

Article

Characterization of a Driven Two-level Quantum System by Supervised Learning

Raphaël Couturier ² , Etienne Dionis ¹, Stéphane Guérin ¹ , Christophe Guyeux ² and Dominique Sugny ^{1*}

¹ Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS-Université Bourgogne-Franche Comté, 9 Av. A. Savary, BP 47 870, F-21078 DIJON Cedex, France

² FEMTO-ST Institute, UMR 6174 CNRS, Univ. Bourgogne Franche-Comté (UBFC), Belfort, France

* Correspondence: dominique.sugny@u-bourgogne.fr

Abstract: We investigate the extent to which a two-level quantum system subjected to an external time-dependent drive can be characterized by supervised learning. We apply this approach to the case of bang-bang control and the estimation of the offset and the final distance to a given target state. The estimate is global in the sense that no a priori knowledge is required on the parameters to be determined. Different neural network algorithms are tested on a series of data sets. We point out the limits of the estimation procedure with respect to the properties of the mapping to be interpolated. We discuss the physical relevance of the different results.

Keywords: Optimal control; supervised learning; system characterization; two-level quantum systems

1. Introduction

Machine learning is a field of computer science which has attracted recently much attention in many areas in physics [1–3]. The algorithms are aimed to emulate human intelligence by learning the best way to proceed from a large data set [4]. The power of this tool gives hope that long outstanding problems can be solved in quantum physics [5,6]. Pioneering studies have applied such techniques with success in various domains extending from many-body physics [7,8] to quantum computing [1,9,10]. Different problems can be tackled from Machine Learning techniques. They are usually classified into three categories, namely supervised learning (SL), unsupervised learning and reinforcement learning (RL) [1]. On another side, the control of quantum systems by means of intense electromagnetic pulses has been a topic of increasing interest in the past decades [11–15] with a variety of applications extending from atomic and molecular physics [13,16] to Magnetic resonance [11] and quantum technologies [17,18]. The recent progress of numerical optimization techniques and experimental devices has made possible the design and the implementation of controls able to manipulate with precision quantum systems of growing complexity. In this setting, reinforcement learning can be used to solve such issues [19,20]. RL differs from other types of machine learning in that the system is not trained with an example data set. Instead, the system learns through a trial and error method. This approach has been explored recently in benchmark quantum control problems with success (see Refs. [21–33] to mention a few). Note that robust quantum controls with respect to small system uncertainties can also be designed when formulated as a SL task [34–36]. Despite recent and impressive success, such open-loop control methods have intrinsic limitations when they are implemented in a realistic experimental setting. Among others, they require the accurate knowledge of the system dynamics and a quick estimate of the efficiency of the considered control process [17,18,37]. Estimation of system parameters in quantum control has recently been widely investigated using different

33 inversion techniques [37–47] based, e.g., on quantum Fisher information [48–52] or fingerprinting
34 approaches [53,54]. In spite of their efficiency, these methods can be viewed generally as local since
35 they require a good estimate of the parameter to be determined. This constraint can be partly avoided
36 by using machine learning techniques such as SL and Neural Network (NN) algorithms in which the
37 estimation may be global without any prior knowledge or at least with a minimum information on
38 the value to find [55,56]. This latter approach has been applied successfully in recent examples to,
39 e.g., extract the noise spectrum from system dynamics [57,58] or to characterize the non Markovianity
40 of open quantum systems [59]. Similar techniques have also been used to identify quantum system
41 Hamiltonian [60].

42 However, SL is not a magic tool and fundamental limitations exist within this global estimation
43 framework. This paper aims at taking a step toward the identification of such obstacles in the
44 application of SL to quantum dynamics. In this study, we focus on the implementation of SL to the
45 characterization of driven two-level quantum systems. In order to highlight the advantages and the
46 fundamental limitations of this technique, we consider a minimal, but non-trivial, model involving a
47 two-level quantum system subjected to a non-resonant real control [61–63], in which the offset of the
48 system is denoted Δ . This reference system is well-known in quantum control [17,18]. For instance,
49 time-optimal solution to reach a given target state can be derived if the maximum intensity of the
50 external field is bounded [61–63]. The optimal solution to steer the system from the ground to the
51 excited state is a bang-bang pulse, that is a pulse of maximum intensity with a switch from the positive
52 to the negative amplitude at a specific time of the control process. Inspired by this procedure, we
53 study in this paper a similar control process and we assume that the external control can switch a finite
54 number of times (fixed to 5 at random times in the numerical simulations) between its maximum and
55 minimum values during a given control duration, corresponding to the previous minimum time. As in
56 a standard control problem, the initial and target states are the ground and excited states of the system
57 and we define a distance d between the final dynamical state and the target.

58 In a SL process, the goal is to find a mapping able through a suited neural network to associate a
59 set of inputs to outputs. SL is roughly divided into two stages. The first step is a learning procedure
60 where the parameters of the NN are optimized based on an input-output data set. In a second time,
61 another set of data is used to test the precision of the NN to reproduce the targeted mapping. If
62 the tests are conclusive then the NN becomes a very powerful tool allowing in a very short time to
63 determine from any input the corresponding output. This very attractive procedure for dynamical
64 systems nevertheless presents difficulties and limits. To this aim, we apply this general framework to
65 two different characterization processes. In the first case, knowing the control and the offset, the goal
66 is to find the distance to the target state, while the role of Δ and d is reversed in the second analysis. As
67 discussed below, the first and second SL issues can be used respectively to characterize either the final
68 state of the system or one of the parameters of the Hamiltonian. They will be called below *direct* and
69 *inverse* estimation problems. On the basis of large data sets, we investigate on this two fundamental
70 example the connection between the complexity of the NN and the accuracy of the SL. We show that
71 intrinsic limits to the precision of this process exist and we quantify them for this model system. We
72 point out qualitative characteristics that the mapping must verify to be well reproduced by a NN. The
73 results are established for a specific control of a two-level quantum system but the conclusions obtained
74 in this study can be generalized to the application of SL to other quantum dynamical processes.

75 The remainder of this paper is organized as follows. Section 2 introduces the physical model
76 and describes the time-optimal solution for steering the quantum system from the ground state to the
77 excited one. The principles of supervised learning are outlined in Sec. 3, with special attention paid to
78 its application in quantum control. The numerical results are presented and discussed in Sec. 4. We
79 conclude in Sec. 5 with an outlook. Additional material is provided in Appendix A.

80 **2. The model system**

81 This section aims at describing the model system under consideration and the known results
82 about its optimal control.

We consider the control of a two-level quantum system by means of an external electromagnetic field. The state of the system at time t is $\psi(t) \in \mathbb{C}^2$ of coordinates (c_1, c_2) and the norm of ψ is equal to 1. The dynamics are governed by the time-dependent Schrödinger equation $i\dot{\psi} = H\psi$ in units where $\hbar = 1$, H being the Hermitian Hamiltonian matrix. In a given rotating frame and in the rotating wave approximation, this latter can be expressed as

$$H = \frac{1}{2} \begin{pmatrix} \Delta & u \\ u & -\Delta \end{pmatrix}$$

83 with $\Delta \in \mathbb{R}$ is the offset term with respect to the frequency of the field and $u(t) \in \mathbb{R}$ the control law,
84 that corresponds to the amplitude of the excitation. The goal of the optimal control problem is to
85 steer in minimum time the system from the ground to the excited state, i.e., to go from the initial state
86 $\psi_0 = (1, 0)$ to the target $\psi_f = (0, 1)$ (up to a phase factor).

