
 

 
 

Article 

EJS: Multi-strategy enhanced jellyfish search algorithm for en-

gineering applications 

Gang Hu 1,*, Jiao Wang 2 , Min Li 1, Abdelazim Hussien 3, 4 and Muhammad Abbas 5 

1 Department of Applied Mathematics, Xi’an University of Technology, Xi’an 710054, PR China; 

limin2016@163.com 
2 School of Mechanical and Precision Instrument Engineering,, Xi’an University of Technology, Xi’an 710048, 

PR China; wangjiao12@sina.com 
3 Department of Computer and Information Science, Linköping University, 581 83 Linköping, Sweden; ab-

delazim.hussien@liu.se 
4 Faculty of Science, Fayoum University, Faiyum 63514, Egypt 
5 Department of Mathematics, University of Sargodha, 40100 Sargodha, Pakistan; muhammad.ab-

bas@uos.edu.pk 

* Correspondence: hg_xaut@sina.com 

Abstract: Jellyfish search (JS) algorithm impersonates the foraging behavior of jellyfish in the ocean. 

It is a new developed meta-heuristic algorithm that solves complex and real world optimization 

problems. The global explore capability and robustness of JS are strong, but JS still has great devel-

opment space in solving complex optimization problems with high dimensions and multiple local 

optima. Therefore, an enhanced jellyfish search (EJS) algorithm is developed in this study, and three 

improvements are made: (i) By adding sine and cosine learning factors, the jellyfish can learn from 

both random individual and best individual during Type B motion in swarm to enhance the opti-

mization capability and convergence speed; (ii) Adding local escape operator can skip local optimal 

trap and boost the exploitation ability of JS; (iii) Opposition-based learning operator and quasi-op-

position learning operator can increase and strengthen the population distribution more diversified, 

and better individuals are selected from present and new opposition-solution to participates in the 

next iteration, which can boost the solution’s quality, meanwhile convergence speed is fasted and 

its precision is increased. In addition, the performance contrast of the developed EJS and some pre-

vious outstanding and advanced methods are evaluated on CEC2017, CEC2019 test suite and six 

real engineering example of case. It is demonstrated that EJS algorithm escaped the trap of local 

optimum, enhanced the solution’s quality and the calculation speed. What’s more, the practical en-

gineering applications of EJS algorithm also verify its superiority and effectiveness in solving both 

constrained and unconstrained optimization problems, and it stretched one’s mind for solving such 

optimization problems. 

Keywords: Meta-heuristic algorithm; Jellyfish search algorithm; Sine and cosine learning factors; 

Local escape operator; Opposition-based learning  

 

 

1. Introduction 

Challenging optimization problems with the highly nonlinear objective requests, in-

tricate constraints and large-scale decision variables are becoming more and more com-

mon in today's rapidly developing real world. Especially when solved optimization prob-

lem has multiple peaks, the global optimization methods using traditional method be-

comes less powerful, and converges to local optimum easily. Meta-heuristic algorithm 

can bring satisfactory and high-quality solutions for challenging practical problems [1]. 

Meta-heuristic algorithms [2] have the following advantages: (i) Simple structure and 

implementation process. A satisfactory solutions can be found by modifying the structure 

and parameters of the method; (ii) Gradient information of optimization problem is not 
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necessary for meta-heuristic algorithms about optimization problem, and outputs is ob-

tained according to the inputs in a given optimization problem. (iii) Randomly explore 

whole search region because of randomness, which effectively avoids algorithm 

plunges into the local optimum. (iv) Solving various types of optimization problems with 

non-differentiable nonlinear, and complex multiple local solution.     

Meta-heuristic algorithms is formed by two main stages: exploration and exploita-

tion. The search for promising areas is the goal of exploration process. Without this ability, 

the algorithm may be premature and plunges into a local peak. Searching the promising 

areas found is called exploitation. Without this ability, the algorithm may not even con-

verge. The coordination point between the exploration and development phases is always 

the goal of researchers, and is also the major work for performance testing of meta-heu-

ristic algorithm. Owing to the randomness of met-heuristic algorithm, there is still a prob-

lem worth exploring. In order to comprehensively understand meta-heuristic algorithms, 

Hussain et al. [4] reviewed 1222 literatures from 1983 to 2016. The meta-heuristic algo-

rithm can be summarized into four aspects: evolution [5], physics [6], population [7] and 

human social behavior [8]. 

As the name implies, evolution is certainly a simulation of natural evolution, like 

Genetic algorithms (GA) [9], it is the most popular and widely used evolutionary algo-

rithms. It evolves the individual by simulating the principle of survival of the fittest in 

nature, and can obtain high-quality solutions while avoiding local optimal solutions. Ever 

since, many other evolutionary algorithms emerge and poorer, including differential evo-

lution (DE) [10], evolutionary programming (EP) [11], genetic programming (GP) [12], 

evolutionary strategies (ES) [13], biogeography-based optimization (BBO) [14], monkey 

king evolution (MKE) [15] and species co-evolutionary algorithm (SCEA) [16], etc. 

Similarly, constrained by different laws of physics in the universe. The most classic 

example is Simulated Annealing (SA) [17] algorithm. Since then, for instance Gravitational 

Search Algorithm (GSA) [18], Galaxy-based Search Algorithm (GbSA) [19], Charged Sys-

tem Search (CSS) [20] algorithm, vortex search algorithm (VSA) [21], Water Evaporation 

Optimization (WEO) [22], Big Bang-Big Crunch (BB-BC) [23], Electro-Search (ES) [24] al-

gorithm, Thermal Exchange Optimization (TEO) [25], Lightning Search Algorithm (LSA) 

[26], Ions Motion Optimization (IMO) [27], Henry Gas Solubility Optimization (HGSO) 

[28], Atom Search Optimization (ASO) [29], Multi-Verse Optimization (MVO) [30], Equi-

librium Optimization (EO) [31] and Archimedes Optimization Algorithm (AOA) [32], etc. 

have also been named and put forward one by one.  

The collective behavior of simulated species is summarized as a group algo-

rithm.Swarm-based methods impersonate collective behavior of species. Two prominent 

examples are Particle Swarm Optimization (PSO) [33] and Ant Colony Optimization 

(ACO) [34] algorithm. The Whale Optimization Algorithm (WOA) [35], Grey Wolf Opti-

mization (GWO) [36], Firefly Algorithm (FA) [37], Bat Algorithm (BA) [38], Ant Lion Op-

timization (ALO) [39], Artificial Bee Colony (ABC) [40] algorithm, Grasshopper Optimi-

zation Algorithm (GOA) [41], Harris Hawks Optimization (HHO) [42], Barnacles Mating 

Optimization (BMO) [43], Seagull Optimization Algorithm (SOA) [44], Tunicate Swarm 

Algorithm (TSA) [45], Slime Mould Algorithm (SMA) [46], Marine Predators Algorithm 

(MPA) [47], Chimp Optimization Algorithm (ChOA) [48], Manta Ray Foraging Optimiza-

tion (MRFO) [49], Aquila Optimization (AO) [50] and Jellyfish Search (JS) [51] algorithm, 

etc. have also been studied one after another. 

The last one is an developed algorithm according to some specific social groups be-

haviors of human. Teaching and Learning-Based Optimization (TLBO) [52], Harmony 

Search (HS) [53], Imperialist Competitive Algorithm (ICA) [54], League Championship 

Algorithm (LCA) [55], Social Learning Optimization (SLO) [56], Social Group Optimiza-

tion (SGO) [57], Mine Blast Algorithm (MBA) [58], Exchange Market Algorithm (EMA) 

[59], Ideology Algorithm (IA) [60], Volleyball Premier League (VPL) [61] algorithm, Bus 

Transportation Algorithm (BTA) [62], Social Evolution and Learning Optimization 

(SELO) [63], Nomadic People Optimization (NPO) [64], Social Mimic Optimization (SMO) 

[65] and Forensic-Based Investigation(FBI) [66] and so on are some famous algorithms. 
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Jellyfish search (JS) algorithm is a novel swarm-based method put forward by Chou 

et al. in 2021, which mainly impersonate searching for food behavior of jellyfish in the 

ocean. The better global hunting capability, strong robustness, few parameters involved 

and so on are excellent merits of JS algorithm, so we have conducted further and more in-

depth research on it in following topic. In JS algorithm, Jellyfish have two ways of moving, 

(1) moving in the ocean current; and (2) within the group. Jellyfish can transform among 

these moving modes according to the principle of time control, which can boost the opti-

mization performance of JS algorithm. In view of its good superiority, many practical en-

gineering problems can be solved and studied by this method. Gouda et al. [67] applied 

JS method to pick up undiscovered parameters of PEM fuel cell former. JS method are 

optimized solar energy conversion systems by Boutasseta et al. [68]. Rai et al. [69] applied 

JS method in solving the economic load dispatch problem. Youssef et al. [70] used JS can 

be used parameter estimation of single phase transformer. Farhat et al. [71] applied JS 

method to the power flow problem. JS method is able to dealing with the optimal volt 

coordination problem in automated distribution systems [72]. Subsequently, two multi-

objective JS methods [73, 74] combined with quasi-reflected learning are studied for solv-

ing structural design problems and multi-dimensional optimal power flow problems. At 

present, some scholars have improved jellyfish search algorithm. Barshandeh et al. [75] 

developed a hybrid method between MPA and JS, and applied to data clustering. Manita 

et al. [76] put forward a JS method combined with the orthogonal learning strategy. Ab-

del-basset et al. [77] raised a JS algorithm based on a new strategy for parameter identifi-

cation of photovoltaic models. A JS algorithm combining two improved strategies raised 

by Abdel et al. [78] for multi-level threshold segmentation of magnetic resonance brain 

images. In research process, we found that JS algorithm has some errors with theoretical 

optimal value when solving some benchmark test functions. Therefore, we proposed an 

enhanced jellyfish search (EJS) algorithm by adding sine and cosine learning factors, local 

escape operator and learning strategy. And CEC2017, CEC2019 benchmark test set and 

six engineering practical applications verify that EJS algorithm has strong competitive-

ness. Based on the original JS algorithm, the improvement work is summarized into the 

following three points. 

The introduction of sine cosine learning factor can enable jellyfish to learn from the 

position of the optimal individual when they are moving in Type B shape within the jel-

lyfish group, which is able to boost the optimization capability, and further accelerate 

convergence rate. 

1) By adding local escape operator, the algorithm is able to skip local optimal 

trap, which can boost the exploitation capability of JS. 

2) Opposition-based learning and quasi-opposition learning operator factor are 

adopted to make candidate individual distribution more diversified, and 

better individuals are selected from current solution and new solution to par-

ticipates in the next iteration, which can boost the quality of solution, and 

convergence is speeded up and its precision is improved. 

The framework of the article is arranged as described below: in Section 2, the basic 

law of jellyfish search algorithm is briefly described, and its steps and pseudo-code are 

given. An enhanced jellyfish search (EJS) algorithm is developed by adding sine and co-

sine learning factors, local escape operator and learning strategy to original JS algorithm, 

and the steps, pseudo-code, flow chart and time complexity of proposed EJS are given in 

Section 3. The test is carried out on CEC2017 and CEC2019 respect to EJS and several fa-

mous previous algorithms in Section 4. Meanwhile, the test results are compared and an-

alyzed. Six practical engineering cases are resolved by EJS algorithm in Section 5. Finally, 

a brief summary and forecast are outlined at end. 

