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Simple Summary: MicroRNAs are small non-coding RNAs that play central role in many molecular 
processes, but the exact rules of their activity are not known. In recent years, Deep Learning com-
putational methods have revolutionized many fields, including the microRNA field. While making 
accurate predictions is important in biomedical tasks, it is equally important to understand why 
models make their predictions. Here, we present a novel interpretation technique for Deep Learning 
models that produces human readable visual representation of the knowledge learned by the model. 
This representation is useful for understanding model’s decisions and can be used as a proxy for 
further interpretation of biological concepts learned by the Deep Learning model. Importantly, the 
presented method is not tied to the model or biological domain and can be easily extended. 

Abstract: MicroRNAs (miRNAs) are small non-coding RNAs that play a central role in the post-
transcriptional regulation of biological processes. miRNAs regulate transcripts by direct binding 
involving the Argonaute protein family. The exact rules of binding are not known, and several in 
silico miRNA target prediction methods have been developed to date. Deep Learning has recently 
revolutionized miRNA target prediction. However, the higher predictive power comes with de-
creased ability to interpret increasingly complex models. Here, we present a novel interpretation 
technique, called attribution sequence alignment, for miRNA target site prediction models that can 
interpret such Deep Learning models on a two-dimensional representation of miRNA and putative 
target sequence. Our method produces a human readable visual representation of miRNA:target 
interactions and can be used as a proxy for further interpretation of biological concepts learned by 
the neural network. We demonstrate applications of this method in clustering of experimental data 
into binding classes, as well as using the method to narrow down predicted miRNA binding sites 
on long transcript sequences. Importantly, the presented method works with any neural network 
model trained on a two-dimensional representation of interactions and can be easily extended to 
further domains such as protein-protein interactions. 
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1. Introduction 
MicroRNAs (miRNAs), first discovered in Caenorhabditis elegans in 1993 [1,2] are 

an abundant class of small (~17-25 nt long) non-coding RNAs that regulate gene expres-
sion at the post-transcriptional level [3–6]. Mature miRNAs are loaded into the Argonaute 
(AGO) protein, and along with other proteins form the miRNA-induced silencing com-
plex (miRISC). miRNAs guide the miRISC, through partial base pairing, to target messen-
ger RNAs (mRNAs) [7,8].  Such targeting may lead to translational repression and dead-
enylation-induced mRNA degradation [9,10]. Several studies have revealed miRNAs in-
volvement in not only normal physiological processes but also pathologies [11,12]. The 
abnormal expression or function of miRNAs has been closely related to diverse human 
diseases, such as cancers. miRNAs are thus emerging as novel endogenous bio-targets for 
diagnostics and therapeutic treatments [13,14]. Understanding miRNA-involved cellular 
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processes, including a clear picture of regulatory networks of intracellular miRNAs, is 
therefore essential and critical for miRNA-targeted biomedicine [15,16]. The 5’ end of the 
miRNA, and especially the hexamer spanning nucleotides 2-8, were very early identified 
as important for miRNA target recognition and termed the ‘seed’ region [17]. Target 
recognition is primarily achieved via base pairing that involves the seed region [18]; how-
ever, seed pairing is not always sufficient for functional target interactions, and additional 
interactions with the miRNA 3′ end may be necessary for specific targeting [19]. Several 
experimental methods for identifying miRNA:target site pairs interactions have been de-
veloped, discovering abundant classes of non-seed interactions [20–22]. 

Experimental validation of functional miRNA:target pairs is a laborious process and 
computational tools can be utilized to simplify it. The first programs for computational 
prediction of miRNA targets started to appear in 2003, shortly after it was suggested that 
miRNAs are widespread and abundant in cells [4–6]. Each mRNA can contain dozens of 
potential miRNA binding sites [23] and target prediction programs identify these binding 
sites and combine them into the final prediction on the level of the whole gene. Two main 
approaches for binding site identification are the ‘cofold’ and the ‘seed’ heuristics [24]. 
The ‘cofold’ heuristic computes the hybridization energy of miRNA and the binding site 
sequences [25–27]. It also produces a base pairing pattern of two input sequences, provid-
ing a way to visualize the miRNA:binding site interaction. However, this computation 
doesn’t take into account the AGO protein affecting the interaction, resulting in poor pre-
dictive power [28]. The ‘seed’ heuristic uses the relaxed seed region to scan the target for 
potential binding sites. This approach outperforms the ‘cofold’ heuristic [28], but it misses 
non-seed interactions, amplifying the seed bias. It also lacks the base pairing visualization 
feature. Advances in experimental identification of miRNA binding sites [20,29] have en-
abled the rise of computational methods based on Machine Learning (ML) and especially 
Deep Learning (DL). DL methods are currently state-of-the-art in the field and are highly 
appropriate for uncovering the miRNA binding rules, where clear rules or features are 
unknown since they work with the raw data and compute the features themselves [28,30]. 

