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Abstract: We investigate the extent to which a two-level quantum system subjected to an external 
time-dependent drive can be characterized by supervised learning. We apply this approach to the 
case of bang-bang control and the estimation of the offset and the final distance to a given target state. 
The estimate is global in the sense that no a priori knowledge is required on the parameters to be 
determined. Different neural network algorithms are tested on a series of data sets. We point out the 
limits of the estimation procedure with respect to the properties of the mapping to be interpolated. 
We discuss the physical relevance of the different results.
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1. Introduction10

Machine learning is a field of computer science which has attracted recently much attention in11

many areas in physics [1–3]. The algorithms are aimed to emulate human intelligence by learning the12

best way to proceed from a large data set [4]. The power of this tool gives hope that long outstanding13

problems can be solved in quantum physics [5,6]. Pioneering studies have applied such techniques with14

success in various domains extending from many-body physics [7,8] to quantum computing [1,9,10].15

Different problems can be tackled from Machine Learning techniques. They are usually classified into16

three categories, namely supervised learning (SL), unsupervised learning and reinforcement learning17

(RL) [1]. On another side, the control of quantum systems by means of intense electromagnetic pulses18

has been a topic of increasing interest in the past decades [11–15] with a variety of applications19

extending from atomic and molecular physics [13,16] to Magnetic resonance [11] and quantum20

technologies [17,18]. The recent progress of numerical optimization techniques and experimental21

devices has made possible the design and the implementation of controls able to manipulate with22

precision quantum systems of growing complexity. In this setting, reinforcement learning can be used23

to solve such issues [19,20]. RL differs from other types of machine learning in that the system is24

not trained with an example data set. Instead, the system learns through a trial and error method.25

This approach has been explored recently in benchmark quantum control problems with success26

(see Refs. [21–33] to mention a few). Note that robust quantum controls with respect to small system27

uncertainties can also be designed when formulated as a SL task [34–36]. Despite recent and impressive28

success, such open-loop control methods have intrinsic limitations when they are implemented in29

a realistic experimental setting. Among others, they require the accurate knowledge of the system30

dynamics and a quick estimate of the efficiency of the considered control process [17,18,37]. Estimation31

of system parameters in quantum control has recently been widely investigated using different32
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inversion techniques [37–47] based, e.g., on quantum Fisher information [48–52] or fingerprinting33

approaches [53,54]. In spite of their efficiency, these methods can be viewed generally as local since34

they require a good estimate of the parameter to be determined. This constraint can be partly avoided35

by using machine learning techniques such as SL and Neural Network (NN) algorithms in which the36

estimation may be global without any prior knowledge or at least with a minimum information on37

the value to find [55,56]. This latter approach has been applied successfully in recent examples to,38

e.g., extract the noise spectrum from system dynamics [57,58] or to characterize the non Markovianity39

of open quantum systems [59]. Similar techniques have also been used to identify quantum system40

Hamiltonian [60].41

However, SL is not a magic tool and fundamental limitations exist within this global estimation42

framework. This paper aims at taking a step toward the identification of such obstacles in the43

application of SL to quantum dynamics. In this study, we focus on the implementation of SL to the44

characterization of driven two-level quantum systems. In order to highlight the advantages and the45

fundamental limitations of this technique, we consider a minimal, but non-trivial, model involving a46

two-level quantum system subjected to a non-resonant real control [61–63], in which the offset of the47

system is denoted ∆. This reference system is well-known in quantum control [17,18]. For instance,48

time-optimal solution to reach a given target state can be derived if the maximum intensity of the49

external field is bounded [61–63]. The optimal solution to steer the system from the ground to the50

excited state is a bang-bang pulse, that is a pulse of maximum intensity with a switch from the positive51

to the negative amplitude at a specific time of the control process. Inspired by this procedure, we52

study in this paper a similar control process and we assume that the external control can switch a finite53

number of times (fixed to 5 at random times in the numerical simulations) between its maximum and54

minimum values during a given control duration, corresponding to the previous minimum time. As in55

