

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Digital Virtual Consultations and Improved Stakeholders' Health and Wellbeing amongst Hospital Doctors

Dorothy Zammit¹, Gianpaolo Tomaselli¹, Sandra Buttigieg¹, Lalit Garg², Gloria Macassa^{3,*}

1. Department of Health Systems Management & Leadership, Faculty of Health Sciences, University of Malta, Msida, Malta

2. Department of Computer Information Systems, Faculty of Information & Communication Technology, University of Malta, Msida, Malta

3. Department of Public Health and Sports Science, Faculty of Health and Occupational Studies, University of Gävle, 801 76 Gävle, Sweden

* Correspondence: author:gloria.macassa@hig.se

Abstract: The past several decades have seen a shift in patient care towards digitalisation, which has ushered in a new era of health care delivery and improved sustainability and resilience of health systems, with positive impacts on both internal and external stakeholders. This study's aim was to understand the role of digital virtual consultations in improving internal and external stakeholders' health, as well as wellbeing among hospital doctors. A qualitative research approach was used with semi-structured online interviews administered to hospital doctors. The interviews showed that the doctors viewed digital virtual consultations as supplementary to in-person consultations, and as tools to reduce obstacles related to distance and time. If the necessary infrastructure and technology were in place, doctors would be willing to use these options. Implementing these technologies would improve the medical profession's flexibility on the one hand; but it might affect doctors' work-life balance if consultations extended beyond standard working hours.

Keywords: video consultations; digitalisation; stakeholders' health and wellbeing; corporate social responsibility; hospital doctors; patient care

1. Background

Countries and their health care systems are struggling because of geographic barriers, changing demographics as populations age, and rising health care costs [1]. Today's health care systems have long waiting times linked to the increased demand and a limited workforce. This causes patients to worry about access to care, which weakens the doctor-patient bond and results in increased dissatisfaction with the standard of care received, ultimately affecting patient outcomes [2]. However, with an increase in incidence of burnout, job discontent, and high turnover rates, the increased burden on health care system has also affected the health and wellbeing of health care professionals [3,4].

Advances in the technological environment are encouraging the adoption of digital tools as health care systems improve equity in access to care, maintain quality in the delivery of care, control the skyrocketing costs, and, last but not least, improve the wellbeing and job satisfaction of health care workers [1]. Digital tools allow increased access to care, better patient autonomy and a smoother organisation of workloads, and encourage digital alternatives to traditional health care delivery methods [5]. For these reasons, policy makers are urging the adoption of digital consultations in health care settings.

Telemedicine is defined by the World Health Organization (WHO) as the use of information and communication technology (ICT) by medical professionals to deliver health care when a physical barrier exists [6]. "Telehealth" and "telemedicine" are frequently used interchangeably. However, the word "telemedicine" tends to limit the use of digital health technology to those in the medical field, whereas "telehealth" refers to its use by a variety of other health care professionals [6].

Several countries worldwide are adopting digital health care [7]. For example, Poland began implementing telemedicine in the early 20th century, and in 2013, Korea sought to

legalise the use of digital consultations between patients and medical personnel [7,8]. The rapid advancement of ICT, quick access to the internet, and the adoption of electronic patient records (EPRs) have encouraged member countries of the Organisation for Economic Co-operation and Development (OECD) to invest in telemedicine [9].

Use of intricate technology and infrastructure, the duration of use, and patients' ease of access are all issues in telemedicine [10]. Video consultations are an example of telemedicine that is "synchronous" or takes place in real time. However, telemedicine can also be "asynchronous", where the data is stored and then handled later, a process applicable to electronic consultations [2,11].

Further advantages of using telemedicine for health systems are improved patient outcomes by empowering individuals to participate actively in their medical care [7]. Furthermore, telemedicine allows a reduction in waiting times through assisted triaging and offers some flexibility to the medical profession by reducing the number of patients in waiting rooms, allowing clinicians to concentrate on challenging situations improving patient management, impacting work-life balance [12,13]. Through the exchange of evidence-based information, digital consultations supplement traditional medical care and facilitate the follow-up of institutionalised and chronically ill patients. They also serve as a source of education for both patients and medical professionals [11,14,15].