Despite the high accuracy of DL models, these models have several disadvantages 
that hinder their usability and interpretability. DL models trained for miRNA target site 
prediction often work with the fixed input length, giving the prediction score for the 
whole input sequence, even though it is known that miRNAs are only approximately 17-
25nt long, and their target sites potentially even shorter. DL models are also infamous for 
being unable to directly interpret what they learn from the data. While making accurate 
predictions is important in biomedical tasks, it is equally important to understand the 
reason why models make their predictions. Although DL models are not designed to high-
light interpretable relationships in data or to guide the formulation of mechanistic hypoth-
eses, they can nevertheless be interrogated for these purposes a posteriori [31].  

In complex models, it is imperative to inspect parameters indirectly by probing the 
input-output relationships for each predicted example. Attribution scores, also called fea-
ture importance scores, relevance scores, or contribution scores can be used for this pur-
pose. They highlight the parts of a given input that are most influential for the model 
prediction and thereby help to explain why such a prediction was made. Techniques for 
obtaining the attribution scores can be divided into two main groups on the basis of 
whether they are computed using input perturbations or using backpropagation. Pertur-
bation-based approaches [32–34] systematically change the input features and observe the 
difference in the output. For DNA sequence-based models, the induced perturbation can 
be, for example, a single-nucleotide substitution [33,35–38] or insertion of a regulatory 
motif [39,40]. Backpropagation-based approaches [41–47] propagate an important signal 
from an output neuron backward through the layers to the input in one pass. This makes 
them more efficient than perturbation methods. While DL models are only as good as the 
data they were trained on, the interpretation technique is constrained by the used repre-
sentation of data. The field of miRNA targeting is generally not interested in the specific 
sequence, but rather in the interactions between two sequences, namely the miRNA and 
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target RNA. For the interpretation technique to point to the important interaction, this 
information has to be encoded in the data. 

In this paper, we propose a novel interpretation technique for the miRNA target pre-
diction models working with the 2D-binding representation of input sequences. The 2D-
binding representation encodes interactions between sequences, allowing the interpreta-
tion technique to work in the context of interactions, not sequences. This interpretation 
provides an understandable visualization of the miRNA:target site interaction in the form 
of base pairing with the importance scores for each position. It can be further used as a 
proxy for studying the biological concepts learned by the neural network. We present 
several applications, such as identifying classes of miRNA binding activities (including 
seed and non-seed binding) and enhancing the target site predictions by narrowing it to 
the length of miRNA. All the code and data are available at https://github.com/ka-
tarinagresova/DeepExperiment. 

2. Materials and Methods 
2.1. Datasets and models 

MiRNA:target site interaction datasets introduced in Klimentova et al., 2022 [28] 
were retrieved from the GitHub repository (https://github.com/ML-Bioinfo-
CEITEC/miRBind, Date accessed: 9.12.2022). Positive miRNA:target interactions origi-
nates from the Helwak et al., 2013 CLASH experiment [29]. Klimentova et al., 2022 stand-
ardized the length of miRNA sequences to 20 nt, anchored by the 5’ end of the miRNA. 
The length of target sequences was standardized to 50 nt by centering and either clipping 
the sequence or extending it using the hyb reference [48]. These processed miRNA:target 
pairs were called the positive dataset. As explained in Klimentova et al., 2022, the negative 
set was constructed by matching real target sequences with random miRNAs from the 
same experiment excluding the miRNA:target pairs from the positive set. 

