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Abstract: We investigate the extent to which a two-level quantum system subjected to an external
time-dependent drive can be characterized by supervised learning. We apply this approach to the
case of bang-bang control and the estimation of the offset and the final distance to a given target state.
The estimate is global in the sense that no a priori knowledge is required on the parameters to be
determined. Different neural network algorithms are tested on a series of data sets. We point out the
limits of the estimation procedure with respect to the properties of the mapping to be interpolated.
We discuss the physical relevance of the different results.
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o 1. Introduction

1 Machine learning is a field of computer science which has attracted recently much attention in
1z many areas in physics [1-3]. The algorithms are aimed to emulate human intelligence by learning the
1z best way to proceed from a large data set [4]. The power of this tool gives hope that long outstanding
12 problems can be solved in quantum physics [5,6]. Pioneering studies have applied such techniques with
15 success in various domains extending from many-body physics [7,8] to quantum computing [1,9,10].
16 Different problems can be tackled from Machine Learning techniques. They are usually classified into
= three categories, namely supervised learning (SL), unsupervised learning and reinforcement learning
s (RL) [1]. On another side, the control of quantum systems by means of intense electromagnetic pulses
1» has been a topic of increasing interest in the past decades [11-15] with a variety of applications
20 extending from atomic and molecular physics [13,16] to Magnetic resonance [11] and quantum
a1 technologies [17,18]. The recent progress of numerical optimization techniques and experimental
22 devices has made possible the design and the implementation of controls able to manipulate with
23 precision quantum systems of growing complexity. In this setting, reinforcement learning can be used
22 to solve such issues [19,20]. RL differs from other types of machine learning in that the system is
25  not trained with an example data set. Instead, the system learns through a trial and error method.
26 This approach has been explored recently in benchmark quantum control problems with success
2z (see Refs. [21-33] to mention a few). Note that robust quantum controls with respect to small system
2s  uncertainties can also be designed when formulated as a SL task [34-36]. Despite recent and impressive
20 success, such open-loop control methods have intrinsic limitations when they are implemented in
30 a realistic experimental setting. Among others, they require the accurate knowledge of the system
a1 dynamics and a quick estimate of the efficiency of the considered control process [17,18,37]. Estimation
»2  of system parameters in quantum control has recently been widely investigated using different
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;s inversion techniques [37-47] based, e.g., on quantum Fisher information [48-52] or fingerprinting
sa  approaches [53,54]. In spite of their efficiency, these methods can be viewed generally as local since
ss  they require a good estimate of the parameter to be determined. This constraint can be partly avoided
ss by using machine learning techniques such as SL and Neural Network (NN) algorithms in which the
sz estimation may be global without any prior knowledge or at least with a minimum information on
ss the value to find [55,56]. This latter approach has been applied successfully in recent examples to,
3 e.g., extract the noise spectrum from system dynamics [57,58] or to characterize the non Markovianity
20 of open quantum systems [59]. Similar techniques have also been used to identify quantum system
a1 Hamiltonian [60].

a2 However, SL is not a magic tool and fundamental limitations exist within this global estimation
«3 framework. This paper aims at taking a step toward the identification of such obstacles in the
as application of SL to quantum dynamics. In this study, we focus on the implementation of SL to the
a5 characterization of driven two-level quantum systems. In order to highlight the advantages and the
s fundamental limitations of this technique, we consider a minimal, but non-trivial, model involving a
a7 two-level quantum system subjected to a non-resonant real control [61-63], in which the offset of the
s system is denoted A. This reference system is well-known in quantum control [17,18]. For instance,
4 time-optimal solution to reach a given target state can be derived if the maximum intensity of the
so external field is bounded [61-63]. The optimal solution to steer the system from the ground to the
s1  excited state is a bang-bang pulse, that is a pulse of maximum intensity with a switch from the positive
s to the negative amplitude at a specific time of the control process. Inspired by this procedure, we
ss  study in this paper a similar control process and we assume that the external control can switch a finite
s« number of times (fixed to 5 at random times in the numerical simulations) between its maximum and
ss  minimum values during a given control duration, corresponding to the previous minimum time. As in
s a standard control problem, the initial and target states are the ground and excited states of the system
sz and we define a distance d between the final dynamical state and the target.