As a result, ICT and telemedicine have been incorporated into the corporate social responsibility (CSR) strategy of health systems [16]. The concept of CSR was originally understood as a social duty for corporations to make decisions and act responsibly in accordance with societal objectives and values [17]. Today's definition of "CSR" includes businesses' ongoing commitment to act morally, promote economic growth, and enhance the lives of their employees and their families, the local community, and society as a whole [18]. The term "CSR" has been defined in various ways throughout the last century; however, the European Union (EU)'s definition concisely and effectively summarises the meaning of the term as corporations' responsibilities for their impact on society [19]. Through improving the health and wellbeing of stakeholders (both internal, such as health care workers, and external, such as patients), the use of digital tools in health care contributes to the success of the CSR strategy as a whole.

Against this background, this study explored doctors' experiences of, attitudes towards and thoughts on digital virtual consultations and the extent to which these can improve their patients', as well as their own, health and wellbeing. This research was conducted in a tertiary hospital in Malta.

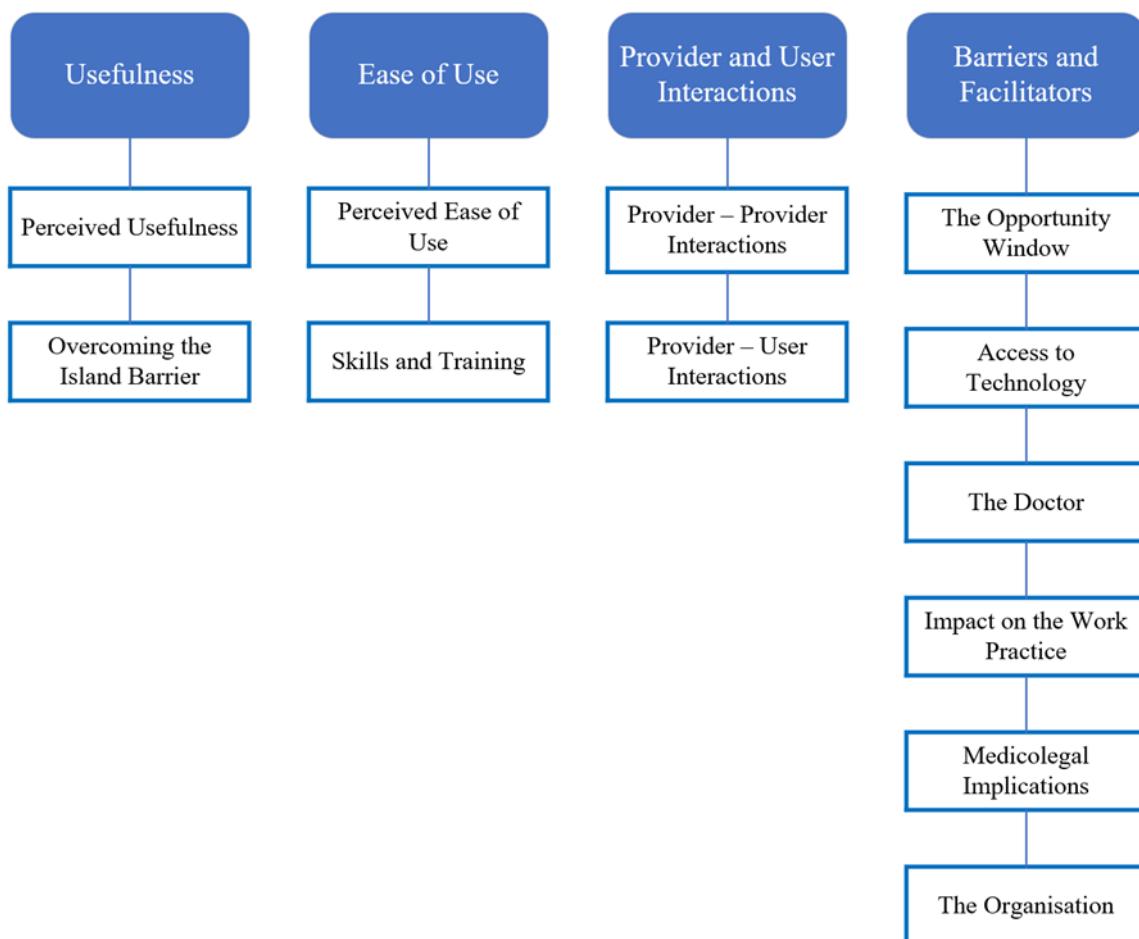
2. Methodology

2.1. Research setting and selection of participants

Using an explanatory sequential approach nested within the philosophical worldview of pragmatism, this research study adopted a qualitative research design [20,21]. Sound qualitative research employs methodical and rigorous ways to investigate people's perceptions and emotions around events and circumstances [22,23].

