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Abstract

White Hole solutions in classical General Relativity refer to the time reverse Black Hole solutions that
allow the crossing of the gravitational radius inside out. The Big Bang model is the most famous White
Hole solution. But recent measurements of cosmic acceleration indicate that this solution is not a White
Hole, but an expanding Black Hole. We present a general explanation of how this happens which solves
the Dark Energy mystery and indicates that classical spherically symmetric White Holes do not exist.
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1 Introduction

A Schwarzschild (SW) Black Hole (BH) solution:

dr?
[1—rs/r]

represents a singular point source of mass M. The
gravitational radius rg = 2GM corresponds to an
Event Horizon and prevent us from seeing inside
rg. The SW solution applies to the exterior of any
BH, no matter what the interior solution is, as
long as we can approximate the outside as empty
space. The Hawking-Penrose’s theorems [1, 2] tell
us that nothing can come out of rg and this has
created the BH information lost paradox [3, 4].
One possible way around this is to introduce the
concept of maximally extended SW solution using
the Kruskal-Szekeres coordinates T' = T'(¢,7) and
X = X(t,r) (see Fig.1) where the future BH event
horizon becomes the past White Hole (WH) hori-
zon. Information can escape rg in a WH. There
are two disconnected exterior spaces which could

ds* = —[1 —rg/r] dt* + +r2d*Q, (1)

be connected inside with an Einstein-Rosen bridge
or SW wormbhole [5].

If we throw a particle into a BH, the WH solu-
tion corresponds to the traveling of that particle
back in time to us (from our past), before the
particle was sent. Such trajectory might be for-
mally possible (because there is no arrow of time
at the fundamental level), but it violates causal-
ity, so it makes no physical sense as a classical
solution (quantum mechanics effects might pro-
vide some way around this [6]). This is related to
the example of retarded and advanced potentials
in classical electrodynamics: both are mathemati-
cal solutions of the wave equations, but only one of
them connects cause and effect. The mirror image
of the top quadrant in Fig.1 has the arrow point-
ing downward and not upward. This shows that
the time reverse solution (the mirror image) is still
a BH (where the particle falls into the gravita-
tional radius rS) and not a WH (as indicated in
the figure).

Here we will study the more realistic case of
classical LTB solutions, which include the FLRW
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Fig. 1 Relation between the SW coordinates (¢,r) (in
units of rg = 1) and the Kruskal-Szekeres coordinates
(T, X). The top right quadrant (T" > 0, X > 0) is the reg-
ular BH solution (the green region is external to rg). Lines
of constant r are the cyan hyperbolic dashed lines. Lines
of constant time ¢ are orange dashed straight lines ("= 0
is also t = 0). If we throw a radial test particle at ¢t = 0,
it will follow the continuous yellow arrow. This solution
can be formally extended into the bottom right quadrant,
which corresponds to a WH, and is the time reverse (hor-
izontal flip) of the BH solution. A particle can escape the
event horizon of the WH (dashed yellow arrow), but only
before it is thrown! This violates causality and is therefore
not a physical solution. With a vertical flip, the solution
could be maximally extended to a negative radius X < 0.
But this generates a disconnected external space (yellow
region), which is also not part of the original solution.

metric, the Oppenhaimer-Snyder BH [7] and the
thin shell BH [8] as particular cases. For some
reason, i.e. the difficulty of a black-to-white hole
bounce (see [9, 10]), these solutions are usually
investigated only as BH collapsing solutions. As
we will show, the same solutions also exist, in
principle, as WH solutions, the most famous of
which is the expanding Big Bang model originally
proposed by Friedman in 1922 [11] and Lemaitre
in 1927 [12]. But at closer inspection, these solu-
tions need to be modified to include a surface
term. After that correction, we show that the WH
correspond in fact to BH expanding solutions.
Our argument is supported by considering surface
terms in the Einstein-Hilbert action of classical
GR and also by the recent observation that our
cosmic expansion is accelerating.