This control problem can be reformulated in real coordinates by introducing the following change of coordinates

$$\begin{cases} x = c_1 c_2^* + c_1^* c_2 \\ y = -i(c_1 c_2^* - c_1^* c_2) \\ z = |c_1|^2 - |c_2|^2 \end{cases}$$

with the constraint $x^2 + y^2 + z^2 = 1$, which corresponds to the Bloch sphere. The dynamical system can then be expressed as

$$\begin{cases} \dot{x} = -\Delta y \\ \dot{y} = \Delta x - uz \\ \dot{z} = uy \end{cases} \quad (1)$$

87 The goal is now to bring the system from the north pole ($z = 1$) to the south pole ($z = -1$) of the sphere.
88 We add a pulse limitation $|u(t)| \leq u_0$ to the control, for some $u_0 > 0$. Note that a time rescaling leads
89 to the multiplication of Δ and u_0 by a positive scalar, and to the normalization $u_0 = 1$.

The dynamical system on the Bloch sphere can be exactly integrated for a bang control for which $u = \pm 1 = \varepsilon$. We assume that the initial point is (x_0, y_0, z_0) at $t = 0$. Using

$$\ddot{y} = \Delta \dot{x} - \varepsilon \dot{z} = -(1 + \Delta^2)y,$$

which leads to $\ddot{y} + \Omega^2 y = 0$, with $\Omega = \sqrt{1 + \Delta^2}$, we deduce that $y(t) = A \cos(\Omega t) + B \sin(\Omega t)$. Since $y(0) = y_0$, we have $A = y_0$. With $\dot{y}(0) = \Delta x_0 - \varepsilon z_0$, we deduce that $B = \frac{\Delta x_0 - \varepsilon z_0}{\Omega}$. For the x - and z -coordinates, we have

$$\begin{cases} x(t) = x_0 - \frac{\Delta B}{\Omega} - \frac{\Delta}{\Omega}(A \sin(\Omega t) - B \cos(\Omega t)) \\ z(t) = z_0 + \frac{\varepsilon B}{\Omega} + \frac{\varepsilon}{\Omega}(A \sin(\Omega t) - B \cos(\Omega t)) \end{cases}$$

90 For a specific value of Δ , this problem can be solved explicitly by optimal control and the
91 Pontryagin Maximum Principle. We refer the interested reader to [61–63] for details on the derivation
92 of the optimal solution. The minimum time t^* to solve the control problem can also be found. For
93 $\Delta \leq 1$, it can be shown that the optimal solution is the concatenation of two bang arcs of amplitude ± 1 .

As displayed in Fig. 1, the control sequence is characterized by two times t_1 and t_2 defined as:

$$\begin{cases} t_1 = \frac{1}{\Omega}(\pi - \arccos(\Delta^2)) \\ t_2 = \frac{1}{\Omega}(\pi + \arccos(\Delta^2)) \end{cases}$$

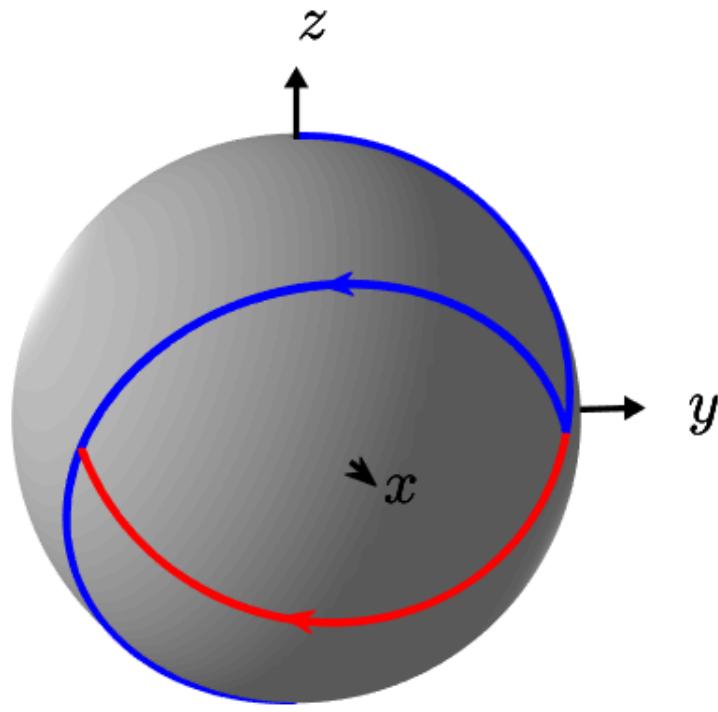


Figure 1. Optimal trajectories (in blue) going from the north pole to the south pole of the Bloch sphere. The solid black line indicates the position of the equator. The parameter Δ is set to -0.5. For one of the two optimal trajectories a control $u = -1$ is first applied during a time t_1 , followed by a control $u = +1$ during a time t_2 , while for the other trajectory $u = -1$ lasts for a time t_2 and $u = +1$ for a time t_1 (the specific part of the second solution is plotted in red).

94 with $\Omega = \sqrt{1 + \Delta^2}$ and $t^* = \frac{2\pi}{\Omega}$. Note that there are two symmetric time-optimal solutions. Inspired
 95 by this control protocol, we consider below to characterize the quantum system a similar bang-bang
 96 control sequence with 5 switches and a time fixed to t^* .

97 **3. Methodology**

98 *3.1. Principles of Machine learning techniques*

99 Machine learning is a form of artificial intelligence that allows a system to learn from data, not
 100 through explicit programming. A machine learning model is the result generated when the machine
 101 learning algorithm is trained with data. After training, when a model receives data as input, it produces
 102 a prediction as output. As mentioned earlier, there are several types of machine learning processes.

103 Unsupervised learning is used when the problem requires a massive amount of unlabeled data. To
 104 understand the meaning of this data, it is necessary to use algorithms that classify the data according
 105 to the patterns or clusters they detect. Supervised learning, on the other hand, typically begins with a
 106 well-defined data set and some understanding of how that data is classified. The goal of SL is to detect
 107 patterns in the data and apply them to an analytical process. These data have features associated with
 108 labels that define their meaning. Deep learning, finally, is a specific method of SL that integrates neural
 109 networks in successive layers to learn data in an iterative way [64]. The purpose of the present paper
 110 is to show how to apply and to test the efficiency of SL and of NN algorithms for the characterization
 111 of the driven two-level quantum system described in Sec. 2.