58 In a SL process, the goal is to find a mapping able through a suited neural network to associate a
so set of inputs to outputs. SL is roughly divided into two stages. The first step is a learning procedure
so where the parameters of the NN are optimized based on an input-output data set. In a second time,
e1 another set of data is used to test the precision of the NN to reproduce the targeted mapping. If
ez the tests are conclusive then the NN becomes a very powerful tool allowing in a very short time to
es determine from any input the corresponding output. This very attractive procedure for dynamical
s« systems nevertheless presents difficulties and limits. To this aim, we apply this general framework to
es two different characterization processes. In the first case, knowing the control and the offset, the goal
es is to find the distance to the target state, while the role of A and d is reversed in the second analysis. As
ez discussed below, the first and second SL issues can be used respectively to characterize either the final
es state of the system or one of the parameters of the Hamiltonian. They will be called below direct and
eo inverse estimation problems. On the basis of large data sets, we investigate on this two fundamental
70 example the connection between the complexity of the NN and the accuracy of the SL. We show that
n  intrinsic limits to the precision of this process exist and we quantify them for this model system. We
72 point out qualitative characteristics that the mapping must verify to be well reproduced by a NN. The
73 results are established for a specific control of a two-level quantum system but the conclusions obtained
7o in this study can be generalized to the application of SL to other quantum dynamical processes.

75 The remainder of this paper is organized as follows. Section 2 introduces the physical model
76 and describes the time-optimal solution for steering the quantum system from the ground state to the
7z excited one. The principles of supervised learning are outlined in Sec. 3, with special attention paid to
e its application in quantum control. The numerical results are presented and discussed in Sec. 4. We
7 conclude in Sec. 5 with an outlook. Additional material is provided in Appendix A.
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so 2. The model system

a1 This section aims at describing the model system under consideration and the known results
s2 about its optimal control.
We consider the control of a two-level quantum system by means of an external electromagnetic
field. The state of the system at time ¢ is ¢(t) € C? of coordinates (c1,c) and the norm of ¢ is equal to
1. The dynamics are governed by the time-dependent Schrodinger equation iy = Hip in units where
I =1, H being the Hermitian Hamiltonian matrix. In a given rotating frame and in the rotating wave
approximation, this latter can be expressed as

1 (A u
H= -
2<u —A)

ss  with A € Ris the offset term with respect to the frequency of the field and u(t) € R the control law,
s« that corresponds to the amplitude of the excitation. The goal of the optimal control problem is to
es steer in minimum time the system from the ground to the excited state, i.e., to go from the initial state
ss o = (1,0) to the target oy = (0,1) (up to a phase factor).
This control problem can be reformulated in real coordinates by introducing the following change
of coordinates
X =c1c; +cjc
y = —i(c1c5 —cjc)

z= |C1|2 - \C2|2

with the constraint x> + y? + z> = 1, which corresponds to the Bloch sphere. The dynamical system
can then be expressed as

X =—-Ay
y=AMAx—uz 1)
zZ=uy

ez The goal is now to bring the system from the north pole (z = 1) to the south pole (z = —1) of the sphere.
ss  We add a pulse limitation |u(#)| < ug to the control, for some uy > 0. Note that a time rescaling leads
s to the multiplication of A and u by a positive scalar, and to the normalization 1y = 1.
The dynamical system on the Bloch sphere can be exactly integrated for a bang control for which
u = +1 = &. We assume that the initial point is (xo, yo,z0) at t = 0. Using