From March to May 2021, six online interviews were conducted. There is an ongoing debate about how many interviews/participants a qualitative study should have; however, a large part of the literature agrees that a sample of between five and 50 participants is considered adequate [24,25]. The interviews took place at the interviewees' convenience and lasted, on average, 28 minutes. The interviewees practiced various specialties at varying levels of seniority. An equal number of men and women participated in the interviews, and the average age of the participants was 45 years. Participants were selected using a snowball sampling technique [26–28].

2.2. Data collection


Six doctors working at the hospital under study participated in online semi-structured interviews using Microsoft Teams (Microsoft, Seattle, WA, USA). The questions

asked in the semi-structured interviews encouraged in-depth discussion of the study issues. Questions were open-ended, allowing for the elaboration of ideas in order to obtain deeper data [29]. Because of the challenges of the COVID-19 pandemic, the interviewees were chosen through a snowball sampling process in which each participant was invited to suggest any co-workers who might be interested in participating in the study [27]. The submitted information was used to get in touch with potential participants.

For easier data processing, interviews were recorded verbatim, and transcribed.

2.3. Data analysis

Thematic analysis was used to organise data into codes and categories, to formulate themes [30]. The themes that emerged from this approach will be discussed in this section. Four main themes were identified through thematic analysis of the data gathered, and each theme was divided into categories, as shown in Figure 1.

Figure 1. Themes and associated categories identified through thematic analysis.

2.4. Ethical considerations

While this study was conducted, the ethical values of freedom from harm, and the right to autonomy, anonymity, secrecy, and privacy were upheld. All subjects gave their informed consent for inclusion before participating in the study. The study was conducted in accordance with the Declaration of Helsinki. Approval was obtained from the Research Ethics Committee of the Faculty of Health Sciences at the University of Malta (University Research Ethics Committee (UREC) Form V_150620205465). Additionally, approval was

received from the data protection office, chief executive officer, and chief clinical chairperson at the hospital under study. The chiefs of the departments at the hospital divisions that were included in the study granted the required approvals.

So that the individuals could not be identified, data were pseudo-anonymised. Only the researchers gathered, handled, and stored the data, which was then secured with a password.

3. Results

Thematic analysis of the transcriptions yielded four themes: Usefulness; Ease of Use; Provider and User Interactions; and Barriers and Facilitators (Figure 1).

The theme Usefulness summarises the interviewees' thoughts and perceptions on the perceived benefits of utilisation of video consultations, as well as the role of video consultations in the context of a small island nation (Malta).

Most interviewees recognised the importance of video consultations for follow-up of cases, rather than as the first point of contact with patients. The traditional face-to-face consultation was still the golden standard for a first-time encounter. Video consultations were perceived as having potential in cases where the patient had been seen at least once, management plans had been drawn up, follow-up could be left to other specialists such as general practitioners (GPs), and the individual patient was perceived as able to utilise the technology. As Doc2 said:

Ideally, you have physically examined [the patient] once at least, and you know what [the patient] has and has not, and then maybe you can continue his care online. I think I would be much more comfortable like that, right?

These digital alternatives were a potential solution to patient commuting, reducing the number of patients on the hospital premises, allowing for better patient flow management, and diminishing waiting times. As Doc3 argued, "You don't have that pressure of people complaining outside in the waiting room either ... I guess the other advantage is that, at the moment, we have a significant shortage of outpatient rooms."

Despite the lack of face-to-face interaction, video consultations would still allow for an individualised approach to care since the doctor would still be able to assess the "elements of the non-verbal". According to the interviewees, these digital platforms also allowed for easier information exchange between colleagues locally and abroad, bridging the local health care system with health systems abroad. As Doc4 continued to elaborate:

I mean, previously, I would have written a report, sent the [electrocardiograms] ECGs, and sent everything over for review by this foreign consultant. Since we know we can do Zoom, why not do a Zoom, and talk about it in a Zoom and see the person? We can involve the patient as well.