112 3.2. Construction of an artificial neural network

113 The goal of this paragraph is to illustrate the construction of a NN in its basic form of a multilayer
 114 perceptron (MLP). To this aim, we consider the following global characterization problem for the
 115 two-level quantum system of Sec. 2. Given the offset Δ and the control law $u(t)$, the goal is to find the
 116 distance to the south pole of the Bloch sphere starting from the north pole. An exact transfer from the
 117 north to the south pole is given in Fig. 1. To limit the complexity of the learning process, we assume
 118 that $\Delta \in [0, 1]$ and that u is a piecewise constant function of 100 equal steps, u_k of values 1 or -1 with
 119 exactly 5 switches. The control time is fixed to $T = t^*$ (note that this duration depends on the detuning
 120 Δ). Based on this simple but fundamental control problem, our aim is to propose a robust learning
 121 process and evaluate the relative effectiveness of different supervised learning techniques. We describe
 122 in details in this paragraph the different steps of the application of such algorithms. Other examples
 123 are studies in Sec. 4.

124 We consider the following data set. We draw randomly 10 offsets in $[0, 1]$ and 10 millions
 125 of controls for each offset. This corresponds to a vector denoted X with 101 entries (one offset
 126 and 100 values u_k). For each vector, we numerically compute the final state $(x(T), y(T), z(T))$
 127 by a direct integration of Eq. (1). We obtain its Euclidean distance to the target defined as
 128 $Y = \sqrt{x(T)^2 + y(T)^2 + (z(T) + 1)^2}$. The data set consisting of 10 millions of elements with input X
 129 and output Y is separated into 80% for the training and 20% for the testing processes. The second step
 130 of this approach consists in building a MLP network able to estimate the output from the given of the
 131 input.

132 We first recall the functioning of an artificial NN in its basic form of a MLP. Its basic component
 133 is the artificial neuron, as detailed in Fig. 2. In this computation unit, a linear combination of its
 134 weighted input is evaluated, and a weighted bias (a real number) is added. In the different numerical
 135 simulations, the bias number b is set to 1 and the parameter n to 101. An activation function f , which
 136 introduces non-linearity to the estimation problem, is applied to this value, where f is chosen among a
 137 small list of usual functions, extending from a threshold function, the sigmoid to the tanh functions or
 138 even a ReLu function (rectified linear activation function). Finally, the obtained result is published as
 139 output of the artificial neuron. Notice that for each neuron, $n + 1$ weights have to be chosen in order to
 140 define the mapping associating the input to the output.

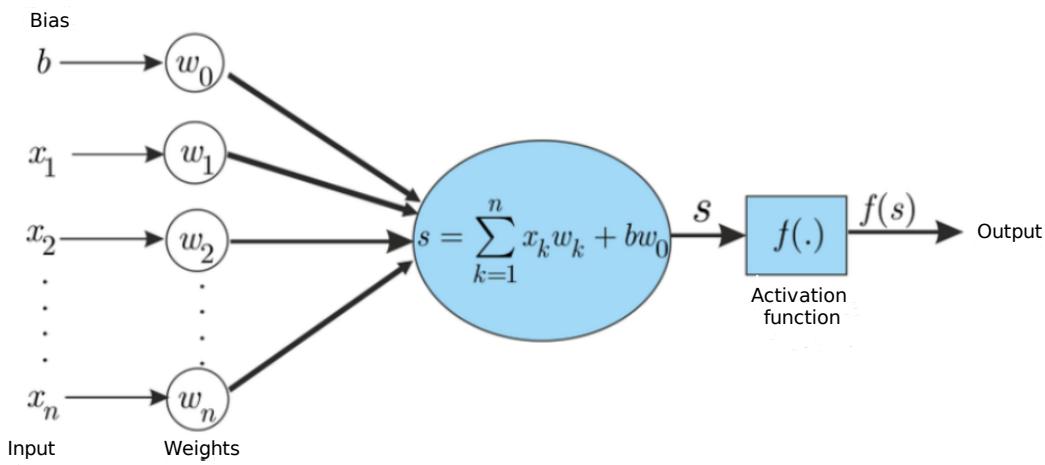


Figure 2. Schematic representation of an artificial neuron used in the numerical simulations.

141 These basic computation units are grouped by layers in the MLP architecture, as depicted in Fig. 3.
 142 Each neuron of each internal layer is connected to all the neurons of the previous layer. As can be seen
 143 in Fig. 3, we distinguish between the input layer which receives the data and transfers it unchanged
 144 to the first hidden layer. Each hidden layer contains n neurons. The objective is then to find the best

145 weights and biases that most closely coincides with a given basis of knowledge that correlates in a
 146 univocal way a set of input to a set of output. More precisely, it must find the best weights that fit on a
 147 “training set” (80% of the basis of knowledge), such that the “predictions” in the remained test set are
 148 the closest to reality. The weights are found through a specific optimization process called gradient
 149 backpropagation. For our problem, the MLP input is constituted of 101 inputs, corresponding to the
 150 100 values of the control and of the offset Δ . At the final stage, there is only one output, namely the
 151 distance Y . Additional details about the optimization of the different free parameters of the MLP are
 152 given in Sec. 4.

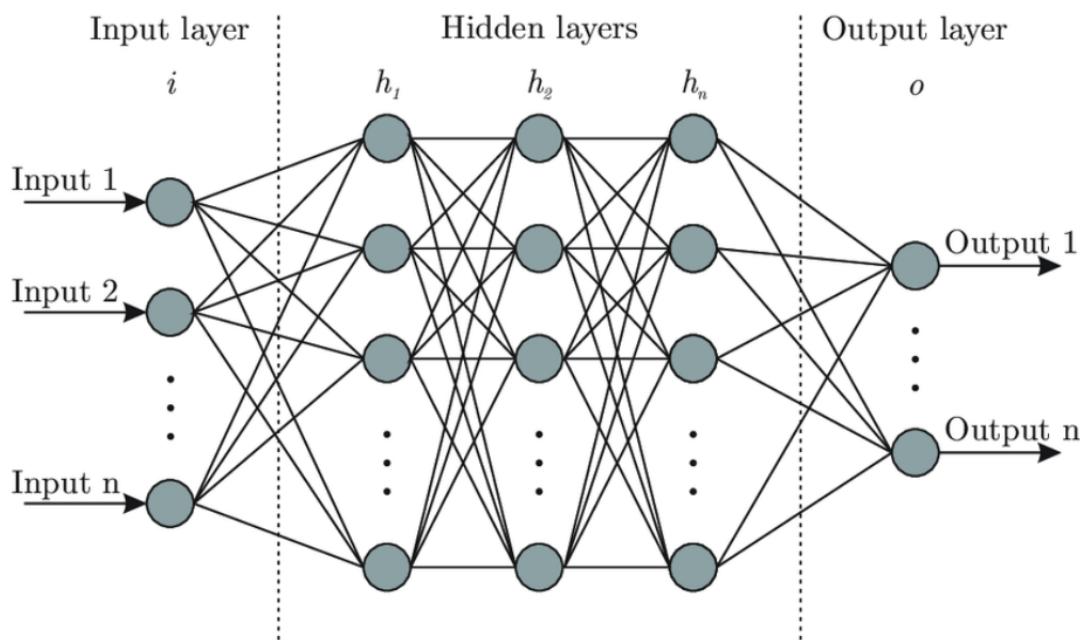


Figure 3. Description of the architecture of a multilayer perceptron. Each grey disk represents an artificial neuron as illustrated in Fig. 2. The neurons are organized in columns, each corresponding to a layer, and called input, hidden or output layers according to their position in the structure of the MLP. There are n neurons by layer. Their output is used as input for the neurons of the next layer as represented by the solid lines.