The trained models introduced in Klimentova et al., 2022 [28], namely miRBind and 
CNN_model_1_20_optimized, were downloaded from the GitHub repository 
(https://github.com/ML-Bioinfo-CEITEC/miRBind, Date accessed: 9.12.2022). Authors 
used a modified version of ResNet [49] as a miRBind architecture and a convolutional 
neural network architecture [50] for the CNN_model_1_20_optimized model. Both mod-
els use a two-dimensional representation of miRNA and the putative target site, in which 
any Watson-Crick binding nucleotide pair is represented by 1, and any non-binding pair 
by 0, as an input. For the miRNA of length 20 nt and target site of length 50 nt, the result 
is a 50x20 two-dimensional matrix of 1s and 0s (Figure 1A). 
2.2. Attribution scores 

The Shapley value [51] is a widely used method for explaining the outputs of a model 
and understanding the relationship between the features of the data and the model's pre-
dictions. By assuming that each feature is a "player" in a game where the prediction is the 
“payout”, the Shapley value provides a fair way to distribute the payout among the fea-
tures. In this paper, we utilized the SHAP explanation method [47] that computes Shapley 
values with one innovation: the Shapley value explanation is represented as an additive 
feature attribution method, a linear model. 

The SHAP explanation method requires a model, a data sample, and a set of back-
ground samples as input parameters. In this study, we selected 100 background samples 
to be optimal in terms of computational time and variation of importance scores (Figure 
S1). The output of the SHAP method is a matrix with the same shape as the input data 
sample. In this study, we used samples in the format of a 50x20 2D matrix of 1s and 0s (as 
proposed by Klimentová et al., 2022 [28], Figure 1A), therefore the output is a 50x20 matrix 
of SHAP values for each pixel in the input sample (Figure 1B). For the positive miRNA:tar-
get pair, the input pixels with assigned positive SHAP value increases the model’s prob-
ability to classify the input as positive and the negative value decreases the probability. 
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We used two implementations of the SHAP method - DeepExplainer and Gradi-
entExplainer - both available at the shap python package 
(https://github.com/slundberg/shap, Date accessed: 9.12.2022). DeepExplainer implemen-
tation builds on a connection with DeepLIFT [45], while GradientExplainer builds on 
ideas from Integrated Gradients [44] and SmoothGrad [52]. 
2.3. Attribution sequence alignment 

The computation of attribution sequence alignment is based on two steps: (1) forward 
pass, where the dynamic programming matrix is filled (Algorithm 1), and (2) backward 
pass, where sequence alignment is computed by finding the highest-scoring path in the 
dynamic programming matrix. Parameters for the forward pass are the scoring matrix 
and opening and elongation penalty. The attribution scores for a given input (computed 
using the method described in section 2.2.) are used as a scoring matrix. Opening and 
elongation penalty score is computed for each alignment separately, based on the values 
in the scoring matrix. The opening penalty is set to the 99th percentile score and elonga-
tion penalty to the 90th percentile score. This setting is highly incentivizing mismatches 
over insertions or deletions and longer bulges over shorter ones. The backward pass is 
computed the same way as in the original algorithm by Smith and Waterman [53]. 

 
Input: gene and miRNA sequences of length M and N, respectively; scoring matrix of shape MxN; 
opening and elongation penalty score. 
Output: Dynamic programming matrix DP. 
1. Initialization: 
2.   reverse the order of gene and miRNA to match the scoring matrix 
3.   remove negative scores from the score matrix 
4.   swap sign of scores for the mismatch positions in the scoring matrix 
5.   add the first row and column of zeros to the scoring matrix 
6.   initialize the first row and column of the DP matrix with zeros 
7. Dynamic programming: 
8.   if last row or column then 
9.       penalty = 0 
10.   else if is opening gap then 
11.       penalty = opening_penalty 
12.   else 
13.       penalty = elonging_penalty 
14.   end if 
15.   for i: 1 to M do 
16.       for j: 1 to N do 
17.           DPi,j = max(DPi,j-1 - penalty,  
                DPi-1,j-1 + score_matrixi,j,  
                DPi-1,j - penalty) 
18.       end for 
19.   end for 

Algorithm 1. Algorithm for computing the dynamic programming matrix for modified semi-global 
sequence alignment. 