a standard control problem, the initial and target states are the ground and excited states of the system56

and we define a distance d between the final dynamical state and the target.57

In a SL process, the goal is to find a mapping able through a suited neural network to associate a58

set of inputs to outputs. SL is roughly divided into two stages. The first step is a learning procedure59

where the parameters of the NN are optimized based on an input-output data set. In a second time,60

another set of data is used to test the precision of the NN to reproduce the targeted mapping. If61

the tests are conclusive then the NN becomes a very powerful tool allowing in a very short time to62

determine from any input the corresponding output. This very attractive procedure for dynamical63

systems nevertheless presents difficulties and limits. To this aim, we apply this general framework to64

two different characterization processes. In the first case, knowing the control and the offset, the goal65

is to find the distance to the target state, while the role of ∆ and d is reversed in the second analysis. As66

discussed below, the first and second SL issues can be used respectively to characterize either the final67

state of the system or one of the parameters of the Hamiltonian. They will be called below direct and68

inverse estimation problems. On the basis of large data sets, we investigate on this two fundamental69

example the connection between the complexity of the NN and the accuracy of the SL. We show that70

intrinsic limits to the precision of this process exist and we quantify them for this model system. We71

point out qualitative characteristics that the mapping must verify to be well reproduced by a NN. The72

results are established for a specific control of a two-level quantum system but the conclusions obtained73

in this study can be generalized to the application of SL to other quantum dynamical processes.74

The remainder of this paper is organized as follows. Section 2 introduces the physical model75

and describes the time-optimal solution for steering the quantum system from the ground state to the76

excited one. The principles of supervised learning are outlined in Sec. 3, with special attention paid to77

its application in quantum control. The numerical results are presented and discussed in Sec. 4. We78

conclude in Sec. 5 with an outlook. Additional material is provided in Appendix A.79
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2. The model system80

This section aims at describing the model system under consideration and the known results81

about its optimal control.82

We consider the control of a two-level quantum system by means of an external electromagnetic
field. The state of the system at time t is ψ(t) ∈ C2 of coordinates (c1, c2) and the norm of ψ is equal to
1. The dynamics are governed by the time-dependent Schrödinger equation iψ̇ = Hψ in units where
h̄ = 1, H being the Hermitian Hamiltonian matrix. In a given rotating frame and in the rotating wave
approximation, this latter can be expressed as

H =
1
2

(
∆ u
u −∆

)

with ∆ ∈ R is the offset term with respect to the frequency of the field and u(t) ∈ R the control law,83

that corresponds to the amplitude of the excitation. The goal of the optimal control problem is to84

steer in minimum time the system from the ground to the excited state, i.e., to go from the initial state85

ψ0 = (1, 0) to the target ψ f = (0, 1) (up to a phase factor).86

This control problem can be reformulated in real coordinates by introducing the following change
of coordinates 

x = c1c∗2 + c∗1c2

y = −i(c1c∗2 − c∗1c2)

z = |c1|2 − |c2|2

with the constraint x2 + y2 + z2 = 1, which corresponds to the Bloch sphere. The dynamical system
can then be expressed as 

ẋ = −∆y

ẏ = ∆x− uz

ż = uy

(1)

The goal is now to bring the system from the north pole (z = 1) to the south pole (z = −1) of the sphere.87

We add a pulse limitation |u(t)| ≤ u0 to the control, for some u0 > 0. Note that a time rescaling leads88

to the multiplication of ∆ and u0 by a positive scalar, and to the normalization u0 = 1.89

The dynamical system on the Bloch sphere can be exactly integrated for a bang control for which
u = ±1 = ε. We assume that the initial point is (x0, y0, z0) at t = 0. Using

ÿ = ∆ẋ− εż = −(1 + ∆2)y,

which leads to ÿ + Ω2y = 0, with Ω =
√

1 + ∆2, we deduce that y(t) = A cos(Ωt) + B sin(Ωt). Since
y(0) = y0, we have A = y0. With ẏ(0) = ∆x0 − εz0, we deduce that B = ∆x0−εz0

