, M.; et al. Composing with the digital audio workstation. The singer-songwriter handbook 2017, pp. 77-89.

Yun, Y.; Cha, S.H. Designing virtual instruments for computer music. International Journal of Multimedia and Ubiquitous Engineering

2013, 8,173-178. https:/ /doi.org/http:/ /dx.doi.org/10.14257 /ijmue.2013.8.5.16.

9.  Tanev, G.; Bozinovski, A. Virtual Studio Technology inside music production. In Proceedings of the ICT Innovations 2013;
Trajkovik, V.; Anastas, M., Eds.; Springer: Heidelberg, 2014; pp. 231-241. https://doi.org/10.1007/978-3-319-01466-1_22.

10. Moog, B. MIDL. Journal of Audio Engineering Society 1986, 34.

11. Hennig, H.; Fleischmann, R.; Fredebohm, A.; Hagmayer, Y.; Nagler, J.; Witt, A.; Theis, E]J.; Geisel, T. The nature and perception of
fluctuations in human musical rhythms. PloS one 2011, 6, €26457. https://doi.org/10.1371/journal.pone.0026457.

12.  Organic mixdowns. Computer Music 2015.

13.  Walden, J. UJAM Virtual Bassist: Royal, Mellow & Rowdy. Sound On Sound 2019, 34, 128-130.

14. Tzanetakis, G. Natural human-computer interaction with musical instruments. In Digital Tools for Computer Music Production
and Distribution; Politis, D.; Miltiadis, T.; Ioannis, I., Eds.; IGI Global: Hershey, PA, 2016; chapter 6, pp. 116-136. https:
/ /doi.org/10.4018/978-1-5225-0264-7.ch006.

15. Fasciani, S.; Goode, J. 20 NIMEs: twenty years of new interfaces for musical expression. In Proceedings of the Proceedings of the
International Conference on New Interfaces for Musical Expression (NIME); , 2021. https://doi.org/10.21428 /92fbeb44.b368bcd5.

16. Gabrielsson, A. Music performance research at the millennium. Psychology of Music 2003, 31, 221-272. https://doi.org/10.1177/
03057356030313002.

17. Widmer, G.; Goebl, W. Computational models of expressive music performance: the state of the art. Journal of New Music Research
2004, 33, 203-216. https://doi.org/10.1080/0929821042000317804.

18. De Poli, G. Expressiveness in music performance. In Algorithms for Sound and Music Computing; 2018.

19. Kirke, A.; Miranda, E.R. A survey of computer systems for expressive music performance. ACM Computing Surveys 2009, 42, 1-41.
https://doi.org/10.1145/1592451.1592454.

20. Delgado, M.; Fajardo, W.; Molina-Solana, M. A state of the art on computational music performance. Expert Systems with
Applications 2011, 38, 155-160. https://doi.org/https://doi.org/10.1016/j.eswa.2010.06.033.

21. Giraldo, S.; Ramirez, R. A machine learning approach to ornamentation modeling and synthesis in jazz guitar. Journal of
Mathematics and Music 2016, 10, 107-126. https://doi.org/10.1080/17459737.2016.1207814.

22. Raphael, C. Symbolic and structural representation of melodic expression. Journal of New Music Research 2010, 39, 245-251.
https://doi.org/10.1080/09298215.2010.512978.

23.  Oore, S.; Simon, I.; Dieleman, S.; Eck, D.; Simonyan, K. This time with feeling: learning expressive musical performance. Neural
Computing and Applications 2020, 32, 955-967. https://doi.org/10.1007/s00521-018-3758-9.

24. Langner, ].; Goebl, W. Representing expressive performance in tempo-loudness space. In Proceedings of the ESCOM Conference
on Musical Creativity, 2002, pp. 5-8.

25. Dixon, S.; Goebl, W.; Widmer, G. The performance worm: real time visualisation of expression based on Langner’s tempo-
loudness animation. In Proceedings of the Proceedings of the International Computer Music Conference (ICMC). Michigan
Publishing, 2002.

26. Dixon, S.; Goebl, W.; Widmer, G. Real time tracking and visualisation of musical expression. In Proceedings of the International
Conference on Music and Artificial Intelligence (ICMAI). Springer, 2002, pp. 58-68. https://doi.org/10.1007 /3-540-45722-4_7.