The outputs of the attribution sequence alignment algorithm are three sequences 
with the same length: 1) aligned miRNA sequence, 2) aligned binding site sequence, and 
3) sequence of attribution scores for each position in the alignment. The first two se-
quences are obtained from the backward pass of the dynamic programming matrix and 
are describing the interaction base by base. The third part of the output is obtained from 
the interpretation matrix and describes the importance of each position for the interaction. 
For each aligned base pair, the corresponding score is taken from the interpretation ma-
trix, and for the “deletion” or “insertion” the score is set to zero. These outputs can be 
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used to produce a biologically relevant representation of the interaction between the 
miRNA and the binding site, as captured by the model. 
2.4. Importance scores for miR-7 and miR-278 binding 

In vivo experimental mutagenesis data were extracted from Figure 1 from Brennecke 
et al., 2005 [54]. There are two mRNA:target site pairs with the length of 23 and 22 nt, 
respectively. We used the first 20 nt of miRNA sequences (starting from the 5’) and the 
whole target site sequences. Relative reporter activity values for mismatched positions 
were manually extracted from Figure 1C from Brennecke et al., 2005 and are shown in 
supplementary Table S2. This data contains values for positions 1 to 10 and one aggre-
gated value for the 3’ end. 

Importance scores for miR-7 and miR-278 binding sites were computed using the 
miRBind model, Deep SHAP interpretation method with 100 background samples, and 
attribution sequence alignment. We computed importance scores in 10 runs with different 
background samples, demonstrating the variability of the output. The importance scores 
starting from position 11 were averaged into one importance score representing the ag-
gregated value for the 3’ end. 

In-Silico Mutagenesis (ISM) is a common interpretation technique from the group of 
perturbation-based approaches [35,36,39,55–57]. ISM is an alternate feature attribution ap-
proach that involves making systematic mutations to characters in an input sequence and 
computing the change in the model’s output due to each mutation. It is the computational 
analog of saturation mutagenesis experiments [58] that are commonly used to estimate 
the functional importance of each character in a sequence of interest based on its effect 
size of mutations at each position on some functional read-out, making it a good candidate 
for obtaining position importance scores for miR-7 and miR-278 binding sites. We con-
ducted two versions of the ISM interpretation, termed here ISM Full and ISM Brennecke. 
In ISM Full, we systematically mutated each nucleotide in the input miRNA, changing it 
to three other possible nucleotides, and observed the model’s output. We also computed 
the model’s prediction for the original miRNA sequence and used it as a base value from 
which we subtracted the average of the model’s outputs for mutated inputs, resulting in 
an importance score for a given position. In ISM Brennecke, we performed only the mu-
tations as described in Brennecke et al., 2005 Figure 1 and we used changes in the model’s 
outputs as importance scores. 
2.5. Narrowing peaks 

Artificial data with planted seeds were constructed by inserting a seed sequence into 
a background gene. A background gene was created by generating a random RNA se-
quence in which all four bases occurred with equal probability. The first miRNA from the 
Klimentova et al., 2022 evaluation dataset was selected and the 10nt seed region starting 
at the second position was extracted. We calculated the reverse complement of the ex-
tracted seed sequence and planted it into specified positions in the gene to create this ar-
tificial data. Artificial data with stitched binding sites were constructed from the binding 
site from the Klimentova et al., 2022 evaluation dataset. We selected the most abundant 
miRNA sequence and its positive and negative target sequences. Artificial target gene se-
quence was obtained by combining the positive and negative binding site of a given 
miRNA.  

To obtain the model’s output peaks, we used the miRBind model to scan the gene 
sequence using a 50nt window with a step size of 1nt. For each position, we transformed 
the 50nt gene window sequence and the miRNA sequence into a 2D-binding matrix and 
fed it through the miRBind model. The obtained score was added to the overall score for 
all positions in the current window. After computation, the overall score was normalized 
in each position by the number of output scores that were added to that position. 

To obtain peaks using the interpretation of the miRBind model, we scanned the gene 
sequence in the same manner as in the previous method. For each position, we computed 
the model's output score and, if the score was higher than 0.5, we interpreted the model 
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at that position using DeepExplainer, obtaining an attribution matrix with a size of 50 
times length of miRNA. Each position in the attribution matrix was scaled by the model's 
output and added to the corresponding position in the overall attribution matrix. The 
overall attribution matrix had a size of the length of the gene times the length of the 
miRNA. To identify peaks from this matrix, for each position in the gene, we took the 
maximum value in the corresponding column. 