=A% —ez=—(1+A%y,

which leads to i + Q%y = 0, with Q = /1 + A2, we deduce that y(t) = A cos(Qt) + Bsin(Qt). Since
y(0) = yo, we have A = yo. With y(0) = Axo — €29, we deduce that B = %. For the x- and z-
coordinates, we have
x(t) = xg — 22 — 5 (Asin(Qt) — Beos(Qt))
{z(t) =zg+ & + &(Asin(Qt) — Bcos(Qt))

% For a specific value of A, this problem can be solved explicitly by optimal control and the
o1 Pontryagin Maximum Principle. We refer the interested reader to [61-63] for details on the derivation
o2 of the optimal solution. The minimum time #* to solve the control problem can also be found. For
o3 A <1, it can be shown that the optimal solution is the concatenation of two bang arcs of amplitude +1.
As displayed in Fig. 1, the control sequence is characterized by two times #; and t, defined as:

t1 = & (71 — arccos(A?))
ty = & (7 + arccos(A?))
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Figure 1. Optimal trajectories (in blue) going from the north pole to the south pole of the Bloch sphere.
The solid black line indicates the position of the equator. The parameter A is set to -0.5. For one of the
two optimal trajectories a control u = —1 is first applied during a time #;, followed by a control u = +1
during a time ¢, while for the other trajectory u = —1 lasts for a time f; and u = +1 for a time ¢ (the
specific part of the second solution is plotted in red).

oo withQ =1+ A?and t* = Zﬁ" Note that there are two symmetric time-optimal solutions. Inspired
s by this control protocol, we consider below to characterize the quantum system a similar bang-bang
96 control sequence with 5 switches and a time fixed to ¢*.

o7 3. Methodology

s 3.1. Principles of Machine learning techniques

99 Machine learning is a form of artificial intelligence that allows a system to learn from data, not
1o through explicit programming. A machine learning model is the result generated when the machine
101 learning algorithm is trained with data. After training, when a model receives data as input, it produces
w2 a prediction as output. As mentioned earlier, there are several types of machine learning processes.
103 Unsupervised learning is used when the problem requires a massive amount of unlabeled data. To
10s understand the meaning of this data, it is necessary to use algorithms that classify the data according
ws  to the patterns or clusters they detect. Supervised learning, on the other hand, typically begins with a
s well-defined data set and some understanding of how that data is classified. The goal of SL is to detect
w07 patterns in the data and apply them to an analytical process. These data have features associated with
ws labels that define their meaning. Deep learning, finally, is a specific method of SL that integrates neural
1o networks in successive layers to learn data in an iterative way [64]. The purpose of the present paper
o is to show how to apply and to test the efficiency of SL anf of NN algorithms for the characterization
11 of the driven two-level quantum system described in Sec. 2.
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uz 3.2, Construction of an artificial neural network

113 The goal of this paragraph is to illustrate the construction of a NN in its basic form of a multilayer
us perceptron (MLP). To this aim, we consider the following global characterization problem for the
us  two-level quantum system of Sec. 2. Given the offset A and the control law u(t), the goal is to find the
ue distance to the south pole of the Bloch sphere starting from the north pole. An exact transfer from the
uz north to the south pole is given in Fig. 1. To limit the complexity of the learning process, we assume
us that A € [0,1] and that u is a piecewise constant function of 100 equal steps, 1y of values 1 or -1 with
ue  exactly 5 switches. The control time is fixed to T = t* (note that this duration depends on the detuning
120 A). Based on this simple but fundamental control problem, our aim is to propose a robust learning
121 process and evaluate the relative effectiveness of different supervised learning techniques. We describe
122 in details in this paragraph the different steps of the application of such algorithms. Other examples
123 are studies in Sec. 4.

124 We consider the following data set. We draw randomly 10 offsets in [0,1] and 10 millions
s of controls for each offset. This corresponds to a vector denoted X with 101 entries (one offset
126 and 100 values uy). For each vector, we numerically compute the final state (x(T),y(T),z(T))
1z by a direct integration of Eq. (1). We obtain its Euclidean distance to the target defined as
s Y = /x(T)2+y(T)2 + (z(T) + 1)2. The data set consisting of 10 millions of elements with input X
120 and output Y is separated into 80% for the training and 20% for the testing processes. The second step
1o Of this approach consists in building a MLP network able to estimate the output from the given of the

11 input.