153 4. Numerical results

154 Intensive numerical simulations have been done to estimate the efficiency of different supervising
 155 learning approaches in this fundamental control problem. We have determined four data sets denoted
 156 below (1), (2), (3) and (4). The data set (1) is the one described in Sec. 3 for a total time $T = t^*$. The data
 157 set (3) is the same as (1), except that 100 offsets uniformly distributed in $[0, 1]$ have been used. In the
 158 data sets (2) and (4), we consider respectively the same control fields as in (1) and (3), but we exchange
 159 the role of the distance and the offset. The goal of the process is now to estimate the value of Δ , which
 160 corresponds to the output Y of the neural network.

161 Several NN algorithms were first tested on data set (1). The best architecture was then applied to
 162 the other data sets, by playing on the hyperparameters of the model. Notice that we do not claim to
 163 have found the best structure for the NN. An exhaustive search that requires a significant amount of
 164 time is beyond the scope of this study. However, the tested architectures lead to key conclusions about
 165 the efficiency and choice of methods.

166 A MLP process is first investigated. This architecture is clearly the simplest one for regression.
 167 Weights have been initialized by the He uniform kernel initializer, while all activation functions have
 168 been set to the ReLU one. Indeed, ReLU advantages are sparsity and a reduced likelihood of vanishing
 169 gradient. Additionally, deep models have difficulties in converging when weights are normalized

170 with fixed standard deviation, leading to large or small activation values which result in exploding
 171 or vanishing gradient when backpropagation. This problem is overcome thanks to the He initializer,
 172 which takes into account the non-linearity of ReLU activation functions. The last layer corresponding
 173 to the output one is made of one neuron, as we want to predict a single value (the distance) and
 174 the ReLU activation function, as all neurons must have their nonlinearity. The Adam optimizer and
 175 the mean squared error as loss function have been used. The number of epochs has been limited
 176 to 1000 with an early stopping criteria on a validation data set (20% of the train data set), and the
 177 batch size has been set to 128, to reduce the memory consumption and improve the convergence
 178 speed (too small values of batch size take long time to converge and too large ones may converge less
 179 well). Finally, for sake of completeness, other optimizers, kernel initializers, and activation functions
 180 have been tested, but without improving the test scores. The optimal number of layers has also been
 181 studied. A good compromise is to use 14 layers, for the first half of the layers, the number of neurons
 182 is doubled at each layer where for the second half the number of neurons is divided by two at each
 183 layer. The second family of architectures is based on Convolutional Neural Networks (CNN), with
 184 one (or more) couple(s) of Convolution 1D layer(s). After some layers, neurons are flatten and a small
 185 MLP is used. Based on the previous computations, a ReLU function has been chosen as activation in
 186 the convolutional and dense layers, with the He uniform initializer and the Adam optimizer. A good
 187 compromise is to use 7 layers of convolution of size 3. For each new layer, the number of filters is
 188 doubled. Then a MLP is used with 7 layers. Finally, a stacked LSTM approach has been tested on the
 189 first data set. This recurrent neural network approach is promising, because of the particular structure
 190 of the control field, and the recurrent effect of each switch on the final distance. Four stacked LSTMs
 191 are used. The neural architecture was finalized with a small dense hidden layer (ReLU activation).

192 The different numerical results for the data sets (1) and (2) are given in Tab. 1. We observe for
 193 the example (1) that the results are quite good and lower than 10^{-3} for all the architectures. Table 1
 194 also shows that very different NN architectures lead more or less to similar results. Due to the huge
 195 number of data, the time to train the different architectures is not negligible and of the order of one day
 196 in each case (with a Nvidia V100 GPU). The results achieved for the data set (2) are clearly different
 197 because the obtained MAE is of the order of 10^{-2} , i.e. two times larger than in the first case, while the
 198 estimation conditions seem at first sight to be very similar. None of the tested NN architecture were
 199 able to solve this problem with a sufficient efficiency. Here again, we point out that all the tested NN
 200 in spite of their different complexity leads to equivalent results.

Algorithm	MAE (1)	MAE (2)
MLP	5.35×10^{-4}	5.16×10^{-2}
CNN	8.50×10^{-4}	5.36×10^{-2}
LSTM	3.31×10^{-4}	5.00×10^{-2}

Table 1. Results of the different architecture for the data sets 1 and 2

201 Numerical simulations on data sets (3) and (4) are summarized in Tab. 2. While this estimation
 202 process seems a bit more difficult than the first case, surprisingly slightly better results are observed for
 203 the different NN. From an algorithmic point of view, this means that slightly more accurate estimations
 204 can be made. This could be explained by the fact that CNNs and LSTMs take into account the temporal
 205 side of the application of switches u_k , through convolution for the former, and the recurrent character
 206 for the latter. Similarly to the data set (2), NN are not able to find the right values of the offset Δ for the
 207 set (4).

208 In order to interpret the results of Tab. 1 and 2, we compare in Fig. 4 for different controls $u(t)$ the
 209 prediction of the NN and the results of an exact numerical computation both in the direct and inverse
 210 problems. Two different direct estimations are investigated in Fig. 4a. Similar results are achieved
 211 for other control protocols. The reasonable match between the two curves confirms that the NN can
 212 predict with a good precision the distance to the target state for any offset $\Delta \in [0, 1]$ and any bang-bang
 213 control law with 5 switches in a fixed control time. This is a remarkable achievement for this global

Algorithm	MAE (3)	MAE (4)
MLP	3.03×10^{-4}	7.95×10^{-2}
CNN	2.78×10^{-4}	6.86×10^{-2}
LSTM	1.76×10^{-4}	6.26×10^{-2}

Table 2. Results of the different architecture for the data sets 3 and 4

system characterization as no prior knowledge about the output or the control is required. Even if this result must be confirmed for more complex systems or different dynamics, no limitation was observed and it is a promising result with respect to the use of SL in quantum control. As could be expected from Tab. 2, the conclusion is not so satisfying for the inverse problem. Differences are clearly visible between the exact computation and the prediction of the NN for some ranges of Δ - values. A severe mismatch appears for a function $d(\Delta)$ which is not injective. Indeed, there exist in this case values of d associated to more than one offset Δ . These multiple solutions cannot be found by the NN which gives only one value of Δ for each d . As can be clearly seen in Fig. 4b, the NN fails to predict the correct offset when the concavity of the curve changes, i.e. when the function is no longer monotonic. In Fig. 4c, the errors occur because of the non-monotonic behavior this time of the function $\Delta(d)$. It seems that a good match can be achieved if the function $d(\Delta)$ is always decreasing or increasing as shown by one of the examples in Fig. 4b. Due to the non-linear nature of the dynamics, this injectivity property cannot be determined a priori, making the application of SL more difficult in particular for global estimation issue. Note that this monotonic behavior of the mapping could be expected in a local analysis around a specific point (Δ, d) . Finally, We also observe in Fig. 4b that the NN can predict offset values outside the selected variation range, such values are not physical and do not correspond to any quantum dynamic. This result is not very surprising because the NN was not guided or constrained at the time of its design.