Ω . For the x- and z-
coordinates, we have {

x(t) = x0 − ∆B
Ω −

∆
Ω (A sin(Ωt)− B cos(Ωt))

z(t) = z0 +
εB
Ω + ε

Ω (A sin(Ωt)− B cos(Ωt))

For a specific value of ∆, this problem can be solved explicitly by optimal control and the90

Pontryagin Maximum Principle. We refer the interested reader to [61–63] for details on the derivation91

of the optimal solution. The minimum time t∗ to solve the control problem can also be found. For92

∆ ≤ 1, it can be shown that the optimal solution is the concatenation of two bang arcs of amplitude ±1.93

As displayed in Fig. 1, the control sequence is characterized by two times t1 and t2 defined as:{
t1 = 1

Ω (π − arccos(∆2))

t2 = 1
Ω (π + arccos(∆2))
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Figure 1. Optimal trajectories (in blue) going from the north pole to the south pole of the Bloch sphere.
The solid black line indicates the position of the equator. The parameter ∆ is set to -0.5. For one of the
two optimal trajectories a control u = −1 is first applied during a time t1, followed by a control u = +1
during a time t2, while for the other trajectory u = −1 lasts for a time t2 and u = +1 for a time t1 (the
specific part of the second solution is plotted in red).

with Ω =
√

1 + ∆2 and t∗ = 2π
Ω . Note that there are two symmetric time-optimal solutions. Inspired94

by this control protocol, we consider below to characterize the quantum system a similar bang-bang95

control sequence with 5 switches and a time fixed to t∗.96

3. Methodology97

3.1. Principles of Machine learning techniques98

Machine learning is a form of artificial intelligence that allows a system to learn from data, not99

through explicit programming. A machine learning model is the result generated when the machine100

learning algorithm is trained with data. After training, when a model receives data as input, it produces101

a prediction as output. As mentioned earlier, there are several types of machine learning processes.102

Unsupervised learning is used when the problem requires a massive amount of unlabeled data. To103

understand the meaning of this data, it is necessary to use algorithms that classify the data according104

to the patterns or clusters they detect. Supervised learning, on the other hand, typically begins with a105

well-defined data set and some understanding of how that data is classified. The goal of SL is to detect106

patterns in the data and apply them to an analytical process. These data have features associated with107

labels that define their meaning. Deep learning, finally, is a specific method of SL that integrates neural108

networks in successive layers to learn data in an iterative way [64]. The purpose of the present paper109

is to show how to apply and to test the efficiency of SL anf of NN algorithms for the characterization110

of the driven two-level quantum system described in Sec. 2.111
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3.2. Construction of an artificial neural network112

The goal of this paragraph is to illustrate the construction of a NN in its basic form of a multilayer113

perceptron (MLP). To this aim, we consider the following global characterization problem for the114

two-level quantum system of Sec. 2. Given the offset ∆ and the control law u(t), the goal is to find the115

distance to the south pole of the Bloch sphere starting from the north pole. An exact transfer from the116

north to the south pole is given in Fig. 1. To limit the complexity of the learning process, we assume117

that ∆ ∈ [0, 1] and that u is a piecewise constant function of 100 equal steps, uk of values 1 or -1 with118

exactly 5 switches. The control time is fixed to T = t∗ (note that this duration depends on the detuning119

∆). Based on this simple but fundamental control problem, our aim is to propose a robust learning120

process and evaluate the relative effectiveness of different supervised learning techniques. We describe121

in details in this paragraph the different steps of the application of such algorithms. Other examples122

are studies in Sec. 4.123

We consider the following data set. We draw randomly 10 offsets in [0, 1] and 10 millions124

of controls for each offset. This corresponds to a vector denoted X with 101 entries (one offset125

and 100 values uk). For each vector, we numerically compute the final state (x(T), y(T), z(T))126

by a direct integration of Eq. (1). We obtain its Euclidean distance to the target defined as127