This exchange of information was seen as integral to professional development, enhancing the local level of medical knowledge. Doc4 noted that digitalisation has "opened up new possibilities" and has "facilitated the transfer of information".

The theme of Ease of Use revolves around the interviewees' thoughts and perceptions on how easy it would be to utilise these technologies in medical practice, and on the skills and training needed to facilitate the adoption of the said technologies.

Despite the concept of video consultations still being relatively new, doctors were already utilising various technologies to assist in patient care. To this effect, Doc1 said, "We were already talking to each other on Skype on an informal basis and using MSN and that kind of thing, and WhatsApp."

Younger doctors were perceived as more open and finding it easier to apply these technologies in their medical practice. According to Doc1, "It depends on the age of the doctor, if [the doctor]'s accustomed to using these technologies." This also applies to younger patients as "the younger generation should be quite comfortable" with attending a virtual consultation compared with their older counterparts.

There was agreement among the majority of interviewees that education and training should be a requirement for both doctors and patients. "Like everything else, it's just the

beginning, which is daunting." (Doc1). The interviewees expressed that doctors needed to acquire new skills to conduct consultations effectively and efficiently via video, assisted with technical support and the appropriate infrastructure. These consultation methods, it was said, needed to be introduced "as part of the training programme" to become "part of the mentality" (Doc1). Doc5 stated that it was not only doctors who needed to adapt to the new changes; the patients also needed to be educated in order to understand the benefits of the new modalities: "You need to educate the patients and like everything ... yeah ... because ... they have to appreciate that it's not an inferior service: it's a more efficient service."

The theme Provider and User Interactions includes the perceptions of the impact that video consultations might have on the interactions between doctors as providers and patients as users.

Video consultations connect professionals together, not only doctors but also allied health professionals, facilitating multidisciplinary care. They diminish the distance barrier but still allow access to expert opinions from different specialists, reducing the waiting time for patient management. As Doc1 pointed out, "It is less disruptive for the doctor, and for the patients themselves as well, because they're at their desk at home."

The reduced need to physically attend a consultation associated with telehealth may be advantageous for patients as the level of health care is maintained through the empowerment of patients to self-care. As elucidated by Doc1, "The patient will feel more confident because [the patient] is monitoring him/herself and also knowing that the doctor is seeing or receiving or there could be a fast track when something goes wrong." There was, according to the interviewees, a need for proper identification of those patients who would benefit from such interventions. Once done, "... the patient can be ... more confident that they might have the opportunity to talk to their professional."

The theme Barriers and Facilitators encompasses those factors that the interviewees perceived as enhancing or inhibiting the adoption, implementation and utilisation of virtual consultations.

There was a general agreement among the interviewees that the ongoing COVID-19 pandemic was pressing for change in how doctors practised medicine. It highlighted the benefits that technology might have in reducing exposure to both doctors and patients while at the same time maintaining access to care. Doc1 stated that the technology was "inconceivable until 3 years ago and then ... in 2020 ... COVID happened; it has really cemented the need and the importance of it".

Among the interviewees, there was a perception that, despite the push towards digitalisation, the technical infrastructure was not yet up to standard. Doc4 noted that, in terms of hardware, "we're still backwards". This was echoed by Doc5, who stated, "... right now, it's not; it's very basic". The interviewees expressed that new technologies needed to be integrated into the systems already in place and doctors needed to be reassured that data transfer was safe and that there was a sound medicolegal framework backing up these initiatives. The medicolegal framework should address the safety of patient-related data transfer and handling following video consultations.

The specialty of a doctor could impact the uptake of virtual consultations. The interviewees felt that some specialties were more suitable for digital consultations than others depending on whether a physical examination was required and whether this could be delegated to another professional who was with the patient. As Doc4 said, "It varies by specialty as well ... If you're checking ... you want to check whether it's surgery, for example, if you want to check whether the patient has a hernia or not, you have to examine." Doc2 gave another example: "Dermatology, it's quite comfortable to use the video, but you know how you can perform a good surgical or neurological examination?"

Several of the doctors, such as Doc3 in the following, voiced concern about the inability to physically examine a patient when performing a video consultation.

I take my specialty as an example ... one of the ways of knowing whether they're getting worse is by examining them and taking certain parameters ... so I can't see how a video consultation can replace a face-to-face visit with an examination directly.