Another interesting point concerns the computation time. Once a NN is trained, the inference time, which is required to estimate the predicted value, is smaller on a powerful GPU. In the following, the inference time is compared for all the NN architectures on a CPU, on a GPU of a laptop, and on a powerful GPU. The CPU is an Intel(R) Core(TM) i9-10885H CPU @ 2.40GHz, one GPU is Quadro T2000 Mobile (this is a mobile GPU), and the other one is a Volta A100 GPU (currently the most powerful GPU). It is also instructive to make a comparison with a direct computation in Python of the dynamics. The computation of a data set with 10 millions of systems takes 6587.30s. So for only one element, it corresponds to a time of 6.59×10^{-4} s. It can be concluded that there is an acceleration of magnitude 2 using a powerful GPU (100 times faster).

Algorithm	CPU	GPU T2000	GPU A100
MLP	1.36×10^{-3}	4.64×10^{-5}	6.81×10^{-6}
CNN	4.31×10^{-3}	1.32×10^{-4}	9.31×10^{-6}
LSTM	3.05×10^{-3}	1.21×10^{-4}	4.36×10^{-6}

Table 3. Execution times in second for the inference on CPU and GPU

5. Conclusion

We have applied recent formulations of SL techniques to the characterization of two-level quantum systems by an external electromagnetic field. The model system under study can be viewed as an illustrative example to highlight the efficiency and the limits of this approach. The time evolution of the dynamical system is used to define different mappings in a direct or inverse way between the control law, the final distance to the target state and the offset. The parameters of a NN are then optimized in a training process to approximate this mapping as accurately as possible. As described in this study, flexibility exists to fix the exact structure of the NN. Basically network complexity should reflect data complexity, but in practice only an empirical answer can be given with a trial and error

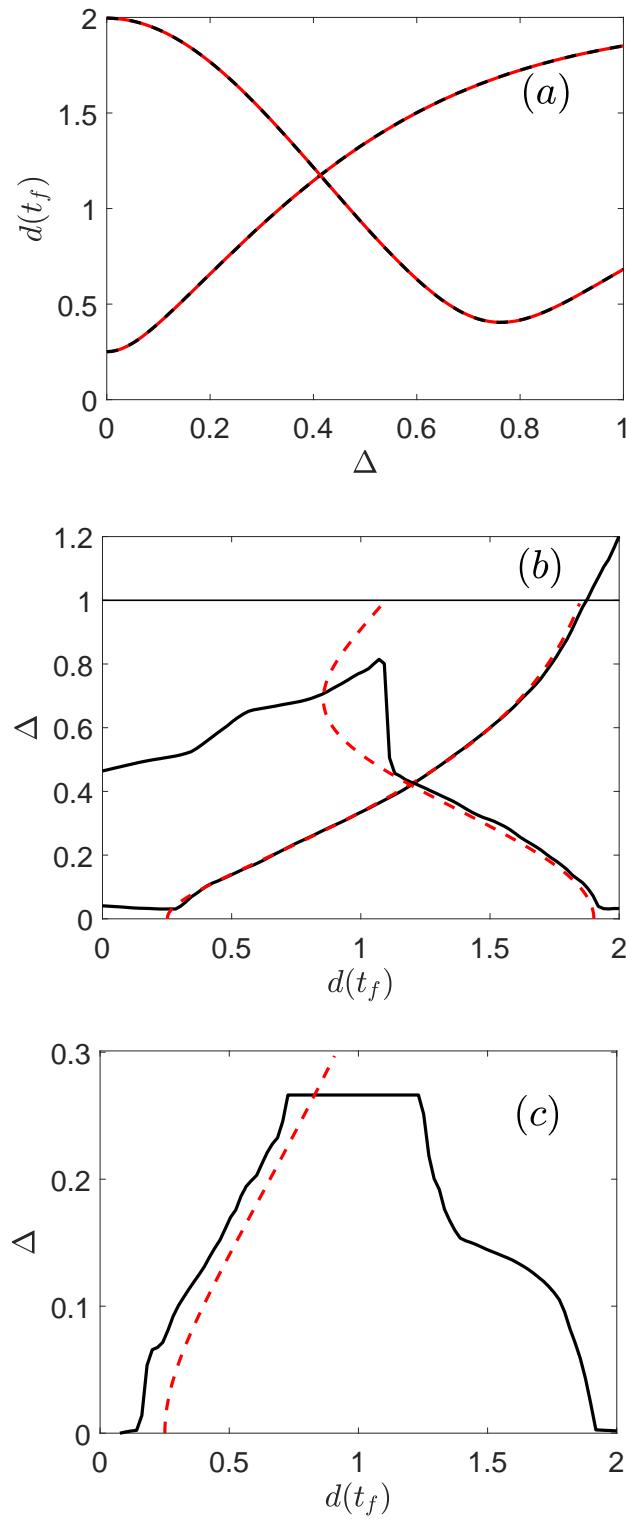


Figure 4. Comparison between the exact numerical computation (dashed red lines) and the estimations of the NN (black solid lines) for the direct (panel (a)) and the inverse problems (panels (b) and (c)). In panel (b), the horizontal solid line indicates the maximum value of the offset term in the data set.

method. A key and intrinsic difficulty of the estimation procedures is the fact that they are global with no prior knowledge about the solution. Very good results are obtained for the direct problem, while the inverse one requires specific properties for the mapping, such as its monotonic behavior.

253 This preliminary study opens the way to other analyzes in the same direction. It will be interesting
254 to verify the conclusions of this paper in other quantum systems. An option to improve the results of the
255 system characterization is to guide the algorithm by providing it with information about the dynamics.
256 This general idea has already been developed in machine learning as part of physics-informed neural
257 networks, which could be interesting to test in quantum control.

258 **Author Contributions:** R. C. and C. G. carried out the numerical simulations. S. G. and D. S. proposed the initial
259 idea about the application of SL to quantum optimal control. All authors worked on the design of the research
260 project. The connection between SL and QC was analyzed by E. D. and D. S. All authors participated in the
261 analysis of the results and in the paper redaction.

262 **Funding:** This research has been supported by the ANR project "QuCoBEC" ANR-22-CE47-0008-02.

263 **Conflicts of Interest:** The authors declare no conflict of interest.

264 Abbreviations

265 The following abbreviations are used in this manuscript:

266 OCT Optimal Control Theory
267 QC Quantum Control
268 NN Neural Networks

268 Appendix A. Code for the different NN architectures

269 We give in this paragraph the different codes with the keras framework¹ to generate the NN
270 architectures used in this study.