2. Overview of Basic Jellyfish Search Algorithm 

Jellyfish search (JS) algorithm is a novel imitated the pattern of looking for food of 

jellyfish. This mathematical model can be described as following, a large number of 
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nutritious food exists in the ocean current, which attracts the jellyfish into a group. There-

fore, the jellyfish first go after the ocean current, and then move within the group. When 

moving within the group, jellyfish have two ways of motion: Type A and B. A and B rep-

resent the passive behavior and active behavior. For the convenience of description, the 

following statements are based on A and B. In order to determine the time-varying motion 

types, time control principle plays an involved parameter in the process of controlling the 

transformation between Type A and B. 

2.1. Population initialization 

Generally speaking, the solution’s quality of intelligent method is influenced by the 

initial candidate individuals quality. Increased diversity of the initial candidate individu-

als is help to boosting the optimization performance. The population of general optimiza-

tion algorithms is usually randomly initialized. This method may lead to the exploration 

space not exhaustively searched, so that the algorithm have low precision and the limita-

tion of running into local optimum. To increase the diversity of the initial candidate indi-

viduals, JS algorithm adopts Logistic mapping to initialize the population according to 

the ergodicity and randomness of chaotic mapping, which ensures that the search region 

is fully researched to a certain degree. Logistic mapping can be described with following 

mathematical equation. 

)1(1 iii PPP −=+                                    (1) 

where,  is parameter that is set to 4. The Logistic chaos value corresponding to the 

position of the i-th candidate individuals is recorded as Pi, the initial value of Pi is called 

P0, and satisfy )1 ,0(0 P , meanwhile, P00, 0.25, 0.5, 0.75,1. 

2.2. Jellyfish follow ocean current 

All directional variables for each candidate from their own position to the optimal 

position can be called the direction of the current ( Direction ). In other words, the ocean 

current can be expressed by Eq. (2). 

c
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P
ePPeP

NN
−=−=−==  

 )(
1

Direction
1

Direction i             (2) 

Let ce=df , then Direction  can be shortened as follows: 

dfDirection −= P                                    (3) 

where, N, ec and  are the amount of candidate individuals (population), the attraction 

factor and the average position of all jellyfish, respectively.
P is the best position of can-

didate individuals in the present solution. Here, df is defined the difference between the 

optimal and average location. 

Due to the assumption of normal distribution of candidate individuals, the distance 

near the average location  may include all candidate individual, thus, df can be re-

duced to the following form: 

 = 1df r .                                (4) 

Here, ).1,0rand(1,1  == rrec 
,.

Thus, the mathematical Eq.(3) of ocean current 

can be described by Eq. (5). 

 −=  1Direction rP                            (5) 
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Now, the updated equation for each candidate individuals that goes after ocean cur-

rent is represented by Eq. (6). 

Direction2)()1( +=+ rtPtP ii                          (6) 

Combining Eq. (5), the above Eq. (6) can be transformed into 

 −+=+  )1(2)()1( rPrtPtP ii                     (7) 

Here, 1). rand(0,2 ,3 ,0 == r , 

2.3. Jellyfish move within a swarm 

In jellyfish swarm, the movement behavior of jellyfish includes two ways: A and B 

movement , and the candidate switches between Type A and B. At first, the jellyfish group 

was just formed and had no active ability, most candidate individuals showed Type A 

movement. With the passage of time, Type B movement began. 

Type A movement 

In passive movement, the candidate individuals moves around its own position, and 

it can update position by Eq. (8). 

)(3)()1( LbUbrtPtP ii −+=+  .                   (8) 

Where, Ub and Lb are the up and low limits of search region, respectively. 0  is 

the movement factor, and )1 ,0(rand3 ,1.0 == r . 

Type B movement 

In active movement, the candidate individuals(j) is randomly selected, when 

the amount of food at the selected candidate location Pj exceeds its own candidate location 

Pi, Pi moves in the direction of Pj. otherwise, pi moves in the opposite direction of Pj. There-

fore, each candidate migrates in a favorable direction to search food source in the colony. 

At this time, the location update formula of each candidate is 

step)()1( +=+ tPtP ii                             (9) 

where 

DDirection)1,0(randstep =                         (10) 
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2.4. Time control mechanism 

In order to capture the type of movement that changes with time, time control theory 

needs to be introduced. It controls not only the passive and active movements of candi-

date individuals in the colony, but also the movement of candidate going after ocean cur-

rents. 

In order to adjust different movements of candidate individuals, time control func-

tion C(t) and constant C0 need to be considered. Fig. 1 displays change trend of the time 

control function.C(t) is the random value that fluctuates between 0 and 1 from Fig. 1, so 

C0 is set to 0.5. The candidate individuals follow ocean current when C(t)＞0.5; otherwise, 

candidate move within swarm. 

)1)1,0rand(2()1()( −−=  TttC                       (12) 

where, t and T are the current and maximum iterations. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 December 2022                   doi:10.20944/preprints202212.0481.v1

https://doi.org/10.20944/preprints202212.0481.v1


 

 

 
Fig. 1 Time control function [51] 

Similarly, ))(1( tC−  is also applied to regulate A and B movement of candidate 

within a swarm. The candidate show passive moving if rand (0,1) > ))(1( tC− , Otherwise, 

candidate exhibit active moving. Since the value of ))(1( tC−  increases from 0 to 1 at the 

beginning of iteration, rand (0,1)> ))(1( tC− , at which time passive moving of candidate 

takes precedence over active movement of candidate. 

2.5. Boundary conditions 

Since the earth is spherical, it will go back the phase when the jellyfish moves exceed 

the bounded search zone. The process is shown in Eq. (13). 


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where, 
d

iP  is location of the i-th candidate with the d-th dimension, 
d

iP  is the re-

newed position after checking boundary constraints, 
dUb and 

dLb  are the upper and 

lower limits of the d-th dimension in finding space, respectively. 

2.6. Steps of jellyfish search algorithm 

For JS algorithm, the moving of candidate individuals chase after ocean current is 

called exploration, and the movement of candidate individuals within swarm is defined 

exploitation, and time control parameters controls the switch between these two phases. 

JS algorithm focuses on exploration to find the potential areas at the beginning of iteration, 

JS algorithm prefers exploitation to determine the best position in determined area at the 

end of the iteration. To summarize the above phases, the exhaustive steps of JS algorithm 

are summarized in the following description. Meanwhile, the pseudo-code of JS algorithm 

is displayed in algorithm 1. 

Step 1. Define the fitness function, set N and T, generate initial positions of N jellyfish 

individuals in solution search space through Logistic mapping defined by Eq. (1), and let 

t = 1; 

Step 2. Evaluate and compare the objective value of each candidate, and save the 

optimal location found so far and corresponding optimal objective value; 
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Step 3. Compute the time control function C(t) by Eq. (12). If C(t) > 0.5, candidate 

individual tracts ocean current, and new location is renewed by Eq. (7), otherwise, per-

form Step 4; 

Step 4. Jellyfish move within swarm. If ))(1()1,0rand( tC− , candidate individ-

ual carried out Type A movement, and new position is calculated with Eq. (8), otherwise, 

candidate carried out Type B movement, and new position is update with Eq. (9); 

Step 5. Check the updated individual position whether go beyond boundary condi-

tion. If it out of search area, Eq. (13) is used to return to the opposite boundary; 

Step 6. Compare the objective cost of current location before and after updating. If 

objective value of updated position is better, replace current location and corresponding 

objective value, then compare the objective value of current position with the optimal ob-

jective value. If objective value of present location is better, renew the best location found 

so far and corresponding optimal objective value; 

Step 7. If t<T, go back Step 3, otherwise, carried out Step 8; 

Step 8. Outlet the best location and corresponding target cost value. 

Algorithm 1. JS algorithm 

Begin 

Step1: Initialization. Define the objective function, set N and T, initialize population of 

jellyfish using Logistic map according to Eq. (1), and set 1=t . 

Step2: Objective calculation. Calculate quantity of food at each candidate location, and 

pick up the optimal location of candidate. 

Step3: While t<T do 

        for i=1 to N do 

            Implement c(t) with Eq. (12) 

           if 5.0)( tC  then    

              Update location with Eq. (7)               

           else    

if ))(1()1,0( tCrand −  then     

 Update location with Eq. (8)  

else    

Update location with Eq. (9)  

end if 

           end if 

Check whether the boundary is out of bounds and and replace the optimal position.          

            end for 

          end while 

    Step4: Return. Return the global best position and corresponding optimal objective cost 
fitness value. 

End 

3. Enhanced jellyfish search algorithm 

Due to defects of JS algorithm on some benchmark test functions, such as low calcu-

lation precision and get stuck at locally optimal value easily. This section will introduce 

the following improvements to the JS algorithm, which can boost the quality of solution, 

and convergence is speeded up and its precision is improved: (i) By adding sine and cosine 

learning factors, jellyfish can learn from the best individual at the same time when moving in Type 

B motion, which can boost the solution’s quality, and fastens the convergence.; (ii) The ad-

dition of local escape operator can prevent JS from getting stuck at locally optimal value, which 

can boost the exploitation capability of JS; (iii) Opposition-based learning and quasi-opposition 

learning operator are adopted to increase the diversity of distribution of candidate populations, 

and the better individuals in present solution and new solution are executed in the next iteration, 

which can boost the solution’s quality and improve the convergence accuracy of JS. 

3.1. Sine and cosine learning factors 
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In exploration phase of JS algorithm, when jellyfish move in Type B motion within 

jellyfish swarm, the updated position of jellyfish is only related to another jellyfish ran-

domly selected. In other words, jellyfish randomly learn from a jellyfish individual in cur-

rent population, with a certain blindness and lack of effective information communication 

within swarm. This process maybe lead the algorithm to move away from the orientation 

of the optimal candidate solution, and at the same time, the convergence speed could be 

slowed down. Owing to ameliorate these deficiencies, sine and cosine learning factors 1 

and 2 are introduced to make jellyfish learn from both random individual and best indi-

vidual in the search range. This make the candidate solution’s quality better in exploration 

stage, so as to seek the best location more quickly and accelerate the convergence speed. 

]2/)/1sin[(21  −= Tt                                 (14) 

]2/)/1cos[(22  −= Tt                                (15) 

In Type B motion, the Eq. (16) describes the location update mode of jellyfish. 

))(()step)(()1( 21 tPPtPtP iii −++=+                      (16) 

where, step can see Eqs. (10) and (11). 

The original JS algorithm adopts random strategy to learn, which makes jellyfish ran-

domly learn from the current individual. Poor fitness values of the learned jellyfish indi-

viduals will lead to limited convergence speed. Therefore, introducing sine and cosine 

learning factors to JS algorithm makes jellyfish learn from random solution also follow the 

optimal solution within the search range, so as to make solution’s quality rapidly and 

accelerate the convergence rate. 

3.2. Local escape operator 

The core of swarm intelligence algorithms is to effectively judge and weigh the ex-

ploration and exploitation capability of algorithm. The added sine cosine learning factor 

can increase the JS   local exploration capability, but the global exploitation capability is 

weaken. Local escape operator (LEO) is a local search operator based on gradient-based 

optimizer (GBO) [79], which aims to find new areas and enhance the exploitation capabil-

ity. Therefore, it is implemented in the phase of jellyfish following ocean current. Notably, 

the operator can update the position of the candidate )1( +tPi . This helps algorithm jump 

any local optimal solution. Thanks to this, it can broaden the diversity of the candidate 

individuals, for the sake of search for the global optimal scheme. In other words, it makes 

the algorithm skip the trap of the local optimum.  