Y =
√

x(T)2 + y(T)2 + (z(T) + 1)2. The data set consisting of 10 millions of elements with input X128

and output Y is separated into 80% for the training and 20% for the testing processes. The second step129

of this approach consists in building a MLP network able to estimate the output from the given of the130

input.131

We first recall the functioning of an artificial NN in its basic form of a MLP. Its basic component132

is the artificial neuron, as detailed in Fig. 2. In this computation unit, a linear combination of its133

weighted input is evaluated, and a weighted bias (a real number) is added. In the different numerical134

simulations, the bias number b is set to 1 and the parameter n to 101. An activation function f , which135

introduces non-linearity to the estimation problem, is applied to this value, where f is chosen among a136

small list of usual functions, extending from a threshold function, the sigmoid to the tanh functions or137

even a ReLu function (rectified linear activation function). Finally, the obtained result is published as138

output of the artificial neuron. Notice that for each neuron, n + 1 weights have to be chosen in order to139

define the mapping associating the input to the output.140

Bias

Input  Weights

Activation
 function

Output

Figure 2. Schematic representation of an artificial neuron used in the numerical simulations.

These basic computation units are grouped by layers in the MLP architecture, as depicted in Fig. 3.141

Each neuron of each internal layer is connected to all the neurons of the previous layer. As can be seen142

in Fig. 3, we distinguish between the input layer which receives the data and transfers it unchanged143

to the first hidden layer. Each hidden layer contains n neurons. The objective is then to find the best144
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weights and biases that most closely coincides with a given basis of knowledge that correlates in a145

univocal way a set of input to a set of output. More precisely, it must find the best weights that fit on a146

“training set” (80% of the basis of knowledge), such that the “predictions” in the remained test set are147

the closest to reality. The weights are found through a specific optimization process called gradient148

backpropagation. For our problem, the MLP input is constituted of 101 inputs, corresponding to the149

100 values of the control and of the offset ∆. At the final stage, there is only one output, namely the150

distance Y. Additional details about the optimization of the different free parameters of the MLP are151

given in Sec. 4.152

Figure 3. Description of the architecture of a multilayer perceptron. Each grey disk represents an
artificial neuron as illustrated in Fig. 2. The neurons are organized in columns, each corresponding
to a layer, and called input, hidden or output layers according to their position in the structure of the
MLP. There are n neurons by layer. Their output is used as input for the neurons of the next layer as
represented by the solid lines.

4. Numerical results153

Intensive numerical simulations have been done to estimate the efficiency of different supervising154

learning approaches in this fundamental control problem. We have determined four data sets denoted155

below (1), (2), (3) and (4). The data set (1) is the one described in Sec. 3 for a total time T = t∗. The data156

set (3) is the same as (1), except that 100 offsets uniformly distributed in [0, 1] have been used. In the157

data sets (2) and (4), we consider respectively the same control fields as in (1) and (3), but we exchange158

the role of the distance and the offset. The goal of the process is now to estimate the value of ∆, which159

corresponds to the output Y of the neural network.160

Several NN algorithms were first tested on data set (1). The best architecture was then applied to161

the other data sets, by playing on the hyperparameters of the model. Notice that we do not claim to162

have found the best structure for the NN. An exhaustive search that requires a significant amount of163

time is beyond the scope of this study. However, the tested architectures lead to key conclusions about164

the efficiency and choice of methods.165

A MLP process is first investigated. This architecture is clearly the simplest one for regression.166

Weights have been initialized by the He uniform kernel initializer, while all activation functions have167

been set to the ReLU one. Indeed, ReLU advantages are sparsity and a reduced likelihood of vanishing168

gradient. Additionally, deep models have difficulties in converging when weights are normalized169
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with fixed standard deviation, leading to large or small activation values which result in exploding170

or vanishing gradient when backpropagation. This problem is overcome thanks to the He initializer,171

which takes into account the non-linearity of ReLU activation functions. The last layer corresponding172

to the output one is made of one neuron, as we want to predict a single value (the distance) and173

the ReLU activation function, as all neurons must have their nonlinearity. The Adam optimizer and174

