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Abstract: The conductor aluminum alloys Al-0.25wt.%Zr doped additionally with Х = Er, Si, Hf, and 

Nb were the objects of investigations. The fine-grained microstructure in the alloys was formed by 

Equal Channel Angular Pressing and Rotary Swaging. The thermal stability of the microstructure, 

specific electrical resistivity, and microhardness of the novel conductor aluminum alloys was inves-

tigated. The mechanisms of nucleation of the Al3(Zr,X) secondary particles during annealing the 

fine-grained aluminum alloys were determined using Jones-Mehl-Avrami-Kolmogorov equation. 

Using Zener equation, the dependencies of the mean secondary particle sizes on the annealing time 

were obtained on the base of analysis of the data on the grain growth in the aluminum alloys. The 

secondary particle nucleation during long-time low-temperature annealing (300 оC, 1000 hrs) was 

shown to go preferentially at the cores of the lattice dislocations. The Al-0.25%Zr-0.25%Er-0.20%Hf-

0.15%Si alloy subjected to long-time annealing at 300 оC has the optimal combination of the micro-

hardness and electrical conductivity (59.8%IACS, Hv = 480 ± 15 MPa). 

Keywords: Aluminum alloys; Al-Zr; microstructure; electrical conductivity; microhardness; diffu-

sion. 

 

1. Introduction 

At present, high-strength aluminum alloys with increased electrical conductivity are 

considered as substitutes for copper alloys applied widely for making the fine wires (0.2-

0.5 mm) of the on-board wiring of modern aircrafts and automotive. International com-

panies use fine bimetallic wires copper-clad aluminum wires made from complex alumi-

num alloys for novel airplane and automotive electrical wiring [1-5]. The fine aluminum 

wires can be applied efficiently also in car-building industry, electric power engineering, 

power transmission applications, etc. High strength and electrical conductivity are the key 

characteristics of the conductor aluminum alloys. At usual methods of processing of com-

mercial purity aluminum or ultra-low-doping commercial aluminum alloys, high strength 

and electrical conductivity are hardly compatible [6-16]. One of approaches to the devel-

opment of novel conductor aluminum alloys is their doping with the elements, which af-

fect the electrical conductivity weakly but affect their strength positively. In Russia, highly 

doped eutectic alloy 01417 has been developed, the fine copper-clad aluminum wires from 

which are applied extensively in cable industry at present [17-20]. For example, industrial 

alloys 01417 have the minimal ultimate strength 160 MPa, relative elongation 8%, and 

specific electrical resistivity (SER) 3.2 ·cm [17]. At present, novel highly doped eutectic 

aluminum alloys doped with Ce and La is being developed extensively [21-27]. 
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Modern automotive and aviation technology imposes more and more high require-

ments to the fine wires in strength and thermal stability of the microstructure, which can-

not be met using commercial aluminum alloys anymore. In this connection, aluminum 

alloys modifications of Al-Mg-Si system alloys [11, 16, 28-36] (commercial alloys of 6XXX 

series [28, 32, 33, 36, 38-40], Al-Mg-Si-Zr alloys [30], Al-Mg-Si-(Ni,Fe) + (Sc,Zr) [37], Al-

Mg-Si-Cu [41], et al.), conductor alloys Al-Fe [8, 42-44] and novel aluminum alloys multi-

doped with various rare earth elements (REEs) and transition metals (TMs) – zirconium, 

scandium, hafnium, yttrium, etc. are being developed extensively [45-56]. 

Earlier, the investigations have demonstrated the Sc-containing aluminum alloys 

have high strength and thermal stability characteristics [45, 48, 49, 51, 52, 54, 57-67] but 

wide application of these ones is limited by high cost of Al-Sc ligature. This makes the 

problem of development of aluminum alloys economically doped with scandium as well 

as development of alloys, which expensive scandium is replaced by microadditives of 

cheaper REE and TM relevant [61-63]. 

At present, investigations on development of the conductor alloys in Al-Zr system 

are being carried out extensively [68-74]. The increased temperatures and times of nucle-

ation of Al3Zr particles (about 50-100 hrs at the temperatures over 350 оC) is a disad-

vantage of this system from the viewpoint of prospects of application as the heat-re-

sistance wires. This doesn’t allow providing the stabilization of nonequilibrium fine-

grained microstructure in the wires during long-term operation at ~180-220 оC whereas 

preliminary annealing for the nucleation of the secondary particles reduces the technolog-

ical plasticity of the workpieces often and limits the opportunity to make the fine wires by 

rolling at reduced temperatures. To solve this problem, Al-Zr alloys are applied with zir-

conium concentration up to 0.4-0.6 wt.%, which are made using special ultrafast crystalli-

zation technologies [68, 69, 71-75]. Second, more efficient way is additional microdoping 

of Al-Zr alloys by the elements (most often – Er [45, 49, 50, 56, 76-83], Hf [49, 56, 75, 77], Y 

[49, 50, 84-87], Yb [50, 88-90], et al.) providing accelerated decomposition of solid solution 

at lower annealing temperatures. Note that additional doping allows avoiding the inter-

mittent decomposition of solid solution, which are observed in Al-Zr alloys often [91-95]. 