By using multiple solutions such as optimal individual
P , two randomly candidate solution 

)(1 tP i and )(2 tP i , two randomly selected candidate solution )(1 tPr and )(2 tPr , a new candi-

date position )(tPk , LEO gives alternative solution )(tPLEO  of current solution )1( +tPi , and 

generated solution can explore the search space around optimal solution. See Eqs. (17) and (18) for 
specific mathematical description. 

 if rand < 0.5 

2/))()((

)))(1)(2(())(()1()(

212

312211

tPtPu

tPtPuftPuPuftPtP

rr

iikiLEO

−+

−+−++=  
              (17) 

    )()1( tPtP LEOi =+  

else 

    
2/))()((

)))(1)(2(())(()(

212

312211

tPtPu

tPtPuftPuPufPtP

rr

iikLEO

−+

−+−+=  
                  (18) 

        )()1( tPtP LEOi =+  
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End 

where, f1 is any number uniformly distributed in [-1, 1], f2 ~N (0, 1). u1, u2 and u3 are 

three random numbers with the following mathematical formula: 

)1(12 111 LRLu −+=                              (19) 

)1(2 112 LRLu −+=                                (20) 

)1(3 113 LRLu −+=                               (21) 

where, L1 is a binary parameter, and L1= 0 or 1. If 1 < 0.5,  L1 = 1; otherwise, L1 = 0, 

1  is defined an arbitrary number between 0 and 1. In addition, 1  is adaptive coeffi-

cient, R1=rand(0,1), R2=rand(0,1), R3=rand(0,1) are three random number between 0 and 

1. Specific definitions are as follows: 

   −= rand(0,1)21                                (22) 

|))2/3sin(2/3sin(|  +=                            (23) 

23

minmaxmin ))/(1()( Tt−−+=                         (24) 

where, 
2.0min =

, 2.1max = . 

In addition, the following mathematical formula gives two randomly generated so-

lutions )(1 tP i  and )(2 tP i . 

)(4)(1 LbUbRLbtP i −+=                         (25) 

)(5)(2 LbUbRLbtP i −+=                         (26) 

The meaning of parameter representation is described above. R4=rand(1, D), 

R5=rand(1, D). The mathematical formula of solution )(tPk  is defined in Eq. (27). 

randpk PLtPLtP −+= )1()()( 22                          (27) 

)(6 LbUbRLbPrand −+=                           (28) 

where, ]),,2,1[( NpPp   is an arbitrarily solution, R6=rand(0,1). and L2 is a bi-

nary parameter. If 2 < 0.5, L2 = 1; otherwise, L2 = 0. ( ).1 ,0rand2 =  

3.3. Learning strategy 

Opposition-based learning (OBL) [80] and quasi-opposition learning (QOL) [81] are 

both effective methods to boost the multiformity of the candidate individuals, the cover-

age space of solutions and the performance of algorithm. After completing exploration 

and exploitation stage of algorithm, aiming at further increase the solution precision of JS 

algorithm, OBL and QOL strategy are used to update jellyfish individual according to 

probability p, and the solution’s quality in population is boosted, and then magnify the 

optimization competence. 

By implementing OBL and QOL strategy for the i-th candidate individual Pi in pre-

sent population, the opposition-based solution and the quasi-opposition solution can be 

obtained, record as )
~

,,
~

,
~

(
~ 21 D

iiii PPPP =  and 
,

),,,( 21 D

iiii PPPP





= . The specific ex-

pression of the component is shown in Eqs. (29) and (30). 

d

i

ddd

i PUbLbP −+=
~

                            (29) 
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







−+

+
= d

i

dd
dd

d

i PUbLb
UbLb

P ,
2

rand


                     (30) 

where, 
d

iP  is location of the i-th candidate with the d-th dimension, 
dUb  and 

dLb  are the upper and lower limits with the d-th dimension in solution space, respec-

tively.  

To sum up, the renewed equation of the i-th candidate jellyfish Pi is defined as fol-

lowing equation. 

Ni
pifP

pifP
P

i

inew

i ,,2,1,
rand

rand
~

 =









=                    (31) 

where, p is selection probability, and p = 0.5. 

The algorithm generates N new jellyfish individuals through Eq. (31), then calculate 

the objective values of present and new candidates. According to the calculation results, 

the 2N candidate individuals are sorted, and choose the better N jellyfish individuals to 

participate in the next iteration process. 

3.4. Steps of enhanced jellyfish search algorithm 

The sine and cosine learning factors boost the local exploration capability and the 

convergence performance of algorithm. Local escape operator enhances the global exploi-

tation capability and the capability to skip the local optimum trap. OBL and QOL strategy 

increase the diversity of the candidate individuals, and the solution’s quality in popula-

tion is enhanced, and then magnify the optimization competence. Combining these three 

strategies with JS algorithm, an enhanced jellyfish search algorithm is developed (called 

EJS algorithm). The detailed steps of EJS algorithm are similar with JS in Section 2.6. The 

main difference is that opposition-based learning and quasi-opposition learning operation 

are implemented between Step 4 and Step 5. Fig. 2 shows the flow chart of EJS algorithm 

to facilitate understanding of the whole process. Meanwhile, the pseudo-code of EJS algo-

rithm is displayed in algorithm 2. 

3.5. Time complexity of EJS algorithm 

The time complexity of EJS algorithm lies on N, D and T. For all iteration period, EJS 

algorithm performs the following procedure: candidate follow ocean current, then local 

escape operator is implemented, candidate move in active motion with sine and cosine 

learning factors or passive motion within swarm, new individuals are generated through 

reverse learning and quasi reverse learning operation, and better candidate individuals 

are selected to participate in the iterative 
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Fig. 2 Flow chart of EJS algorithm 

process of the next generation. Combined with the above analysis, the time complexity 

can be calculated. where, the meaning of T, N and D can see above content. 
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No 
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Initialize the population 

using Logistic chaos mapping 

Renew position of 

candidate by Eq. (3) 

Renew position of 
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Compute the objective value 

of all candidate solution 

Perform control function c(t) 

Generate new population by Eq. 

(31) 

Output the global bests and 

optimal fitness value 

End 

rand < 0.5 

t = t + 1 

c(t) > 0.5 

Carried out  

Eq. (17) 

rand >1-c(t) 

Renew position of 

candidate by Eq. (8) 

Replace the global best solution 

Carried out  

Eq. (18) 
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)))strategy Learning()motionactivemotionpassive(

)operatorescapinglocalcurrentoceanfollowcandidate((()EJS(

OO

OTOO

+++

+=

          (32) 

).())(()( TNDONDNDNDTOO =++=EJS                            (33) 

Algorithm 2. EJS algorithm 

Begin 

Step1: Initialization. Define the fitness function, set N and T, initialize with Logistic map

10),1( 01 −=+ PPPP iii  for Ni ,,1= , and set 1=t . 

Step2: Fitness calculation. Calculate quantity of food at each jellyfish position )( ii Pff = , 

and pick up the best position 
bestP  

Step3: While t<T do 

        for i=1 to N do 

)1)1,0rand(2()1()( −−=  TttC                                         (12) 

           if 5.0)( tC  do    

              )2(2)()1(  −+=+  rPrtPtP ii
                                (7) 

              //Local escaping operator(LEO)  

              if rand < 0.5 

2/))()((

)))(1)(2(())(()1()(

212

312211

tPtPu

tPtPuftPuPuftPtP

rr

iikiLEO

−+

−+−++=         (17) 

               )()1( tPtP LEOi =+  

          else 

                   
2/))()((

)))(1)(2(())(()(

212

312211

tPtPu

tPtPuftPuPufPtP

rr

iikLEO

−+

−+−+=           (18) 

                   )()1( tPtP LEOi =+  

            end 

           else    

if ))(1()1,0( tCrand −  Do    //Type A 

)(3)()1( LbUbrtPtP ii −+=+                              (8) 

else    //Type B  

//Sine and cosine learning factors 

 ]2/)/1sin[(21  −= Tt                                (14) 

]2/)/1cos[(22  −= Tt                               (15) 

))(()step)(()1( 21 tPPtPtP iii −++=+                       (16)                                  

end if 

           end if 

         //Learning strategy 

            d

i

ddd

i PUbLbP −+=
~                                                (29) 









−+

+
= d

i

dd
dd

d

i PUbLb
UbLb

P ,
2

rand
                                  (30) 

Ni
pifP

pifP
P

i

inew

i ,,2,1,
rand

rand
~

 =









=

                                  (31) 

Check whether the boundary is out of bounds. If it out of search region, and 

replace the location;       

            end for 

          end while 

    Step4: Return. Return the global optimal solution. 

End 
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4. Numerical experiment and result analysis based on the benchmark test set 

To benchmark the performance of the proposed EJS algorithm, 29 benchmark func-

tions from the standard CEC2017 test suite and ten benchmark functions from the legal 

CEC2019 test suite are used to execute the experimental sequence. The EJS is compared 

with another famous optimization methods. Aiming at the unbiased experimental result, all 

tests are conducted in the same environment Windows 10, all tests is implemented on Matlab-

2018a installed on Intel(R) Core(TM) i5-8625u CPU @ 1.60GHz 1.80 GHz, 8.00 GB. For all 

optimization algorithms, set N=50. In addition, all algorithm is implemented 20 times inde-

pendently, T=1000 as the termination condition.  

There are four types of CEC2017 benchmark functions: Uni-modal Functions, Multi-

modal Functions, Hybrid Functions, Composition function. Generally, different class func-

tions in optimization algorithms are used to assess specific behavior. On CEC2017 benchmark test 

functions [82], uni-modal functions (F1-F3) are often employed to judge the convergence rate be-

cause there is only one optimal solution in the whole tracking domain. At the same time, multi-

modal function (F4-F10) usually has multiple interference schemes, which is generally employed 

to evaluate the capability of the method to escape interference points and find the optimal global 

solution. Combined the attributes of sub-functions and maintained the continuity of global/local 

optimal values is defined Hybrid functions. Composition functions can better evaluate the overall 

tracking capability of the algorithm (F11-F20). The combination function synthesizes a variety of 

hybrid functions, which can be applied to assess the calculation precision of the algorithm (F21-

F30). Ten CEC2019 benchmark functions [83] is employed to evaluate the algorithm's ex-

ecution. F4-F10 can be shifted and rotated with the boundary range is [−100, 100], while 

functions F1-F3 with different boundary range and dimension cannot be moved and ro-

tated. 

4.1. Performance indicators 

Here, we give six evaluation indicators for accurate analyze the performance of EJS 

algorithm.  

(i) Best value 

 },,,min{Best 21 mbestbestbest =                    (34) 

where, ibest  represents the best value of the i-th independent run. 

(ii) Worst value 

},,,max{Worst 21 mbestbestbest =                   (35) 

(iii) Mean value 


=

=
m

i

ibest
m 1

1
Mean                            (36) 

(iv) Standard deviation 


=

−
−

=
m

i

ibest
m 1

2)Mean(
1

1
Std                       (37) 

(v) Rank 

The average value of all comparison methods are sorted in order, and the corre-

sponding serial number of each algorithm is defined the rank. If mean values are the same, 

the standard deviations are further compared. The algorithm with the lowest ranking pos-

sesses outstanding performances. Conversely, it indicates that the EJS is worse than other 

compared methods. 

(vi) Wilcoxon rank sum test result 

Taking EJS algorithm as the benchmark, p values computed by running other meth-

ods for m times and the statistical results are given at 95% significance level ( 0.05= ) . 

'+ /=/−' are the number of test functions that EJS algorithm is obviously inferior/ equal / 

superior to some famous methods. 

4.2. Comparison between EJS algorithm and other optimization algorithms 
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EJS algorithm is compared with some other recognized optimization methods, Such 

methods encompass JS [51], HHO [42], GBO [79], WOA [35], AOA [32], SCA [84], BMO 

[43], SSA [85], SOA [44], PSO [33] and MTDE [86] to prove the performance of EJS. Table 

1 provides related parameter settings of these recognized methods. 