27. Stanyek, J. Forum on transcription. Twentieth-Century Music 2014, 11, 101-161. https://doi.org/10.1017/51478572214000024.

28. Dannenberg, R.B. Music representation issues, techniques, and systems. Computer Music Journal 1993, 17, 20-30. https:
//doi.org/10.2307 /3680940.

29. Drabkin, W. Motif [motive]. https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001
/0omo-9781561592630-e-0000019221#0mo-9781561592630-e-0000019221, 2001. Accessed: 2022-06-05.

30. Phrase. https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001 /omo-978156159263
0-e-0000021599, 2001. Accessed: 2022-06-05.

31. Ratner, L.G. Period. https://www.oxfordmusiconline.com/grovemusic/view /10.1093/gmo/9781561592630.001.0001 /omo-9781
561592630-e-0000021337#0mo-9781561592630-e-0000021337, 2001. Accessed: 2022-06-05.

32. Palmer, C. Music performance. Annual Review of Psychology 1997, 48, 115-138. https://doi.org/10.1146 /annurev.psych.48.1.115.

33. Clarke, E.F. Generative principles in music performance. In Generative Processes in Music: The Psychology of Performance,
Improvisation, and Composition; Sloboda, J., Ed.; Clarendon Press/Oxford University Press, 2001; pp. 1-26. https://doi.org/10.109
3/acprof:0s0/9780198508465.003.0001.

34. Lerdahl, F; Jackendoff, R. A generative theory of tonal music; The MIT Press, 1983.

® N U


https://doi.org/10.3389/fdigh.2018.00025
https://doi.org/10.1386/jmte.8.2.147_1
https://doi.org/10.1093/acprof:oso/9780199659647.003.0007
https://doi.org/http://dx.doi.org/10.14257/ijmue.2013.8.5.16
https://doi.org/10.1007/978-3-319-01466-1_22
https://doi.org/10.1371/journal.pone.0026457
https://doi.org/10.4018/978-1-5225-0264-7.ch006
https://doi.org/10.4018/978-1-5225-0264-7.ch006
https://doi.org/10.21428/92fbeb44.b368bcd5
https://doi.org/10.1177/03057356030313002
https://doi.org/10.1177/03057356030313002
https://doi.org/10.1080/0929821042000317804
https://doi.org/10.1145/1592451.1592454
https://doi.org/https://doi.org/10.1016/j.eswa.2010.06.033
https://doi.org/10.1080/17459737.2016.1207814
https://doi.org/10.1080/09298215.2010.512978
https://doi.org/10.1007/s00521-018-3758-9
https://doi.org/10.1007/3-540-45722-4_7
https://doi.org/10.1017/S1478572214000024
https://doi.org/10.2307/3680940
https://doi.org/10.2307/3680940
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000019221#omo-9781561592630-e-0000019221
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000019221#omo-9781561592630-e-0000019221
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000021599
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000021599
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000021337#omo-9781561592630-e-0000021337
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000021337#omo-9781561592630-e-0000021337
https://doi.org/10.1146/annurev.psych.48.1.115
https://doi.org/10.1093/acprof:oso/9780198508465.003.0001
https://doi.org/10.1093/acprof:oso/9780198508465.003.0001
https://doi.org/10.20944/preprints202212.0494.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 December 2022 d0i:10.20944/preprints202212.0494.v1

27 of 30

35. Todd, N. A model of expressive timing in tonal music. Music Perception: an Interdisciplinary Journal 1985, 3, 33-57. https:
//doi.org/10.2307 /40285321.

36. Todd, N. A computational model of rubato. Contemporary Music Review 1989, 3, 69-88. https:/ /doi.org/10.1080/07494468900640
061.

37. McAngus Todd, N.P. The dynamics of dynamics: a model of musical expression. The Journal of the Acoustical Society of America
1992, 91, 3540-3550. https://doi.org/10.1121/1.402843.

38.  Windsor, W.L.; Clarke, E.F. Expressive timing and dynamics in real and artificial musical performances: using an algorithm as an
analytical tool. Music Perception 1997, 15, 127-152. https://doi.org/10.2307 /40285746.

