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Abstract: Pregnancy is a dynamic state with multiple metabolic changes occurring including insulin 

resistance. Gestational diabetes mellitus (GDM), a form of diabetes that appears during pregnancy, 

develops if metabolic aberrations occur, in particular, in normal pregnancy-induced insulin re-

sistance. Multi-omics is a powerful approach for uncovering the mechanisms driving metabolic 

change in different physiologic and pathologic states. A recent study demonstrated that the gesta-

tional gut microbiome mediates pregnancy metabolic adaptations through effects on gut indoleam-

ine-2,3 dioxygenase 1 activity and the production of kynurenine. Using the dataset generated from 

this highly controlled study, we performed a comprehensive analysis of the pregnancy-specific 

physiological and metabolic profiles, 16S rRNA microbiome, and plasma untargeted LC-MS metab-

olome data. To facilitate the utilization of these analysis results by other researchers, we developed 

MOMMI-MP, a database that provides an easy-to-use platform to browse and search differential 

abundant microbial taxa and metabolites, and to examine metabolic pathways. The datasets consist 

of data collected from 3 genetically diverse strains of mice (C57BL/6J, CD1, and NIH-Swiss) over 6 

time points during the gestational (days 0, 10, 15, and 19 during gestation) and postpartum (days 3 

and 20 after delivery) states, totaling 180 samples for each strain. The computational results are 

presented in various tables and plots, and organized in MOMMI-MP to empower exploratory anal-

yses by other researchers. In conclusion, MOMMI-MP is a resource to facilitate the investigation of 

novel mechanisms governing metabolic changes during pregnancy. 
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33

1. Introduction 34

Gestational diabetes mellitus (GDM) is the most common metabolic disorder during 35

pregnancy, affecting 2% to 10% of pregnancies in the United States [1]. Up to 60% of those 36

who have GDM carry a risk of developing type 2 diabetes later in life [2]. GDM is associ- 37

ated with resistance to the action of insulin on glucose uptake and utilization [3]. Interest- 38

ingly, a typical pregnancy does develop a degree of insulin resistance in the later states as 39

a normal adaptive response [3].   40

41

Using the systems biology approach, we recently performed an extensive metabolic, 42

gut microbial, and metabolomic characterization, which revealed a novel gut microbial- 43

host metabolic pathway mediating gestational responses. Specifically, we demonstrated 44
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that the gestational gut microbiome mediates pregnancy metabolic adaptations through 45

effects on the gut indoleamine-2,3 dioxygenase 1 activity and the production of 46

kynurenine [4]. This multi-omics study collected pregnancy-specific physiological and 47

metabolic response characteristics, gut microbiome, and plasma metabolome data on 3 48

genetically diverse strains of mice (C57BL/6J, CD1, and NIH-Swiss) during the gestational 49

stage and postpartum pregnancy. Since the insulin resistance of normal pregnancy is mul- 50

tifactorial, the datasets obtained from this highly controlled study may provide additional 51

insights into the interactions among metabolic response, gut microbes, and the metabo- 52

lites mediating these effects. To facilitate the utilization of these datasets by other research- 53

ers, we developed MOMMI-MP, a database for providing comprehensive analysis results 54

of the Multi-omics Metabolic & Microbiome Profiling of Mouse Pregnancy (Fig. 1).   55

56

57
Figure 1. Structural outline of MOMMI-MP 58

2. Materials and Methods 59

2.1. Datasets and Pre-processing 60

The datasets consist of mouse metabolic health characteristics, microbiome, and 61

metabolomic profiles measured at 4 time points during gestation (days G0, G10, G15, 62

and G19) and 2 time points postpartum (days PP3, and PP20) from 3 mouse strains 63