Table 1 Related parameter of recognized algorithms 

Algorithm Parameter Value 

JS    C0   0.5 

EJS 
   C0 

  Selection probability p 

  0.5 

  0.5 

HHO   Initial energy E0   [-1, 1] 

GBO 
  Constant parameters 

Probability parameter pr 

  βmin=0.2,βmax=1/2 

0.5 

WOA 
  a 

  b 

Decreasing from 2 to 0 with linearly   

  1 

AOA C   C1=2, C2=6,C3=1, C4=2 

SCA   a   2 

BMO pl 7 

SSA Initial speed v0 0 

SOA 
Control Parameter A 

The value of fc 

Decreasing from 2 to 0 with linearly  

0 

PSO 

Cognitive coefficient 

Social coefficient 

Inertia constant 

2 

2 

decreases from 0.8 to 0.2 linearly   

MTDE Constant parameters 
WinIter=20, H=5, initial=0.001, final=2, 

Mu=log(D), μf=0.5, σ=0.2 

Table 2 shows the best, worst, mean, standard deviation and rank obtained by EJS 

algorithm and other comparison algorithms on CEC2017 test set with D=30, all methods 

are running 20 times, the optimal value of the eight comparison methods is emphasized 

in bold. Based on the data in Table 2, the optimization capability of EJS is significantly 

better than the original JS algorithm on all test function, which may well account for the 

introduction of sine and cosine learning factors, local escape operator and learning strat-

egy have greatly speed up the calculation speed, and boost the calculation precision. For 

uni-modal test functions F1-F3, EJS algorithm ranks first, and all  evaluation indicators 

are significantly superior than other comparison methods on F1. On F3, EJS algorithm 

ranks second, and its optimization capability is slightly poor to GBO. However, the EJS 

algorithm possess excellent performance compared with other methods. For multi-modal 

test functions, EJS algorithm ranked first on all F4-F10. It is obvious that EJS algorithm 

performs well, which is mainly due to the introduction of local escape operator, effectively 

avoid EJS algorithm into local optimal, so that it can provide high-quality solution for 

multi-modal optimization problems. For hybrid test functions F11-F20, EJS algorithm is 

obviously better than other advanced methods, ranking first on all test functions. Mean-

while, except F20, it also has the minimum standard deviation, which shows that EJS al-

gorithm has relatively strong stability. For F21-F30, the results of eight algorithms have 

competitive. The optimization ability of EJS is slightly poorer, ranked second on F23, F27, 

F29 and F30. It is slightly not better than GBO on F23, F27 and F29, slightly not as good as 

HHO algorithm on F30, and ranking first. In summary, the optimization capability of EJS 

algorithm on CEC2017 is clearly the most outstanding in all comparison methods, which 

further illustrates that EJS has relatively strong competitiveness. On balance, the function 
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with the lowest standard deviation accounts for 2/3, which further illustrates that EJS has 

relatively stability in dealing with 30-dimensional CEC2017 function set. 

Overall ranking results shown in the last row of Table 2 tells us a phenomenon: The 

performance ranking of the comparison algorithm is EJS > GBO > JS > BMO > HHO > WOA 

> SCA > AOA, this fully shows that the three strategies introduced in the EJS algorithm 

significantly speed up the convergence speed and boost the calculation precision of the JS 

algorithm. Meanwhile, the effectiveness and applicability of EJS algorithm are con-

firmed furthermore on CEC2017 test set with D=30. 

Table 2 Results of EJS and other recognized algorithms on CEC2017 test set  

No. Result 
Algorithm 

HHO GBO WOA AOA SCA BMO JS EJS 

F1 

Best 1.39E+07 1.18E+02 2.57E+08 5.99E+10 1.92E+10 6.11E+07 2.37E+04 1.00E+02 

Worst 3.57E+07 3.02E+03 1.03E+09 9.34E+10 3.89E+10 5.04E+09 5.43E+06 2.65E+02 

Mean 2.49E+07 4.82E+02 5.06E+08 7.97E+10 2.56E+10 1.05E+09 4.86E+05 1.29E+02 

Std 2.04E+13 4.35E+05 3.65E+16 7.37E+19 2.75E+19 1.93E+18 1.41E+12 1.83E+03 

Rank 4 2 5 8 7 6 3 1 

F3 

Best 1.23E+04 9.50E+02 4.57E+04 3.42E+04 3.75E+04 4.81E+04 2.94E+04 3.09E+03 

Worst 3.25E+04 5.25E+03 9.47E+04 6.29E+04 7.63E+04 1.72E+05 6.89E+04 1.27E+04 

Mean 2.04E+04 2.49E+03 6.14E+04 5.14E+04 5.47E+04 9.84E+04 4.88E+04 6.92E+03 

Std 2.65E+07 1.41E+06 1.15E+08 4.83E+07 9.66E+07 8.84E+08 7.80E+07 6.74E+06 

Rank 3 1 7 5 6 8 4 2 

F4 

Best 4.83E+02 4.65E+02 5.68E+02 5.46E+03 1.31E+03 5.41E+02 4.89E+02 4.00E+02 

Worst 7.30E+02 5.57E+02 1.01E+03 1.41E+04 2.95E+03 6.90E+02 6.07E+02 5.38E+02 

Mean 5.95E+02 4.96E+02 7.52E+02 1.07E+04 1.90E+03 6.07E+02 5.58E+02 4.63E+02 

Std 3.80E+03 9.99E+02 1.52E+04 4.60E+06 1.53E+05 1.54E+03 1.21E+03 1.18E+03 

Rank 4 2 6 8 7 5 3 1 

F5 

Best 633.8355 591.5358 649.2092 747.5627 730.0054 621.6966 561.6956 553.7277 

Worst 694.8283 682.0766 889.8055 818.2543 820.2762 708.6485 656.6969 688.0459 

Mean 671.2259 638.8955 742.4699 779.4992 773.0021 664.3025 608.3195 587.4632 

Std 3.59E+02 7.02E+02 3.42E+03 3.65E+02 4.13E+02 7.19E+02 4.38E+02 1.09E+03 

Rank 5 3 6 8 7 4 2 1 

F6 

Best 643.2640 605.8575 647.6470 659.9846 635.5816 629.5382 605.6688 600.0306 

Worst 670.1621 634.4524 696.3800 671.4130 667.1631 656.0691 641.6546 600.9184 

Mean 654.8884 621.2121 665.7095 665.8889 650.2649 648.4965 619.1462 600.2440 

Std 3.56E+01 6.37E+01 1.61E+02 1.05E+01 5.36E+01 7.31E+01 9.02E+01 5.61E-02 

Rank 6 3 7 8 5 4 2 1 

F7 

Best 1.21E+03 8.51E+02 1.12E+03 1.38E+03 1.17E+03 1.00E+03 8.54E+02 7.63E+02 

Worst 1.53E+03 1.03E+03 1.54E+03 1.66E+03 1.39E+03 1.34E+03 1.02E+03 7.95E+02 

Mean 1.39E+03 9.31E+02 1.38E+03 1.52E+03 1.28E+03 1.15E+03 9.17E+02 7.81E+02 

Std 8.53E+03 3.18E+03 1.58E+04 7.98E+03 2.80E+03 9.07E+03 2.00E+03 1.33E+02 

Rank 7 3 6 8 5 4 2 1 

F8 

Best 9.96E+02 8.80E+02 1.00E+03 1.11E+03 1.05E+03 9.05E+02 8.54E+02 8.33E+02 

Worst 1.13E+03 1.00E+03 1.26E+03 1.23E+03 1.15E+03 1.07E+03 9.62E+02 8.77E+02 

Mean 1.06E+03 9.34E+02 1.11E+03 1.17E+03 1.10E+03 9.98E+02 9.09E+02 8.52E+02 
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Std 1.46E+03 8.79E+02 3.95E+03 1.03E+03 7.77E+02 1.50E+03 7.07E+02 1.43E+02 

Rank 5 3 7 8 6 4 2 1 

F9 

Best 4.84E+03 2.32E+03 6.93E+03 7.17E+03 6.02E+03 3.77E+03 1.06E+03 9.08E+02 

Worst 1.04E+04 4.62E+03 1.75E+04 1.28E+04 1.12E+04 6.36E+03 5.51E+03 1.08E+03 

Mean 8.35E+03 3.29E+03 1.06E+04 9.79E+03 8.73E+03 5.57E+03 2.33E+03 9.53E+02 

Std 1.97E+06 4.12E+05 9.11E+06 1.89E+06 2.12E+06 5.17E+05 1.79E+06 1.88E+03 

Rank 5 3 8 7 6 4 2 1 

F10 

Best 3236.890 3380.870 5258.826 7161.386 7326.129 3798.491 3112.994 3294.573 

Worst 6141.832 6093.699 7983.798 8683.420 8897.729 6148.540 7290.103 7143.827 

Mean 4852.440 4540.723 6233.173 7806.254 8323.852 4806.032 4727.660 4497.407 

Std 5.46E+05 4.11E+05 5.89E+05 1.46E+05 2.08E+05 5.08E+05 1.58E+06 1.04E+06 

Rank 5 2 6 7 8 4 3 1 

F11 

Best 1.31E+03 1.17E+03 1.61E+03 6.44E+03 2.81E+03 1.55E+03 1.16E+03 1.13E+03 

Worst 1.72E+03 1.44E+03 2.61E+03 1.77E+04 5.80E+03 5.31E+03 1.36E+03 1.19E+03 

Mean 1.48E+03 1.30E+03 2.12E+03 1.09E+04 4.13E+03 2.87E+03 1.23E+03 1.15E+03 

Std 1.30E+04 5.15E+03 9.24E+04 1.08E+07 6.04E+05 1.18E+06 1.59E+03 4.13E+02 

Rank 4 3 5 8 7 6 2 1 

F12 

Best 6.24E+06 3.49E+03 9.06E+07 1.41E+10 1.77E+09 8.07E+06 4.75E+04 2.28E+03 

Worst 2.85E+08 7.71E+04 5.20E+08 2.71E+10 1.03E+10 1.21E+08 4.65E+06 7.86E+03 

Mean 1.22E+08 1.33E+04 2.65E+08 2.00E+10 3.41E+09 4.67E+07 1.35E+06 3.72E+03 

Std 6.90E+15 3.83E+08 1.24E+16 1.28E+19 3.47E+18 7.11E+14 1.81E+12 1.74E+06 

Rank 5 2 6 8 7 4 3 1 

F13 

Best 1.21E+05 1.54E+03 4.07E+05 2.41E+09 3.59E+07 4.99E+03 1.62E+03 1.34E+03 

Worst 5.48E+05 1.08E+04 4.61E+06 9.66E+09 5.79E+08 5.63E+04 5.08E+03 2.83E+03 

Mean 3.19E+05 5.04E+03 2.00E+06 4.78E+09 2.20E+08 1.66E+04 2.51E+03 1.50E+03 

Std 1.81E+10 1.06E+07 1.97E+12 4.47E+18 1.15E+16 2.10E+08 6.61E+05 1.19E+05 

Rank 5 3 6 8 7 4 2 1 

F14 

Best 3.63E+04 1.54E+03 1.13E+05 1.17E+05 1.86E+05 2.12E+03 1.53E+03 1.49E+03 

Worst 4.59E+05 7.36E+03 1.76E+06 2.11E+06 1.69E+06 6.91E+05 7.38E+03 1.83E+03 

Mean 2.20E+05 2.12E+03 6.75E+05 4.85E+05 7.13E+05 1.19E+05 3.02E+03 1.61E+03 

Std 1.82E+10 1.56E+06 2.38E+11 2.17E+11 2.06E+11 3.29E+10 2.04E+06 8.45E+03 

Rank 5 2 7 6 8 4 3 1 

F15 

Best 1.22E+04 1.61E+03 5.86E+03 5.95E+07 2.58E+06 2.05E+03 1.56E+03 1.53E+03 

Worst 1.13E+05 3.60E+03 2.56E+05 1.92E+09 4.40E+07 2.55E+04 2.94E+03 2.04E+03 

Mean 6.14E+04 1.98E+03 4.88E+04 6.24E+08 1.42E+07 8.72E+03 1.99E+03 1.68E+03 

Std 8.51E+08 2.38E+05 3.05E+09 2.60E+17 1.55E+14 3.87E+07 2.15E+05 2.35E+04 

Rank 6 2 5 8 7 4 3 1 

F16 

Best 2575.503 1961.320 2806.498 3637.705 2970.646 2132.288 1731.428 1759.077 

Worst 4081.262 3179.317 4420.111 5550.588 4052.666 3194.048 2626.638 2468.738 

Mean 3143.325 2538.630 3712.160 4663.799 3623.719 2624.151 2199.213 2137.093 

Std 2.11E+05 1.28E+05 1.67E+05 1.84E+05 9.68E+04 5.38E+04 4.71E+04 3.87E+04 

Rank 5 3 7 8 6 4 2 1 

F17 Best 2190.712 1860.775 2398.981 2333.940 2288.199 1923.000 1810.941 1783.240 
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Worst 3034.090 2745.479 3475.629 3666.832 3094.041 3036.546 2253.618 2004.519 

