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Abstract: Vehicle identification is an important task in traffic monitoring because it allows for 1

efficient inference and provides a cause for action. Vehicle classification via deep learning and 2

other approaches such as segmentation is a critical tool for re-identification. In this paper, instance 3

segmentation is used for vehicle make identification with license plate detection, allowing for better 4

unique vehicle recognition for re-identification. A dataset is annotated and modified for instance 5

segmentation using polygonal bounding box capturing the vehicle’s unique frontal features. In 6

addition, a license plate localization is performed. The results showed improved classification as 7

well as a high mAP for the dataset when compared to previous approaches based on CNN and 8

deformed CNN. Furthermore, a deep residual network and fully connected layer-based classification 9

were utilized as the backbone for feature representation. Instance segmentation detects objects by 10

segmenting and classifying regions of interest. The imbalance in the dataset is resolved using a 11

mosaic-tiled approach, which produces greater precision than other approaches evaluated for in the 12

paper. 13

Keywords: Instance segmentation; Classification; Vehicle make classification; Mosaic-tiled augmenta- 14

tion. 15

1. Introduction 16

Vehicle surveillance is an essential task in public security. Unique features of vehicles 17

like vehicle make, model, and license plate are typically utilized for traffic surveillance. 18

With traffic cameras at every junction of the streets, the entrance of high-security buildings, 19

parking lots, and public places, there is an opportunity to surveil and track the traffic 20

while monitoring the road bringing forward a smart city perspective. Images and/or 21

videos are captured to provide a plethora of opportunities through scene understanding 22

object detection, recognition, and segmentation using automated approaches such as image 23

processing, machine learning, and deep learning techniques [1,3,5]. Further subtasks are 24

performed from these approaches such as re-identification[8] , tracking, and similarity 25

matching [4,6,7]. Transfer learning has been widely utilized for its computing effeciency 26

using existing pretrained models for video surveillance [2]. 27

FOr surveillance of vehicles in particular, machine learning and deep learning models 28

were applied to vehicle data to infer the make, model, and license plate region [13]. In each 29

case either the wholesome image was used for analysis, or a region of interest was carved 30

where rectangular boundaries were drawn, to identify the exact location of the contextual 31

features to categorize or re-identify[8]. In the context of cars, the car make was defined by 32

the front of the car in [26]. The region of interest was extracted from this dataset to identify 33

the car’s make and model. This enabled a better representation of the uniqueness of the 34

car. Further, the license plate was also extracted which further can be fed to an ALPR ( 35

Automatic license plate recognition ) system for digit recognition. 36

In computer vision, the region of interest extraction has been widely performed by 37

segmentation. The region of interest cropped is sometimes used as a pre-processing step 38
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Figure 1. The process of vehicle surveillance at the camer for make and model classification with
instance segmentation as well as license plate localization.

is used for both deep learning and machine learning approaches [18]. The pre-set unique 39

features from these images are extracted for the machine learning algorithm. Auto-feature 40

extraction is performed by the deep learning models. The learning is performed on labeled 41

datasets, annotated for classification and recognition. The models developed through this 42

approach are supervised by comparing the annotation with the predicted output. 43

The dataset being the key to performance and validity of the algorithms for the given 44

task requires rigorous labeling and reviewing. The images and/or video captured are that of 45

varied illumination, background, and views making the data challenging to learn [14]. With 46

the region of interest extracted and labeled with key significant features extracted, there can 47

be an improvement in learning as seen in many states of art concerning segmentation and 48

classification [17]. Instance segmentation is widely used in tracking where it forms part of 49

a pipeline for segmentation. Region of interest (ROI) segmented with each instance of that 50

specific segment can be marked and identified enabling not just detection but also tracking 51

of individual objects in a scene[12]. With this perspective presented here is a robust vehicle 52

model identification system using instance segmentation via deep learning models where 53

the license plate and the frontal part of the car where the significant features exists are 54

segmented for car make and model classification. 55

The requirement for robust vehicle identification lies in the need for public safety and 56

security. Accuracy and real-time requirements are the prime concerns for this application. 57

Privacy is one other element that requires to be identified in instance segmentation. 58