2 LTB solutions

The most general metric with spherical symmetry
in spherical coordinates daz* = (dt, dr,df, d¢) can
be written as [13]:

ds* = —A(t,r) dt* + B(t,r) dr® + R?(t,r)d*q.
(2)
Other common notation is: A = e”, B = e* and
R? = e* [7, 14, 15]. An alternative to this uses
proper time dz* = (dr,dx, df, do):

ds? = —d7? + AT AN 412 (1, )dO2,  (3)

where the radial coordinate x can be comoving or
not (because its evolution can be encoded in the
A and r functions). This last metric is sometimes
called the Lemaitre-Tolman metric [12, 14] or the
Lemaitre-Tolman-Bondi or LTB metric. A metric,
such as this one, expressed with gog = 1 and go, =
0 is called synchronous (or in a synchronous frame)
because time lines are geodesics. Either way, it is
possible to express the spherical symmetric metric
with 2 functions and the best form in each case
depends on the energy content and the observer’s
frame. In all cases, this is a local metric around a
reference central point in space which we have set
to be the origin (¥=0).

The advantage of using the proper time
and an observer moving with a perfect fluid is
that the stress tensor becomes diagonal: T)] =
diag[—p, p,p,p], where p = p(7,x) is the energy
density and p = p(7,x) is the pressure. We will
focus here in the matter dominated case p = 0 for
simplicity, but we expect similar results to apply
to more general situations (see [16]). The solution
to the field equation 87GTY = G = 0 is A/ = 27
where dots and primes correspond to time 7 and
radial x partial derivatives. This equation can be
solved as: e} = Cr'2) where C' = C() is an arbi-
trary function of x. The choice C' = 1 corresponds
to the particular flat geometry case:

ds® = —dr? + [0, 7)2dx® + (1, x)%dQ?,  (4)

The solution for r in this case is easily found:

H? =1 = (f>2 _ oM (5)

r3

M = 4x /OX p(r,x)r'r?dx = M(x)  (6)
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The above expression reproduces the Newtonian
energy conservation in free fall: %7’“2 =GM/r [17]
and corresponds to an expanding or collapsing rel-
ativistic spherical ball. When p = p(7) is uniform,
we find r = a(7)y, so that Eq.4 and Eq.5 repro-
duce the flat FLRW metric and corresponding
solution 3H? = 87Gp L.

The next simplest solution to Eq.5 is that of
the FLRW cloud with a fixed total mass Mr:

MTE/ panr?(dyr)dx (7)
0

The solution is r = ax as in the standard FLRW
metric but with a boundary at R(7) = a(7)xx
above which (x > x.) we have empty space: p = 0.

This is a consequence of Birkhoff’s theorem
[18] (or Gauss’ law in non relativistic mechan-
ics), since a sphere cut out of an infinite uniform
distribution has the same spherical symmetry.
Thus, the FLRW metric is both a solution to a
global homogeneous (i.e. M7 = co) uniform back-
ground and also to the inside of a local (finite
M) uniform sphere centered around one partic-
ular point. The local solution is called the FLRW
cloud (FLRW*) [16]. As we will show next, the
LTB solution can in principle correspond to either
a BH or a WH.

A timelike radial geodesic (dx = 0) has a mass-
energy M inside y which is independent of 7. A
fixed coordinate y = xx, corresponds to a sys-
tem with a fixed mass Mr (see also [19]) which
is expanding or collapsing following the Hubble-
Lemaitre law of Eq.5. From Eq.5 we have H =
Hg(a/ag) %/? = £1/7, where Hg is just the value
at some arbitrary time (¢ = ag), when R inter-
sects g, so that rs = agx. = 1/Hs = 2GMr.
This solution is time reversible and the evolution
can cross rg. This is a well know solution which
includes the Oppenheimer-Snyder BH collapse [7].
But note that when R < rg we have R > rg (or
R > 1) which creates a region between R > r >
rg which is acausal during expansion (this is the
well known horizon problem in the standard Big
Bang cosmology). We can also reproduce the same
LTB (or FLRW*) solution using junction condi-
tions to verify that the outside of rg is indeed a
classical (SW) BH despite the look of Eq.4. This

'The non flat case can also be reproduced if we study the
more general solution e* = (r')2/[1 4+ K (r)].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 December 2022

derivation [16] is reproduced in Appendix A (with
some typos corrected) for reference.