39. Clarke, E.F; Windsor, W.L. Real and simulated expression: a listening study. Music Perception 2000, 17, 277-313. https:
//doi.org/10.2307 /40285819.

40. Grindlay, G.; Helmbold, D. Modeling, analyzing, and synthesizing expressive piano performance with graphical models. Machine
learning 2006, 65, 361-387. https:/ /doi.org/10.1007 /s10994-006-8751-3.

41. Widmer, G.; Tobudic, A. Playing Mozart by analogy: learning multi-level timing and dynamics strategies. Journal of New Music
Research 2003, 32, 259-268. https:/ /doi.org/10.1076 /jnmr.32.3.259.16860.

42.  Widmer, G. Discovering simple rules in complex data: A meta-learning algorithm and some surprising musical discoveries.
Artificial Intelligence 2003, 146, 129-148. https:/ /doi.org/10.1016/50004-3702(03)00016-X.

43. Friberg, A ; Bresin, R.; Sundberg, J. Overview of the KTH rule system for musical performance. Advances in cognitive psychology
2006, 2, 145-161. https://doi.org/10.2478/v10053-008-0052-x.

44. Gabrielsson, A. Interplay between analysis and synthesis in studies of music performance and music experience. Music Perception
1985, 3, 59-86. https:/ /doi.org/10.2307/40285322.

45. Carnovalini, F; Roda, A. A multilayered approach to automatic music generation and expressive performance. In Proceedings of
the International Workshop on Multilayer Music Representation and Processing (MMRP), 2019, pp. 41-48. https://doi.org/10.1
109/MMRP.2019.00016.

46. Meyer, L.B. Emotion and meaning in music; University of Chicago Press, 1956.

47. Narmour, E. The analysis and cognition of basic melodic structures: the implication-realization model.; University of Chicago Press, 1990.

48. Herremans, D.; Chew, E. Tension ribbons: quantifying and visualising tonal tension. In Proceedings of the Proceedings of the
International Conference on Technologies for Music Notation and Representation (TENOR); Hoadley, R.; Nash, C.; Fober, D.,
Eds.; Anglia Ruskin University: Cambridge, UK, 2016; pp. 8-18.

49. Cancino-Chacén, C.; Grachten, M. A computational study of the role of tonal tension in expressive piano performance. arXiv
preprint 2018. https://doi.org/10.48550/arXiv.1807.01080.

50. Tagg, P. Everyday Tonality Il — Towards a tonal theory of what most people hear; Mass Media Scholars Press, 2018.

51. Marsden, A. Schenkerian analysis by computer: a proof of concept. Journal of New Music Research 2010, 39, 269-289. https:
//doi.org/10.1080/09298215.2010.503898.

52. Hamanaka, M.; Hirata, K; Tojo, S. Implementing “A generative theory of tonal music”. Journal of New Music Research 2006,
35,249-277. https:/ /doi.org/10.1080/09298210701563238.

53. Orio, N.; Roda, A. A measure of melodic similarity based on a graph representation of the music structure. In Proceedings
of the Proceedings of the International Society for Music Information Retrieval Conference (ISMIR), 2009, pp. 543-548. https:
/ /doi.org/10.5281/zenodo.1415010.

54. Simonetta, F; Carnovalini, F; Orio, N.; Roda, A. Symbolic music similarity through a graph-based representation. In
Proceedings of the Proceedings of the Audio Mostly Conference on Sound in Immersion and Emotion, 2018, pp. 1-7. https:
//doi.org/10.1145/3243274.3243301.

55.  Gabrielsson, A. Performance of rhythm patterns. Scandinavian Journal of Psychology 1974, 15, 63-72. https://doi.org/10.1111/j.14
67-9450.1974.tb00557 .x.

56. Gabrielsson, A. Performance and training of musical rhythm. Psychology of Music - Special Issue 1982, pp. 42—-46.

57. Gabrielsson, A.; Bengtsson, I.; Gabrielsson, B. Performance of musical rhythm in 3/4 and 6/8 meter. Scandinavian Journal of
Psychology 1983, 24, 193-213. https://doi.org/10.1111/j.1467-9450.1983.tb00491.x.