In the present work, we investigated the effect of Er, Hf, Nb, and Si additives on the 

thermal stability of microstructure in Al-Zr alloys. The choice of Er and Hf was caused by 

positive effect of these ones on the acceleration of nucleation of Al3Zr secondary particles 

in Al-Zr alloys [56, 75, 78-83]. Doping of aluminum with niobium allows forming the Al-

Nb particles with D023 structure and also allows controlling the character of distribution 

of Al3Zr particles and forming the AlZrNb secondary particles additionally [96]. The 

choice of Si as a doping element was caused by its effect on the kinetics of nucleation of 

secondary particles. Si is capable to accelerate the nucleation of the secondary particles in 

aluminum alloys containing the combinations of metals Al–Hf and Al–Zr [90]. The highest 

concentration of zirconium in the alloys investigated is limited to 0.25%Zr since large pri-

mary Al3Zr particles are formed in the alloy at higher concentrations. These particles can 

be the sources of акфсегку of the fine wires of 0.2-0.5 mm in diameter during fabrication 

by various cold deformation methods (drawing, rolling, etc.). Note also that the formation 

of the Al3Zr particles at higher zirconium concentrations goes via discontinuous precipi-

tation of solid solution mechanism often [91-95]. As a consequence, their contributions 

into the strength and thermal stability of the aluminum wires decrease. 

The present work was aimed at the investigation of the effect of the micro additives 

of Er, Si, Hf, and Nb on the thermal stability of the conductor aluminum alloys Al-

0.25%Zr, the fine-grained microstructure in which was formed combining the technolo-

gies of Equal Channel Angular Pressing (ECAP) and Rotary Swaging. The application of 

ECAP and Rotary Swaging technologies allows eliminating the dendrite nonuniformity 

of the cast macrostructure of the aluminum alloys as well as forming a uniform fine-

grained microstructure in the aluminum alloy. It allows forming the microstructure in the 

aluminum alloys, the parameters of which are similar to the microstructure of fine bime-

tallic wires made by rolling, extrusion or drawing [1-5, 25, 57, 58]. It should be stressed 

here that the formation of the fine-grained microstructure affects the intensity and 
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mechanisms of nucleation of the secondary particles (Al3Sc, Al3Zr, etc.) in the aluminum 

alloys [59, 60] and also affects many mechanical properties and performance characteris-

tics of the aluminum alloys (strength and hardness, fatigue resistance, ductility at room 

and elevated temperatures, etc.) positively [7, 12, 14-16, 23, 26, 29, 32, 33, 36-39]. 

The applied goal of the work was achieving the SER of 3.0 ·cm or less in the novel 

conductor alloys with simultaneous ensuring a high microhardness of these ones. 

2. Materials and Methods 

The aluminum alloys, the compositions of which are presented in Table 1 were the 

objects of investigations. 

Table 1. Compositions of the aluminum alloys. 

Alloy # 
Contents of doping elements in the alloys, wt.% 

Zr Er Si Hf Nb 

1 0.25 0.25 0.15 0.2 - 

2 0.25 0.25 0.15 - - 

3 0.25 - 0.15 - - 

4 0.25 - - 0.15 - 

5 0.25 - - 0.25 - 

6 0.25 - - - 0.15 

The workpieces of the aluminum alloys of 2020160 mm in sizes were obtained by 

induction casting with Indutherm VTC-200V casting machine in vacuum in the regimes 

specified in Table 2. To prepare the alloys, aluminum А99 as well as Al-3%Zr, Al-3%Hf, 

Al-3%Si, Al-3%Er, and Al-2%Nb master alloys, obtained by the induction casting followed 

rolling into foils of 0.2 mm in thickness were used. 

Table 2. Casting regimes for the aluminum alloys. 

Casting regimes 
Alloy # 

1 2 3 4 5 6 

Copper mistress, mm 2222160 

Ceramic crucible volume, cm3 150 

Purging by argon prior to melting, cycles 3 

Purging by argon during heating, cycles 3 

Melt mixing Induction 

Cooling down, s 250 –50 under vibration 

Heating power, kW 4.5 

Time to the melting of the components 
8 min 

25 s 

7 min 

35 s 

7 min 

55 s 

8 min 

5 s 

8 min 

20 s 

8 min 

12 s 

Melt temperature, °C 800 

Holding time prior to casting, min 20 

Casting temperature, °C 780 

The workpieces obtained were subjected to N = 4 ECAP cycles at 250 ºC. ECAP was 

performed according to “А” scheme using hydraulic press Ficep HF400L (Italy) in square 

cross-section hardware with the channel crossing angle 90о. The strain rate in ECAP was 

0.1 mm/s. After ECAP, the samples were subjected to Rotary Swaging at room tempera-

ture using a machine manufactured by R5-4-21 HIP “Heinrich Muller Maschinfabrik” 

Company (Germany). The rod samples with initial diameters of 20 mm were subjected to 

Rotary Swaging down to the diameters of 6.0 mm. The overall strain of the rods was 70%. 