the mean squared error as loss function have been used. The number of epochs has been limited175

to 1000 with an early stopping criteria on a validation data set (20% of the train data set), and the176

batch size has been set to 128, to reduce the memory consumption and improve the convergence177

speed (too small values of batch size take long time to converge and too large ones may converge less178

well). Finally, for sake of completeness, other optimizers, kernel initializers, and activation functions179

have been tested, but without improving the test scores. The optimal number of layers has also been180

studied. A good compromise is to use 14 layers, for the first half of the layers, the number of neurons181

is doubled at each layer where for the second half the number of neurons is divided by two at each182

layer. The second family of architectures is based on Convolutional Neural Networks (CNN), with183

one (or more) couple(s) of Convolution 1D layer(s). After some layers, neurons are flatten and a small184

MLP is used. Based on the previous computations, a ReLU function has been chosen as activation in185

the convolutional and dense layers, with the He uniform initializer and the Adam optimizer. A good186

compromise is to use 7 layers of convolution of size 3. For each new layer, the number of filters is187

doubled. Then a MLP is used with 7 layers. Finally, a stacked LSTM approach has been tested on the188

first data set. This recurrent neural network approach is promising, because of the particular structure189

of the control field, and the recurrent effect of each switch on the final distance. Four stacked LSTMs190

are used. The neural architecture was finalized with a small dense hidden layer (ReLU activation).191

The different numerical results for the data sets (1) and (2) are given in Tab. 1. We observe for192

the example (1) that the results are quite good and lower than 10−3 for all the architectures. Table 1193

also shows that very different NN architectures lead more or less to similar results. Due to the huge194

number of data, the time to train the different architectures is not negligible and of the order of one day195

in each case (with a Nvidia V100 GPU). The results achieved for the data set (2) are clearly different196

because the obtained MAE is of the order of 10−2, i.e. two times larger than in the first case, while the197

estimation conditions seem at first sight to be very similar. None of the tested NN architecture were198

able to solve this problem with a sufficient efficiency. Here again, we point out that all the tested NN199

in spite of their different complexity leads to equivalent results.200

Algorithm MAE (1) MAE (2)

MLP 5.35× 10−4 5.16× 10−2

CNN 8.50× 10−4 5.36× 10−2

LSTM 3.31× 10−4 5.00× 10−2

Table 1. Results of the different architecture for the data sets 1 and 2

Numerical simulations on data sets (3) and (4) are summarized in Tab. 2. While this estimation201

process seems a bit more difficult than the first case, surprisingly slightly better results are observed for202

the different NN. From an algorithmic point of view, this means that slightly more accurate estimations203

can be made. This could be explained by the fact that CNNs and LSTMs take into account the temporal204

side of the application of switches uk, through convolution for the former, and the recurrent character205

for the latter. Similarly to the data set (2), NN are not able to find the right values of the offset ∆ for the206

set (4).207

In order to interpret the results of Tab. 1 and 2, we compare in Fig. 4 for different controls u(t) the208

prediction of the NN and the results of an exact numerical computation both in the direct and inverse209

problems. Two different direct estimations are investigated in Fig. 4a. Similar results are achieved210

for other control protocols. The reasonable match between the two curves confirms that the NN can211

predict with a good precision the distance to the target state for any offset ∆ ∈ [0, 1] and any bang-bang212

control law with 5 switches in a fixed control time. This is a remarkable achievement for this global213
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Algorithm MAE (3) MAE (4)

MLP 3.03× 10−4 7.95× 10−2

CNN 2.78× 10−4 6.86× 10−2

LSTM 1.76× 10−4 6.26× 10−2

Table 2. Results of the different architecture for the data sets 3 and 4

system characterization as no prior knowledge about the output or the control is required. Even if this214

result must be confirmed for more complex systems or different dynamics, no limitation was observed215

and it is a promising result with respect to the use of SL in quantum control. As could be expected216

from Tab. 2, the conclusion is not so satisfying for the inverse problem. Differences are clearly visible217

between the exact computation and the prediction of the NN for some ranges of ∆- values. A severe218

mismatch appears for a function d(∆) which is not injective. Indeed, there exist in this case values of219

d associated to more than one offset ∆. These multiple solutions cannot be found by the NN which220

gives only one value of ∆ for each d. As can be clearly seen in Fig. 4b, the NN fails to predict the221

correct offset when the concavity of the curve changes, i.e. when the function is no longer monotonic.222