Mean 2610.376 2275.424 2791.635 3003.246 2735.471 2340.812 1946.655 1859.769 

Std 5.81E+04 5.39E+04 6.88E+04 1.13E+05 4.81E+04 6.95E+04 1.57E+04 4.44E+03 

Rank 5 3 7 8 6 4 2 1 

F18 

Best 9.15E+04 1.84E+04 7.73E+05 1.64E+06 1.40E+06 6.25E+04 1.15E+05 8.82E+03 

Worst 6.21E+06 1.38E+05 4.11E+07 1.34E+07 8.89E+06 4.95E+06 9.68E+05 5.07E+04 

Mean 2.21E+06 5.99E+04 1.08E+07 7.00E+06 4.45E+06 1.50E+06 4.09E+05 2.44E+04 

Std 2.72E+12 1.30E+09 1.09E+14 1.15E+13 5.19E+12 1.41E+12 5.77E+10 1.39E+08 

Rank 5 2 8 7 6 4 3 1 

F19 

Best 9.81E+03 1.95E+03 1.00E+04 3.36E+07 3.49E+06 2.09E+03 1.97E+03 1.92E+03 

Worst 1.31E+06 9.57E+03 6.70E+06 1.27E+09 1.05E+08 7.96E+03 5.54E+03 6.09E+03 

Mean 3.11E+05 4.34E+03 1.40E+06 3.19E+08 4.32E+07 3.22E+03 3.05E+03 2.68E+03 

Std 1.24E+11 7.15E+06 2.55E+12 8.32E+16 9.49E+14 2.17E+06 1.43E+06 1.18E+06 

Rank 5 4 6 8 7 3 2 1 

F20 

Best 2305.321 2178.828 2403.526 2726.669 2721.102 2501.094 2406.156 2137.534 

Worst 3272.870 3132.582 3188.087 3224.310 3058.503 3251.842 2944.201 2691.032 

Mean 2845.926 2542.155 2884.421 2951.854 2894.386 2850.096 2667.068 2387.253 

Std 5.45E+04 4.88E+04 4.83E+04 1.68E+04 9.33E+03 4.87E+04 2.32E+04 2.22E+04 

Rank 4 2 6 8 7 5 3 1 

F21 

Best 2229.302 2200.003 2204.682 2227.127 2224.745 2200.774 2200.007 2200 

Worst 2240.601 2200.022 2212.990 2243.248 2244.193 2202.316 2200.523 2200 

Mean 2233.636 2200.011 2206.503 2238.280 2234.145 2201.284 2200.083 2200 

Std 8.6079 2.31E-05 2.9856 1.38E+01 1.97E+01 2.02E-01 1.47E-02 1.20E-18 

Rank 6 2 5 8 7 4 3 1 

F22 

Best 2328.843 2300.003 2304.867 2332.388 2326.658 2300.651 2300.008 2300 

Worst 2338.738 2300.025 2309.213 2344.899 2345.552 2302.983 2301.048 2300 

Mean 2334.865 2300.009 2306.397 2338.765 2334.656 2301.252 2300.126 2300 

Std 9.4961 3.32E-05 9.36E-01 9.1618 3.40E+01 3.99E-01 5.66E-02 2.00E-19 

Rank 7 2 5 8 6 4 3 1 

F23 

Best 2500 2500 2961.150 3419.816 3235.878 2500 2503.267 2500.001 

Worst 2500 2500 3578.620 5998.939 3509.256 2500 2980.953 2500.196 

Mean 2500 2500 3278.699 4029.890 3362.574 2500 2870.274 2500.031 

Std 0 0 2.48E+04 2.72E+05 5.58E+03 0 1.31E+04 2.24E-03 

Rank 1 1 4 6 5 1 3 2 

F24 

Best 2600 2600 2600 2600 3819.242 2600 2600 2600 

Worst 2600 2600 3908.530 4372.449 4256.700 2600 2600.096 2600 

Mean 2600 2600 2781.464 2858.359 4056.313 2600 2600.007 2600 

Std 0 0 1.97E+05 3.99E+05 1.81E+04 0 4.79E-04 0 

Rank 1 1 3 4 5 1 2 1 

F25 

Best 2700 2700 2700 2700 2700.184 2700 2700 2700 

Worst 2700 2700 2700 2700 4349.761 2700 2700 2700 

Mean 2700 2700 2700 2700 3608.909 2700 2700 2700 

Std 0 0 1.41E-25 0 3.06E+05 0 0 0 
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Rank 1 1 2 1 3 1 1 1 

F26 

Best 2800 2800 2800 2800 5768.074 2800 2800 2800 

Worst 2800 2800 9758.525 2800 9384.246 2800 2800 2800 

Mean 2800 2800 4287.415 2800 8281.796 2800 2800 2800 

Std 0 0 7.10E+06 0 5.96E+05 0 0 0 

Rank 1 1 2 1 3 1 1 1 

F27 

Best 2900 2900 3623.469 3200.006 3916.688 2900 3575.473 2900.072 

Worst 2900 2900 4427.194 6293.607 4512.821 2900 4094.912 2901.939 

Mean 2900 2900 4036.709 3523.849 4209.938 2900 3821.725 2900.653 

Std 0 0 3.65E+04 6.47E+05 2.34E+04 0 2.23E+04 2.76E-01 

Rank 1 1 5 3 6 1 4 2 

F28 

Best 3000 3000 3000 3000 4796.721 3000 3000 3000 

Worst 3000 3000 3807.868 3000 6452.707 3000 3000 3000 

Mean 3000 3000 3223.295 3000 5772.347 3000 3000 3000 

Std 0 0 9.10E+04 0 3.37E+05 0 0 0 

Rank 1 1 2 1 3 1 1 1 

F29 

Best 3100 3100 3100 3100 3516.076 3100 3100.135 3100 

Worst 3100 3100 5233.507 5558.958 4760.017 3100 3813.500 3100.025 

Mean 3100 3100 4547.350 4388.449 4418.403 3100 3494.980 3100.002 

Std 0 0 1.92E+05 3.58E+05 9.49E+04 0 5.68E+04 3.37E-05 

Rank 1 1 6 4 5 1 3 2 

F30 

Best 3200 3200 3200 3200 3.48E+05 3200 3200 3200 

Worst 3200 1.97E+04 5.14E+07 1.20E+08 8.06E+07 3200 2.81E+04 3200.023 

Mean 3200 5.27E+03 7.80E+06 1.53E+07 1.23E+07 3200 5.77E+03 3200.001 

Std 0 1.26E+07 1.33E+14 1.44E+15 6.07E+14 0 4.35E+07 2.70E-05 

Rank 1 3 5 7 6 1 4 2 

Mean Rank 3.9310 2.1379 5.5172 6.4483 6.0000 3.4828 2.5172 1.1724 

Result 5 2 6 8 7 4 3 1 

Under the 95% significance level ( 0.05= ) with EJS algorithm as the benchmark, 

Wilcoxon rank sum test values and statistical results of other comparison methods imple-

menting 20 times are listed in Table 3 on CEC2017 test set. P-value higher than 0.05 is 

remark in bold, which means the solution’s distribution obtained by EJS algorithm and 

other algorithm is analogous, there is no obvious difference. Combined with rank in Table 

2, the statistical results of the last line in Table 3 are 3/6/20, 4/5/20, 0/0/29, 0/4/24, 0/0/29, 

3/6/20 and 0/7/22. The amount of functions that EJS algorithm is clearly superior to HHO, 

GBO, WOA, AOA, SCA, BMO and JS are 20, 20, 29, 24, 29, 20 and 22, respectively. There-

fore, the computational accuracy of EJS algorithm is significantly improved on twenty two 

test functions compared with original JS algorithm, and EJS showed remarkable superior-

ity compared with other comparison methods. 

Table 3 P-value results on CEC2017 with EJS algorithm as the benchmark 

Function 
Algorithm 

HHO GBO WOA AOA SCA BMO JS 

F1 6.791E-08 1.583E-06 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 

F3 7.904E-08 9.134E-07 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 

F4 1.433E-07 6.043E-03 6.791E-08 6.791E-08 6.791E-08 6.791E-08 1.663E-07 
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F5 6.922E-07 3.713E-05 1.234E-07 6.791E-08 6.791E-08 1.383E-06 6.564E-03 

F6 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 

F7 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 

F8 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 2.218E-07 

F9 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 7.903E-08 

F10 1.263E-01 4.253E-01 1.812E-05 6.791E-08 6.791E-08 1.263E-01 6.752E-01 

F11 6.791E-08 1.063E-07 6.791E-08 6.791E-08 6.791E-08 6.791E-08 1.924E-07 

F12 6.791E-08 5.263E-05 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 

F13 6.791E-08 4.544E-07 6.791E-08 6.791E-08 6.791E-08 6.791E-08 1.583E-06 

F14 6.791E-08 4.684E-05 6.791E-08 6.791E-08 6.791E-08 6.791E-08 7.951E-07 

F15 6.791E-08 1.953E-03 6.791E-08 6.791E-08 6.791E-08 6.791E-08 4.323E-03 

F16 6.791E-08 3.383E-04 6.791E-08 6.791E-08 6.791E-08 9.134E-07 3.513E-01 

F17 6.791E-08 2.564E-07 6.791E-08 6.791E-08 6.791E-08 1.234E-07 1.145E-02 

F18 6.791E-08 1.793E-04 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 

F19 6.791E-08 1.145E-02 6.791E-08 6.791E-08 6.791E-08 2.233E-02 1.202E-01 

F20 1.583E-06 1.334E-02 6.924E-07 6.791E-08 6.791E-08 3.943E-07 8.602E-06 

F21 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 

F22 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 

F23 8.013E-09 8.013E-09 6.791E-08 6.791E-08 6.791E-08 8.013E-09 6.791E-08 

F24 NaN NaN 9.113E-04 4.02E-02 8.013E-09 NaN 1.983E-02 

F25 NaN NaN 3.514E-04 NaN 8.013E-09 NaN NaN 

F26 NaN NaN 6.573E-05 NaN 8.013E-09 NaN NaN 

F27 8.01E-09 8.013E-09 6.791E-08 6.791E-08 6.791E-08 8.013E-09 6.791E-08 

F28 NaN NaN 1.672E-04 NaN 8.01E-09 NaN NaN 

F29 3.508E-07 3.508E-07 9.663E-07 9.071E-06 6.763E-08 3.508E-07 6.763E-08 

F30 8.063E-02 2.593E-05 9.632E-08 5.272E-01 1.964E-08 8.063E-02 3.531E-01 

＋/=/－ 3/6/20 4/5/20 0/0/29 0/4/24 0/0/29 3/6/20 0/7/22 

The convergence curve of EJS algorithm on part test functions is revealed in Fig. 3 to 

better evaluate EJS. As indicated in the figure, the slowness of convergence rate and low 

calculation precision are the biggest shortcomings in JS. However, EJS algorithm has ob-

vious improvement to counter these defects, which better balances the global exploration 

and local exploitation capability, boost the JS to skip the trap of local optimization, and 

increase the solution’s precision to ameliorate these deficiencies. Since EJS algorithm car-

ried out Logistic mapping iteration during population initialization, the initial conver-

gence speed is not very fast. Analysis and summary Fig. 3, for F1 and F3, EJS algorithm 

has more rapid convergence speed than other comparison algorithms except for GBO al-

gorithm at the initial stage of iteration. On F1, EJS algorithm is good to other recognized 

algorithms in calculation precision. On F3, EJS algorithm is slightly inferior to GBO algo-

rithm in calculation precision and speed, and further illustrated the potential competitive-

ness. In most cases of F4-F20, the convergence rate of EJS algorithm cannot do better than 