In this context, proposed here is a multi-class instance segmentation model for vehicle 59

make and model recognition clubbed with license plate recognition presented in Figure 1 60

and Figure 2. Prominent tasks like recognition and classification are popular with this ap- 61

proach. However, they need a multi-step approach for vehicle frontal car segmentation and 62

then classification. We propose a single shot segmentation network that not just identifies 63

the vehicle make and model under varying conditions but also precedes it by segmenting 64

the frontal part of the car as a single instance which is essential for individual unique 65

identification and tracking. A region of interest labeled dataset for instance segmentation 66

and a car make and license plate identification model using deep learning. 67

Further, we explore instance segmentation for unique vehicle identification. Instance 68

segmentation can handle multi-detection and perform segmentation. The segmented part 69

is then classified in a one-shot process. For the purpose of enhanced privacy and more 70

accurate identification, an existing dataset is modified. Polygonal annotations are used that 71

capture the curvature of the frontal part of the vehicle. 72

A higher accuracy for the same task on the same dataset is achieved. The inference 73

time for the two approaches is reduced as identification of vehicle type and license plate is 74

performed simultaneously. To improve the dataset for class imbalance data augmentation is 75
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Figure 2. Vehicle instance segmentation technique for license plate localization along with make and
model classification.

performed in different representations and is evaluated for the same. Instance segmentation 76

adds an ID to each unique vehicle enabling re-identification by tracking the tags. This 77

produces a robust and accurate model for identification of vehicles in traffic, security- 78

sensitive roads and entrances to high security areas. 79

The contributions of this paper are as follows: 80

• An instance segmentation model for vehicle recognition through segmentation and 81

classification. A single model for identifying a vehicle and identifying the make of the 82

model with license plate. 83

• Achieving higher mAP of detection with a deformed convolutional network with 84

small dataset augmented by mosaic tiling method. 85

• Analysis of several augmentation techniques and its effect on the recognition and 86

detection of vehicle make identification using feature pyramid network and a deep 87

residual network and deformed deep residual network. 88

2. Literature Review 89

Vehicle recognition is a widely researched area in the field of computer vision catego- 90

rizing itself in different tasks like vehicle make and model recognition, vehicle license plate 91

recognition and vehicle classification and vehicle re-identification. Each task is performed 92

individually or consecutively. Application of this comes in requirements of traffic regula- 93

tion systems, smart city automation, public security and even non civilian use cases. In this 94

paper we take into perspective the requirements of a private and efficient automated vehicle 95

make recognition system. Recent literature in this domain solves the challenges of diversity 96

in dataset with multiple large scale datasets with large number of classes[21,26]. Further 97

enhancing security several datasets focus on the parts and frontal area of the car enabling 98

more fine-grained classification. In addition, datasets are varied in terms of illumination, 99

exposure, and even environment. Large scale datasets were utilized in classifying vehicle 100

make and model by detecting its parts specifically the frontal part which provides distinct 101

features for vehicle classification. Of the latest in frontal image dataset was a large-scale 102

fine-grained dataset, with diversity in scale from 103 classes. The dataset was annotated for 103

make, model and year of manufacture providing a hierarchical representation of the vehicle. 104

High resolution images with high quality were presented. The dataset was trained on 105

CNN based methods. Several baseline methods have been utilized for vehicle classification 106

including large scale models like Resnet-50. Further baseline analysis with Alexnet, VGG-16 107

and VGG-19 were performed. Each producing and accuracy above 85% thus being robust 108

for classification[26]. 109

Changing vehicle ecosystem involving new manufacturers and new models is leading 110

an open research domain in this field. There’s a requirement however for segmentation 111
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Figure 3. Mask RCNN with FPN architecture

datasets annotated in polygonal format capturing enhanced contextual features of a vehicle 112

that is not available as of now. With the aim of privacy in the perspective of application to 113

public security, utilized in this paper is a dataset from [18] for instance segmentation of the 114

frontal part of the car which includes, segmentation, detection, and classification. 115

Classification of make is performed using traditional rule-based approaches which 116

are dominant in this field due to the popularity of the problem. Local and global cues 117

were utilized for classification in several approaches. Structural and edge-based features 118

were also a common pick. Further, machine learning was performed with these features to 119

enhance classification. With the feature extraction techniques, edge based feature extractors 120

like HOG and Harris corner detectors performed significantly well for detecting parts of the 121

car like the logo, the grille and the headlights[16]. Robust feature detectors from key points 122

like that of SIFT and SURF were employed in several state of art. Adding to these features, 123