58. Johnson, M.L. Toward an expert system for expressive musical performance. Computer 1991, 24, 30-34. https://doi.org/10.1109/
2.84832.

59. Bresin, R. Artificial neural networks based models for automatic performance of musical scores. Journal of New Music Research
1998, 27, 239-270. https://doi.org/10.1080/09298219808570748.

60. Teramura, K.; Okuma, H.; Taniguchi, Y.; Makimoto, S.; Maeda, S.i. Gaussian process regression for rendering music performance.
Proceedings of International Conference on Music Perception and Cognition (ICMPC) 2008, pp. 167-172.

61. Flossmann, S.; Grachten, M.; Widmer, G. Expressive performance rendering with probabilistic models. In Guide to Computing for
Expressive Music Performance; Springer, 2013; pp. 75-98. https://doi.org/10.1007/978-1-4471-4123-5_3.

62. Okumura, K.; Sako, S.; Kitamura, T. Stochastic modeling of a musical performance with expressive representations from the
musical score. In Proceedings of the Proceedings of the International Society for Music Information Retrieval Conference (ISMIR),
2011, pp. 531-536.


https://doi.org/10.2307/40285321
https://doi.org/10.2307/40285321
https://doi.org/10.1080/07494468900640061
https://doi.org/10.1080/07494468900640061
https://doi.org/10.1121/1.402843
https://doi.org/10.2307/40285746
https://doi.org/10.2307/40285819
https://doi.org/10.2307/40285819
https://doi.org/10.1007/s10994-006-8751-3
https://doi.org/10.1076/jnmr.32.3.259.16860
https://doi.org/10.1016/S0004-3702(03)00016-X
https://doi.org/10.2478/v10053-008-0052-x
https://doi.org/10.2307/40285322
https://doi.org/10.1109/MMRP.2019.00016
https://doi.org/10.1109/MMRP.2019.00016
https://doi.org/10.48550/arXiv.1807.01080
https://doi.org/10.1080/09298215.2010.503898
https://doi.org/10.1080/09298215.2010.503898
https://doi.org/10.1080/09298210701563238
https://doi.org/10.5281/zenodo.1415010
https://doi.org/10.5281/zenodo.1415010
https://doi.org/10.1145/3243274.3243301
https://doi.org/10.1145/3243274.3243301
https://doi.org/10.1111/j.1467-9450.1974.tb00557.x
https://doi.org/10.1111/j.1467-9450.1974.tb00557.x
https://doi.org/10.1111/j.1467-9450.1983.tb00491.x
https://doi.org/10.1109/2.84832
https://doi.org/10.1109/2.84832
https://doi.org/10.1080/09298219808570748
https://doi.org/10.1007/978-1-4471-4123-5_3
https://doi.org/10.20944/preprints202212.0494.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 December 2022 d0i:10.20944/preprints202212.0494.v1

28 of 30

63. Okumura, K;; Sako, S.; Kitamura, T. Laminae: a stochastic modeling-based autonomous performance rendering system that
elucidates performer characteristics. In Proceedings of the Proceedings of the International Computer Music Conference (ICMC),
2014.

64. Moulieras, S.; Pachet, F. Maximum entropy models for generation of expressive music. arXiv preprint arXiv:1610.03606 2016.
https://doi.org/10.48550/arXiv.1610.03606.

65. Grachten, M.; Widmer, G. Linear basis models for prediction and analysis of musical expression. Journal of New Music Research
2012, 41, 311-322. https://doi.org/10.1080/09298215.2012.731071.

66. Grachten, M.; Cancino Chacén, C.E.; Widmer, G. Analysis and prediction of expressive dynamics using Bayesian linear models.
In Proceedings of the Proceedings of the 1st International Workshop on Computer and Robotic Systems for Automatic Music
Performance, 2014, pp. 545-552.

67. Cancino Chacén, C.E.; Grachten, M. An evaluation of score descriptors combined with non-linear models of expressive dynamics
in music. In Proceedings of the Proceedings of the 18th International Conference on Discovery Science (DS); Springer: Banff,
Canada, 2015. https://doi.org/10.1007/978-3-319-24282-8_6.