GBO algorithm at the beginning of iteration, but it does not stagnate in the later iteration, 

which has certain advantages. This is due to the addition of local escape operator, so that 

EJS algorithm jumps out of local optimum and does not converge prematurely in the later 

iteration. For F21-F30, all results have on significantly difference, and the superiority of 

EJS is not very outstanding. On balance, convergence curve tell that the proposed EJS al-

gorithm has remarkable improvement in convergence characteristics compared with JS 
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and addition comparison methods, it speeds up the convergence rate and correspond-

ingly improves the calculation precision. 

The box plot can help researchers understand and explicit the distribution character-

istics obtained all algorithms’ solution. The box plot of EJS algorithm on some test func-

tions are drawn  in Fig. 4. Among eight optimization algorithms, the median of EJS algo-

rithm running 20 times is small. In addition to F10, F16 and F20, the rectangular area of 

EJS is more concentrated than other recognized algorithms on most functions. The ap-

proximate solution can be obtained almost every 
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Fig. 3 Convergence curves of EJS and other recognized algorithms on partial CEC2017 test set 

 

time runs. And the height between the upper and the lower quartile is low, indicating that 

the solution of EJS algorithm has high consistency. In terms of EJS outliers, F3, F7, F8, F10, 

F11, F16, F17, F18 and F20 exist fewer outliers, it shown that EJS avoids the existence of 

contingency, and the solution obtained in each iteration is slightly affected by the random 

strategy. In general, EJS is more stable and more accurate than other comparison algo-

rithms. 
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Fig. 4 Box plot of all algorithms on partial CEC2017 test set  

Fig. 5 shows the radar graph based on the rank of the EJS and other different recog-

nized algorithms on CEC2017 set. It can be found from Fig. 5 that EJS algorithm has the 

smallest shadow area and comprehensive ranking in the test function,.which is further 

fully proof the stability of EJS algorithm. Therefore, the performance of EJS is more valu-

able in dealing with CEC2017 test functions. 

   
(a) HHO                        (b) GBO                        (c) WOA 
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(d) AOA                        (e) SCA                        (f) BMO 

   
(g) JS                           (h) EJS 

Fig. 5 Radar graph of all algorithms on CEC2017 test set  
A similar test prevails on CEC2019 test set, which is further applied to effectiveness 

of EJS algorithm. Each benchmark function is carried on 20 times on CEC2019 test set. 

Table 4 summaries the results of evaluation index results about EJS algorithm and other 

methods such as the best, worst, mean, Std and rank, the optimal value is highlighted in 

bold among all comparison algorithms. Based on the data in Table 4, the optimization 

capability of EJS is significantly better than the original JS algorithm on all test function. 

Among eight optimization algorithms, EJS algorithm has more significant advantages in 

solving CEC2019 test sets. From the rank of algorithms, except for test functions F4, F5 

and F7, EJS algorithm ranks first on remaining test functions. Especially on F1, EJS algo-

rithm are significantly superior to addition algorithms, the theoretical optimal value is 

obtained, and have a very small standard deviation. However, other optimization algo-

rithms including original JS algorithm, are far from the theoretical optimal value. MTDE 

algorithm is in line with the theoretical optimal value, but its stability is not as good as EJS 

algorithm. In conclusion, EJS algorithm can greatly fasten the convergence speed, and im-

prove the calculation precision.   

The final ranking of the last row in Table 4 tells researcher a phenomenon: The per-

formance ranking of the comparison algorithm is WOA < SCA < SOA < SSA < PSO < JS < 

MTDE < EJS. This verified the view that the effectiveness and applicability of EJS algo-

rithm are confirmed furthermore on CEC2019 test set. 

Table 4 Results of EJS and other optimization algorithms on CEC2019 test set 

No. Result 
Algorithm 

SSA SOA PSO WOA SCA MTDE JS EJS 

F1 

Best 2.03E+03 1 7.46E+03 1.57E+02 1 1 1 1 

Worst 3.39E+06 2.38E+02 2.30E+05 2.06E+07 3.60E+06 1.0001 9.62E+03 1 

Mean 7.55E+05 2.28E+01 7.18E+04 4.22E+06 3.87E+05 1 5.61E+02 1 
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Std 6.94E+11 3.33E+03 3.61E+09 3.72E+13 9.30E+11 4.33E-10 4.57E+06 1.56E-24 

Rank 7 3 5 8 6 2 4 1 

F2 

Best 1.37E+02 4.2578 1.51E+02 2.36E+03 2.81E+01 3.6598 4.0952 4.1721 

Worst 2.33E+03 2.02E+02 4.40E+02 1.94E+04 4.13E+03 1.63E+01 4.05E+01 4.2865 

Mean 5.86E+02 3.39E+01 2.61E+02 7.21E+03 2.42E+03 6.7871 8.3173 4.2474 

Std 2.95E+05 2.99E+03 7.68E+03 1.52E+07 1.09E+06 8.5241 6.44E+01 8.34E-04 

Rank 6 4 5 8 7 2 3 1 

F3 

Best 1 5.5227 1.4091 1.0114 4.9662 1.4092 1.4190 1 

Worst 7.3871 11.7128 6.7120 8.6335 11.1873 2.9206 5.0663 1.4101 

Mean 3.5624 9.6919 2.0993 4.3972 8.7119 1.6112 3.0739 1.3683 

Std 3.4887 2.3448 2.9966 5.0363 3.021 1.80E-01 1.3527 1.59E-02 

Rank 5 8 3 6 7 2 4 1 

F4 

Best 10.9496 12.8433 8.9597 11.0267 24.2144 1.3311 8.9597 1.9950 

Worst 55.7222 43.2380 25.8739 97.5722 55.3016 8.9603 32.8386 16.9193 

Mean 25.2778 24.5804 16.6427 50.0062 41.7837 5.7551 14.1974 9.1587 

Std 153.3892 88.2880 22.2697 508.0421 84.6501 4.6816 29.5700 16.9436 

Rank 6 5 4 8 7 1 3 2 

F5 

Best 1.0566 1.4885 1 1.2966 4.5055 1 1.0172 1.0099 

Worst 1.6835 15.6787 1.2437 3.3065 10.5726 1.0319 1.1846 1.1454 

Mean 1.2653 3.4743 1.1169 2.0409 6.8461 1.0059 1.0728 1.0625 

Std 2.98E-02 9.4315 4.71E-03 2.52E-01 2.3672 9.52E-05 1.81E-03 1.55E-03 

Rank 5 7 4 6 8 1 3 2 

F6 

Best 1.5031 5.5717 1 5.9743 4.9522 1 1.015 1 

Worst 7.6048 9.9222 5.6087 11.8140 9.1251 2.500 3.5932 1.0596 

Mean 4.4052 7.4945 2.4119 8.5441 6.9821 1.1239 1.674 1.0034 

Std 3.9027 1.8243 1.9215 2.0366 1.1457 1.28E-01 4.30E-01 1.78E-04 

Rank 5 7 4 8 6 2 3 1 

F7 

Best 5.16E+02 4.86E+02 2.38E+02 5.33E+02 1.17E+03 1.2575 3.57E+02 1.3747 

Worst 1.67E+03 1.39E+03 1.17E+03 1.74E+03 1.74E+03 1.57E+02 1.35E+03 1.10E+03 

Mean 8.93E+02 9.36E+02 7.26E+02 1.23E+03 1.45E+03 6.77E+01 7.93E+02 5.81E+02 

Std 1.02E+05 1.01E+05 7.03E+04 9.80E+04 2.14E+04 3.04E+03 7.60E+04 1.20E+05 

Rank 5 6 3 7 8 1 4 2 

F8 

Best 2.8406 3.3827 1.4577 4.0885 3.8107 2.3048 2.2607 1.8870 

Worst 4.5761 5.0174 4.4825 5.0042 4.6990 3.6979 4.1202 3.6695 

Mean 3.8634 4.3280 3.4510 4.5452 4.2684 3.0618 3.6681 2.8739 

Std 2.10E-01 1.29E-01 3.96E-01 8.09E-02 7.10E-02 1.46E-01 1.69E-01 1.96E-01 

Rank 5 7 3 8 6 2 4 1 

F9 

Best 1.1179 1.1342 1.0353 1.1215 1.3690 1.1001 1.1084 1.0222 

Worst 1.9214 1.5262 1.2829 1.6979 1.7938 1.2156 1.3049 1.1698 

Mean 1.3812 1.3216 1.1108 1.3552 1.5182 1.1440 1.1981 1.0788 

Std 4.82E-02 1.26E-02 3.11E-03 2.22E-02 1.44E-02 8.23E-04 3.68E-03 1.57E-03 

Rank 7 5 2 6 8 3 4 1 

F10 Best 20.9965 21.1771 21.0431 21.0073 15.0350 21.0899 11.6185 2.1551 
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Worst 21.1029 21.5108 21.4662 21.3630 21.5155 21.2469 21.5071 21.5214 

Mean 21.0130 21.3651 21.2159 21.1252 21.0376 21.1722 20.0395 18.6298 

Std 1.10E-03 8.41E-03 1.04E-02 1.04E-02 2.0042 2.42E-03 1.05E+01 4.58E+01 

Rank 3 8 7 5 4 6 2 1 

Mean Rank 5.40 6.00 4.00 7.00 6.70 2.20 3.40 1.30 

Result 5 6 4 8 7 2 3 1 

Under the 95% significance level ( 0.05= ) with EJS algorithm as the benchmark, 

Wilcoxon rank sum test values and statistical data of other comparison methods imple-

menting 20 times are listed in Table 5 on CEC2019 test set. Wilcoxon rank sum test value 

exceed to 0.05 is emphasized in bold , which means that EJS algorithm and comparison 

algorithm has competitiveness, and they are roughly the same. Combined with rank in 

Table 4, the statistical results of the last line in Table 5 are 0/0/10, 0/1/9, 0/1/9, 0/0/10, 0/1/9, 

3/1/6 and 0/3/7. The number of functions that EJS algorithm is significantly better to SSA , 

WOA, SOA, PSO, SCA, MTDE and JS are 10, 10, 9, 9, 9, 6 and 7, respectively. Therefore, 

for CEC2019 test set, the computational accuracy of EJS algorithm is significantly im-

proved on seven test functions compared with original JS algorithm, and EJS algorithm 

also has strong competitiveness counter to other comparison algorithms. 