271 Code for the MLP

272
273 model.add(Dense(101, input_dim=101, kernel_initializer='he_uniform', activation='relu'))
274 model.add(Dense(202, kernel_initializer='he_uniform', activation='relu'))
275 model.add(Dense(404, kernel_initializer='he_uniform', activation='relu'))
276 model.add(Dense(808, kernel_initializer='he_uniform', activation='relu'))
277 model.add(Dense(1212, kernel_initializer='he_uniform', activation='relu'))
278 model.add(Dense(1616, kernel_initializer='he_uniform', activation='relu'))
279 model.add(Dense(1212, kernel_initializer='he_uniform', activation='relu'))
280 model.add(Dense(808, kernel_initializer='he_uniform', activation='relu'))
281 model.add(Dense(404, kernel_initializer='he_uniform', activation='relu'))
282 model.add(Dense(202, kernel_initializer='he_uniform', activation='relu'))
283 model.add(Dense(101, kernel_initializer='he_uniform', activation='relu'))
284 model.add(Dense(50, kernel_initializer='he_uniform', activation='relu'))
285 model.add(Dense(25, kernel_initializer='he_uniform', activation='relu'))
286 model.add(Dense(1, kernel_initializer='he_uniform', activation='linear'))

287

288 Code for the CNN

289 model.add(Convolution1D(filters=8, kernel_size=3, padding='same', activation='relu',
290 input_shape=(101,)))
291 model.add(Convolution1D(filters=16, kernel_size=3, padding='same', activation='relu'))
292 model.add(Convolution1D(filters=32, kernel_size=3, padding='same', activation='relu'))
293 model.add(Convolution1D(filters=64, kernel_size=3, padding='same', activation='relu'))
294 model.add(Convolution1D(filters=128, kernel_size=3, padding='same', activation='relu'))
295 model.add(Convolution1D(filters=256, kernel_size=3, padding='same', activation='relu'))

¹ <https://keras.io/>

```
296 model.add(Convolution1D(filters=512, kernel_size=3, padding='same', activation='relu'))  
297 model.add(Flatten())  
298 model.add(Dense(512, kernel_initializer='he_uniform', activation='relu'))  
299 model.add(Dense(256, kernel_initializer='he_uniform', activation='relu'))  
300 model.add(Dense(128, kernel_initializer='he_uniform', activation='relu'))  
301 model.add(Dense(64, kernel_initializer='he_uniform', activation='relu'))  
302 model.add(Dense(32, kernel_initializer='he_uniform', activation='relu'))  
303 model.add(Dense(16, kernel_initializer='he_uniform', activation='relu'))  
304 model.add(Dense(1, kernel_initializer='he_uniform', activation='linear'))  
305
```

306 Code for the LSTM

```
307 model.add(LSTM(4*32, return_sequences=True, input_shape=(101,1)))  
308 model.add(LSTM(4*32, return_sequences=True))  
309 model.add(LSTM(2*32, return_sequences=True))  
310 model.add(LSTM(2*16))  
311 model.add(Dense(2*10, kernel_initializer='he_uniform', activation='relu'))  
312 model.add(Dense(1, kernel_initializer='he_uniform', activation='linear'))  
313
```

314 References

- 315 1. Carleo, G.; Cirac, I.; Cranmer, K.; Daudet, L.; Schuld, M.; Tishby, N.; Vogt-Maranto, L.; Zdeborová, L. Machine learning and the physical sciences. *Rev. Mod. Phys.* **2019**, *91*, 045002. doi:10.1103/RevModPhys.91.045002.
- 316 2. Mehta, P.; Bukov, M.; Wang, C.H.; Day, A.G.; Richardson, C.; Fisher, C.K.; Schwab, D.J. A high-bias, low-variance introduction to Machine Learning for physicists. *Physics Reports* **2019**, *810*, 1–124. doi:<https://doi.org/10.1016/j.physrep.2019.03.001>.
- 317 3. Judson, R.S.; Rabitz, H. Teaching lasers to control molecules. *Phys. Rev. Lett.* **1992**, *68*, 1500–1503. doi:10.1103/PhysRevLett.68.1500.
- 318 4. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.; Veness, J.; Bellemare, M.; Graves, A.; Riedmiller, M.; Fidjeland, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.; Antonoglou, I.; King, H.; Kumaran, H.; Wierstra, D.; Legg, S.; Hassabis, D. Human-level control through deep reinforcement learning. *Nature* **2015**, *518*, 529.
- 319 5. Hush, M.R. Machine learning for quantum physics. *Science* **2017**, *355*, 580–580. doi:10.1126/science.aam6564.
- 320 6. Dunjko, V.; Wittek, P. A non-review of Quantum Machine Learning: trends and explorations. *Quantum Views* **2020**, p. 32. doi:10.22331/qv-2020-03-17-32.
- 321 7. Carleo, G.; Troyer, M. Solving the quantum many-body problem with artificial neural networks. *Science* **2017**, *355*, 602–606. doi:10.1126/science.aag2302.
- 322 8. Carrasquilla, J.; Melko, R.G. Machine learning phases of matter. *Nature Phys.* **2017**, *13*, 431.
- 323 9. Dunjko, V.; Taylor, J.M.; Briegel, H.J. Quantum-Enhanced Machine Learning. *Phys. Rev. Lett.* **2016**, *117*, 130501. doi:10.1103/PhysRevLett.117.130501.
- 324 10. Ding, Y.; Martín-Guerrero, J.D.; Sanz, M.; Magdalena-Benedicto, R.; Chen, X.; Solano, E. Retrieving Quantum Information with Active Learning. *Phys. Rev. Lett.* **2020**, *124*, 140504. doi:10.1103/PhysRevLett.124.140504.
- 325 11. Glaser, S.J.; Boscaín, U.; Calarco, T.; Koch, C.P.; Köckenberger, W.; Kosloff, R.; Kuprov, I.; Luy, B.; Schirmer, S.; Schulte-Herbrüggen, T.; Sugny, D.; Wilhelm, F.K. Training Schrödinger's cat: quantum optimal control. Strategic report on current status, visions and goals for research in Europe. *European Physical Journal D* **2015**, *69*, 279. doi:10.1140/epjd/e2015-60464-1.
- 326 12. D'Alessandro, D. *Introduction to quantum control and dynamics.*; Applied Mathematics and Nonlinear Science Series. Boca Raton, FL: Chapman, Hall/CRC., 2008.

345 13. Brif, C.; Chakrabarti, R.; Rabitz, H. Control of quantum phenomena: past, present and future. *New Journal*
346 *of Physics* **2010**, *12*, 075008.

347 14. Torrontegui, E.; Ibáñez, S.; Martínez-Garaot, S.; Modugno, M.; del Campo, A.; Guéry-Odelin,
348 D.; Ruschhaupt, A.; Chen, X.; Muga, J.G. Chapter 2 - Shortcuts to Adiabaticity. In
349 *Advances in Atomic, Molecular, and Optical Physics*; Arimondo, E.; Berman, P.R.; Lin, C.C., Eds.;
350 Academic Press, 2013; Vol. 62, *Advances In Atomic, Molecular, and Optical Physics*, pp. 117-169.
351 doi:<https://doi.org/10.1016/B978-0-12-408090-4.00002-5>.

352 15. Guéry-Odelin, D.; Ruschhaupt, A.; Kiely, A.; Torrontegui, E.; Martínez-Garaot, S.; Muga, J.G.
353 Shortcuts to adiabaticity: Concepts, methods, and applications. *Rev. Mod. Phys.* **2019**, *91*, 045001.
354 doi:[10.1103/RevModPhys.91.045001](https://doi.org/10.1103/RevModPhys.91.045001).

355 16. Koch, C.P.; Lemeshko, M.; Sugny, D. Quantum control of molecular rotation. *Rev. Mod. Phys.* **2019**,
356 *91*, 035005. doi:[10.1103/RevModPhys.91.035005](https://doi.org/10.1103/RevModPhys.91.035005).