In Fig. 4c, the errors occur because of the non-monotonic behavior this time of the function ∆(d). It223

seems that a good match can be achieved if the function d(∆) is always decreasing or increasing as224

shown by one of the examples in Fig. 4b. Due to the non-linear nature of the dynamics, this injectivity225

property cannot be determined a priori, making the application of SL more difficult in particular for226

global estimation issue. Note that this monotonic behavior of the mapping could be expected in a local227

analysis around a specific point (∆, d). Finally, We also observe in Fig. 4b that the NN can predict offset228

values outside the selected variation range, such values are not physical and do not correspond to any229

quantum dynamic. This result is not very surprising because the NN was not guided or constrained at230

the time of its design.231

Another interesting point concerns the computation time. Once a NN is trained, the inference232

time, which is required to estimate the predicted value, is smaller on a powerful GPU. In the following,233

the inference time is compared for all the NN architectures on a CPU, on a GPU of a laptop, and on a234

powerful GPU. The CPU is an Intel(R) Core(TM) i9-10885H CPU @ 2.40GHz, one GPU is Quadro T2000235

Mobile (this is a mobile GPU), and the other one is a Volta A100 GPU (currently the most powerful236

GPU). It is also instructive to make a comparison with a direct computation in Python of the dynamics.237

The computation of a data set with 10 millions of systems takes 6587.30s. So for only one element, it238

corresponds to a time of 6.59× 10−4s. It can be concluded that there is an acceleration of magnitude 2239

using a powerful GPU (100 times faster).240

Algorithm CPU GPU T2000 GPU A100

MLP 1.36× 10−3 4.64× 10−5 6.81× 10−6

CNN 4.31× 10−3 1.32× 10−4 9.31× 10−6

LSTM 3.05× 10−3 1.21× 10−4 4.36× 10−6

Table 3. Execution times in second for the inference on CPU and GPU

5. Conclusion241

We have applied recent formulations of SL techniques to the characterization of two-level quantum242

systems by an external electromagnetic field. The model system under study can be viewed as an243

illustrative example to highlight the efficiency and the limits of this approach. The time evolution244

of the dynamical system is used to define different mappings in a direct or inverse way between the245

control law, the final distance to the target state and the offset. The parameters of a NN are then246

optimized in a training process to approximate this mapping as accurately as possible. As described in247

this study, flexibility exists to fix the exact structure of the NN. Basically network complexity should248

reflect data complexity, but in practice only an empirical answer can be given with a trial and error249

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 December 2022                   doi:10.20944/preprints202212.0433.v1

https://doi.org/10.20944/preprints202212.0433.v1


9 of 14

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2
0

0.1

0.2

0.3

Figure 4. Comparison between the exact numerical computation (dashed red lines) and the estimations
of the NN (black solid lines) for the direct (panel (a)) and the inverse problems (panels (b) and (c)). In
panel (b), the horizontal solid line indicates the maximum value of the offset term in the data set.

method. A key and intrinsic difficulty of the estimation procedures is the fact that they are global with250

no prior knowledge about the solution. Very good results are obtained for the direct problem, while251

the inverse one requires specific properties for the mapping, such as its monotonic behavior.252
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This preliminary study opens the way to other analyzes in the same direction. It will be interesting253

to verify the conclusions of this paper in other quantum systems. An option to improve the results of the254

system characterization is to guide the algorithm by providing it with information about the dynamics.255