68. Cancino-Chacén, C.E.; Gadermaier, T.; Widmer, G.; Grachten, M. An evaluation of linear and non-linear models of expressive
dynamics in classical piano and symphonic music. Machine Learning 2017, 106, 887-909. https://doi.org/10.1007/510994-017-563
1-y.

69. Graves, A. Generating sequences with recurrent neural networks, 2013. https://doi.org/10.48550/arXiv.1308.0850.

70. Cancino-Chacén, C.; Grachten, M.; Sears, D.R.; Widmer, G. What were you expecting? Using expectancy features to predict
expressive performances of classical piano music. arXiv preprint 2017. https://doi.org/10.48550/arXiv.1709.03629.

71. Juslin, PN.; Laukka, P. Expression, perception, and induction of musical emotions: a review and a questionnaire study of
everyday listening. Journal of New Music Research 2004, 33, 217-238. https:/ /doi.org/10.1080/0929821042000317813.

72.  Juslin, PN,; Sloboda, J. Handbook of music and emotion: theory, research, applications; Oxford University Press, 2011. https:
/ /doi.org/10.1093 /acprof:0so0/9780199230143.001.0001.

73. Eerola, T.; Vuoskoski, ].K. A review of music and emotion studies: approaches, emotion models, and stimuli. Music Perception
2013, 30, 307-340. https://doi.org/10.1525/mp.2012.30.3.307.

74. Gabrielsson, A. Emotion perceived and emotion felt: same or different? Musicae Scientiae 2001, 5, 123-147. https://doi.org/10.1
177 /102986490200505105.

75. Evans, P; Schubert, E. Relationships between expressed and felt emotions in music. Musicae Scientiae 2008, 12, 75-99. https:
//doi.org/10.1177/102986490801200105.

76. Russell, J.A. A circumplex model of affect. Journal of Personality and Social Psychology 1980, 39, 1161. https://doi.org/10.1037 /h0
077714.

77. Gabrielsson, A. Intention and emotional expression in music performance. In Proceedings of the Proceedings of the Stockholm
Music Acoustics Conference (SMAC), 1993, pp. 108-111.

78. Gabrielsson, A. Expressive intention and performance. In Music and the Mind Machine; Springer, 1995; pp. 35-47. https:
//doi.org/10.1007 /978-3-642-79327-1_4.

79. Livingstone, S.R.; Muhlberger, R.; Brown, A.R.; Thompson, W.F. Changing musical emotion: a computational rule system for
modifying score and performance. Computer Music Journal 2010, 34, 41-64. https://doi.org/10.1162/comj.2010.34.1.41.

80. Bresin, R.; Friberg, A. Emotion rendering in music: range and characteristic values of seven musical variables. Cortex 2011,
47,1068-1081. https://doi.org/10.1016/j.cortex.2011.05.009.

81. Bresin, R.; Friberg, A. Emotional coloring of computer-controlled music performances. Computer Music Journal 2000, 24, 44-63.
https://doi.org/10.1162/014892600559515.

82. Eerola, T.; Friberg, A.; Bresin, R. Emotional expression in music: contribution, linearity, and additivity of primary musical cues.
Frontiers in pPsychology 2013, 4. https://doi.org/10.3389/fpsyg.2013.00487.

83. Bhatara, A.; Laukka, P; Levitin, D.J. Expression of emotion in music and vocal communication: Introduction to the research topic,
2014. https://doi.org/10.3389/fpsyg.2014.00399.

84. Sievers, B.; Polansky, L.; Casey, M.; Wheatley, T. Music and movement share a dynamic structure that supports universal
expressions of emotion. Proceedings of the National Academy of Sciences 2013, 110, 70-75. https:/ /doi.org/10.1073 /pnas.1209023110.

85. Juslin, PN. Emotional reactions to music. The Oxford handbook of music psychology 2014, pp. 197-213. https://doi.org/10.1093/
oxfordhb/9780198722946.013.17.

86. Schubert, E. Emotion in popular music: a psychological perspective. Volume! La revue des musiques populaires 2013, 1, 265-266.
https:/ /doi.org/10.4000/volume.3626.