Corner detectors and line detectors like Hessian matrix and DoG (Difference of Guassian) 124

were implemented, producing considerably higher accuracy for smaller number of classes 125

in [18]. With larger number of classes, they fail to produce similar accuracy. Further, a 126

bag of feature or Bag of Words approach was implemented with Feature detectors for 127

unsupervised clustering producing a histogram of features for matching [19]. A typical 128

feature detector algorithm accompanies a matching technique like, hamming distance, 129

euclidean distance, cosine similarity for identifying similar vehicles for recognition and 130

classification. This is further used for re-identification task. 131

Naïve bayes[22], SVM[23], LBP[23], and KNN were common machine learning algo- 132

rithms used for vehicle make and model classification. CNN, used for vehicle make and 133

model classification involve transfer learning on prominent pretrained models like that 134

of Alexnet, VGG, Resnet, and mobilenet [15]. Adding to this modified CNN networks 135

were introduced such as residual squeezenet [24] which produced a higher rank-5 accu- 136

racy of 99.38. Segmentation was applied as a pre-processing step to remove background. 137

Compound scaling approach was employed on Efficient net pretrained on ImageNet for 138

classification for the purpose of presenting an app for vehicle make and model classifica- 139

tion. Unsupervised deep learning techniques such as auto-encoders were also utilized for 140

this purpose [23]. With each model producing different features automatically generated 141

through CNN based approached or engineered through edge descriptors or geometrical 142

descriptors, there’s a need for higher accuracy for a real time use cases. The cropped region 143

of the frontal part of the car is used for identification in most cases. A segmentation of the 144

car parts are also employed such as in [23]. 145

Segmentation approaches are often used for removing the background and extracting 146

the vehicle, later classifying the vehicle [25]. In a real-time use case, cropped images should 147

be generated from an image that will later be used for part detection. Almost all approaches 148

necessitate an extra step for vehicle detection, which adds to the time complexity. As a 149

result, a one-step approach to vehicle identification is required. License plate detection 150

adds to the vehicle’s unique features, which are then added to the identification system for 151
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re-identification of the vehicle’s unique id tagging. As a result, a robust model is required 152

that can detect the region of interest and classify, identifying each instance of the vehicle’s 153

make. 154

We consider this challenge in this paper and propose instance segmentation for vehicle 155

identification via segmentation and classification.A two-stage approach for feature extrac- 156

tion using FPN ( a feature pyramid network produced by multi-scale feature extraction ) 157

and classification using Mask RCNN is utilized in this paper, and further experimentation 158

is performed on a modified CNN to improve the performance of the network. Image 159

augmentation techniques are explored for the purpose of improving an existing dataset. 160

3. Methods 161

Convolutional neural networks have been the key stone of computer vision applica- 162

tions. They are the most commonly used types of artificial neural networks. Convolutional 163

operations applied to neural networks enable better feature extraction and classification. 164

Convolutional neural networks have evolved based on the requirements of accuracy, gener- 165

alization and optimization problems. In order for generalization and domain adaptation, 166

lead to rise of several large-scale models trained on large scale data are present. Large 167

scale data is trained on these networks which can be further adapted to other applications. 168

Examples of convolutional neural networks being Alex net[28], Lenet [29], Resnet [31], 169

Google-net [30], Squeeze-net [27] and so on. In this paper, we utilize Resnet which is a deep 170

residual network consisting of multiple CNN layers. It extracts deep features and with its 171

residual skip connections, the network is efficient in solving the vanishing gradient descent 172

problem. 173

Convolutional neural networks comprise of four key features which include weight
sharing, local connection, pooling and a large number of layers [9]. The layers include the
convolutional layer that perform the convolutional operation on small local patches of the
input where a given input x with a filter f will produce a feature map of x. The convolution
operation for the whole image is computed by the following as shown in Equation 1.