(C57BL/6J, CD1, and NIH-Swiss) with 10 mice at each time point per strain. The 16S 64

rRNA gene amplicon sequencing and untargeted LC-MS were used to generate microbi- 65

ome and metabolome profiles, respectively. Detailed experimental protocols for data 66

collection and quantification procedures for microbiome and metabolomic features can 67

be found in [4]. Briefly, the metabolic health characteristics are comprised of blood glu- 68

cose and insulin levels, body weight, and change in weights of different types of adipose 69

depots (subcutaneous and visceral) at the different time points of pregnancy. The micro- 70

biome data are provided with Operational Taxonomic Unit (OTU) abundance at 7 71
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taxonomic ranks (i.e., kingdom, phylum, class, order, family, genus, and species). The 72

data are available at [5]. The untargeted LC-MS analysis generated metabolite feature 73

abundance. The metabolomics data are available at [6].  74

The microbiome data consists of the OTU table as well as the amplicon sequence variant 75

(ASV) table. The abundance obtained for an individual sample at each taxa level was 76

used for further analysis. For the metabolome data, features that were present in less 77

than a set threshold value (<20% of samples) were removed and scaled to remove un- 78

wanted variation caused by the features. Finally, data were log-transformed before the 79

analysis. The summaries of the three data types are shown in Table 1 and Table 2 80

Table 1. Number of Samples and features for microbiome and metabolome data sets 81

Strain # of 

Samples 

# Metabolic 

Characteristics 

# ASV # Metabolite 

Features 

Before 

filtering 

After 

filtering 

C57 60 12 1522 43682 4784 

CD1 60 12 1522 43682 3340 

NS 60 12 1522 43682 3137 

82

Table 2. Number of Microbes obtained after pre-processing. 83

C57BI6/J CD1 NIH-Swiss 

Class 20 20 20 

Order 36 36 36 

Family 60 60 60 

Genus 92 92 92 

Species 101 101 101 

84

2.2. Alpha Diversity and Beta Diversity of Microbiome Data 85

Alpha diversity was computed by rarifying the dataset by the even depth method and 86

functions such as ‘ggplot’, ‘plot_richness’, and ‘estimate richness’ in the phyloseq pack- 87

age [7]. ‘Strain’ attribute of the dataset was used to perform the analysis. Two methods, 88

‘Observed’ and ‘Shannon’, were used to display the results of the same. Beta diversity 89

was obtained using two different methods, Principal Coordinate Analysis (PCoA) and 90

Non-metric Multidimensional Scaling (NMDS). The dataset was rarefied and the binary 91

Jaccard metric was used to perform the NMDS analysis, whereas the Bray-Curtis dissim- 92

ilarity was used to plot the ordination visualization for the PCoA analysis. 93

2.3. Differential Abundance Analysis of Microbiome Data 94
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The package ANCOM-BC was used to perform the differential analysis [8]. It identifies 95

taxa whose absolute abundances, per unit volume microbe, differ significantly through- 96

out the pregnancy period. In this part of the analysis, the first gestational time point (G0) 97

was set as the reference point, and the remaining time points were used individually 98

along with the reference time point to perform the differential analysis. The result ob- 99

tained was an adjusted p-value table that describes the significance of abundance differ- 100

ence between the comparison groups for individual taxa, where a threshold (0.05) was 101

set to report taxa that are differentially abundant in at least one comparison group. 102

2.4. Differential Analysis of Metabolome Data 103

Samples at gestational time points for days 15 and 19 (G15 and G19) were grouped to- 104

gether and compared to all the remaining time points were grouped together. This 105

grouping is based on the previous results that the metabolomic profiles at G15 and G19 106

distinguish those from the rest of the time points [4]. The PERMANOVA [9] analysis 107

was performed on those two groups for every individual feature. The result obtained 108

was an adjusted p-value table that describes the significance of separation between the 109

groups for individual features. Metabolite features with adjusted p-values less than 0.05 110

are considered differentially abundant and are reported in the table. 111

2.5. Feature-Compound Mapping 112

First, the Mummichog algorithm implemented in the online tool MetaboAnalyst [10] 113

was used to identify the KEGG pathways and the compound hits from the significantly 114

abundant metabolite features identified from the differential analysis. The input to the 115

tool was the adjusted p-value table obtained from the PERMANOVA analysis. The pa- 116

rameters were set in the following way: Mass tolerance was set to 10 ppm and retention 117

time was set to ‘seconds’. The tool’s output includes a visual representation of the path- 118