Table 5 P-value results on CEC2019 with EJS algorithm as the benchmark 

Function 
Algorithm 

SSA SOA PSO WOA SCA MTDE JS 

F1 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 6.791E-08 

F2 6.791E-08 2.56E-07 6.791E-08 6.791E-08 6.791E-08 1.60E-05 1.20E-06 

F3 1.35E-03 6.791E-08 4.20E-03 9.13E-07 6.791E-08 1.66E-07 6.791E-08 

F4 1.37E-06 7.93E-07 4.15E-05 1.65E-07 6.78E-08 2.56E-02 2.04E-03 

F5 2.06E-06 6.791E-08 6.04E-03 6.791E-08 6.791E-08 1.92E-07 4.90E-01 

F6 4.001E-08 4.001E-08 1.14E-06 4.001E-08 4.001E-08 2.15E-02 5.45E-08 

F7 1.33E-02 3.64E-03 1.99E-01 5.17E-06 6.791E-08 5.90E-05 8.10E-02 

F8 2.06E-06 1.06E-07 5.631E-04 6.791E-08 6.791E-08 1.48E-01 1.25E-05 

F9 1.92E-07 1.06E-07 4.68E-02 9.17E-08 6.791E-08 2.04E-05 9.13E-07 

F10 1.61E-04 9.68E-01 8.35E-04 3.05E-04 3.512E-01 1.614E-04 3.94E-01 

＋/=/－ 0/0/10 0/1/9 0/1/9 0/0/10 0/1/9 3/1/6 0/3/7 

The convergence curve of EJS algorithm on part test functions is revealed in Fig. 6 for 

better evaluating EJS algorithm. As indicated in the figure, for CEC2019 test set, EJS algo-

rithm has obvious improvement in convergence characteristics compared with JS algo-

rithm. On test functions F1, F2, F6 and F9, EJS algorithm not only accelerate convergence 

rate, but also increase calculation precision. On test functions F3, F7 and F8, although the 

convergence rate of EJS algorithm cannot do better than PSO algorithm, its convergence 

does not stop at the late iteration, skipping the local optimal trap, and its calculation pre-

cision is obviously better than PSO. The solution’s precision of EJS algorithm is obviously 

better than MTDE algorithm on F4 and F7, but the calculation rate of MTDE algorithm has 

a litter slow on each test function, and EJS algorithm performs well on other test functions. 

In conclusion, EJS algorithm speeds up the convergence rate and correspondingly im-

proves the calculation precision. 
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Fig. 6 Convergence curves of all algorithms on CEC2019 test set 

Similar to CEC2017, the box plot of EJS algorithm and other eight optimization, meth-

ods on partial CEC2019 are drawn in Fig. 7. It show that the median of EJS algorithm 

running 20 times is small except F4 and F7, which verify the superiority and effectiveness 

of EJS algorithm. At the same time, rectangular area of EJS algorithm is clearly narrower 

than other methods on F1~ F3, F5 and F6, so as to illustrate EJS algorithm has strong sta-

bility. In general, EJS algorithm possess highly competitiveness and applicability com-

pared with other comparison algorithms. 
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Fig. 7 Box plot of all algorithms on CEC2019 test set 

The radar chart drawn according to the ranking of all comparison algorithms on 

CEC2019 test set are displayed in Fig. 8. It illustrate that EJS algorithm has the smallest 

shadow area, and the algorithm has the smallest comprehensive ranking on the test func-

tion. Therefore, the stability of EJS is improved. In general, the performance of EJS algo-

rithm is more valuable than other comparison algorithms on CEC2019 benchmark. 

   
(a) SSA                        (b) SOA                        (c) PSO 

   

(d) WOA                       (e) SCA                        (f) MTDE 
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(g) JS                         (h) EJS 

Fig. 8 Radar graph of all optimization algorithms on CEC2019 test set 

5. Engineering application 

The ability to solve practical problems of EJS and some previous methods are est and 

verified in this section. Here, six engineering cases consist of tension/compression spring 

design, pressure vessel design, gear set design, cantilever beam design, 3-bar truss design 

and 25 bar truss tower design to illustrate its applicability and effectiveness in solving 

practical engineering problems. The calculation indexes can reflect the practical applica-

tion effect of EJS algorithm. In addition to gear train design, the other five engineering 

optimization problems are nonlinear constrained optimization problems, which have 

strong nonlinear objective function and constraint conditions. Penalty function method is 

a technique to deal with nonlinear constraints effectively. Its basic principle is to impose 

a penalty term on the original goal express equation, then transformed the constrained 

into an unconstrained optimization problem, which is easy to solve with intelligent algo-

rithms including EJS algorithm. In all experiments, the running environment is the same 

as the section 4.1, and set D=50, T=1000.  

5.1. Tension/compression spring design problem 

The tension/compression spring design problem is a nonlinear constrained optimi-

zation issue.The objective is to require the minimum weight, and the variables that can 

participate in the optimization consist of mean coil diameter (D), wire diameter (d) and 

number of effective coils (N), respectively. Fig. 9 gives the sketch map of this case. Con-

sider ],,[],,[ 321 NDdzzzZ == , the mathematical expresses of spring design problem 

are shown in Eq. (39). z1[0.05, 2], z2[0.25, 1.3], and z3[2, 15] is search area of this issue. 

 

 
Fig. 9 Sketch map of tension/compression spring 

Minimize        
2

123 )2()( zzzZW +=                                             (39) 
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 All statistical results of algorithms consist of JS [51], ALO [39], GOA [41], GWO [36], 

MFO [87], MVO [30], WOA [35], SCA [84] , HHO [42] and EJS for design of Fig.9 are dis-

played in Table 6. Table 6 coordinates variable value and the evaluation indicators consist 

of the best, mean, worst and Std of spring weight after all algorithms have been run for 20 

times.The optimal values of evaluation indicators are highlighted in bold. As described in 

Table 6, EJS algorithm is obviously outperform the above methods on each statistical in-

dicator. The applicability and superiority of EJS algorithm are further verified. EJS can 

provide the best design variables at the lowest cost compared with competitors. 

Table 6 Evaluation indicators and variable value for Fig. 9 

Algorithm 
Design variables Evaluation indicators(weight)  

d D N Minimum Mean Std Worst 

JS 0.0516656 0.355897 11.3546 0.012666 0.012710 6.0819E-10 0.012761 

EJS 0.0520738 0.366045 10.7624 0.012665 0.012668 3.4221E-12 0.012671 

ALO 0.050000 0.317425 14.0278 0.012670 0.013001 1.7155E-07 0.014091 

GOA 0.067340 0.863100 2.2960 0.012719 0.015966 4.2678E-06 0.019652 

GWO 0.053658 0.405890 8.9014 0.012678 0.012720 2.4396E-09 0.012919 

MFO 0.058979 0.558790 4.9783 0.012666 0.012969 2.2056E-07 0.014735 

MVO 0.069094 0.937540 2.0181 0.012878 0.017167 2.4197E-06 0.018036 

WOA 0.060649 0.613040 4.2157 0.012687 0.013813 1.4231E-06 0.017329 

SCA 0.050000 0.317316 14.3155 0.012723 0.012900 9.9693E-09 0.013100 

HHO 0.057540 0.514510 5.7776 0.012679 0.013872 1.1585E-06 0.017644 

5.2. Pressure vessel design problem 

Minimizing the total cost of pressure vessels is the first priority of pressure vessel 

design. The variables that can participate in the optimization are shell thickness (Ts), head 

thickness (Th), inner radius (R), and length of cylindrical part without head (L), respec-

tively. Fig. 10 gives its sketch map of this case. Considered as 

].,,,[],,,[ 4321 LRTTrrrrR hs== The corresponding mathematical model is simplified in 

Eq. (40). Here, we can set r1, r2[0, 99]，r3, r4[10, 200] in this issue. 

 

 
Fig. 10 Sketch map of pressure vessel design 

Minimize        3

2

14

2

1

2

32431 84.191661.37781.16224.0)( rrrrrrrrrRW +++=             (40) 
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All statistical results of algorithms consist of JS [51], ALO [39], GOA [41], GWO [36], 

MFO [87], MVO [30], WOA [35], SCA [84] , HHO [42] and EJS for design of Fig.10 are 

displayed in Table 7. Table 7 coordinates variable value and the evaluation indicators con-

sist of the best, mean, worst and Std of the total cost after all algorithms have been run for 

20 times. The optimal values of evaluation indicators are highlighted in bold. As described 

in Table 7, EJS algorithm is prominently ahead of the above algorithms on each statistical 

indicator, and it can provide higher quality solution. GWO ranked second, JS is third. The 

applicability and superiority of EJS algorithm in solving tension/compression spring de-

sign are further verified. This EJS can provided the optimal solution in this case. 

Table 7 Evaluation indicators and variable value for Fig. 10 

Algorithm 
Design variables Evaluation indicators(cost) 

Ts Th R L Optimal Mean Std Worst 

JS 0.7770396 0.3848140 40.42532 198.5706 5870.1250 5871.1056 3.3266 5877.8328 

EJS 0.7745491 0.3832039 40.31962 200.0000 5870.1240 5870.1240 6.6383E-22 5870.1240 

ALO 1.1027100 0.5433020 57.25430 49.5071 5870.1299 6334.3010 254190.1288 7301.0969 

GOA 0.8665065 1.1792950 45.19656 141.6881 6664.3149 8115.7627 2663313.7787 13589.6419 

GWO 0.7741732 0.3833187 40.31964 200.0000 5870.3903 5961.9718 81459.1646 7019.5910 

MFO 0.7827661 0.3872136 40.74312 194.1874 5870.1240 6241.3384 294817.8949 7301.1955 

MVO 1.2263800 0.6031600 63.75980 17.4111 6024.7668 6680.0326 207592.6589 7550.9419 

WOA 0.8519145 0.5603772 43.42803 160.8293 6314.9267 7300.9278 478781.6422 8662.6477 

SCA 0.8046946 0.3993354 41.28378 196.3765 6103.2795 6618.5766 199596.9822 7746.5638 

HHO 1.0860800 0.5215510 54.99250 63.0875 5972.4547 6715.7933 175488.7714 7306.5959 

5.3. Gear train design problem 

The gear train design problem is a nonlinear unconstrained case, its purpose is to 

minimize the cost of gear ratio, and four integer variables (umber of teeth on each gear) 

that can participate in the optimization are denoted by TA, TB, TC and TD, respectively. 

Here, we give a mark, let ],,,[],,,[ 4321 DCBA TTTTzzzzZ == , and 

].60 ,12[,,, 4321 zzzz The mathematical expresses of minimum objective function is 

listed in Eq. (41). 

 
Fig. 11 Sketch map of gear train design problem [88] 
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All statistical results of algorithms consist of JS [51], ALO [39], GOA [41], GWO [36], 

MFO [87], MVO [30], WOA [35], SCA [84] , HHO [42] and EJS for design of Fig.11 are 

displayed in Table 8. Table 8 coordinates variable value and the evaluation indicators con-

sist of the best, mean, worst and Std of gear ratio cost after all algorithms have been run 

for 20 times. The optimal values of evaluation indicators are marked in bold. As observed 

in Table 8, the each data of EJS algorithm is optimal among ten optimization algorithms, 

which fully demonstrates that proposed EJS algorithm performs well in solving gear train 

design problem. It can develop outperformed design effect than other algorithms. 