Y_n = ΣN−1
k=0 (x_k)( f (n − k)) (1)

where x, f, and N are the input image, filter, and the number of elements in x respec- 174

tively. The output vector is represented by Y. 175

This is followed by activation function such as tanh, sigmoid and ReLU[32]. The 176

activation functions introduce non-linearity into the network. The sub-sampling layer that 177

are the pooling layers reduce the feature map resolution leading to reduce complexity 178

and parameters. The extracted features are mapped to the labels in the fully connected 179

layer. All the neurons are transformed into 1D format[10]. The output of convolutional and 180

sampling layers is mapped to each of the neurons producing a fully connected layer. The 181

fully connected layer is spatially aware extracting locational features as well as producing 182

high level complex features. The result of this is linked to the output layer which produces 183

output using a thresholding process. A final dense layer is sometimes used having same 184

number of neurons as classes in case of a multi-class classification. A softmax activation 185

function maps all the dense layer outputs to a vector producing a probability of each class. 186

Accuracy of this prediction is measured by its loss function where the result is com-
pared to that of the ground truth or labelled data. A common loss function used is the
categorical cross entropy loss computed as L as shown in Equation 2.

L = −ΣN
i=1(yi · log(y î)) (2)

This setup is trained through a back-propagation technique. Hyper-parameters such 187

as learning rate, regularization and momentum parameters are set before training process 188

and adjusted according to brute force technique. evolutionary algorithms are further used 189

to automate hyper-parameter tuning. During the back propagation technique, the biases 190

and weights are updated. The loss function L as in equation 2 is required to be minimum in 191
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Figure 4. Augmentation techniques

order to produce an accurate model. For this purpose, parameters such as kernel ( filters), 192

and biases are optimized to achieve the minimum loss. He weights and biases are updated 193

in each network and feed-forward process is iterated with the updated weights. The model 194

converges at the least loss. 195

Deep residual networks are utilized as the backbone in the method used here. Deep 196

residual networks are large networks with skip connections that carry knowledge. 197

The methodology utilized in this framework performs instance segmentation using 198

CNN. Instance segmentation enables detection and delineation of each object in a given 199

image or video. Each instance of an object is tagged with an ID enabling unique detection 200

of every object in the scene. Instance segmentation is performed in different stages which 201

include object detection, segmentation and classification. This is enabled by CNN models as 202

backbones and feature networks with classification heads. Several backbones are proposed 203

for this approach. In this paper, we implement Mask RCNN with a Resnet backbone 204

and Feature pyramid network. The use of this network is justified for its accuracy in 205

object detection and segmentation where it is pretrained for several large datasets which 206

have superior performance over other models. However, complexity of the model causes 207

time complexity to increase. We further measure the trade-off of the accuracy vs the time 208

enabling evaluation of a real time use case. Figure 3 depicts the architecture of mask RCNN 209

with FPN used for instance segmentation. 210

3.0.1. Deformable convolution: 211

With all its advantages of convolutional neural network, the geometric structures of 212

its building modules are fixed. Augmentation is used for transforming the images as a pre- 213

processing step in most convolutional neural networks. Thus these transformations such as 214

rotation and orientation are fixed by modifying the training data. The structure of the filters 215

in the kernel are also fixed rectangular window. Pooling mechanisms produce the same 216

size of the kernels to reduce special resolution and thus the objects in the same receptive 217

field are convoluted and presented to the activation function. Thus only identifying objects 218

in that scale. Deformable convolution enhances geometric transformation and scaling by 219
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Figure 5. Mosaic-Tiled Augmentation.

introducing the a 2D offset to the grid sampling locations and thereby the convolution 220

operation offsets from its fixed receptive location to a deformed receptive field. Adding the 221

offset thus augments the spatial sampling locations automatically. The offsets are added 222

after the convolutional operation. 223

Further to enhance detection at lower levels, image pyramids are computed building a 224

feature pyramid network. The object or segmentation area is scaled over different position 225

levels in the pyramid. A proportionally sized feature maps at multiple levels are generated 226

from a single input. Cross scale correlation is generated at each block to generate a fusion 227

of these features. FPN’s are used with CNN’s as a generic solution for building feature 228

maps. A bottom-up approach or top-down approach is used to produce a feature map. In 229

terms of deep residual networks, the feature activation outputs are produced at each stages’ 230

last residual block. Mask R-CNN is a region-based CNN that performs object detection 231

and classification with mask generation. The object detection is performed on a region on 232

interest and evaluation was based on this region of interest. A multi-task loss is sampled 233

on the Region of interest as the total of classification loss, object detection loss that is the 234

bounding box loss and mask loss. 235

Complex hierarchical features are extracted from images. With extensive evaluation, 236

the models are susceptible to overfitting. Regularization techniques are required to improve 237

this overfitting. 238

3.0.2. Data Augmentation 239

Augmentation techniques are often applied to reduce this overfitting, that includes 240

image transformation such as scaling, translation, rotation and random flipping. It not only 241

increases the data size but also provides a diversity of representation. The augmentation 242

techniques can be divided into pixel level data augmentation, region-based augmentation 243

and geometric data augmentation. Pixel based augmentation techniques include changes 244

in pixel values. Adding contrast, brightness or color changes the pixel intensity of the 245

image. Regional augmentation includes that of creating masks of the required region. 246