This general idea has already been developed in machine learning as part of physics-informed neural256

networks, which could be interesting to test in quantum control.257

Author Contributions: R. C. and C. G. carried out the numerical simulations. S. G. and D. S. proposed the initial258

idea about the application of SL to quantum optimal control. All authors worked on the design of the research259

project. The connection between SL and QC was analyzed by E. D. and D. S. All authors participated in the260

analysis of the results and in the paper redaction.261

Funding: This research has been supported by the ANR project “QuCoBEC” ANR-22-CE47-0008-02.262

Conflicts of Interest: The authors declare no conflict of interest.263

Abbreviations264

The following abbreviations are used in this manuscript:265

266

OCT Optimal Control Theory
QC Quantum Control
NN Neural Networks

267

Appendix A. Code for the different NN architectures268

We give in this paragraph the different codes with the keras framework1 to generate the NN269

architectures used in this study.270

Code for the MLP271

272

model.add(Dense(101, input_dim=101, kernel_initializer=’he_uniform’,activation=’relu’))273

model.add(Dense(202, kernel_initializer=’he_uniform’, activation=’relu’))274

model.add(Dense(404, kernel_initializer=’he_uniform’, activation=’relu’))275

model.add(Dense(808, kernel_initializer=’he_uniform’, activation=’relu’))276

model.add(Dense(1212, kernel_initializer=’he_uniform’, activation=’relu’))277

model.add(Dense(1616, kernel_initializer=’he_uniform’, activation=’relu’))278

model.add(Dense(1212, kernel_initializer=’he_uniform’, activation=’relu’))279

model.add(Dense(808, kernel_initializer=’he_uniform’, activation=’relu’))280

model.add(Dense(404, kernel_initializer=’he_uniform’, activation=’relu’))281

model.add(Dense(202, kernel_initializer=’he_uniform’, activation=’relu’))282

model.add(Dense(101, kernel_initializer=’he_uniform’, activation=’relu’))283

model.add(Dense(50, kernel_initializer=’he_uniform’, activation=’relu’))284

model.add(Dense(25, kernel_initializer=’he_uniform’, activation=’relu’))285

model.add(Dense(1, kernel_initializer=’he_uniform’, activation=’linear’))286

287

Code for the CNN288

model.add(Convolution1D(filters=8, kernel_size=3, padding=’same’, activation=’relu’,289

input_shape=(101,1)))290

model.add(Convolution1D(filters=16, kernel_size=3, padding=’same’, activation=’relu’))291

model.add(Convolution1D(filters=32, kernel_size=3, padding=’same’, activation=’relu’))292

model.add(Convolution1D(filters=64, kernel_size=3, padding=’same’, activation=’relu’))293

model.add(Convolution1D(filters=128, kernel_size=3, padding=’same’, activation=’relu’))294

model.add(Convolution1D(filters=256, kernel_size=3, padding=’same’, activation=’relu’))295

1 https://keras.io/
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296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

model.add(Convolution1D(filters=512, kernel_size=3, padding=’same’, activation=’relu’)) 
model.add(Flatten())
model.add(Dense(512, kernel_initializer=’he_uniform’, activation=’relu’))
model.add(Dense(256, kernel_initializer=’he_uniform’, activation=’relu’))
model.add(Dense(128, kernel_initializer=’he_uniform’, activation=’relu’))
model.add(Dense(64, kernel_initializer=’he_uniform’, activation=’relu’))
model.add(Dense(32, kernel_initializer=’he_uniform’, activation=’relu’))
model.add(Dense(16, kernel_initializer=’he_uniform’, activation=’relu’))
model.add(Dense(1, kernel_initializer=’he_uniform’, activation=’linear’))

Code for the LSTM
model.add(LSTM(4*32, return_sequences=True, input_shape=(101,1)))
model.add(LSTM(4*32, return_sequences=True))
model.add(LSTM(2*32, return_sequences=True))
model.add(LSTM(2*16))
model.add(Dense(2*10, kernel_initializer=’he_uniform’, activation=’relu’))
model.add(Dense(1, kernel_initializer=’he_uniform’, activation=’linear’))
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57. Papič, M.; de Vega, I. Neural-network-based qubit-environment characterization. Phys. Rev. A 2022,447