132 We first recall the functioning of an artificial NN in its basic form of a MLP. Its basic component
s is the artificial neuron, as detailed in Fig. 2. In this computation unit, a linear combination of its
1 weighted input is evaluated, and a weighted bias (a real number) is added. In the different numerical
s simulations, the bias number b is set to 1 and the parameter #n to 101. An activation function f, which
e introduces non-linearity to the estimation problem, is applied to this value, where f is chosen among a
1z small list of usual functions, extending from a threshold function, the sigmoid to the tanh functions or
s even a ReLu function (rectified linear activation function). Finally, the obtained result is published as
130 output of the artificial neuron. Notice that for each neuron, n + 1 weights have to be chosen in order to
1o define the mapping associating the input to the output.

Bias
b —»
.171
S
Ty—op f() f(_)> Output
Activation
function

;I"I)
Input Weights

Figure 2. Schematic representation of an artificial neuron used in the numerical simulations.

141 These basic computation units are grouped by layers in the MLP architecture, as depicted in Fig. 3.
w2 Each neuron of each internal layer is connected to all the neurons of the previous layer. As can be seen
s in Fig. 3, we distinguish between the input layer which receives the data and transfers it unchanged
ua  to the first hidden layer. Each hidden layer contains n neurons. The objective is then to find the best
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s weights and biases that most closely coincides with a given basis of knowledge that correlates in a
us univocal way a set of input to a set of output. More precisely, it must find the best weights that fit on a
wr “training set” (80% of the basis of knowledge), such that the “predictions” in the remained test set are
s the closest to reality. The weights are found through a specific optimization process called gradient
s backpropagation. For our problem, the MLP input is constituted of 101 inputs, corresponding to the
10 100 values of the control and of the offset A. At the final stage, there is only one output, namely the
11 distance Y. Additional details about the optimization of the different free parameters of the MLP are
12 given in Sec. 4.

Input layer Hidden layers i Output layer

1 h, h, h 0

N

»’é W
NPV

4‘7’“ 0

N
KN

> Output 1

Output n

Figure 3. Description of the architecture of a multilayer perceptron. Each grey disk represents an
artificial neuron as illustrated in Fig. 2. The neurons are organized in columns, each corresponding
to a layer, and called input, hidden or output layers according to their position in the structure of the
MLP. There are n neurons by layer. Their output is used as input for the neurons of the next layer as
represented by the solid lines.

153 4. Numerical results

154 Intensive numerical simulations have been done to estimate the efficiency of different supervising
155 learning approaches in this fundamental control problem. We have determined four data sets denoted
1ss  below (1), (2), (3) and (4). The data set (1) is the one described in Sec. 3 for a total time T = t*. The data
17 set (3) is the same as (1), except that 100 offsets uniformly distributed in [0, 1] have been used. In the
s data sets (2) and (4), we consider respectively the same control fields as in (1) and (3), but we exchange
1o the role of the distance and the offset. The goal of the process is now to estimate the value of A, which
1o corresponds to the output Y of the neural network.

161 Several NN algorithms were first tested on data set (1). The best architecture was then applied to
12 the other data sets, by playing on the hyperparameters of the model. Notice that we do not claim to
1z have found the best structure for the NN. An exhaustive search that requires a significant amount of
1 time is beyond the scope of this study. However, the tested architectures lead to key conclusions about
15 the efficiency and choice of methods.