 To compute the alignment of miRNA with its binding site, we first smoothed the 
maximum score obtained from the overall attribution matrix and identified the local max-
ima. The window of size 50nt around the local maxima was extracted from the gene se-
quence and the overall attribution matrix. Attribution sequence alignment method was 
used to compute the alignment and per-nucleotide importance scores in the selected win-
dow. 

 
Figure 1. From the classical neural network to the biologically relevant representation. (a) Outline 
of a DL model workflow. (b) Interpretation method produces attribution scores for each pixel in the 
input. (c) Using the attribution scores to compute the interaction between sequences in the form of 
sequence alignment. In addition, we can compute the importance of each position for the interaction 
and use clustering to obtain interaction classes. 

3. Results 
3.1. Using attribution scores to interpret DL models of miRNA:target prediction 

The main aim of the presented method is the interpretation of DL models which work 
on 2D base pairing representations of miRNA:target site interactions (Figure 1A). Previ-
ously, we have shown that such models outperform traditional ‘seed’ or ‘cofold’ ap-
proaches [28]. Given as input such a trained model on 2D miRNA:target data, we use 
DeepExplainer [47] to calculate attribution scores for each potential interaction on the 2D 
matrix (Figure 1B). We use principles of dynamic programming to calculate an optimal 
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path through the binding and attribution matrices, which is in turn used to align the two 
sequences in a way informed by the attribution scores (Figure 1C). This alignment is in-
terpreting what the trained model has learned, which takes into account several factors 
such as the interaction between the miRNA, the target site, and the AGO protein. Tradi-
tional ‘cofold’ methods lack this information, and although they can produce a similar 
alignment, their predictive value is lower than that of the DL models [28]. In turn, this 
attribution sequence alignment is used to cluster putative binding sites into categories 
based on their predicted mode of binding (Figure 1C). 
3.2. Attribution scores closely correlate to in vivo experimental data 

The interpretation method proposed here can be used to produce per nucleotide im-
portance scores to miRNA sequences within a miRNA:target site interaction. Brennecke 
et al., 2005 [54] performed an in vivo experiment, in which they systematically introduced 
single nucleotide changes in a miRNA target site in order to produce mismatches at dif-
ferent positions of the miRNA:target site duplex. They then observed changes in the re-
pression of the target gene for two miRNA:target site pairs in Drosophila (Figure 2). They 
reported that mutating specific single nucleotides conferred strong reduction in the ability 
of the miRNA to regulate its target. For mir-7 positions 2 to 8 were identified as most 
important, and for miR-278 positions 2-7 from the miRNA 5’ end. 

 
Figure 2. Comparison of relative reporter activity and importance score of Drosophila's miR-7 and 
miR-278. Values from Brennecke et al., 2005 comes from in vivo mutagenesis experiments. Our val-
ues are computed by the attribution sequence alignment method from an interpretation of the 
miRBind model trained on Helwak et al., 2013 Human Ago1 CLASH data. The correlation coeffi-
cient between relative reporter activity and importance score was computed using the Pearson cor-
relation coefficient. 
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We used as input the miRBind model, which has been trained on Human AGO1 
CLASH data, and we implemented three different interpretation methods (a) our attribu-
tion sequence alignment, (b) ISM Brennecke and (c) ISM Full (see Methods for details). 
We computed the importance of each position on the miRNA for the same two 
miRNA:target pairs as in Brennecke et al., 2005. Importance scores from our attribution 
sequence alignment were largely consistent with Brennecke et al’s in vivo assay results 
(Figure 2). Notably, we see that the diminished importance of nucleotide 1 and the 3’ end 
are correctly interpreted by our method, corresponding to the experimental result. The 
interpretation via our method is only as good as the DL model used as input. Any simi-
larities or discrepancies to the experimental data, represent what the DL model has 
learned about the AGO:miRNA:target interaction. Using our method, we can better eval-
uate the consistency of any DL model to this ground truth. 

To compare the three interpretation methods, we computed the Pearson correlation 
coefficient between the experimental results and the importance scores calculated with 
each method based on the same DL model. Table 1 shows that results produced by our 
method positively correlate with the experimental results, while results computed by any 
of the in-silico mutagenesis (ISM) methods correlate less positively, or even negatively. 

Table 1. Comparison of experimentally obtained relative reporter activity values with values from 
three computational methods - our attribution sequence alignment, ISM Brennecke and ISM Full - 
using the Pearson correlation coefficient. 