The same interviewee continued to elaborate that, in cases "where you might be about [to] breach bad news", the patient should be "sitting in front of you, not part of their laptop".

Since video consultations altered how health care was provided, the effect on health professionals' workload was debatable. The interviewees felt that practices needed to be re-organised and patients identified; also, it was important that the consultations should be easy to set up. These alternative forms of consultations needed to "be acknowledged and recognised [by the organisation] as equal to the traditional face-to-face consultations"; they needed to be included in agreements and contracts, and the professionals providing them needed to be given appropriate remuneration and protected time.

Despite the flexibility these modes of consultation offered, there was concern that video consultations would intrude outside of work, further jeopardizing doctors' already limited work-life balance.

However, the interviewees were open to discussions centred on adopting the technologies and argued that the identification of health care champions would further enhance the uptake of this initiative. Doc1 noted that, despite general resistance, "there are some people who are hyper enthusiastic ... some people are ... particularly amazing"; these champions could initiate the adoption of virtual consultations.

A summary of key features under each theme is presented in Table 1 below.

Table 1. Summary of key features under each theme.

Theme	Key features
Usefulness	<ul style="list-style-type: none"> • More efficient follow-up of medical cases <ul style="list-style-type: none"> • Less patient commuting • Reduced number of patients in the hospital <ul style="list-style-type: none"> • Better patient flow management • Reduced waiting times • Easier information exchange
Easy to use	<ul style="list-style-type: none"> • Ease of applying the technology in the medical practice • Ease of use will depend on health professionals' (and patients') age and technology skills • The need for further education and training (for both doctors and patients) <ul style="list-style-type: none"> • The need to develop new skills • The need for technical support and adequate infrastructure
Provider and user interactions	<ul style="list-style-type: none"> • Bring professionals together • Facilitate multidisciplinary approaches to care <ul style="list-style-type: none"> • Diminish distance barriers • Give access to expert opinion exchange • Provide patient empowerment and self-care
Barriers and facilitators	<ul style="list-style-type: none"> • Current technical infrastructures are still inadequate • New technologies need to be integrated into the systems already in place <ul style="list-style-type: none"> • There are data transfer issues • Certain specialties are more challenging to "move online" • Practices need to be re-organised • Doctors' work-life balance is impacted

4. Discussion and conclusions

This study aimed to explore doctors' experiences of attitudes towards and thoughts on digital virtual consultations and the extent to which these can improve their patients', as well their own, health and wellbeing. The study found that doctors perceived video consultations as having a relevant role in providing care by facilitating access to health care while maintaining the quality of care. They also perceived the health care organisation as instrumental in providing the necessary resources with the appropriate infrastructure and technical support, impacting the ease of utilisation. Doctors expressed their intention to utilise these new technologies given the proper setup.

Video consultations were perceived as adjuncts to face-to-face consultations, especially in patients requiring follow-up. As suggested by the interviewees, a hybrid approach could be adopted for patients who did "not require actual physical examination". The uptake of digital alternatives depended on the perceived need and perceived benefits relative to their utilisation [31,32]. Digital consultations might potentially have a role in the follow-up of institutionalised patients where on-site health care providers could facilitate the consultation.

Video consultations were also perceived as having a role in reducing the costs related to travelling and taking time off work, allowing for flexibility in conducting consultations in terms of time and space. With fewer patients physically attending hospital visits, the patient flow would be easier to manage simultaneously, allowing doctors to deal with more complex cases face to face while minimising exposure within the context of an ongoing pandemic.

Desai et al. [33] reported that participants in their study perceived digital consultations as improving communication between professionals separated by distance, facilitating access to specialist care and serving as channels for both formal and informal learning. These findings were reproduced in our study, where the doctors felt that while previously the caring specialist would need to write reports manually and send them overseas to foreign specialists, the technology facilitated the instant sharing of medical information. They also said that patients can now be involved in consultations with local doctors who act as advocates for their patients during consultations with foreign specialists. As Desai et al. [33] and Johansson et al. [34] argued, video consultations allow more than one actor to participate in the consultation, facilitating communication and leading to improved co-ordination in patient care and timely management. This could limit the need for repeat face-to-face consultations, predominantly in chronic cases, which could reduce waiting lists and time intervals for visit scheduling and thus augment patient satisfaction.