Motion blur and cutout are common techniques used for region-based augmentation. 247

Geometric transformations are also applied to the data that include flipping, reflection, 248

rotation, cropping etc. In this paper we setup the data to augment at different levels that 249

include geometric transformation and region-based transformation as seen in figure 4. 250

This not only enhance the dataset but also improves the datasets diversity. One particular 251

approach used in this model is mosaic tiling method proposed in [20], where different 252

training images, in this case 4, are taken in different context and stitched into one image 253
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Figure 6. Dataset images.

performing a sort of mosaic tiling. Random cropping is performed on the image to reduce 254

it to the original training image size. 5is an illustration of mosaic tiled images of the dataset. 255

Thus a baseline method is used for instance segmentation and is then modified and 256

evaluated in terms of data augmentation, different feature extractors as well as deformed 257

convolution to identify the effect of each and chose the optimum configuration of vehicle 258

instance segmentation. 259

4. Experimental Setup 260

The setup of this network involves three layers. The vehicle with the mask is fed as 261

training data. The data is augmented in three formats separately based on geometric aug- 262

mentation and pixel-based augmentation. The transformed data is taken as the testing data 263

and is then trained on a Mask RCNN-FPN network. Further, experiment was performed 264

on Mask RCNN-FPN by deforming the convolutional layers. Resnet-101 and Resnet-50 are 265

used as feature extractor backbones for performing baseline assessment on the dataset. The 266

setup is as shown in the Figure 3. The experiment was performed on Intel(R) Xeon(R) CPU 267

@ 2.30GHz using GPU instance on an Ubuntu machine. 268

4.1. Dataset: 269

An existing dataset was modified for instance segmentation by creating polygonal 270

bounding boxes of the frontal part of the vehicle to capture not just the frontal dashboard 271

but also the curvature of the vehicle. The dataset contains 12 makes of vehicles taken 272

in difference variations of camera exposure during extremely sunny weather to that of 273

evening sunset. The dataset is bit imbalanced and so augmentation was performed to 274

improve the data count. In addition, license plate is treated as a single class having a 275

rectangular bounding box. Figure 6 are samples of the vehicle with their annotations. A 276

total of 225 images were split for training, testing and validation with the 157 images for 277

training, 44 images for validation and 24 images for testing with a 70-20-10 ratio from the 278

original format. This split is utilized to match the split of the reference paper in [18]. The 279

classes are very imbalanced and require further augmentation which is performed as per 280

the methodology stated earlier. The image below displays class distribution of the dataset. 281

This dataset contains vehicles that belong to the middle east region specifically Qatar. 282
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Figure 7. Dataset Distribution.

Table 1. Classification accuracy and detection accuracy using mAP with latency

Model Lr Fast_rcnn/cls_accuracy mAP Time

Mask
RCNN+RESNET-

50+FPN
3x 0.992 98.772 136 ms

Mask
RCNN+RESNET-

101
3x 0.996 99.670 310 ms

Mask
RCNN+RESNET-

50
1x 0.992 99.670 316 ms

Mask
RCNN+RESNET-
50+FPN(DCONV)

1x 0.984375 90.747 161.81 ms

Table 2. Ablation study with different backbones and deformable convolution

Model Model AP AP50 AP75

Mask
RCNN-DCONV

RESNET-50 +
FPN 79.648 96.337 94.350

Mask
RCNN-DCONV

RESNET-50 +
FPN 74.185 90.747 89.121

Mask RCNN RESNET-50 +
FPN 80.213 98.772 95.950

Mask RCNN RESNET-101 73.621 88.219 86.265
Mask RCNN RESNET-50 80.206 99.670 98.730