Table 8  Evaluation indicators and variable value for Fig. 11 

Algorithm 
Design variables Evaluation indicators(cost) 

TA TB TC TD Optimal  Mean Std Worst 

JS 53 26 15 51 2.3078E-11 5.8263E-11 5.9403E-20 1.0936E-09 

EJS 43 16 19 49 2.7009E-12 2.9871E-11 4.7338E-21 3.0676E-10 

ALO 27 12 12 37 1.8274E-08 3.8599E-09 3.1347E-17 1.8274E-08 

GOA 59 21 15 37 3.0676E-10 1.8504E-09 3.5997E-17 2.7265E-08 

GWO 49 16 19 43 2.7009E-12 1.2263E-10 8.8927E-20 9.9216E-10 

MFO 54 37 12 57 8.8876E-10 4.8239E-09 6.9029E-17 2.7265E-08 

MVO 57 37 12 54 8.8876E-10 4.8240E-10 3.6788E-19 2.3576E-09 

WOA 53 13 20 34 2.3078E-11 1.0561E-09 8.0578E-19 2.3576E-09 

SCA 59 21 15 37 3.0676E-10 1.4669E-09 1.2268E-17 1.6200E-08 

HHO 60 15 15 26 2.3576E-09 1.6465E-09 1.6339E-17 1.8274E-08 

5.4. Cantilever beam design problem 

Similarly, the design problem of cantilever beam is also a classic representative of 

nonlinear constraint optimization. The final requirement is to lighten its weight. The re-

quired variables of five people's design departments have been marked in Fig. 12. In other 

words, the cross-section  parameters of five hollow square elements ( 54321 ,,,, zzzzz ). 

And all parameters belong to the range [0.01,100]. Professionals have given their specific 

expressions in following Eq. (42).  

 
Fig. 12 Sketch map of cantilever beam design problem [89] 

Minimize          )(6224.0)( 54321 zzzzzZW ++++= .                             (42) 
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All statistical results of algorithms consist of JS [51], ALO [39], GOA [41], GWO [36], 

MFO [87], MVO [30], WOA [35], SCA [84] , HHO [42] and EJS for design of Fig.11 are 

listed in Table 9. The variable value and the evaluation indicators consist of the best, mean, 
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worst and Std of cantilever beam weight after all algorithms have been run for 20 times. 

The optimal values of Evaluation indicators are marked in bold. As can be observed, Table 

9 tell researcher that the average values of EJS algorithm, JS algorithm and ALO algorithm 

are the same, and is the smallest after running 20 times, indicating that they all have good 

superiority in dealing with this case. However, EJS algorithm has the smallest standard 

deviation, which means EJS algorithm is more stable. A statistic table demonstrate that 

EJS algorithm possess great competitiveness than other optimization methods, the re-

searcher can obtain the optimal variables by EJS algorithm.  

Table 9 Evaluation indicators and variable value for Fig. 12 

Algorithm 
Design variables Evaluation indicators (weight) 

1z  2z  3z  
4z  5z  Best Mean Std Worst 

JS 6.0112 5.3155 4.4904 3.5012 2.1554 1.3365 1.3365 4.7910E-12 1.3365 

EJS 6.0160 5.3092 4.4943 3.5015 2.1527 1.3365 1.3365 3.0445E-15 1.3365 

ALO 6.0210 5.3121 4.4844 3.5027 2.1535 1.3365 1.3365 1.0989E-10 1.3366 

GOA 5.9451 5.3673 4.5345 3.5124 2.1191 1.3366 1.3370 2.2100E-07 1.3381 

GWO 6.0251 5.3171 4.4790 3.4924 2.1606 1.3365 1.3366 4.0520E-10 1.3366 

MFO 5.9850 5.3610 4.4794 3.5137 2.1364 1.3366 1.3369 5.6538E-08 1.3375 

MVO 6.0900 5.2498 4.5082 3.4908 2.1384 1.3367 1.3370 1.9942E-07 1.3382 

WOA 6.5788 5.3648 4.7280 4.0443 1.5657 1.3489 1.4467 7.4364E-03 1.6955 

SCA 5.7691 5.4245 4.7114 3.2731 2.8091 1.3494 1.3780 2.0906E-04 1.4005 

HHO 6.3177 5.2692 4.3444 3.4316 2.1528 1.3368 1.3387 1.5729E-06 1.3413 

5.5. Planar 3-bar truss design problem 

The lightest mass of three bar truss is a typical problem, it can be simplified into an 

optimization problem with two variables (recorded as 1Az and 2Az ). This model is indi-

cated in Fig. 13. 1Az and 2Az represents the cross-sectional areas of bar truss, respectively. 

Consider ],[],[ 2121 AA zzzzZ == , and ]1 ,0[, 21 zz  the mathematical equation of Fig. 

13 is set out in Eq. (43). 

 
Fig. 13 Sketch map of 3-bar truss design problem 
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Where, cm100=l , 
2KN/cm2=P , 

2KN/cm2= . All statistical results of algo-

rithms consist of JS [51], ALO [39], GOA [41], GWO [36], MFO [87], MVO [30], WOA [35], 

SCA [84] , HHO [42] and EJS for design of Fig.11 are displayed in Table 10. Table 10 coor-

dinates variable value and the evaluation indicators consist of the best, mean, worst and 

standard deviation of truss weight after all algorithms have been run for 20 times. The 

optimal results of evaluation indicators are highlighted in bold. Table 10 tell researcher 

that the mean value of EJS are the equal with JS algorithm, but the Std indicator of EJS 

algorithm is relatively small, which signify EJS algorithm have certain advantages. At the 

same time, proposed EJS algorithm has excellent performance. A statistic table demon-

strate that EJS algorithm possess great superiority than other optimization methods. At 

the same time, this algorithm can effectively solve this concern and has a more pleasing 

design effect than different algorithms. 

 

Table 10 Evaluation indicators and variable value for Fig. 13 

Algorithm 
Design variables Evaluation indicators (Weight) 

1Az  2Az  Minimum Mean Std Worst 

JS 0.78862 0.40841 263.8958 263.8958 2.7666E-11 263.8958 

EJS 0.78867 0.40825 263.8958 263.8958 2.3809E-26 263.8958 

ALO 0.78796 0.41027 263.8962 263.8959 3.9186E-08 263.8967 

GOA 0.78972 0.40529 263.8966 263.9962 5.2969E-02 264.7909 

GWO 0.78999 0.40457 263.8992 263.8977 2.5911E-06 263.9010 

MFO 0.78560 0.41702 263.9028 263.9305 2.6756E-03 264.0610 

MVO 0.78762 0.41125 263.8966 263.8969 8.2328E-07 263.8990 

WOA 0.79180 0.39949 263.9029 264.0623 4.9253E-02 264.7084 

SCA 0.79582 0.38879 263.9704 264.9253 1.7790E+01 282.8427 

HHO 0.77258 0.45580 264.0975 264.0089 1.6864E-02 264.3323 

5.6. Spatial 25-bar truss design problem 

Under the conditions of stress and node displacement constraints, lightweight design 

of 25 bar truss is also a topic that structural researchers have been studying. The goal is to 

minimize the mass of 25 rods.This engineering structure has 25 elements and 10 nodes. 

To sum up, 25 member elements are summarized into 8 different units, and the sectional 

area of member elements in each group is the same. Recorded as U1=S1, U2={S1~S5}, 

U3={S6~S9}, U4={S10, S11}, U5={S12, S13}, U6={S14~S17}, U7={S18~S21}, U8={S22~S25} as displayed in 

Fig. 14. The material density of all elements is defined as 0.1 lb/in3, the elastic modulus is 

set as 10,000 ksi and the stress belong to [-40000,40000] psi. The displacement of all nodes 

in three coordinates X, Y and Z are governed by [-0.35, 0.35] (in), and the node loads are 

given as P1x = 1 kips, P3x = 0.5 kips, P6x = 0.6 kips, P1y = P1z = P2y = P2z = −10 kips. The member 

sectional area belongs to any number of D={0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 

2.0, 2.1, 2.2, 2.3, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4} (in2). 
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Fig. 14 Sketch map of spatial 25-bar truss design problem [44] 

All statistical results of algorithms consist of JS [51], ALO [39], GOA [41], GWO [36], 

MFO [87], MVO [30], WOA [35], SCA [84] , HHO [42] and EJS for design of Fig.11 are 

displayed in Table. Since one table displays all the results, which is somewhat crowded, 

it is divided into two tables. Table 11 coordinates variable value and the minimum weight 

of spatial 25-bar truss. Table 12 show the evaluation indicators consist of the best, mean, 

worst rand standard deviation of truss mass after all algorithms have been run for 20 times. 

The best results of the evaluation indicators are highlighted in bold. The results illuminate 

the solution obtained by EJS algorithm is optimal in all evaluating indicator value such as 

optimal, worst, mean and standard deviation, which further demonstrates that EJS algo-

rithm possess great superiority, validity and applicability in dealing with truss size design 

problem. 

Table 11 Evaluation indicators and variable value for Fig. 14 

Algorithm 
Design variables  Minimum 

mass 1U  
2U  

3U  
4U  

5U  
6U  

7U  
8U  

JS 0.0066375 0.045319 3.6303 0.0012569 1.9773 0.78542 0.16327 3.9084 464.5255 

EJS 0.0088242 0.040509 3.6138 0.0010299 1.9941 0.77452 0.15717 3.9438 464.5177 

ALO 3.5940000 0.028565 3.4983 0.0010007 4.5648 0.77050 0.13363 3.7717 464.6441 

GOA 0.0010000 0.052098 3.4372 0.0117620 4.9753 0.70938 0.11953 3.8916 464.5766 

GWO 0.0352840 0.101400 3.6433 0.0186540 1.9827 0.77268 0.13597 3.9080 464.8678 

MFO 0.0010000 0.054239 3.4971 0.0010000 1.9624 0.78602 0.15505 4.0293 464.6413 

MVO 0.0631310 0.031478 3.6963 0.0018894 2.1164 0.78697 0.14766 3.8506 464.5775 

WOA 0.0160690 0.659360 4.3802 0.1496500 3.6878 1.51760 1.25870 2.2564 481.5535 

SCA 0.0890750 0.141850 3.5827 0.0010000 2.5481 0.66840 0.30984 3.8077 468.2995 

HHO 0.0010000 0.162690 3.4298 0.0348380 1.8363 0.74599 0.18196 4.0619 468.0012 

 

Table 12 Evaluation indicators of all algorithms for Fig. 14 

Algorithm Minimum Worst Mean Std 

JS 464.5255 464.6061 464.5538 0.00043794 

EJS 464.5177 464.5437 464.5255 4.7167E-05 

ALO 464.6441 566.3295 483.1 816.5387 

GOA 464.5766 553.7468 483.3067 817.8789 

GWO 464.8678 466.1551 465.3356 0.13529 
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MFO 464.6413 521.802 467.8903 161.3347 

MVO 464.5775 467.4785 464.9683 0.38278 

WOA 481.5535 629.2815 534.5016 1999.6866 

SCA 468.2995 533.837 507.8849 685.4388 

HHO 468.0012 508.5609 475.7416 83.3678 

5. Conclusion 

This paper proposes an enhanced jellyfish search (EJS) algorithm, which has the ad-

vantages of better calculation precision and faster convergence rate. The following three 

improvements have been applied based on JS algorithm: (i) The addition of sine and co-

sine learning factors can boost the solution’s quality, and fasten the convergence rate; (ii) 

The introduction of local escape operator can prevent JS from getting stuck at locally op-

timal value and boost the exploitation capability; (iii) Opposition-based learning and 

quasi-opposition learning operator in probability can increase the diversity of distribution 

of candidate populations. By comparing other popular optimization algorithms on 

CEC2017 and CEC2019, it is verified that EJS algorithm has strong competitiveness. For 

example, quick convergence rate and high calculation precision, strong robustness and so 

on are its excellent characteristics. Compared with the JS algorithm, EJS algorithm escaped 

the trap of local optimum, enhances the solution’s quality and the calculation speed of 

algorithm.What’s more, the practical engineering application of EJS algorithm also shows 

its superiority in solving both constrained and unconstrained real optimization problems. 

This provides a way to solve such problems. 
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