357 17. Acín, A.; Bloch, I.; Buhrman, H.; Calarco, T.; Eichler, C.; Eisert, J.; Esteve, D.; Gisin, N.; Glaser, S.J.; Jelezko,
358 F.; Kuhr, S.; Lewenstein, M.; Riedel, M.F.; Schmidt, P.O.; Thew, R.; Wallraff, A.; Walmsley, I.; Wilhelm, F.K.
359 The quantum technologies roadmap: a European community view. *New Journal of Physics* **2018**, *20*, 080201.
360 doi:[10.1088/1367-2630/aad1ea](https://doi.org/10.1088/1367-2630/aad1ea).

361 18. Koch, C.P.; Boscain, U.; Calarco, T.; Dirr, G.; Filipp, S.; Glaser, S.J.; Kosloff, R.; Montangero, S.;
362 Schulte-Herbrüggen, T.; Sugny, D.; Wilhelm, F.K. Quantum optimal control in quantum technologies.
363 Strategic report on current status, visions and goals for research in Europe. *EPJ Quantum Technology* **2022**,
364 *9*, 19. doi:[10.1140/epjqt/s40507-022-00138-x](https://doi.org/10.1140/epjqt/s40507-022-00138-x).

365 19. Giannelli, L.; Sgroi, P.; Brown, J.; Paraoanu, G.S.; Paternostro, M.; Paladino, E.; Falci, G. A tutorial on
366 optimal control and reinforcement learning methods for quantum technologies. *Physics Letters A* **2022**,
367 *434*, 128054. doi:<https://doi.org/10.1016/j.physleta.2022.128054>.

368 20. Martín-Guerrero, J.D.; Lamata, L. Reinforcement Learning and Physics. *Applied Sciences* **2021**, *11*.
369 doi:[10.3390/app11188589](https://doi.org/10.3390/app11188589).

370 21. Bukov, M.; Day, A.G.R.; Sels, D.; Weinberg, P.; Polkovnikov, A.; Mehta, P. Reinforcement Learning in
371 Different Phases of Quantum Control. *Physical Review X* **2018**, *8*, 031086. doi:[10.1103/PhysRevX.8.031086](https://doi.org/10.1103/PhysRevX.8.031086).

372 22. Day, A.G.R.; Bukov, M.; Weinberg, P.; Mehta, P.; Sels, D. Glassy Phase of Optimal Quantum Control.
373 *Physical Review Letters* **2019**, *122*, 020601. doi:[10.1103/PhysRevLett.122.020601](https://doi.org/10.1103/PhysRevLett.122.020601).

374 23. Zhang, X.M.; Cui, Z.W.; Wang, X.; Yung, M.H. Automatic spin-chain learning to explore the quantum
375 speed limit. *Phys. Rev. A* **2018**, *97*, 052333. doi:[10.1103/PhysRevA.97.052333](https://doi.org/10.1103/PhysRevA.97.052333).

376 24. An, Z.; Zhou, D.L. Deep reinforcement learning for quantum gate control. *EPL (Europhysics Letters)* **2019**,
377 *126*, 60002. doi:[10.1209/0295-5075/126/60002](https://doi.org/10.1209/0295-5075/126/60002).

378 25. Porotti, R.; Tamascelli, D.; Restelli, M.; Prati, E. Coherent transport of quantum states by deep reinforcement
379 learning. *Communications Physics* **2019**, *2*, 61.

380 26. Niu, M.Y.; Boixo, S.; Smelyanskiy, V.N.; Neven, H. Universal quantum control through deep reinforcement
381 learning. *NPJ Quantum Information* **2019**, *5*, 33.

382 27. Wang, Z.T.; Ashida, Y.; Ueda, M. Deep Reinforcement Learning Control of Quantum Cartpoles. *Physical*
383 *Review Letters* **2020**, *125*, 100401. doi:[10.1103/PhysRevLett.125.100401](https://doi.org/10.1103/PhysRevLett.125.100401).

384 28. Ding, Y.; Ban, Y.; Martín-Guerrero, J.D.; Solano, E.; Casanova, J.; Chen, X. Breaking adiabatic quantum
385 control with deep learning. *Phys. Rev. A* **2021**, *103*, L040401. doi:[10.1103/PhysRevA.103.L040401](https://doi.org/10.1103/PhysRevA.103.L040401).

386 29. Borah, S.; Sarma, B.; Kewming, M.; Milburn, G.J.; Twamley, J. Measurement-Based Feedback Quantum
387 Control with Deep Reinforcement Learning for a Double-Well Nonlinear Potential. *Phys. Rev. Lett.* **2021**,
388 *127*, 190403. doi:[10.1103/PhysRevLett.127.190403](https://doi.org/10.1103/PhysRevLett.127.190403).

389 30. Yao, J.; Lin, L.; Bukov, M. Reinforcement Learning for Many-Body Ground-State Preparation Inspired by
390 Counterdiabatic Driving. *Phys. Rev. X* **2021**, *11*, 031070. doi:[10.1103/PhysRevX.11.031070](https://doi.org/10.1103/PhysRevX.11.031070).

391 31. Jiang, C.; Pan, Y.; Wu, Z.G.; Gao, Q.; Dong, D. Robust optimization for quantum reinforcement learning
392 control using partial observations. *Phys. Rev. A* **2022**, *105*, 062443. doi:[10.1103/PhysRevA.105.062443](https://doi.org/10.1103/PhysRevA.105.062443).

393 32. Sgroi, P.; Palma, G.M.; Paternostro, M. Reinforcement Learning Approach to Nonequilibrium Quantum
394 Thermodynamics. *Phys. Rev. Lett.* **2021**, *126*, 020601. doi:[10.1103/PhysRevLett.126.020601](https://doi.org/10.1103/PhysRevLett.126.020601).

395 33. Brown, J.; Sgroi, P.; Giannelli, L.; Paraoanu, G.S.; Paladino, E.; Falci, G.; Paternostro, M.; Ferraro, A.
396 Reinforcement learning-enhanced protocols for coherent population-transfer in three-level quantum
397 systems. *New Journal of Physics* **2021**, *23*, 093035. doi:[10.1088/1367-2630/ac2393](https://doi.org/10.1088/1367-2630/ac2393).

398 34. Wu, R.B.; Ding, H.; Dong, D.; Wang, X. Learning robust and high-precision quantum controls. *Physical*
399 *Review A* **2019**, *99*, 042327. doi:10.1103/PhysRevA.99.042327.

400 35. Yang, X.C.; Yung, M.H.; Wang, X. Neural-network-designed pulse sequences for robust control of
401 singlet-triplet qubits. *Phys. Rev. A* **2018**, *97*, 042324. doi:10.1103/PhysRevA.97.042324.

402 36. Güngördü, U.; Kestner, J.P. Robust quantum gates using smooth pulses and physics-informed neural
403 networks. *Phys. Rev. Research* **2022**, *4*, 023155. doi:10.1103/PhysRevResearch.4.023155.