To show that this solution crosses the grav-
itational radius rg we can estimate the Event
Horizon (EH), Rgp, of the FLRW* metric. This
is the maxium distance that a photon emitted at
time 7 can travel (outgoing radial null geodesic,

20]):
< dr

RE‘H:a(T)/T a(ﬂ:a/:oHZ;%Q (8)

For H ~ a~3/2 we have Rpy ~ a®/2, which grows
unbounded with a and therefore crosses rg, as
shown by the dashed red line in Fig.2.

The case Hg < 0 corresponds to a collapsing
solution, and therefore a BH. This collapsing solu-
tion is protected by the Equivalence principle, as
a free fall test particle placed at r = R is equiva-
lent to a particle moving in empty space and can
therefore cross rg. The case Hg > 0 represents an
expanding solution and corresponds to a WH. It
just corresponds to a fluid expanding inside rg.
But what is strange about this solution is that
information can actually escape from the inside to
the outside of rg, which is contrary to all we have
learned about BHs. How is that possible?

The standard objection to this paradox is
that this expanding configuration can never be
achieved. This is reflected in the fact that R > rgy
is not causally connected to its past (the hori-
zon problem), which is a similar objection to the
one for WH interpretation of the SW solution, as
discussed in the Introduction. But note that this
expanding solution corresponds to a matter dom-
inated Big Bang solution, which is very close to
current observations.?. This is why it is often said
that the Big Bang is a WH 2.

Here we argue that this expanding WH solu-
tion is not correct. This is not because it can not
be achieved (as illustrated by the existence of our
own observed universe). The gravitational radius

2This is the case only if we ignore cosmic acceleration or if
we consider an observer in a galaxy far away (say at z = 2),
when matter domination was an excellent approximation.

3Note that both a WH and a BH require a finite total mass.
If M~ is infinitely large, then rs = oo and there is no WH or
BH. This in fact the standard Big Bang assumption. But does
it makes any physical sense to have an infinite mass, spread
uniformly over an infinite space for a Universe that is finite in
time?
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Fig. 2 Event Horizon in Eq.8 as a function of cosmic time
(given by the scale factor a) for a matter dominated FLRW
metric (2m = 1, Q4 = 0, dashed red line) and for one
which also has a A = 3/rg term (Qm = 0.25, Qp = 0,75,
continuous red line).

rs should be interpreted as a boundary that sepa-
rates the interior from the exterior manifold. This
is strictly the case if the outside is empty (as we
assume here). But even if the exterior is not totally
empty and there is some small accretion from
the outside, the value of rg will slowly increase
as the BH mass increases. But the rs boundary
still needs to be taken into account to evaluate
the action inside. Such boundary requires that we
change the GR field equations. Appendix B repro-
duces here the original calculation in [16, 21] that
shows that the GHY boundary in the action cor-
responds to an effective A term: A = 3/r%. We will
show next how this boundary term transforms the
WH solution into a BH solution.