87. Song, Y,; Dixon, S.; Pearce, M.T.; Halpern, A.R. Perceived and induced emotion responses to popular music: categorical and
dimensional models. Music Perception: an Interdisciplinary Journal 2016, 33, 472-492. https://doi.org/10.1525/mp.2016.33.4.472.

88. Canazza, S.; Poli, G.D.; Rinaldin, S.; Vidolin, A. Sonological analysis of clarinet expressivity. In Proceedings of the Joint
International Conference on Cognitive and Systematic Musicology. Springer, 1996, pp. 431-440. https://doi.org/10.1007 /BFb003
4131.

89. Canazza, S.; Poli, G.; Roda, A.; Vidolin, A. An abstract control space for communication of sensory expressive intentions in music
performance. Journal of New Music Research 2003, 32, 281-294. https://doi.org/10.1076/jnmr.32.3.281.16862.


https://doi.org/10.48550/arXiv.1610.03606
https://doi.org/10.1080/09298215.2012.731071
https://doi.org/10.1007/978-3-319-24282-8_6
https://doi.org/10.1007/s10994-017-5631-y
https://doi.org/10.1007/s10994-017-5631-y
https://doi.org/10.48550/arXiv.1308.0850
https://doi.org/10.48550/arXiv.1709.03629
https://doi.org/10.1080/0929821042000317813
https://doi.org/10.1093/acprof:oso/9780199230143.001.0001
https://doi.org/10.1093/acprof:oso/9780199230143.001.0001
https://doi.org/10.1525/mp.2012.30.3.307
https://doi.org/10.1177/10298649020050S105
https://doi.org/10.1177/10298649020050S105
https://doi.org/10.1177/102986490801200105
https://doi.org/10.1177/102986490801200105
https://doi.org/10.1037/h0077714
https://doi.org/10.1037/h0077714
https://doi.org/10.1007/978-3-642-79327-1_4
https://doi.org/10.1007/978-3-642-79327-1_4
https://doi.org/10.1162/comj.2010.34.1.41
https://doi.org/10.1016/j.cortex.2011.05.009
https://doi.org/10.1162/014892600559515
https://doi.org/10.3389/fpsyg.2013.00487
https://doi.org/10.3389/fpsyg.2014.00399
https://doi.org/10.1073/pnas.1209023110
https://doi.org/10.1093/oxfordhb/9780198722946.013.17
https://doi.org/10.1093/oxfordhb/9780198722946.013.17
https://doi.org/10.4000/volume.3626
https://doi.org/10.1525/mp.2016.33.4.472
https://doi.org/10.1007/BFb0034131
https://doi.org/10.1007/BFb0034131
https://doi.org/10.1076/jnmr.32.3.281.16862
https://doi.org/10.20944/preprints202212.0494.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 December 2022 d0i:10.20944/preprints202212.0494.v1

29 of 30

90. Canazza,S.; De Poli, G.; Drioli, C.; Roda, A.; Vidolin, A. Modeling and control of expressiveness in music performance. Proceedings
of the IEEE 2004, 92, 686-701. https://doi.org/10.1109/JPROC.2004.825889.

91. Canazza, S.; De Poli, G.; Roda, A. Caro 2.0: an interactive system for expressive music rendering. Advances in Human-Computer
Interaction 2015, 2015. https://doi.org/10.1155/2015/850474.

92. Friberg, A. Home conducting-control the overall musical expression with gestures. In Proceedings of the Proceedings of the
International Computer Music Conference ICMC). Michigan Publishing, 2005.

93. Friberg, A.; Sundberg, ]. Does music performance allude to locomotion? A model of final ritardandi derived from measurements
of stopping runners. The Journal of the Acoustical Society of America 1999, 105, 1469-1484. https://doi.org/10.1121/1.426687.

94. Porcello, T. Speaking of sound: language and the professionalization of sound-recording engineers. Social Studies of Science 2004,
34,733-758. https://doi.org/10.1177/0306312704047328.

95. Sundberg, J.; Friberg, A.; Bresin, R. Attempts to reproduce a pianist’s expressive timing with director musices performance rules.
Journal of New Music Research 2003, 32, 317-325. https:/ /doi.org/10.1076/jnmr.32.3.317.16867.