ways along with multiple tables which gave the mapped compound IDs and significant 119

hits for every pathway. Subsequently, the compound IDs along with the adjusted p- 120

value table were used in the KEGG-Rest tool [11] to identify the compound names, 121

which later were used to replace the unique metabolite feature IDs and filter out the sig- 122

nificant features which are not linked to any compounds. The abundance table of the 123

remaining significant features was then used to perform correlation analysis with the 124

differentially abundant microbes. 125

2.6. Heatmap and NMDS Analysis 126

After obtaining the adjusted p-value table from the PERMANOVA analysis and map- 127

ping the features, a visualization was obtained using the heatmap to show the relation- 128

ship between the time points and the obtained significant features. Also, NMDS analysis 129

was performed using ‘metaMDS’ function from the ‘vegan’ library [12] to get the plots 130

based on the time points for every mouse strain, which showed the grouping of multiple 131

time points. 132

2.7. Correlation Analysis 133

The correlation analysis was performed, (1) between the significantly abundant mi- 134

crobes identified from ANCOM-BC and the health characteristics, (2) between those mi- 135

crobe pairs, (3) between the significantly abundant metabolites, (4) between the signifi- 136

cantly abundant metabolites and the health characteristics, and (5) between the signifi- 137

cantly abundant microbes and metabolites. In all correlation analyses, Pearson correla- 138

tions were calculated. 139
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2.8. Pathway Analysis 140

Pathway analysis was performed using the Mummichog algorithm in the MetaboAna- 141

lyst tool using the identified metabolites (i.e., compounds) obtained following the analy- 142

sis procedure described in 2.6. The input consists of the compound names and their re- 143

spective adjusted p-values. The pathway analysis gave a visual bar plot of the mapped 144

features and the gamma values, which represent adjusted p-values from the enrichment 145

analysis. 146

3. Results 147

The MOMMI-MP database is composed of results from 1) statistical and bioinfor- 148

matic analyses within each of the metabolic health profiles, microbiomes, and metabo- 149

lomes, 2) correlation analyses among metabolic health characteristics, microbes, and me- 150

tabolites, and 3) metabolic pathway enrichment analyses. The database is designed to al- 151

low easy browsing and query of differentially abundant microbial taxa and metabolites; 152

and the affected metabolic pathways. 153

3.1. MOMMI-MP and Structure 154

The results were organized on an online server in the form of a database website 155

MOMMI-MP (URL) (Fig. 2a). The website’s home screen has a visual representation of 156

the basic structure of the database.  Users can explore the results of individual data 157

types by clicking the menu bar at the top of the website as well. The “Structure” con- 158

nects to a page that presents the flowchart of analysis performed in the database (Fig. 159

2b).  Other tabs, such as “Metabolic Profiles, “Microbiome” and “Metabolome”, include 160

links to the respective analysis results. 161

162

163

164

(a) (b) 165

Figure 2. MOMMI-MP Assembly. (a) MOMMI-MP homepage. The figure shows the pic- 166

torial representation of the basic blocks of the platform. (b) Flow of MOMMI-MP. Every 167

block in the flowchart represents a method/operation which was performed on the re- 168

spective data set. 169

170

3.2. Metabolic Profile 171

This webpage consists of a visual representation of the 3 mouse strains. Here, users can 172

click on any mouse strain to access the plots for individual characteristics in the meta- 173

bolic profiles. Fig. 3a-3c show the boxplots for subcutaneous fat at each time point for 174

the three mouse strains as an example. 175

176
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177

Figure 3. Metabolic Profile. The plots represent the variation in subcutaneous fat (one of 178

the mouse health characteristics) in all three strains. (a) C57BI6/J; (b) CD1; (c) NIH-Swiss. 179

180

3.3. Microbes 181

The ‘Microbe’ webpage contains links to various web pages of analysis results. For ex- 182

ample, users can examine the Alpha diversity (Fig. 4) and Beta diversity results (Fig. 5). 183

They can also view microbiome compositions for all the taxonomical levels for each 184

strain. Fig. 6a-6c show the microbiome compositions of C57BL/6J at Class, Family, and 185