Virtual consultations assume an essential role in connecting specialists internationally, improving the local level of knowledge and assisting local practitioners in maintaining skills that might otherwise be lost because of the lack of exposure to complex patient cases.

The participants were concerned about medicolegal implications and emphasised that doctor and patient safety are vital. They said doctors felt the need to feel safe while conducting interventions where sensitive personal information was exchanged, especially in complex cases where the lack of a physical examination was perceived as a disadvantage. There was concern that crucial medical information would be missed. Simple technology of robust quality and safety in terms of data storage was therefore needed [34].

Besides recognising the benefits of the new technologies, doctors would need to understand what was required of them when they initiated and completed a digital consultation and what the implementation of such technologies would translate to in terms of adaptations in work practices [35]. Supposing a health care organisation understood the benefits of video consultations and came to implement these technologies, it would have to invest in the proper infrastructure that supports using the technology. The interviewees said that there was a need for investment in appropriate technological infrastructure that ensured simplicity of use, easy accessibility and the ability to support virtual consultations. The new technologies should fit with the local doctor's practice and be able to be

easily integrated into existing digital systems, with the appropriate level of technical support made available. Besides having to make the initial investment, the health care organisation would be responsible for the sustainability of the initiative, according to our interviewees.

The health care organisation was, moreover, perceived as central to initiating virtual consultations by identifying champions. This research has identified young doctors as potential champions whom a health care organisation could recruit to push the initiative forward. This research has also identified young patients, those requiring follow-up without the need for a physical examination, as well as institutionalised patients as individuals who would benefit the most from virtual consultations. Ahmed et al. [36] discussed the successful implementation of telemedicine in specialties such as dermatology, mental health and neurology. The interviewees argued that particular specialties were better suited for virtual consultations as either they were not heavily reliant on a physical examination or the examination could be digitalised, or the examination could be delegated to a health care provider attending with the patient.

The role and potential of video consultations needed to be recognised and acknowledged, according to our interviewees. Their utilisation should be “in the collective agreement”, meaning that both time dedicated to video consultations and the remuneration needed to be specified.

The workload improvement, in terms of increased productivity and effectiveness, reported by Aghdam et al. [37] was not apparent in this study. Further research should address the impact of introducing new technologies on local work practices.

A window of opportunity for implementation has presented itself in the form of the COVID-19 pandemic. With restricted mobility and the need to limit exposure, innovative ways have been sought to maintain patient contact and health care delivery. This has led to local doctors utilising alternative communication methods, thus providing a level of familiarisation with these new technologies and diminishing the resistance to new practices.

From an internal stakeholder perspective, the literature has shown the role of technology in improving employees' wellbeing (including improved work-life balance, and flexibility). However, the results of this study suggest that digital consultation in a hospital setting may have both a positive impact in terms of a better work-life balance, and a negative impact, as utilisation of the new technology could pressure health care professionals to be available outside of work hours.

Author contributions: Conceptualisation, D.Z.; methodology, D.Z.; investigation, D.Z.; research supervision, G.T. and S.B.; writing – original draft preparation, D.Z. and G.T.; writing – review and editing, D.Z., G.T., S.B., L.G. and G.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional review board statement: Not applicable.

Informed consent statement: The participants have provided informed consent.

Data availability statement: Primary data were collected through semi-structured interviews, which were recorded and transcribed verbatim. Data can be accessed by contacting the authors.

Acknowledgements: The authors would like to acknowledge the support received from the Department of Public Health & Sport Sciences at the University of Gävle, Gävle, Sweden.