166 A MLP process is first investigated. This architecture is clearly the simplest one for regression.
1z Weights have been initialized by the He uniform kernel initializer, while all activation functions have
s been set to the ReLU one. Indeed, ReLU advantages are sparsity and a reduced likelihood of vanishing
10 gradient. Additionally, deep models have difficulties in converging when weights are normalized
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o with fixed standard deviation, leading to large or small activation values which result in exploding
11 or vanishing gradient when backpropagation. This problem is overcome thanks to the He initializer,
12 which takes into account the non-linearity of ReLU activation functions. The last layer corresponding
13 to the output one is made of one neuron, as we want to predict a single value (the distance) and
s  the ReLU activation function, as all neurons must have their nonlinearity. The Adam optimizer and
s the mean squared error as loss function have been used. The number of epochs has been limited
e to 1000 with an early stopping criteria on a validation data set (20% of the train data set), and the
1z batch size has been set to 128, to reduce the memory consumption and improve the convergence
s speed (too small values of batch size take long time to converge and too large ones may converge less
s well). Finally, for sake of completeness, other optimizers, kernel initializers, and activation functions
1o have been tested, but without improving the test scores. The optimal number of layers has also been
11 studied. A good compromise is to use 14 layers, for the first half of the layers, the number of neurons
12 is doubled at each layer where for the second half the number of neurons is divided by two at each
13 layer. The second family of architectures is based on Convolutional Neural Networks (CNN), with
1« one (or more) couple(s) of Convolution 1D layer(s). After some layers, neurons are flatten and a small
15 MLP is used. Based on the previous computations, a ReLU function has been chosen as activation in
s the convolutional and dense layers, with the He uniform initializer and the Adam optimizer. A good
17 compromise is to use 7 layers of convolution of size 3. For each new layer, the number of filters is
s doubled. Then a MLP is used with 7 layers. Finally, a stacked LSTM approach has been tested on the
1o first data set. This recurrent neural network approach is promising, because of the particular structure
100 Of the control field, and the recurrent effect of each switch on the final distance. Four stacked LSTMs
w1 are used. The neural architecture was finalized with a small dense hidden layer (ReLU activation).
102 The different numerical results for the data sets (1) and (2) are given in Tab. 1. We observe for
13 the example (1) that the results are quite good and lower than 1072 for all the architectures. Table 1
s also shows that very different NN architectures lead more or less to similar results. Due to the huge
1s number of data, the time to train the different architectures is not negligible and of the order of one day
1 in each case (with a Nvidia V100 GPU). The results achieved for the data set (2) are clearly different
107 because the obtained MAE is of the order of 1072, i.e. two times larger than in the first case, while the
s estimation conditions seem at first sight to be very similar. None of the tested NN architecture were
10 able to solve this problem with a sufficient efficiency. Here again, we point out that all the tested NN
200 in spite of their different complexity leads to equivalent results.

l Algorithm [ MAE (1) [ MAE (2) ‘
MLP 535x 10~% | 5.16 x 102
CNN 850 x 10~% | 5.36 x 1072
LSTM 331 x 10~% | 5.00 x 102
Table 1. Results of the different architecture for the data sets 1 and 2

201 Numerical simulations on data sets (3) and (4) are summarized in Tab. 2. While this estimation
202 process seems a bit more difficult than the first case, surprisingly slightly better results are observed for
203 the different NN. From an algorithmic point of view, this means that slightly more accurate estimations
20« can be made. This could be explained by the fact that CNNs and LSTMs take into account the temporal
20 side of the application of switches uy, through convolution for the former, and the recurrent character
206 for the latter. Similarly to the data set (2), NN are not able to find the right values of the offset A for the
207 set (4).