96. Giraldo, S.I.; Ramirez, R. A machine learning approach to discover rules for expressive performance actions in jazz guitar music.
Frontiers in psychology 2016, 7. https://doi.org/10.3389/fpsyg.2016.01965.

97. Saunders, C.; Hardoon, D.R.; Shawe-Taylor, J.; Widmer, G. Using string kernels to identify famous performers from their playing
style. In Proceedings of the Machine Learning: ECML 2004; Boulicaut, J.F.; Esposito, F.; Giannotti, F; Pedreschi, D., Eds.; Springer:
Berlin, Heidelberg, 2004; pp. 384-395. https://doi.org/10.1007/978-3-540-30115-8_36.

98. Stamatatos, E.; Widmer, G. Automatic identification of music performers with learning ensembles. Artificial Intelligence 2005,
165, 37-56. https:/ /doi.org/10.1016/j.artint.2005.01.007.

99. Ramirez, R.; Maestre, E.; Pertusa, A.; Gomez, E.; Serra, X. Performance-based interpreter identification in saxophone audio
recordings. IEEE Transactions on Circuits and Systems for Video Technology 2007, 17, 356-364. https://doi.org/10.1109/TCSVT.2007
.890862.

100. Costalonga, L.L.; Pimenta, M.S.; Miranda, E.R. Understanding biomechanical constraints for modelling expressive performance:
A guitar case study. Journal of New Music Research 2019, 48, 331-351. https://doi.org/10.1080/09298215.2019.1643892.

101. Metcalf, C.D.; Irvine, T.A,; Sims, J.L.; Wang, Y.L.; Su, A.W.; Norris, D.O. Complex hand dexterity: a review of biomechanical
methods for measuring musical performance. Frontiers in psychology 2014, 5. https://doi.org/10.3389/fpsyg.2014.00414.

102. Wristen, B.G. Avoiding piano-related injury: a proposed theoretical procedure for biomechanical analysis of piano technique.
Medical Problems of Performing Artists 2000, 15, 55-64. https://doi.org/10.21091/mppa.2000.2012.

103. Parncutt, R.; Sloboda, J.A.; Clarke, E.F.; Raekallio, M.; Desain, P. An ergonomic model of keyboard fingering for melodic fragments.
Music Perception 1997, 14, 341-382. https://doi.org/10.2307/40285730.

104. Jacobs, ]J.P. Refinements to the ergonomic model for keyboard fingering of Parncutt, Sloboda, Clarke, Raekallio, and Desain.
Music Perception 2001, 18, 505-511. https:/ /doi.org/10.1525/mp.2001.18.4.505.

105. Visentin, P; Li, S.; Tardif, G.; Shan, G. Unraveling mysteries of personal performance style; biomechanics of left-hand position
changes (shifting) in violin performance. Peer] 2015, 3. https://doi.org/10.7717 /peerj.1299.

106. Repp, B.H. Relational invariance of expressive microstructure across global tempo changes in music performance: An exploratory
study. Psychological research 1994, 56, 269-284. https:/ /doi.org/10.1007/BF00419657.

107. Marchini, M.; Ramirez, R.; Papiotis, P.; Maestre, E. The sense of ensemble: a machine learning approach to expressive performance
modelling in string quartets. Journal of New Music Research 2014, 43, 303-317. https://doi.org/10.1080/09298215.2014.922999.

108. Sundberg, J.; Friberg, A.; Frydén, L. Rules for automated performance of ensemble music. Contemporary Music Review 1989,
3,89-109. https://doi.org/10.1080/07494468900640071.

109. Mathews, M.V. The radio baton and conductor program, or: pitch, the most important and least expressive part of music.
Computer Music Journal 1991, 15, 37-46. https:/ /doi.org/10.2307/3681070.

110. Lawson, J.; Mathews, M.V. Computer program to control a digital real-time sound synthesizer. Computer Music Journal 1977, pp.
16-21.

111. Mathews, M.V. The conductor program and mechanical baton. In Proceedings of the Proccedings of 1989 International
Symposium on Music and Information Science, 1989, pp. 58-70.

112. Lee, E.; Nakra, T.M.; Borchers, J. You're the conductor: a realistic interactive conducting system for children. In Proceedings
of the Proceedings of the International Conference on New Interfaces for Musical Expression (NIME), 2004, pp. 68-73. https:
//doi.org/10.5281/zenodo.1176629.