404 37. Wittler, N.; Roy, F.; Pack, K.; Werninghaus, M.; Roy, A.S.; Egger, D.J.; Filipp, S.; Wilhelm, F.K.; Machnes,
405 S. Integrated Tool Set for Control, Calibration, and Characterization of Quantum Devices Applied to
406 Superconducting Qubits. *Phys. Rev. Applied* **2021**, *15*, 034080. doi:10.1103/PhysRevApplied.15.034080.

407 38. Le Bris, Claude.; Mirrahimi, Mazyar.; Rabitz, Herschel.; Turinici, Gabriel. Hamiltonian identification
408 for quantum systems: well-posedness and numerical approaches. *ESAIM: COCV* **2007**, *13*, 378–395.
409 doi:10.1051/cocv:2007013.

410 39. Geremia, J.M.; Rabitz, H. Optimal Hamiltonian identification: The synthesis of quantum optimal control
411 and quantum inversion. *The Journal of Chemical Physics* **2003**, *118*, 5369–5382. doi:10.1063/1.1538242.

412 40. Shenvi, N.; Geremia, J.M.; Rabitz, H. Nonlinear Kinetic Parameter Identification through Map Inversion. *J.*
413 *Phys. Chem. A* **2002**, *106*, 12315.

414 41. Ndong, M.; Salomon, J.; Sugny, D. Newton algorithm for Hamiltonian characterization in quantum control.
415 *Journal of Physics A: Mathematical and Theoretical* **2014**, *47*, 265302. doi:10.1088/1751-8113/47/26/265302.

416 42. Schirmer, S.G.; Langbein, F.C. Ubiquitous problem of learning system parameters for dissipative
417 two-level quantum systems: Fourier analysis versus Bayesian estimation. *Phys. Rev. A* **2015**, *91*, 022125.
418 doi:10.1103/PhysRevA.91.022125.

419 43. Zhang, J.; Sarovar, M. Quantum Hamiltonian Identification from Measurement Time Traces. *Phys. Rev.*
420 *Lett.* **2014**, *113*, 080401. doi:10.1103/PhysRevLett.113.080401.

421 44. Sone, A.; Cappellaro, P. Hamiltonian identifiability assisted by a single-probe measurement. *Phys. Rev. A*
422 **2017**, *95*, 022335. doi:10.1103/PhysRevA.95.022335.

423 45. Burgarth, D.; Ajoy, A. Evolution-Free Hamiltonian Parameter Estimation through Zeeman Markers. *Phys.*
424 *Rev. Lett.* **2017**, *119*, 030402. doi:10.1103/PhysRevLett.119.030402.

425 46. Xue, S.; Wu, R.; Ma, S.; Li, D.; Jiang, M. Gradient algorithm for Hamiltonian identification of open quantum
426 systems. *Phys. Rev. A* **2021**, *103*, 022604. doi:10.1103/PhysRevA.103.022604.

427 47. Buchwald, S.; Ciaramella, G.; Salomon, J.; Sugny, D. Greedy reconstruction algorithm for the identification
428 of spin distribution. *Phys. Rev. A* **2021**, *104*, 063112. doi:10.1103/PhysRevA.104.063112.

429 48. Yuan, H.; Fung, C.H.F. Optimal Feedback Scheme and Universal Time Scaling for Hamiltonian Parameter
430 Estimation. *Phys. Rev. Lett.* **2015**, *115*, 110401. doi:10.1103/PhysRevLett.115.110401.

431 49. Liu, J.; Yuan, H. Quantum parameter estimation with optimal control. *Phys. Rev. A* **2017**, *96*, 012117.
432 doi:10.1103/PhysRevA.96.012117.

433 50. Lin, C.; Ma, Y.; Sels, D. Optimal control for quantum metrology via Pontryagin's principle. *Phys. Rev. A*
434 **2021**, *103*, 052607. doi:10.1103/PhysRevA.103.052607.

435 51. Lin, C.; Ma, Y.; Sels, D. Application of Pontryagin's maximum principle to quantum metrology in
436 dissipative systems. *Phys. Rev. A* **2022**, *105*, 042621. doi:10.1103/PhysRevA.105.042621.

437 52. Yang, J.; Pang, S.; Chen, Z.; Jordan, A.N.; del Campo, A. Variational Principle for Optimal Quantum
438 Controls in Quantum Metrology. *Phys. Rev. Lett.* **2022**, *128*, 160505. doi:10.1103/PhysRevLett.128.160505.

439 53. Ma, D.; Gulani, V.; Seiberlich, N.; Liu, K.; Sunshine, J.L.; Duerk, J.L.; Griswold, M.A. Magnetic resonance
440 fingerprinting. *Nature* **2013**, *495*, 187.

441 54. Ansel, Q.; Tesch, M.; Glaser, S.J.; Sugny, D. Optimizing fingerprinting experiments for parameter
442 identification: Application to spin systems. *Phys. Rev. A* **2017**, *96*, 053419. doi:10.1103/PhysRevA.96.053419.

443 55. Hopfield, J.J. Artificial neural networks. *IEEE Circuits and Devices Magazine* **1988**, *4*, 3–10.

444 56. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
445 Weiss, R.; Dubourg, V.; others. Scikit-learn: Machine learning in Python. *the Journal of machine Learning*
446 *research* **2011**, *12*, 2825–2830.

447 57. Papić, M.; de Vega, I. Neural-network-based qubit-environment characterization. *Phys. Rev. A* **2022**,
448 *105*, 022605. doi:10.1103/PhysRevA.105.022605.

449 58. Wise, D.F.; Morton, J.J.; Dhomkar, S. Using Deep Learning to Understand and Mitigate the Qubit Noise
450 Environment. *PRX Quantum* **2021**, *2*, 010316. doi:10.1103/PRXQuantum.2.010316.

451 59. Fanchini, F.F.; Karpat, G.b.u.; Rossatto, D.Z.; Norambuena, A.; Coto, R. Estimating the
452 degree of non-Markovianity using machine learning. *Phys. Rev. A* **2021**, *103*, 022425.
453 doi:10.1103/PhysRevA.103.022425.

454 60. Geremia, J.M.; Rabitz, H. Optimal Identification of Hamiltonian Information by Closed-Loop Laser Control
455 of Quantum Systems. *Phys. Rev. Lett.* **2002**, *89*, 263902. doi:10.1103/PhysRevLett.89.263902.

456 61. Boscain, U.; Mason, P. Time minimal trajectories for a spin 1/2 particle in a magnetic field. *J. Math. Phys.*
457 **2006**, *47*, 062101, 29. doi:10.1063/1.2203236.

458 62. Assémat, E.; Lapert, M.; Zhang, Y.; Braun, M.; Glaser, S.J.; Sugny, D. Simultaneous time-optimal control of
459 the inversion of two spin- $\frac{1}{2}$ particles. *Phys. Rev. A* **2010**, *82*, 013415. doi:10.1103/PhysRevA.82.013415.

460 63. Boscain, U.; Sigalotti, M.; Sugny, D. Introduction to the Pontryagin Maximum Principle for Quantum
461 Optimal Control. *PRX Quantum* **2021**, *2*, 030203. doi:10.1103/PRXQuantum.2.030203.

462 64. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. *nature* **2015**, *521*, 436–444.

463 © 2022 by the authors. Submitted to *Entropy* for possible open access publication under the terms and conditions
464 of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).