The obtained cylindrical samples of 6 mm in diameter and 12 mm long were subjected to 
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sediment up to the strain of 35%. The sediment was performed at room temperature (RT) 

using a 40-ts hydraulic press EU-40 (Germany). 

As a result of application of sediment, the samples of 10 mm in diameter were made 

suitable for measuring the specific electrical resistivity (SER) by eddy current method us-

ing SIGMATEST 2.069 device with the sensor of 8 mm in diameter. The uncertainty of 

measuring the SER was ±0.03 cm. The measurements of microhardness (Hv) were per-

formed using HVS-1000 hardness tester at the load of 50 g. The mean uncertainty of meas-

uring Hv was  15 MPa. 

To carry out the investigations of macro- and microstructure of the alloys Leica DM 

IRM metallographic microscope, Jeol JSM-6490 scanning electron microscope (SEM) with 

Oxford Instruments INCA 350 EDS microanalyzer, and Jeol JEM-2100F transmission 

electron microscope (TEM) were employed. The samples were subjected to mechanical 

grinding and polishing in advance using diamond pastas of different dispersion as well 

as to electrochemical polishing at the finishing stage (current 3 А, voltage 30 V, 1 min) in 

CrO3+H3PO4 electrolyte. The microstructure of the alloys was revealed by etching in HF 

(15 ml) + HNO3 (10 ml) + glycerin (35 ml) solution. The volume fraction of the recrystal-

lized microstructure fR and the mean grain sizes d were determined by grain intersection 

counting method using GoodGrains software (Russia, UNN). The mean uncertainty of 

determining the magnitude of fR was 1 vol.% and the mean relative uncertainty of deter-

mining the mean grain sizes was ~10% of its magnitude d. 

To investigate the thermal stability of the microstructure, the samples were subjected 

to annealing in air ambient using EKPS-10 furnace (Russia). The annealing was performed 

in two regimes: (a) 60-min annealing in the range from the RT up to 550 оC; (b) isothermal 

annealing at 300оС for up to 1000 hrs. The precision of maintaining the temperature (Т) in 

the furnace was 10 оС. The samples were placed into the furnace on the ceramic furnace 

heated up to required temperature in advance. Cooling the samples after annealing was 

performed in air. 

3. Results 

3.1. Investigation of the alloys in the initial state 

Fig. 1 presents the images of microstructure of the aluminum alloys investigated. The 

specimens for investigations were taken from the lower parts of the bulks. 

   

(a) (b) (c) 
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(d) (e) (f) 

Figure 1. Macrostructure of the cast aluminum Alloys #1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f). The 

numbers in the figures correspond to the numbers of alloys in Table 1. Optical microscopy. 

The macrostructure of the cast alloys comprises a mixture of columnar crystals at the 

edges of the samples and the equiaxial grains in the central parts of the bulks. The ratio of 

the areas occupied by the equiaxial grain zones and by the columnar crystal ones depends 

on the concentrations of the doping elements. The largest area in the cross-section occu-

pied by the equiaxial grains of 10-50 m in sizes was observed for Alloy #1 containing the 

highest concentration of the doping elements. 

Figures 2 and 3 present the results of SEM investigations of the composition and the 

character of distribution of the primary particles in the macrostructure of the cast (Fig. 2) 

and deformed aluminum alloys (Fig. 3). 

  
(a)  (b)  

  
(c) (d)  
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(e) (f) 

Figure 2. EDS microanalysis of the composition of the primary particles in the cast Alloys #1 (a), #2 

(b), #3 (c), #4 (d), #5 (e), and #6 (f). SEM. 

One can see the chains of light particles in the macrostructure of the cast Alloys #1 

and #2. The large elongated particles are located preferentially at the dendrite boundaries 

exhibiting another contrast in the SEM investigations. Inside the dendrites in Alloy #2, 

there are many micrometer-sized particles, the shapes of which are close to the equiaxial 

ones. The results of the EDS microanalysis show Al, Si, and Er to present in the composi-

tion of the particles in different proportions (Fig. 2a, b). In Alloys #3-6 few round-shaped 

micron-sized light particles were observed (see Fig. 2c, d, e, f). The EDS microanalysis 

revealed Fe, Si, and sometimes oxygen in the composition of these particles. No nucleation 

of primary particles enriched with Zr was found. 
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(e) (f) 

Figure 3. Results EDS microanalysis of the particles in the fine-grained Alloys #1 (а), #2 (b), #3 (c), 

#4(d), #5 (e), and #6 (f). SEM. 

The composition of the primary particles in the fine-grained alloys was similar to the 

one of the particles in the cast alloys (Figures 2 and 3). Note that in Alloy #4 (Al-0.25Zr-

0.15Hf) the particles with insufficient amount of Hf (<0.1 wt.%) were found. 

The results of investigations of the microhardness and SER of the alloys after the in-

duction casting are presented in Table 3. Alloys #1-3 doped with silicon had the maximum 

microhardness. The maximum values of SER were observed in the alloys with addition of 

hafnium (Alloys #1, 4, 5). 

Table 3. Microhardness and SER of the alloys in different states. 