References

1. Zildzic, M.; Salihefendic, N.; Krupic, F.; Beganovic, E.; Zunic, L.; Masic, I. Telemedicine in Gastroenterohepatology. *Acta Inform Med* **2014**, *22*, 276–282, doi:<http://dx.doi.org/10.5455/aim.2014.22.276-282>.
2. Liddy, C.; Afkham, A.; Drosinis, P.; Joschko, J.; Keely, E. Impact of and Satisfaction with a New EConsult Service: A Mixed Methods Study of Primary Care Providers. *Journal of the American Board of Family Medicine* **2015**, *28*, 394–403, doi:[10.3122/jabfm.2015.03.140255](https://doi.org/10.3122/jabfm.2015.03.140255).
3. Dyrbye, L.N.; Shanafelt, T.D.; Sinsky, C.A.; Cipriano, P.F.; Bhatt, J.; Ommaya, A.; West, C.P.; Meyers, D. Burnout Among Health Care Professionals: A Call to Explore and Address This Underrecognized Threat to Safe, High-Quality Care. *NAM Perspectives* **2017**, *7*, doi:[10.31478/201707B](https://doi.org/10.31478/201707B).
4. Dyrbye, L.N.; Meyers, D.; Ripp, J.; Dalal, N.; Bird, S.B.; Sen, S. A Pragmatic Approach for Organizations to Measure Health Care Professional Well-Being. *NAM Perspectives* **2018**, *8*, doi:[10.31478/201810B](https://doi.org/10.31478/201810B).
5. Ateriya, N.; Saraf, A.; Meshram, V.P.; Setia, P. Telemedicine and Virtual Consultation: The Indian Perspective. *Natl Med J India* **2018**, *31*, 215–218, doi:[10.4103/0970-258X.258220](https://doi.org/10.4103/0970-258X.258220).
6. World Health Organisation. *Report on the Second Global Survey on EHealth*; 2010;
7. Karwowski, R.; Gasiorowska, J. Telemedicine Consultations in Obstetrics and Gynecology - A Population Based Study in Polishspeaking Women. *Ginekol Pol* **2018**, *89*, 677–681, doi:[10.5603/GP.a2018.0114](https://doi.org/10.5603/GP.a2018.0114).
8. Kwon, I.H. High Time to Discuss Future-Oriented Telemedicine. *Healthc Inform Res* **2015**, *21*, 211–212, doi:<http://dx.doi.org/10.4258/hir.2015.21.4.211>.
9. Eze, N.D.; Mateus, C.; Hashiguchi, T.C.O. Telemedicine in the OECD: An Umbrella Review of Clinical and Cost-Effectiveness, Patient Experience and Implementation. *PLoS One* **2020**, *15*, doi:<http://dx.doi.org/10.1371/journal.pone.0237585>.
10. Voran, D. Telemedicine and Beyond. *Mo Med* **2015**, *112*, 129–135.
11. Bhowmik, D.; Duraivel, S.; Singh, R.K.; Sampath Kumar, K.P. Telemedicine- An Innovating Healthcare System In India. *Pharma Innov* **2013**, *2*, 1–20.
12. Cascardo, D. Telemedicine: Advancing from Idea to Implementation. *J Med Pract Manage* **2015**, *31*, 82–84.
13. Klingler, A.M. Is Telemedicine Your Cup of Tea? *JAAPA* **2018**, *31*, 11–12, doi:<http://dx.doi.org/10.1097/01.JAA.0000544312.63233.87>.
14. Brockes, C.; Schenkel, J.S.; Buehler, R.N.; Grätz, K.; Schmidt-Weitmann, S. Medical Online Consultation Service Regarding Maxillofacial Surgery. *J Craniomaxillofac Surg* **2012**, *40*, 626–630, doi:[10.1016/j.jcms.2012.03.018](https://doi.org/10.1016/j.jcms.2012.03.018).
15. Butcher, L. TELEHEALTH AND TELEMEDICINE TODAY. *Physician Leadersh J* **2015**, *2*, 8–13.
16. Tomaselli, G., Garg, L., Gupta, V., Xuereb, P. A., Buttigieg, S. C., & Vassallo, P. Healthcare Systems and Corporate Social Responsibility Communication: A Comparative Analysis Between Malta and India. *Research Anthology on Developing Socially Responsible Businesses*, edited by Information Resources Management Association, IGI Global, 2022, pp. 945-961. <https://doi.org/10.4018/978-1-6684-5590-6.ch047>
17. Bowen, H.R. Social Responsibilities of the Businessman; University of Iowa Press: Des Moines, IA, USA, 1953.
18. World Business Council for Sustainable Development WBCSD. Corporate Social Responsibility: Meeting Changing Expectations; WBCSD: New York, NY, USA, 1999.
19. European Commission. A Renewed EU Strategy 2011–14 for Corporate Social Responsibility; European Commission: Brussels, Belgium, 2011; Available online: <http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52011DC0681>
20. Creswell, J.W.; Creswell, J.D. *Research and Design Qualitative, Quantitative and Mixed Methods Approaches*; 2018; ISBN 9781506386768.
21. Bowling, A.; Ebrahim, S. *Handbook of Health Research Methods: Investigation, Measurement and Analysis*; Bowling, A.,