 Our ISM Brennecke ISM Full 
mir-7 correlation 0.59 -0.09 -0.26 

mir-278 correlation 0.85 NA 0.24 
 

3.3. Identifying interaction classes in CLASH data 
In the seminal CLASH paper [29] miRNA:target site interactions were clustered into 

interaction classes based on a per nucleotide score derived from ‘cofold’ analysis. Five 
classes with different binding profiles were produced, using k-means clustering (k=5). 
Three of these classes (I–III) featured binding between the miRNA seed region and the 
target but differed in the presence and positioning of additional base-paired nucleotides 
within the miRNA. In class IV, binding was limited to a region located in the middle and 
3′ end of the miRNA, denoting non-seed interactions. Class V showed distributed or less 
stable base pairing without either strong seed or 3’ binding. 

We have used the attribution scores produced by our method to reevaluate the rules 
of Ago1:miRNA:target binding learned by miRBind from the CLASH dataset. We calcu-
lated attribution scores for all CLASH interactions, based on the miRBind model, and then 
used k-means clustering (k=5) to reveal five classes of interactions with distinct base-pair-
ing patterns (Figure 3). Class I corresponded to the classical seed binding, while class II 
represented more relaxed seed binding. Classes III and IV showed binding in the middle 
and 3′ end of the miRNA, respectively, while class V showed a distributed base pairing 
pattern. CLASH interactions were almost uniformly distributed among classes, with 4641 
in class I, 4050 in class II, 3403 in class III, 3263 in class IV, and 3156 in class V. 
3.4. Attribution scores narrow down binding site location prediction 

Target site prediction models such as miRBind are able to score miRNA:target site 
interactions of specific short lengths. However, the application of such methods on 
miRNA:target gene prediction is predicated on the ability to ‘scan’ whole transcripts or 
other long RNA sequences. Our method can be used to make such ‘scanning’ more pre-
cise, by narrowing down binding site location. 
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Figure 3. Classes of miRNA:binding site interactions with distinct base-pairing patterns computed 
for the Helwak et al., 2013 CLASH data using the miRBind model, DeepExplainer interpretation 
technique and our attribution sequence alignment method. 

As a proof of concept, we have produced artificial RNA sequences of various lengths, 
with two perfect 10nt miRNA seeds positioned at various distances between them. As a 
baseline, we have used miRBind to ‘scan’ the sequence using a moving window technique 
(see Methods for details). We also used our method to calculate attribution scores per nu-
cleotide for the same sequences. Figure 4 shows the prediction made by each of the meth-
ods, along with the ground truth. The peaks produced by using miRBind scores are in-
deed covering the seed areas, but they are much wider than the actual binding sites. The 
peaks are not centered around the seeds and neither are the local maxima corresponding 
to the seed areas. In contrast, the peaks produced by using the attribution score point di-
rectly to, and are more tightly distributed around, the seed area. 

Further, the attribution score method can be even used to distinguish binding sites 
placed very closely together, for which miRBind model scores would produce only a sin-
gle wide peak (Figure 5). We compared these two models on a dataset in which seeds 
were placed at the exact distances, from 15nt to 50nt apart. The attribution score model 
distinguishes the peaks even when the distance becomes as short as 15nt (Figure S3). 

To verify the results on more realistic data, we produced a sequence constructed from 
positive and negative binding sites of a specific miRNA derived from CLASH data. Again, 
the miRBind model’s output scores are able to roughly point to the positions of positive 
binding sites, but these peaks are wide, spanning more than 50nt. When we compute the 
attribution score and the attribution sequence alignment, we are able to point to the exact 
position of miRNA binding. Moreover, we obtain the importance score for each position 
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in the binding site and visualization of the interaction between miRNA and the binding 
site in the form of a sequence alignment (Figure 6). 

 
Figure 4. Scoring the positions in an artificial gene sequence to find areas with binding sites. The 
ground truth binding sites are shown in gray, with emphasis on the perfect 10nt seed. The scoring 
obtained by scanning the gene with the miRBind model is shown in blue. The scoring obtained by 
scanning the gene with the miRBind model and interpreting it using the DeepExplainer are shown 
in orange. 