Characteristics 
Alloy # 

1 2 3 4 5 6 

 After casting 

Hv, MPa 300 ± 10 295 ± 30 285 ± 10 250 ± 5 255 ± 10 250 ± 25 

ρ, ·cm 3.34 ± 0.06 3.19 ± 0.03 3.20 ± 0.01 3.25 ± 0.08 3.33 ± 0.05 3.18 ± 0.05 

 After severe plastic deformation 

Hv, MPa 500 ± 15 510 ± 20 465 ± 15 420 ± 15 430 ± 15 400 ± 10 

ρ, ·cm 3.37 ± 0.03 3.22 ± 0.03 3.20 ± 0.02 3.28 ± 0.05 3.37 ± 0.04 3.22 ± 0.04 

ρth, ·cm 3.47 3.45 3.23 3.15 3.16 3.43 

fv0, % 0.28 0.26 0.29 0.32 0.33 0.26 

 After SPD and annealing 550 оC, 1 hr 

Hv, MPa 290 ± 5 275 ± 5 275 ± 5 245 ± 5 250 ± 5 230 ± 5 

ρ, ·cm 2.97 ± 0.05 2.91 ± 0.03 2.93 ± 0.01 2.97 ± 0.05 2.94 ± 0.04 3.02 ± 0.03 

d, m 14.4 ± 0.7 18.3 ±0.8 14.4 ± 0.4 24.2 ± 0.8 15.6 ± 0.7 31.3 ± 1.2 

After severe plastic deformation using ECAP and Rotary Swaging, a strongly de-

formed microstructure with the sizes of fragments ~0.5 m was formed in the samples of 

alloys (Fig. 4). No essential differences in the microstructure of the fine-grained Alloys #1-

6 were found. There are nano- and submicron-sized particles in the microstructure of the 

UFG alloys with increased contents of doping elements (Zr + X  0.5 wt.%) (The largest 

particles are marked by the dashed line in Fig. 4b). 

As one can see from Table 3, the hardness of the aluminum alloys increased ~1.6 times 

after SPD. The maximum values of microhardness (500-510 MPa) were observed for the 

fine-grained Alloys #1-2 having the highest value of Hv in the cast state as well (295-300 

MPa) (Table 3). The magnitudes of SER of the aluminum alloys after SPD increased insuf-

ficiently (in 0.03-0.04 ·cm) but this scale of variation or SER is comparable to the uncer-

tainty of SR measurements by eddy current method. 
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(a) (b)   

Figure 4. Microstructure of the fine-grained alloys #4 (a) and #5 (b). TEM. 

3.2. Effect of annealing temperature on the properties of the deformed alloys 

Fig. 5 presents the dependencies of Hv and SER on the temperature of 1-hour anneal-

ing of the fine-grained alloys investigated. The analysis of the curves (Т) shows the mag-

nitudes of SER to decrease with increasing annealing temperature from 200 up to 450-500 
оC for all samples. Obviously, this is related to the nucleation of the particles (see [57-60, 

70, 74, 97]). The Al-0.25%Zr-0.25%Hf alloy, the magnitude of SER of which 3.2 ± 0.05 

·cm is achieved in after annealing at 300 оС, 1 hr is featured by the smallest intensity of 

SER variation in the temperature range 200-450 oC. The target level of SER of 3.0 ·cm or 

less was achieved in all alloys after 1-hour annealing at 450 оC. An insufficient increase in 

SER in ~ 0.1-0.15 ·cm was observed at further increasing of temperature up to 550 оC, 

which, in our opinion, originates from partial dissolving of large intermetallic particles 

Al-Fe-Si (Figures 2 and 3) and the increase in the Fe and Si contents in the solid solution. 

This suggestion was confirmed by investigation of temperature dependence of SER of 

pure aluminum, which was used for making the conductor aluminum alloys (Fig. 5а). 
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Figure 5. Dependencies of SER (a) and microhardness (b) of the fine-grained aluminum Alloys #1-

6 on the temperature of 1-hour annealing. 

Fig. 6 presents the results of investigations of the microstructure of the alloys after 

the annealing at 550 оC (1 hr). The alloys have completely recrystallized microstructure. 

One can see in the images presented that grain growth was observed in all alloys but its 

intensity depends on the type and concentration of the doping elements essentially. The 

mean sizes of the recrystallized grains in the Alloys #1, 2, 3, and 5 were 30-40 m whereas 

the grain sizes in the Alloy #4 (Fig. 6d) and in the Alloy #6 (Fig. 6f) exceed 100 m. 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 6. Microstructure of the Alloys #1 (a), #2 (b), #3 (c), #4 (d), #5 (e), and #6 (f) after annealing at 

550 оC, 1 hrs. Optical microscopy. 
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3.3. Effect of the annealing time on the properties of deformed alloys 

Fig. 7 presents the dependencies of SER and microhardness of the alloys on the time 

of annealing at 300 оC. The choice of the isothermic annealing temperature (300 оC) was 

motivated by the intention to minimize the grain growth intensity resulting in a decrease 

in the alloy microhardness and simultaneously to ensure a high intensity of the secondary 

particle nucleation. (For the majority of alloys investigated, the degree of decomposition 

of the solid solution after 1-hour annealing at 300 оC was close to 50%.) It allows achieving 

the necessary (target) level of SER of the conductor aluminum alloy (3.0 ·cm or less) 

with simultaneous ensuring its increased hardness. 