The experiments were conducted by augmenting the dataset to mimic different camera 283

orientations and noise parameters. An evaluation of both original dataset and partly 284

augmented dataset was performed. Augmentation parameters included in pixel and 285
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geometric based include exposure and resizing with auto-orientation, noise, and rotation. 286

Further, patch-based augmentation which is geometric augmentation. The third type of 287

augmentation was mosaic tiled approach. The dataset with annotation is available at [36]. 288

Figure 5 is an example of data augmentation performed on the dataset and the Figure 7 289

shows the distribution classes across the whole dataset. 290

4.2. Performance Metrics: 291

To calculate the average accuracy, precision and recall must be computed for each 292

image. TP(true positive), FP(False positive), FN(false negative) and TN (true negative) are 293

metrics used for precision and recall. Equation 3, 4 and 5 compute the accuracy, precision 294

and recall respectively. 295

Accuracy =
Correctpred.

Totalpred.
=

(TP + TN)

(TP + TN + FP + FN)
(3)

Precision =
Truepositive

Predictedpositive
=

1TP
(TP + FP)

(4)

Recall =
Truepositive

Actualpositive
=

TP
(TP + FN)

(5)

mAP: mean Average Precision per class Average precision (AP) measures how well 296

the model classifies each class, while mean average precision(mAP) measures how well the 297

model classifies for all the given test dataset. It is a measure of accuracy of identification. 298

It evaluates the performance of the model by averaging the precision under the IoU ( 299

intersection over union ) with a threshold of 0.50 to 0.95. AP is calculated in each point in 300

the threshold. 301

The average precision (AP) is used to evaluate the experimental performance which is 302

calculated by averaging the precision under IoU (intersection over union) thresholds from 303

0.50 to 0.95 with a step of 0.05. For different queries, the evaluation metrics are APS, APM, 304

APL, AP50, AP75, and mAP. Subscripts “S,” “M,” and “L” refer to “small,” “medium,” and 305

“large,” respectively. Subscripts “50” and “75” represent the IoU thresholds of 0.5 and 0.75, 306

respectively. The mAP is the mean AP for each experiment. 307

Inference time: 308

The inference time is measured by the time taken to classify and generate a mask for a 309

single input. In the context of this approach, it will be time taken to classify and generate 310

masks for a single frame of a video. 311

5. Results and Discussion 312

Several experiments were conducted on different augmentation methods on the 313

dataset. Resnet-50 backbone was used for the deform-able receptive field-based Mask 314

RCNN. With a batch size of 2, the experiments ran for 1000 iterations and used a pretrained 315

Resnet backbone on COCO dataset. Evaluation was performed using the COCO trainer 316

module. The results without segmentation are listed in the table 1 and an ablation study 317

based on difference backbones and feature extraction are tabulated in table 3 with the 318

original dataset size, resolution, and clarity. 319

For a varied analysis, different baselines were experimented on for the purpose of 320

evaluation and identifying the trade-off in the reliability and accuracy of an instance 321

segmentation approach for the purpose of vehicle recognition. Mask RCNN was used as 322

baseline with a Resnet-50 backbone with Feature pyramid network 323

Further modelled with a Resnet-101 backbone with Feature Pyramid Network. The 324

original dataset was augmented in multiple methods to improve the dataset description. 325

The results of the experimentation with original dataset is displayed in Table 1. The table 326

describes the classification accuracy of mask RCNN with that of instance segmentation 327

accuracy with the mean average precision metric. The execution time for inference of a 328

single image from the test set is also presented. The resent-50 back bone without FPN with 329
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base RCNN produces a high mAP of 99.670. Although Resnet-50 backbone with FPN is 330

hypothesized to produce higher accuracy, it lags 1% but produces faster inference with 331

174ms faster than base-RCNN. With further experimentation on the CNN module with 332

a deformed convolutional operation the accuracy dropped to 90% which is significantly 333

lesser than expected. This could be due to the added complexity and generalization of 334

the network. It can be noted that the models are inferred on a test set with imbalanced 335

data and thus not reliable for certain classes. With class wise precision, it can be noted that 336

the largest class, the license plate has the poorest accuracy, license plate covers a smaller 337

area and is similar in semantic to rectangular shapes which can be a reason for the poor 338