Genus levels, respectively.   186

187

188

189

Figure 4. Alpha (Shannon) diversity. (a) All Strains; (b) C57BL/6J; (c) CD1; (d) NIH- 190

Swiss. 191

192
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193

194

(a) (b) 195

Figure 5. Beta Diversity: (a) PCoA (all strains); (b) NMDS (all strains). 196

197

198

199

Figure 6. Microbiome composition for different taxonomical levels. (a) Class; (b) Family; 200

(c) Genus. 201

202

The ANCOM-BC analysis was performed at each taxonomic level of Class, Order, Fam- 203

ily, Genus, and Species. The numbers of identified differentially abundant taxa are sum- 204

marized in Table 3. 205

206

Table 3. The number of taxa obtained from ANCOM-BC for each taxonomic level for 207

each strain. 208

Class Order Family Genus Species 

C57 9 10 14 6 6 

CD1 8 10 17 5 7 

NS 4 6 8 6 8 

209

210

A table of the adjusted p-values can be viewed for the identified microbes from another 211

webpage. Users can interact with the table by sorting it or searching for any specific mi- 212

crobe. Each microbe in the table is linked to the respective boxplots of abundance (Fig. 213

7). The webpage also consists of a link redirecting the users to another webpage provid- 214

ing results of correlation analysis of microbe-microbe, microbe-health characteristic, and 215

microbe-metabolite, which will be described later. 216
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217

218

Figure 7. Differential Abundance Analysis for C57BL/6J. (a) Bacilli; (b) Bacteroidia; (c) 219

Betaproteobacteria. 220

221

3.4. Metabolome 222

This webpage ‘Metabolome’ provides the analysis results obtained from the metabolome 223

data. The grouping of mice was based on the metabolite features using the remaining 224

features after the pre-processing (Fig. 8). 225

226

Figure 8. NMDS Analysis. (a) C57BL/6J; (b) CD1; (c) NIH-Swiss. 227

228

The heatmaps show the abundance of patterns of the significantly changed metabolite 229

features identified from the PERMONOVA analysis (Fig. 9). 230

231

232
Figure 9. Heatmaps for significant metabolite features. (a) C57BL/6J; (b) CD1; (c) NIH- 233

Swiss. 234

The webpage ‘Differential Abundant Feature’ consists of the obtained adjusted p-value 235

table from the PERMANOVA analysis with features replaced by their corresponding 236

compounds. Similar to the microbiome analysis, users can interact with the table by sort- 237

ing or searching for any specific compound name. Also, there is a link embedded in each 238

compound where users can view respective boxplots of the abundance over the time 239
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points (Fig. 10). The total numbers of the significant metabolite features obtained for all 240

strains are given in Table 4. 241

242

243

(a) (b) 244

Figure 10. Differential Analysis for C57BL/6J. (a) L-Tryptophan; (b) 5-Hy- 245

droxykynurenamine. 246

247

Table 4. Numbers of differentially abundant metabolite features. 248

Strain # Features 
# Features mapped to 

known compounds 

C57 4784 837 

CD1 3340 645 

NS 3137 529 

249

250

Pathway analysis results after mapping the compounds to the features are uploaded on 251

their respective webpage (Fig. 11). Also, correlation analysis between microbes and me- 252

tabolites along with the correlation coefficients are displayed on an individual web page 253

(Fig. 12). 254
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255

Figure 11. Pathway Analysis for C57BL/6J. 256

257

258

259

Figure 12. Correlation Analysis for C57BL/6J. (a) microbe-microbe; (b) microbe-meta- 260

bolic characteristic; (c) metabolite-microbe. 261

262

263

4. Conclusions 264

The MOMMP-MP is a database that provides comprehensive analysis results of the 265

metabolic health characteristics, microbiome, and metabolome data obtained from 3 ge- 266

netically distinct strains of mice (C57BL/6J, CD1, and NIH-Swiss) during the gestational 267

and postpartum stages. MOMMP-MP is an easy-to-use platform that facilitates explora- 268

tions of the analysis results.   269
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