  

(a) (b) 

Figure 7. Dependencies of SER (a) and microhardness Hv (b) of the fine-grained aluminum alloys 

#1-6 on the time of annealing at 300 оC. 

Analysis of the curves (t) presented in Fig. 7a shows the SER of the fine-grained 

alloys to decrease exponentially with increasing isothermic holding time. The most inten-

sive decreasing of SER takes place in the first 20 hrs, then the intensity of SER decreasing 

drops considerably. The lowest intensity of the SER decreasing ( = 0.15 ·cm) and, as 

a consequence, the highest values of SER in the annealed state (~ 3 ·cm) was observed 

for the Alloy #6. In the fine-grained Alloy #1, the scale of decrease in SER after annealing 

300 оC, 1000 hr was  = 0.33 ·cm. 

The dependence Hv(t) had more complex character. As one can see in Fig. 7b, at small 

holding ties (t  20 hr), the microhardness reduced in all fine-grained samples investi-

gated, that probably originates from the recrystallization processes. The increasing of the 

isothermic holding time leads to an increase in the microhardness, which originates from 

the nucleation of the secondary particles. The values of microhardness and SER in the 

annealed alloys are presented in Table 4. The maximum increase in the hardness during 

annealing was observed in Alloy #1; the hardness of Alloy #6 decreased continuously in 

the course of isothermic holding at 300 оC (Fig. 7b). 

Table 4. Physical and mechanical properties, microstructure parameters and parameters of Johnson-

Mehl-Avrami-Kolmogorov equation of aluminum alloys after annealing at 300 оC (1000 hrs). 

Alloy # 
Characteristics Parameters of JMAK equation 

Hv, MPa ρ, ·cm d, m fR, % n m 

1 480 ± 15 2.88 ± 0.04 2.0 ± 0.5 ≤5 0.21 5.2 

2 435 ± 10 2.79 ± 0.02 1.9 ± 0.4 ≤5 0.25 4.8 

3 415 ± 15 2.79 ± 0.04 2.2 ± 0.5 ≤5 0.24 4.2 
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4 405 ± 10 2.90 ± 0.02 2.6 ± 0.6 11 0.23 2.1 

5 445 ± 20 2.92 ± 0.06 2.3 ± 0.5 7 0.23 2.0 

6 340 ± 10 3.00 ± 0.02 2.5 ± 0.6 12 0.20 6.9 

The results of investigations of microstructure of the alloys after annealing at 300 оC, 

1000 hrs are presented in Fig. 8. The calculated values of the mean grain sizes (d) and the 

volume fraction of the recrystallized structure (fR) are given in Table 4. The analysis of the 

results of investigations shows the long isothermic annealing at 300 оC not to result in  a 

considerable increase in the mean grain sizes. The volume fraction of the recrystallized 

structure was small enough and didn’t exceed 10%. The highest volume fraction of the 

recrystallized structure (~11-12%) and large grains were observed in Alloys #4 and #6 (Ta-

ble 4). 

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

Figure 8. Microstructure of Alloys #1 (a), #2 (b), #3 (c), #4 (d), #5 (e), and #6 (f) after annealing at 300 
оC 1000 hrs. Optical microscopy. 

One can see a line-wise nucleation of the micrometer- and submicron-size particles 

in the microstructure of partly recrystallized Alloys #1-3 (Fig. 8a-c). The particles are lo-

cated preferentially at the boundaries of the recrystallized grains. No line-wise nucleated 

micron-sized particles were found in the microstructure of partly recrystallized Alloys #4-

6 but these ones are located preferentially at the recrystallized grain boundaries as well 

(Fig. 8d-8f). Fig. 9 presents the dependencies of the mean grain sizes and of the volume 

fraction of the recrystallized structure on the annealing time. One can see from these de-

pendencies that the increasing of the time of holding at 300 C leads to an increasing of 

the mean grain sizes for all alloys. The volume fraction of the recrystallized structure also 

grows monotonously with increasing annealing time. The minimum values of the volume 

fraction of the recrystallized structure were observed for Alloys #1-3 doped with silicon. 

  

(a) (b) 

Figure 9. Dependencies of the mean recrystallized grain sizes (a) and of the volume fraction of the 

recrystallized microstructures (b) on the time of annealing at Т = 300 оC. 

4. Discussion 

4.1. Specific electrical resistivity. Kinetics of the particle nucleation 

The theoretical values of SER (th) of the alloys calculated in the assumption of the 

additive contributions of the doping elements (Zr, Si, Er, Hf, and Nb) into the SER mag-

nitude of aluminum are given in Table 3. This calculation can be made according to Mat-

thiessen rule using the formula: 

𝜌𝑡ℎ = 𝜌𝐴𝑙 +∑𝐾𝑖𝐶𝑖,      (1) 

where 𝜌𝐴𝑙 is the SER of pure aluminum (2.7 ·cm), Ki is the contribution of the ith doing 

element into the SER of aluminum, Ci is the concentration of this doping element (in % 

at.). The reference data for Ki were taken from [98]. 