performance. Class wise performance is depicted in Figure 8. 339

Table 3. Ablation study on Data Augmentation

Augmentation
Type

(Train-test-
split)# Model Backbone AP AP50 AP75

Resize+expo. 471-44-24 MaskRCNN-
DCONV

RESNET-
50 + FPN 65.748 81.708 77.517

MaskRCNN RESNET-
101 70.989 88.633 85.148

MaskRCNN RESNET-
50 59.502 85.189 67.677

Full Aug-
mentation 460-44-24 MaskRCNN-

DCONV
RESNET-
50 + FPN 66.780 83.101 75.029

MaskRCNN RESNET-
101 49.585 66.776 58.586

MaskRCNN RESNET-
50 60.163 77.906 73.954

Patch
input 628-176-96

Mask
RCNN-

DCONV

RESNET-
50 + FPN 52.475 74.535 64.246

Mask
RCNN

RESNET-
101 71.569 88.176 84.842

Mask
RCNN

RESNET-
50 52.186 74.393 59.095

Mosaic
Based 471-44-24

Mask
RCNN-

DCONV

RESNET-
50 + FPN 87.698 99.406 98.900

Mask
RCNN

RESNET-
101 83.933 99.568 99.103

Mask
RCNN

RESNET-
50 82.463 99.637 98.121

Table 4. Comparison with existing literature

Method Model Classification accuracy

[18] SIFT + DoG 74.63%

Ours MaskRCNN+ FPN +
Resnet-50 99.2%

The test data is either over-represented or under-represented and thus needs to be 340

balanced for a reliable result. Thus, multiple augmentation techniques are performed to 341

improve data representation. Three types of augmentation approaches are utilized for this 342

task. The following table describes the results and the approaches used. A large network 343

and smaller network were tested to evaluate the impact of augmentation on data size and 344

the accuracy of the model. The table below describes the results of each augmentation 345

type on baseline models. The inference from the table is clear that mosaic augmentation 346

performs considerably better than any other augmentation type. However, it fails to surpass 347
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Figure 8. Class-wise accuracy based on mask RCNN-Resnet-50 results.

images with same resolution. The patch based augmentation has very low inference than 348

expected even though the number of images increases. This could be because of class 349

empty patches in the dataset as each class is represented once in the original image. 350

With per class evaluation, each class performed well on every model achieving an 351

average of around 80%. However, License plate detection was a challenge in many models 352

with 62.813 as the highest mAP compared to all the other networks. The number of images 353

didn’t have an impact on the performance of this class, which may be attributed to its 354

reduced size of the license plate and its location in image with respect to models like Lexus. 355

The figure 8 is per class result of mask RCNN with Resnet50 backbone with Toyota corolla 356

having highest accuracy compared with other classes. 357

5.0.1. Benchmarking: 358

Bench-marking existing literature, the results in terms of accuracy using the existing 359

dataset in terms of classification is given in the table 4. The table presented shows an 360

incredibly significant increase in accuracy compared to traditional methods using SIFT and 361

DoG. The notable change in the model complexity and the technique produce the difference 362

in these parameters. Distinct features are extracted globally compared to the constant local 363

feature points on the dataset. With the same dataset a considerable increase in recognition 364

accuracy on the test data. Although it out-stands other models, it can be seen from the 365

figure above that classes with low number of images were not part of the test data. An 366

imbalance is noted. 367

6. Conclusion 368

Instance segmentation of vehicular frontal region is an effective tool for vehicle clas- 369

sification and identification. Existing techniques requires multiple techniques to identify 370

the vehicle, segment and then identify the make and model from this data using multiple 371

algorithms or a separately trained network for each task. In this approach all tasks are 372

achieved with one model. Time complexity is measured and the approach that took less 373

execution time was mask RCNN with resnet-50 and feature pyramid network with 136ms. 374
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With an enhanced dataset with instance segmentation and further data augmentation of 375

performance an overall evaluation technique is presented. However, new, and latest models 376

of vehicles need to be added to the data and imbalance of dataset improved for further 377

improvement. Further, evaluation is required for a light weight model like that of center 378

mask [37] which is an anchor free approach that can further improve the inference time. The 379

instance produced from this model can be further used for re-identification as each unique 380

instance is created for each vehicle per model. Privacy is further advanced with processing 381

proposed in a blockchain network rather than a centralized storage as each instance of the 382

frontal part of the vehicle can be saved rather than the whole image itself. Thus, securing 383

the privacy and reliability of automatic vehicle recognition system is achieved. 384
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