208 In order to interpret the results of Tab. 1 and 2, we compare in Fig. 4 for different controls u(t) the
200 prediction of the NN and the results of an exact numerical computation both in the direct and inverse
210 problems. Two different direct estimations are investigated in Fig. 4a. Similar results are achieved
2 for other control protocols. The reasonable match between the two curves confirms that the NN can
212 predict with a good precision the distance to the target state for any offset A € [0, 1] and any bang-bang
213 control law with 5 switches in a fixed control time. This is a remarkable achievement for this global
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[ Algorithm | MAE(3) [ MAE(4) |
MLP 3.03x107% [ 7.95 x 1072
CNN 278 x 10 % | 6.86 x 1072
LSTM 176 x 1074 | 6.26 x 102

Table 2. Results of the different architecture for the data sets 3 and 4

system characterization as no prior knowledge about the output or the control is required. Even if this
result must be confirmed for more complex systems or different dynamics, no limitation was observed
and it is a promising result with respect to the use of SL in quantum control. As could be expected
from Tab. 2, the conclusion is not so satisfying for the inverse problem. Differences are clearly visible
between the exact computation and the prediction of the NN for some ranges of A- values. A severe
mismatch appears for a function d(A) which is not injective. Indeed, there exist in this case values of
d associated to more than one offset A. These multiple solutions cannot be found by the NN which
gives only one value of A for each d. As can be clearly seen in Fig. 4b, the NN fails to predict the
correct offset when the concavity of the curve changes, i.e. when the function is no longer monotonic.
In Fig. 4c, the errors occur because of the non-monotonic behavior this time of the function A(d). It
seems that a good match can be achieved if the function d(A) is always decreasing or increasing as
shown by one of the examples in Fig. 4b. Due to the non-linear nature of the dynamics, this injectivity
property cannot be determined a priori, making the application of SL more difficult in particular for
global estimation issue. Note that this monotonic behavior of the mapping could be expected in a local
analysis around a specific point (A, d). Finally, We also observe in Fig. 4b that the NN can predict offset
values outside the selected variation range, such values are not physical and do not correspond to any
quantum dynamic. This result is not very surprising because the NN was not guided or constrained at
the time of its design.

Another interesting point concerns the computation time. Once a NN is trained, the inference
time, which is required to estimate the predicted value, is smaller on a powerful GPU. In the following,
the inference time is compared for all the NN architectures on a CPU, on a GPU of a laptop, and on a
powerful GPU. The CPU is an Intel(R) Core(TM) i9-10885H CPU @ 2.40GHz, one GPU is Quadro T2000
Mobile (this is a mobile GPU), and the other one is a Volta A100 GPU (currently the most powerful
GPU). It is also instructive to make a comparison with a direct computation in Python of the dynamics.
The computation of a data set with 10 millions of systems takes 6587.30s. So for only one element, it
corresponds to a time of 6.59 x 10~*s. It can be concluded that there is an acceleration of magnitude 2
using a powerful GPU (100 times faster).

[ Algorithm |  CPU [ GPUT2000 | GPU A100 |
MLP 136 x1073 [ 464x107° | 6.81 x 10°°
CNN 431x1073 [ 132x10°% [ 931 x10°°
LSTM 305x1073 | 121 x10~% | 436 x10~°

Table 3. Execution times in second for the inference on CPU and GPU

5. Conclusion

We have applied recent formulations of SL techniques to the characterization of two-level quantum
systems by an external electromagnetic field. The model system under study can be viewed as an
illustrative example to highlight the efficiency and the limits of this approach. The time evolution
of the dynamical system is used to define different mappings in a direct or inverse way between the
control law, the final distance to the target state and the offset. The parameters of a NN are then
optimized in a training process to approximate this mapping as accurately as possible. As described in
this study, flexibility exists to fix the exact structure of the NN. Basically network complexity should
reflect data complexity, but in practice only an empirical answer can be given with a trial and error
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Figure 4. Comparison between the exact numerical computation (dashed red lines) and the estimations

of the NN (black solid lines) for the direct (panel (a)) and the inverse problems (panels (b) and (c)). In
panel (b), the horizontal solid line indicates the maximum value of the offset term in the data set.