As one can see from Table 3, the theoretical values th for Alloys #1-3 and #6 are 

greater than the measured SER ones (exp). In our opinion, the small measured SER values 

are related to the partial decomposition of the solid solution in these alloys at the crystal-

lization stage. For Alloys #4-5 of the Al-Zr-Hf system, the opposite situation was observed 

– the theoretical values th were smaller than the measured SER ones (Table 3). In further 

analysis, the magnitude of KHf was taken to be equal to 0.75 ·cm/at.%. 
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Let us determine the dependence of the volume fraction of the nucleated particles on 

the time and temperature of annealing fv(t,T). The procedure of calculation of the volume 

fraction fv(t, T) based on analysis of the results of investigations of SER (t,T) was de-

scribed in [97, 99]. According to [97], the relationship between the fv and the variation of 

SER () can be represented in the following form: fv(t) = (t)/K = (ρ0-ρ(t))/K where ρ0 is 

the initial SER value (Table 3), ρ(t) is the SER after annealing with the duration t, and K is 

a constant describing the contribution the doping elements constituting the nucleated par-

ticles into the SER of the alloy. 

The expression for the volume fraction of the secondary particles fv can be repre-

sented in the form [99]: 

fv = Cr(t)/,      (2) 

where  is the parameter characterizing the fraction of the impurity atoms in the particle 

(for the Al3Zr particles, the magnitude of  = 1/4 [99]) and Сr is the concentration of doping 

elements entering the secondary particle. The maximum volume fraction of the particles 

can be calculated by the formula: fv0 = (C0-C*)/ where C0 is the initial concentration of the 

doping elements in the crystal lattice, С* is the solubility limit of the doping elements at 

given temperature. To simplify the analysis, according to [99], let us assume that С0 >> С* 

(in the case of solid solution of zirconium in aluminum at 300 оC, one can assume that С*→ 0). 

The results of calculations of fv0 are presented in Table 3. 

In this case, expression (2) can be transformed into the form: 

fv = fv0(𝜌0 − 𝜌(𝑡))/(𝜌0 − 𝜌𝑚𝑖𝑛),                      (3) 

where ρmin is the minimum value of SER, which can be accepted to be equal to the SER of 

pure aluminum (2.7 ·cm). The dependencies fv(t) calculated according to (3) at 300 оC 

are presented in Fig. 10. 

 

Figure 10. Dependencies of the volume fractions of the nucleated particles in aluminum alloys of 

the time of annealing at 300 оC. 

One can see in Fig. 10 that the maximum volume fraction of the nucleated particles 

is characteristic for the Si-containing alloys. The minimum volume fraction of the nucle-

ated particles was observed in Alloy #6. After holding for 600 hrs at 300 оC, the magnitudes 

of fv tend to the constant values in all alloys and remain almost constant at further increas-

ing of the annealing time. 
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The dependence of the volume fraction of the secondary particles on the temperature 

and time of annealing can be described by Johnson-Mehl-Avrami-Kolmogorov (JMAK) 

equation [99, 100]: 

fv(t, T) = fv0[1-exp(-(t/τ)n)],      (4) 

where τ=τ0exp(QR/kT) is the characteristic time of the diffusion process, n is the coefficient 

of the decomposition rate, 0 is the pre-exponential factor, QR is the effective activation 

energy of the particle nucleation process, and k is the Boltzmann constant.  

According to [99, 100], the parameters n and Q characterize the mechanisms of nucle-

ation of the secondary particles. At the nucleation of the coherent particles in the fine-

grained aluminum alloys Al-(Sc,Zr), the relationship between the parameters n, Q and the 

mechanism of the solid solution decomposition can be described by the model [99]. In par-

ticular, the value of n = 1.5 corresponds to the case of homogeneous nucleation of the parti-

cles inside the crystal lattice, n = 0.75-1 – to the case of the particle nucleation at the grain 

boundaries or at the cores of the lattice dislocations. If at the annealing of a fine-grained 

material the recovery or recrystallization processes take place, the magnitude of coefficient 

n decreases down to 0.25-0.33 [99]. 

The values of n are determined from the measured curves fv(t,T) plotted in the double 

logarithmic axes ln(ln(1-fv/fv0)) –ln(t) (Fig. 11). In the case if the mechanism of the solid solu-

tion decomposition doesn’t change, these dependencies should comprise straight lines, the 

slopes of which give the magnitudes of the parameter n while the offset equals to n·ln(τ). 

 

Figure 11. Analysis of the mechanisms of the secondary particle nucleation. Calculation of the coef-

ficient n in JMAK equation. 

As one can see in Fig. 11, the values of coefficient n fall into the rage 0.2-0.25 (Table 

4). The confidence coefficient of the linear fit is high enough (R2 = 0.97-099). The result 

obtained evidences the nucleation of secondary particles takes place preferentially at the 

cores of the lattice dislocations in the conditions of simultaneous recovery and recrystal-

lization processes (see [99]). This conclusion agrees qualitatively with the results of micro-

structure investigations (Figures 8-9, Table. 4). 