2.1 How a WH turns into a BH

We will next review the derivation in Appendix
A including an effective A term: A = 3/r% inside
rs. Such A term does not change the form of
the FLRW metric itself, but (as is well known)
it changes the solution to expansion rate 3H? =
87Gp+A. The A term does change the form of the
SW metric inside to deSitter—-Schwarzschild met-
ricc F = 1—rg/R— R?/r. So to find the new
junction we just need to replace F' in the definition
of 8 in Eq.14 . The new second junction condition
then becomes:

2.3 q1/3
1
R:|:2THT‘S2:| or H= 24— (9)
g — T R rg
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which is exactly the new Hubble law with A =
3/r% and a constant mass M = 4/37pR? in Eq.6.
This shows that the LTB (or FLRW*) expand-
ing metric is also a solution to the new field
equations with the rg boundary. But this solu-
tion is no longer a WH, but it has become a BH.
We can check this by estimating the new EH in
Eq.8 including now the effective A term in H. The
new estimation for Rgy is displayed as a red con-
tinuous line in Fig.2. As can be seem, the EH is
trapped inside rg, which indicates that no infor-
mation can escape. The WH solution has now turn
into a BH.

3 Conclusion

We have shown that classical WH solutions in
GR can be turn into an expanding BH solutions
once we account for the fact that the gravitational
radius rg corresponds to a boundary condition in
the action of GR.

The matter dominated case study here is
a very good approximation for our Universe,
because in the later stages of its evolution it
is totally dominated by mater and the effective
A = 3/r%. This could also be in general a good
approximation for stellar or supermassive BHs
with uniform density and pressure because as a —
oo inside, matter and A always dominate. The
characteristic gravitational time is quite short:

M
T~GM ~1.1x 10—13M—yr, (10)
©

so even for a super massive BH (M ~ 10°M)
time is measured in seconds or hours. In astro-
nomical time-scales, the evolution is quickly domi-
nated by the effective A = 1/r% term inside. This,
by the way, explains the coincidence problem in
our Universe [22].

If we think of experimental Cosmology before
the year 2003 (i.e. ignore cosmic acceleration for
a minute), the LTB expanding WH solution in
Eq.5 (with H > 0) agrees very well with all the
observations at that time, which favoured a matter
dominated Universe (the so called EAS universe
with Q,, = 1). This is why some people still say
that the Big Bang is a WH. But today we know
that the universe has an effective A term and this
could indicate instead that we are inside a BH [16].
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Here we interpret the observed A to be an effec-
tive term that corresponds to the gravitational
radius rg = 1/3/A = 2GM of our local Universe.
Such BH Universe (BHU) is within a larger back-
ground that may or may not be totally empty. In
the later case, rg will increase if there is accre-
tion from outside. This case needs to be studied
in more detail, but it would result an effective A
term that decreases with time (w > —1).
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A Timelike Junction

We start by choosing a timelike X fixed in comov-
ing coordinates at some fix value x,. The spherical
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shell radius R = ay, follows a radial geodesic tra-
jectory in the FLRW metric. This corresponds to
a FLRW cloud of fixed mass My that is expand-
ing or contracting. The induced 3D metric h 4 for
dy® = (dr,dd,df) and fixed x = x, is:

dsy_ = h;ﬁdyo‘dyﬁ = —dr? + a?(1)x2dQ* (11)

The only free variable remaining is 7, the FLRW
comoving time (the solid angle df is the same in
both metrics as we have spherical symmetry). For
the outside SW frame, the same junction 7T is
described by some unknown functions r = R(7)
and ¢ = T(7), where t and r are the time and
radial coordinates in the physical SW frame of
Eq.1. We then have:

dr = Rdr ; dt=Tdr, (12)
where the dot refers to derivatives with respect

to 7. The induced metric At estimated from the
outside BH.SW metric (in Eq.1) becomes:

d 2
d822+ h:ﬁdyadyﬁ — _thQ + % + TQdQQ

= —(FT% — R?*/F)dr® + R?dQ*  (13)

where F' = 1 — rg/R. Comparing Eq.11 with
Eq.13, the first matching condition h= = h™T
results in:

R(r)=a(t)x. ; FT=VR:4+F=3 (14)

For any given a(7) and x. we can find both R(7)
and (7). We also want the derivative of the met-
ric to be continuous at ¥. For this, we estimate
the extrinsic curvature K+ normal to ¥ from each
side of the hypersurface (X%) as:

Ko = —[0anp — ncl'Sy) ege% (15)

where e = 02%/0y® and n, is the 4D vec-
tor normal to X. The outward 4D velocity is
u® = e2 = (1,0,0,0) and the normal to ¥~ on
the inside is then n~ = (0,4,0,0). On the out-
side u® = (T, R,0,0) and nt = (=R, T,0,0). Tt
is straightforward to verify that: n,u® = 0 and
n,n® = +1 (for a timelike surface) for both n~
and nt. The extrinsic curvature estimated with
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the inside FLRW metric, i.e. K~ is:

KT_T = —(67—7’1: - @Fzr)eie: =0
K,y = al',ehel) = —ax. = R (16)

where we have used Eq.14 and the following
Christoffel symbols for the FLRW:

*

I = F;xa_z =—H; I}y = x- (17)

[T =T7 =TX =TX =0; I'gy=—a’}H

For the SW metric:

Fit:F;‘:FZOZO ; oy = FR; (18)
t r _yrp-2_ TS
Ftr - _FTT‘ - FttF - W
which results in K+
R S B
K = RT — RT T?F? —3R*) = =
TT + 2R2F( ) R

Kj, = 1Th, = TFR = R

—~
—_

9)
where we have used the definition of 8 in Eq.14.
In both cases Ks5 = sin?0Kgyp, so that Ky =
K(% follows from K,, = K;‘g. Comparing Eq.16
with Eq.19, the matching conditions K;B = K;B
require 8 = 1, which using Eq.14 gives:
R=[rrs]"? (20)

This just reproduces the LTB (or FLRW*) with
M inside R in Eq.6.

B The GHY boundary term

Given the Einstein-Hilbert action [13, 23-25]:

—2A
S:S4E/ dV4 |:R +£:|, (21)
Vi

167G

where dV, = /—gd*z is the invariant volume
element, V, is the volume of the 4D spacetime
manifold, R = R} = ¢g"" Ry, is the Ricci scalar
curvature and £ the Lagrangian of the energy-
matter content. We can obtain Einstein’s field
equations for the metric field g, from this action
by requiring S to be stationary 6.5 = 0 under arbi-
trary variations of the metric §g#”. The solution
is well known [13, 25, 26]:
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167G 8(y/—gL)

V=g ogm

where G, = R, — % g R. This solution requires
that boundary terms vanish (e.g. see [13, 15, 27]).
Otherwise, we need to add a Gibbons-Hawking-
York (GHY) boundary term [28-30] to the action
S =S4+ Sgyy, where:

Gu +Ag =81G T, = —

1
S, =—
GHY = o= v,

ByvV-nhK. (22)
where K is the trace of the extrinsic curvature at
the boundary 0V, and h is the induced metric. The
expansion inside an isolated BH is bounded by the
event horizon r < rg and we need to add this GHY
boundary term Sgpgy to the action. The integral
is over the induced metric at dVy, i.e. Eq.11 with

oVy =" at R=rg:
dsdy, = hapdy®dy® = —dr® + r2dQ°  (23)

So the only remaing degrees of freedom in the
action are time 7 and the angular coordinates. We
can use this metric and Eq.16 to estimate K:

K K, 2 2
_ Koo 35 22 o

K = K¢ L
R2sin%0 R rg

" TR T
We then have

1
Scay = 3G /d’T 4rri K = —%T (25)

The A contribution to the action in Eq.22 is:

A raA

o= —;—GT (26)
We have estimated the total 4D volume V} as that
bounded by 0V} inside r < rg: V, = 2V37, where
the factor 2 accounts for the fact that Vs = 47rd /3
can be covered twice (during collapse and during
expansion). Comparing the two terms we can see
that we need A = 37";2 or equivalently ry = rg to
cancel the boundary term. In other words: evolu-
tion inside a BH event horizon induces a A term in
the field equations even when there is no A term
to start with.
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