Ebrahim, S., Eds.; Open University Press, 2005;

22. Seers, K. Qualitative Data Analysis. *Evid Based Nurs* 2012, **15**, 2.

23. Thorne, S. Data Analysis in Qualitative Research. *Evid Based Nurs* 2000, **3**, 68–70.

24. Morse, J.M. Determining Sample Size. *Qual Health Res* 2000, **10**, 3–5, doi:10.1177/104973200129118183/AS-SET/104973200129118183.FP.PNG_V03.

25. Dworkin, S.L. Sample Size Policy for Qualitative Studies Using In-Depth Interviews. *Archives of Sexual Behavior* 2012 **41**:6 2012, **41**, 1319–1320, doi:10.1007/S10508-012-0016-6.

26. Acharya, A.S.; Prakash, A.; Saxena, P.; Nigam, A. Sampling: Why and How of It? *Indian Journal of Medical Specialities* 2013, **4**, doi:10.7713/ijms.2013.0032.

27. Elfil, M.; Negida, A. Sampling Methods in Clinical Research; an Educational Review. *Arch Acad Emerg Med* 2019, **7**, 52, doi:10.22037/emergency.v5i1.15215.

28. Taherdoost, H. Sampling Methods in Research Methodology; How to Choose a Sampling Technique for Research. *SSRN Electronic Journal* 2018, doi:10.2139/ssrn.3205035.

29. Gill, P.; Stewart, K.; Treasure, E.; Chadwick, B. Methods of Data Collection in Qualitative Research: Interviews and Focus Groups. *Br Dent J* 2008, **204**, 291–295, doi:10.1038/bdj.2008.192.

30. Clarke, V.; Braun, V. Thematic Analysis. *Journal of Positive Psychology* 2017, **12**, 297–298.

31. Jury, S.C.; Walker, A.M.; Kornberg, A.J. The Introduction of Web-Based Video-Consultation in a Paediatric Acute Care Setting. *J Telemed Telecare* 2013, **19**, 383–387, doi:10.1177/1357633X13506530.

32. Maarop, N.; Win, K.T. Understanding the Need of Health Care Providers for Teleconsultation and Technological Attributes in Relation to The Acceptance of Teleconsultation in Malaysia: A Mixed Methods Study. *J Med Syst* 2012, **36**, 2881–2892, doi:htp://dx.doi.org/10.1007/s10916-011-9766-2.

33. Desai, S.; Williams, M.L.; Smith, A.C. Teleconsultation from a Secondary Hospital for Paediatric Emergencies Occurring at Rural Hospitals in Queensland. *J Telemed Telecare* 2013, **19**, 405–410, doi:10.1177/1357633X13506528.

34. Johansson, A.M.; Lindberg, I.; Söderberg, S. Healthcare Personnel's Experiences Using Video Consultation in Primary Healthcare in Rural Areas. *Prim Health Care Res Dev* 2017, **18**, 73–83, doi:htp://dx.doi.org/10.1017/S1463423616000347.

35. Bagot, K.L.; Cadilhac, D.A.; Bladin, C.F.; Watkins, C.L.; Vu, M.; Donnan, G.A.; Dewey, H.M.; Emsley, H.C.A.; Davies, D.P.; Day, E.; et al. Integrating Acute Stroke Telemedicine Consultations into Specialists' Usual Practice: A Qualitative Analysis Comparing the Experience of Australia and the United Kingdom. *BMC Health Serv Res* 2017, **17**, doi:10.1186/s12913-017-2694-1.

36. Ahmed, S.N.; Wiebe, S.; Mann, C.; Ohinmaa, A. Telemedicine and Epilepsy Care - a Canada Wide Survey. *Can J Neurol Sci* 2010, **37**, 814–818.

37. Aghdam, M.R.F.; Vodovnik, A.; Hameed, R.A. Role of Telemedicine in Multidisciplinary Team Meetings. *J Pathol Inform* 2019, **10**, 35, doi:htp://dx.doi.org/10.4103/jpi.jpi_20_19.