So far, one can conclude the improved thermal stability of the fine-grained micro-

structure of the aluminum alloy investigated toe be provided by the nucleation of second-

ary particles at the cores of lattice dislocations. Note that it is an important result from the 
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viewpoint of applications, which allows ensuring stabilization of the nonequilibrium mi-

crostructure of the aluminum alloys at reduced annealing temperatures. 
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4.2. Investigation of microstructure. Particle growth during annealing 

As one can see from the experimental data presented (Fig. 8), the grain growth with 

simultaneous nucleation and growth of the secondary particles take place in the course of 

annealing (Fig. 10). The particles nucleating during annealing prevent the migration of 

grain boundaries and provide the increased thermal stability of the nonequilibrium mi-

crostructure of the fine-grained aluminum alloys. According to [101], the relationship be-

tween the particle size R, the volume fraction of these ones fv, and the mean size of the 

recrystallized grains d is determined by Zener equation: 

dZ = α1R/fv,        (6) 

where α1 is a coefficient depending on the particle shape (α = 4/3 for the spherical parti-

cles). It follows from Equation (6) that one has to ensure a high intensity of nucleation and 

low growth rate of the particles in order to provide an increased stability of microstruc-

ture. 

Comparing the results of the metallographic investigations, on the base of which d 

was determined (Fig. 8а) and the ones of SER investigations allowing determining fv (Fig. 

10), let us calculate the size of nucleated secondary particles R in the aluminum alloys. 

The curves R(t) at Т = 300 оC are presented in Fig. 12. 

  

(a) (b) 

Figure 12. Dependencies of the particle sizes in the aluminum alloys on the time of annealing at T = 

300 oC in the linear (a) and logarithmic (b) axes. 

One can see in Fig. 12a a monotonous increase in the mean particle sizes in the course 

of annealing at Т = 300 оC to be observed in all alloys. All alloys had approximately growth 

rate of the secondary particles except Alloys #6 containing Nb in its chemical composition. 

In average, the particle sizes in the alloys increased 2-3 times from the initial values after 

1000 hrs of annealing. 

The growth of the secondary particles is known to be described by the equation [101, 

102]: 

Rm − R0
m = ξ𝐷0t exp( − Q2/kT),                           (5) 

where R and R0 are the current and initial radii of the secondary particle, respectively, m 

is the growth rare coefficient, Q2 is the activation energy of the secondary particle growth 

process, ξ is a numerical coefficient, and D0 is the pre-exponential factor in the diffusion 

equation. Using Equation (5), one can estimate the magnitude of coefficient m, which de-

pends on the dominating diffusion mechanism limiting the growth intensity of the 
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secondary particles [100, 102]. According to (5), the quantity 1/m corresponds to the slope 

of the curve R(t) in the logarithmic axes lnR – lnt. 

Note that the magnitude of the coefficient m determines the dominating mechanism 

of the particle growth [100, 102]. In the case of particle growth inside the crystal lattice of 

aluminum m = 3, at the grain boundaries and at the dislocation cores (in the case of a stale 

microstructure) – m = 4 [100, 102]. In the case if the microstructure of the aluminum alloy 

is unstable and the secondary particles nucleate at the cores of the lattice dislocations, the 

magnitude of coefficient m varies from 6 to 12 [102]. 

The analysis of the data presented in Fig. 12b shows the minimum values of coeffi-

cient n to be observed for Alloys #4-5 of the system Al-0.25%Zr-Hf (Table 4). The result 

obtained evidences the Al3(Zr,Hf) particles, which nucleated first at the cores of the lattice 

dislocations (see Subsection 4.1) to grow further via volume diffusion. It can occur because 

of simultaneous decrease in the density of the lattice dislocations as well as because of a 

large (as compared to Zr) intensity of diffusion of the Hf atoms in the crystal lattice of 

aluminum at 300 оC. 

The fine-grained Nb-containing Alloy #6 has the highest value of the coefficient n = 

6.9 among the alloys investigated (Table 4). The result obtained evidences the rates of nu-

cleation and growth of the Al3(Zr,Nb) particles in this fine-grained alloy to be limited by 

the intensity of diffusion in the dislocation cores. 

For the Si-containing fine-grained Alloys #1-3, the magnitude of the coefficient n ~ 4-

5 that probably points to the growth of the secondary particles at the grain boundaries 

(see [102]). This conclusion agrees well with rapid nucleation and growth of the secondary 

particles in the Si-containing aluminum alloys described above. 

Summarizing the results of the analysis performed, one can conclude the nucleation 

of the secondary particles in the alloys investigated to take place at the cores of disloca-

tions while the mechanism of their further growth depends on the type of the relationship 

of the volume, dislocation, and grain boundary diffusion coefficients of the doping ele-

ments in aluminum at given annealing temperature as well as on the character of their the 

spatial distribution (the uniform distribution inside the material bulk or formation of the 

grain boundary segregations). 

4.3. Optimization of microhardness and SER 

Fig. 13 shows the dependencies of the electrical conductivity (in the IACS units) on 

the microhardness for the aluminum alloys investigated. This chart is a convenient tool 

for optimizing the thermal processing regimes of the aluminum alloys Al-0.25Zr with dif-

ferent compositions of the doping additives allowing selecting the optimal relation be-

tween the hardness and SER. 
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Figure 13. Dependence of the electrical conductivity (IACS) on the microhardness for the fine-

grained aluminum alloys Al-0.25Zr-(Si, Er, Hf, Nb). 