20 method. A key and intrinsic difficulty of the estimation procedures is the fact that they are global with
21 no prior knowledge about the solution. Very good results are obtained for the direct problem, while
22 the inverse one requires specific properties for the mapping, such as its monotonic behavior.
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253 This preliminary study opens the way to other analyzes in the same direction. It will be interesting
2« to verify the conclusions of this paper in other quantum systems. An option to improve the results of the
255 system characterization is to guide the algorithm by providing it with information about the dynamics.
256 This general idea has already been developed in machine learning as part of physics-informed neural
a7 networks, which could be interesting to test in quantum control.
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26 Abbreviations

265 The following abbreviations are used in this manuscript:

OCT Optimal Control Theory
267 QC Quantum Control
NN  Neural Networks

26e  Appendix A. Code for the different NN architectures

269 We give in this paragraph the different codes with the keras framework! to generate the NN
270 architectures used in this study.
an Code for the MLP

2z model.add(Dense(101, input_dim=101, kernel_initializer="he_uniform’,activation="relu’))
272 model.add(Dense(202, kernel_initializer="he_uniform’, activation="relu’))
»zs - model.add(Dense(404, kernel_initializer="he_uniform’, activation="relu’))
2z model.add(Dense(808, kernel_initializer="he_uniform’, activation="relu"))
»7z - model.add(Dense(1212, kernel_initializer="he_uniform’, activation="relu’))
>z model.add(Dense(1616, kernel_initializer="he_uniform’, activation="relu’))
2ze - model.add(Dense(1212, kernel_initializer="he_uniform’, activation="relu’))
20 model.add(Dense(808, kernel_initializer="he_uniform’, activation="relu’))
281 model.add(Dense(404, kernel_initializer="he_uniform’, activation="relu"))
22 model.add(Dense(202, kernel_initializer="he_uniform’, activation="relu"))
283 model.add(Dense(101, kernel_initializer="he_uniform’, activation="relu"))
28a model.add(Dense(50, kernel_initializer="he_uniform’, activation="relu’))
»es  model.add(Dense(25, kernel_initializer="he_uniform’, activation="relu"))
28 model.add(Dense(1, kernel_initializer="he_uniform’, activation="linear”))

288 Code for the CNN

280 model.add(Convolution1D(filters=8, kernel_size=3, padding="same’, activation="relu’,
200 input_shape=(101,1)))

200 model.add(Convolution1D(filters=16, kernel_size=3, padding="same’, activation="relu’))

202 model.add(Convolution1D(filters=32, kernel_size=3, padding="same’, activation="relu’))

203 model.add(Convolution1D(filters=64, kernel_size=3, padding="same’, activation="relu’))

20« model.add(Convolution1D(filters=128, kernel_size=3, padding="same’, activation="relu’))

205 model.add(Convolution1D(filters=256, kernel_size=3, padding="same’, activation="relu’))

1 https://keras.io/
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20s model.add(Convolution1D(filters=512, kernel_size=3, padding="same’, activation="relu’))
2z model.add(Flatten())

20 model.add(Dense(512, kernel_initializer="he_uniform’, activation="relu"))

200 model.add(Dense(256, kernel_initializer="he_uniform’, activation="relu"))

300 model.add(Dense(128, kernel_initializer="he_uniform’, activation="relu"))

s model.add(Dense(64, kernel_initializer="he_uniform’, activation="relu"))

302 model.add(Dense(32, kernel_initializer="he_uniform’, activation="relu"))

303 model.add(Dense(16, kernel_initializer="he_uniform’, activation="relu"))

30« model.add(Dense(1, kernel_initializer="he_uniform’, activation="linear”))

306 Code for the LSTM

307 model.add(LSTM(4*32, return_sequences=True, input_shape=(101,1)))

s0s  model.add(LSTM(4*32, return_sequences=True))

s00  model.add(LSTM(2*32, return_sequences=True))

310 model.add(LSTM(2*16))

s model.add(Dense(2*10, kernel_initializer="he_uniform’, activation="relu’))
;12 model.add(Dense(1, kernel_initializer="he_uniform’, activation="linear”))
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