105, 022605. doi:10.1103/PhysRevA.105.022605.448

58. Wise, D.F.; Morton, J.J.; Dhomkar, S. Using Deep Learning to Understand and Mitigate the Qubit Noise449

Environment. PRX Quantum 2021, 2, 010316. doi:10.1103/PRXQuantum.2.010316.450

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 December 2022                   doi:10.20944/preprints202212.0433.v1

https://doi.org/10.1103/PhysRevA.99.042327
https://doi.org/10.1103/PhysRevA.97.042324
https://doi.org/10.1103/PhysRevResearch.4.023155
https://doi.org/10.1103/PhysRevApplied.15.034080
https://doi.org/10.1051/cocv:2007013
https://doi.org/10.1063/1.1538242
https://doi.org/10.1088/1751-8113/47/26/265302
https://doi.org/10.1103/PhysRevA.91.022125
https://doi.org/10.1103/PhysRevLett.113.080401
https://doi.org/10.1103/PhysRevA.95.022335
https://doi.org/10.1103/PhysRevLett.119.030402
https://doi.org/10.1103/PhysRevA.103.022604
https://doi.org/10.1103/PhysRevA.104.063112
https://doi.org/10.1103/PhysRevLett.115.110401
https://doi.org/10.1103/PhysRevA.96.012117
https://doi.org/10.1103/PhysRevA.103.052607
https://doi.org/10.1103/PhysRevA.105.042621
https://doi.org/10.1103/PhysRevLett.128.160505
https://doi.org/10.1103/PhysRevA.96.053419
https://doi.org/10.1103/PhysRevA.105.022605
https://doi.org/10.1103/PRXQuantum.2.010316
https://doi.org/10.20944/preprints202212.0433.v1


14 of 14

59. Fanchini, F.F.; Karpat, G.b.u.; Rossatto, D.Z.; Norambuena, A.; Coto, R. Estimating the451

degree of non-Markovianity using machine learning. Phys. Rev. A 2021, 103, 022425.452

doi:10.1103/PhysRevA.103.022425.453

60. Geremia, J.M.; Rabitz, H. Optimal Identification of Hamiltonian Information by Closed-Loop Laser Control454

of Quantum Systems. Phys. Rev. Lett. 2002, 89, 263902. doi:10.1103/PhysRevLett.89.263902.455

61. Boscain, U.; Mason, P. Time minimal trajectories for a spin 1/2 particle in a magnetic field. J. Math. Phys.456

2006, 47, 062101, 29. doi:10.1063/1.2203236.457

62. Assémat, E.; Lapert, M.; Zhang, Y.; Braun, M.; Glaser, S.J.; Sugny, D. Simultaneous time-optimal control of458

the inversion of two spin- 1
2 particles. Phys. Rev. A 2010, 82, 013415. doi:10.1103/PhysRevA.82.013415.459

63. Boscain, U.; Sigalotti, M.; Sugny, D. Introduction to the Pontryagin Maximum Principle for Quantum460

Optimal Control. PRX Quantum 2021, 2, 030203. doi:10.1103/PRXQuantum.2.030203.461

64. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. nature 2015, 521, 436–444.462

© 2022 by the authors. Submitted to Entropy for possible open access publication under the terms and conditions463

of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).464

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 23 December 2022                   doi:10.20944/preprints202212.0433.v1

https://doi.org/10.1103/PhysRevA.103.022425
https://doi.org/10.1103/PhysRevLett.89.263902
https://doi.org/10.1063/1.2203236
https://doi.org/10.1103/PhysRevA.82.013415
https://doi.org/10.1103/PRXQuantum.2.030203
http://creativecommons.org/licenses/by/4.0/.
https://doi.org/10.20944/preprints202212.0433.v1

	Introduction
	The model system
	Methodology
	Principles of Machine learning techniques
	Construction of an artificial neural network

	Numerical results
	Conclusion
	Code for the different NN architectures
	References