As it has been already mentioned above, the target value of SER, which is necessary 

to achieve in the conductor aluminum alloy is 3.0 cm that corresponds to 57.4 IACS. 

The minim value of the ultimate strength for new conductor alloy should be not less than 

the one of alloy 01417 (b  160 MPa). For the fine wires from the aluminum alloys, the 

microhardness Hv is related to the magnitude of the ultimate strength by the relation Hv 

= b where  is a numerical coefficient depending of the structure state of the alloys [57, 

58]. For the fine-grained conductor alloys  = 1.43, for the annealed aluminum alloys  = 

3.45 [57, 58]. The aluminum alloys investigated were in partly recrystallized state (Table 

4) and the magnitude of the coefficient  for these ones can be accepted to be equal to ~3. 

So far, the minimum value of microhardness for the aluminum alloys investigated should 

be Hv  480 MPa. The ranges of parameters (the microhardness and the electrical conduc-

tivity), which the material of a fine wire should fall into is shown by a dashed line in the 

upper right corner of the chart “electrical conductivity – microhardness” in Fig. 13. 

The characteristics of Alloy #1 after annealing at 300 оС, 1000 hrs (59.8%IACS, Hv = 

480 ± 15 MPa) satisfy to this range of the values. This alloy has a uniform fine-grained 

structure with the grain sizes ~ 2 m (Table 4, Fig. 8а). Also, the characteristics of Alloy #1 

after annealing at 400 оС, 1 hr (57.1%IACS, Hv = 482 MPa) are the closest to this range of 

parameters. 

In our opinion, to improve the combination of properties of Alloy #1 further, one 

should optimize its chemical composition as well as optimize the casting regimes for Alloy 

#1 – as one can see from Table 2, the formation of large primary particles took place during 

the crystallization of Alloy #1. These particles didn’t contribute to the strength and elec-

trical conductivity of the alloy essentially. According to the results of the EDS microanal-

ysis (Fig. 2а, 3а), there are considerable concentrations of silicon (Si) and erbium (Er) in 

the composition of the primary particles. No traces of Zr and Hf were found in the com-

position of the primary particles (Fig. 2а, 3а). In our opinion, the result obtained allows 

concluding the reduction of Si and Er concentrations would allow avoiding the formation 

of large primary particles during crystallization. The large primary particles can grow via 

coalescence at further annealing and reduce the intensity of nucleation of the nanoparti-

cles providing the increased strength and stability of the fine-grained aluminum alloy. 

Besides, the large primary particles can lead to failure of a fine wire during fabrication by 

rolling in rolls or drawing. 
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5. Conclusions 

1. The features of nucleation of the Al3(Zr,X) secondary particles during the annealing 

of fine-grained Al-0.25%Zr alloys with addition of Er, Si, Hf, and Nb were investigated. 

All alloys were found to preserve their fine-grained structure during annealing at 300 оС 

for 1000 hrs. The volume fraction of the recrystallized microstructure was small enough 

and didn’t exceed 10%, the mean grain sizes were close to 2-2.5 m. The mechanisms of 

nucleation of the secondary particles were identified by the analysis of the dependencies 

of the SER on the annealing time using Jones-Mehl-Avrami-Kolmogorov (JMAK). The 

magnitude of the coefficient n in JMAK equation for the alloys investigated was shown to 

be close to 0.20-0.24 that corresponds to the case of nucleation of the secondary particles 

at the cores of dislocation in the conditions of simultaneous recovery and recrystallization 

processes. Using Zener equation, the dependence of the secondary particle sizes on the 

annealing time was determined. The secondary particle growth mechanism was shown to 

depend on the type of the relationship between the diffusion coefficients for the volume, 

dislocation, and grain boundary diffusion of the doping elements in aluminum at given 

annealing temperature as well as on the character of their spatial distribution (uniform 

distribution in the volume of material, formation of grain boundary segregations). In the 

Hf- and Si-containing alloys, the secondary particle growth is controlled by the volume 

diffusion while in the Nb-containing alloy – by diffusion via the cores of lattice disloca-

tions. 

2. The effect of small (0.15-0.25%) additives of Er, Si, Hf, and Nb on the thermal sta-

bility of microstructure, SER and microhardness of the conductor aluminum alloy Al-

0.25%Zr was investigated. The Al-0.25%Zr-0.25%Er-0.20%Hf-0.15%Si alloy subjected to 

annealing at 300 оC, 1000 hrs has the optimal combination of the microhardness and SER. 

The alloy after annealing has a uniform fine-grained structure; the mean grain size was ~ 

2 m, the SER was 59.8%IACS, Hv = 480 ± 15 MPa. The high characteristics of this alloy 

(57.1%IACS, Hv = 482 MPa) can be ensured by annealing at 400 оС, 1 hr. The characteristics 

of the novel alloy allow its efficient application in the aircraft building industry to replace 

the commercial eutectic alloys with increased contents of REEs and TMs. 
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