113. Baba, T.; Hashida, M.; Katayose, H. "VirtualPhilharmony": a conducting system with heuristics of conducting an orchestra. In
Proceedings of the Proceedings of the International Conference on New Interfaces for Musical Expression (NIME), 2010, Vol.
2010, pp. 263-270. https://doi.org/10.5281/zenodo.1177715.

114. Mathews, M.V,; Friberg, A.; Bennett, G.; Sapp, C.; Sundberg, J. A marriage of the Director Musices program and the conductor
program. In Proceedings of the Proceedings of the Stockholm Music Acoustics Conference (SMAC), 2003, Vol. 1, pp. 13-16.

115. Friberg, A. pDM: an expressive sequencer with real-time control of the KTH music-performance rules. Computer Music Journal
2006, 30, 37—-48. https://doi.org/10.1162/com;j.2006.30.1.37.

116. Canazza, S.; Friberg, A.; Roda, A.; Zanon, P. Expressive Director: a system for the real-time control of music performance
synthesis. In Proceedings of the Proceedings of Stockholm Music Acoustics Conference (SMAC), 2003, Vol. 2, pp. 521-524.


https://doi.org/10.1109/JPROC.2004.825889
https://doi.org/10.1155/2015/850474
https://doi.org/10.1121/1.426687
https://doi.org/10.1177/0306312704047328
https://doi.org/10.1076/jnmr.32.3.317.16867
https://doi.org/10.3389/fpsyg.2016.01965
https://doi.org/10.1007/978-3-540-30115-8_36
https://doi.org/10.1016/j.artint.2005.01.007
https://doi.org/10.1109/TCSVT.2007.890862
https://doi.org/10.1109/TCSVT.2007.890862
https://doi.org/10.1080/09298215.2019.1643892
https://doi.org/10.3389/fpsyg.2014.00414
https://doi.org/10.21091/mppa.2000.2012
https://doi.org/10.2307/40285730
https://doi.org/10.1525/mp.2001.18.4.505
https://doi.org/10.7717/peerj.1299
https://doi.org/10.1007/BF00419657
https://doi.org/10.1080/09298215.2014.922999
https://doi.org/10.1080/07494468900640071
https://doi.org/10.2307/3681070
https://doi.org/10.5281/zenodo.1176629
https://doi.org/10.5281/zenodo.1176629
https://doi.org/10.5281/zenodo.1177715
https://doi.org/10.1162/comj.2006.30.1.37
https://doi.org/10.20944/preprints202212.0494.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 December 2022 d0i:10.20944/preprints202212.0494.v1

30 of 30

117. Dixon, S.; Goebl, W.; Widmer, G. The "air worm": an interface for real-time manipulation of expressive music performance. In
Proceedings of the Proceedings of the International Computer Music Conference (ICMC). Michigan Publishing, 2005.

118. Friberg, A.; Colombo, V.; Frydén, L.; Sundberg, J. Generating musical performances with director musices. Computer Music
Journal 2000, 24, 23-29. https://doi.org/10.1162/014892600559407.

119. Giraldo, S.; Ramirez, R. Performance to score sequence matching for automatic ornament detection in jazz music. In Proceedings
of the International Conference of New Music Concepts (ICMNC), 2015, Vol. 8.


https://doi.org/10.1162/014892600559407
https://doi.org/10.20944/preprints202212.0494.v1

	Introduction
	Commercial products
	Common tools
	Triggerable instrument-specific patterns
	Triggerable instrument articulations
	Advanced hardware timbre and expressivity control
	Automatic analysis of the harmonic structure and generation of new musical parts
	The missing link

	Research products
	A multifaceted field of research
	Visual representation of expressive performances features
	Relation between expressiveness and structure of the musical piece
	Local expressiveness
	Score markings interpretation
	Relationship between emotional intention and expressive parameters
	Relationship between sensorial experiences and expressive parameters
	Identification and modelling of the performative styles of real musicians
	Identification of physical and psychological limits of the performer
	Ensemble music modelling
	Conductor systems
	Table summary

	Conclusions
	References