 
Figure 5. Scoring the positions in an artificial gene sequence to find areas with binding sites. The 
ground truth binding sites are shown in gray, with emphasis on the perfect 10nt seed. The distance 
between starts of seeds is 25 nucleotides. The scoring obtained by scanning the gene with the 
miRBind model is shown in blue. The scoring obtained by scanning the gene with the miRBind 
model and interpreting it using the DeepExplainer are shown in orange. 

3.5. Versatility of the method 
All previous results were produced using the miRBind trained model and the Deep-

Explainer interpretation method. However, our method is not tied to a specific model or 
interpretation method. To demonstrate this versatility, we used a different model 
(CNN_model_1_20_optimized) and a different interpretation method (GradientEx-
plainer). We computed position importance scores for a single miRNA:binding site pair 
using different combinations of methods as inputs. DeepExplainer could not work with 
the CNN model, due to an implementation problem in its code. This highlights the im-
portance of having a versatile method that can use different DL models, and interpretation 
methods. Our attribution sequence alignment method was able to uncover the underlying 
information learned by both models and show that position importance scores are similar 
in all cases (Figure 7). Corresponding visualizations in the form of sequence alignments 
are shown in supplementary Figure S4. 
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Figure 6. Scanning the gene for potential binding sites using the model’s output score compared to 
using our attribution sequence alignment. Model’s output scores (top row) point only. to the general 
area of binding sites. Attribution sequence alignment scores (bottom row) point to the specific bind-
ing sites, provide importance scores for each position in binding and visualize the interaction be-
tween miRNA and binding site as a sequence alignment. 

 
Figure 7. Comparison of position importance scores computed using the miRBind model or CNN 
model, and using the GradientExplainer or DeepExplainer interpretation technique. Results with 
CNN model and DeepExplainer technique are omitted due to the computational problem in its im-
plementation. 

4. Discussion 
Computational models, especially deep learning models, have become the state of 

the art in classification of miRNA:target pairs. It is becoming increasingly important to be 
able to understand the reasoning behind their predictions. The use of a 2D-binding repre-
sentation to encode interactions between two sequences has been a crucial innovation in 
miRNA:target prediction. Interpretation techniques can use this 2D-binding representa-
tion to produce maps of areas within the input that contribute positively or negatively to 
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a model's decision. However, it can be challenging to identify important biological fea-
tures within this type of representation. For a DL model to be able to advance biological 
knowledge, a biologically relevant representation similar to sequence alignment is neces-
sary. In this paper we introduce a novel interpretation technique called attribution se-
quence alignment which combines the principles of dynamic programming for semi-
global sequence alignment with attribution scores obtained from interpreting a neural 
network trained on a 2D-binding representation. This method allows us to evaluate the 
importance of each individual nucleotide on a miRNA binding site, providing a biologi-
cally relevant representation that can be visualized as a sequence alignment. 

Using this method, we can interpret DL models trained on miRNA:target site inter-
action. Our results correlate with in vivo experimental results and reveal interesting 
trends, such as the lower importance of 3' nucleotides compared to the seed area and the 
low importance of the first nucleotide. However, it should be noted that these scores are 
specific to the model used and may vary with different models. Attribution sequence 
alignment scores can be a useful tool for understanding and evaluating the performance 
of a model, but they should not be considered a validation of the model itself. Further in 
vivo experimental results from systematically mutating miRNA target sites would be use-
ful to calibrate interpretation methods such as ours more thoroughly. 

The first step in any miRNA target prediction program is transcriptome wide scan-
ning for putative miRNA binding sites. These putative miRNA binding sites are further 
combined into a final prediction for each transcript. Using current miRNA:target site tools 
for transcriptome scanning are based on the DL giving a single score to a fixed size moving 
window (50 nt in the case of miRBind model [28] resulting in wide peaks. We demonstrate 
that attribution sequence alignment can be used for narrowing these peaks when scanning 
for binding sites by computing the miRNA:target site attribution sequence alignment and 
assigning per nucleotide importance scores to a long sequence. Our method can provide 
target prediction programs with more specific and detailed information about each po-
tential binding site, allowing it to leverage more information from the experimental data 
that has been encoded in the trained DL model. 

The attribution sequence alignment method can be applied to the field of miRNA 
binding site prediction, as demonstrated by the miRBind model. However, it is not limited 
to this specific model, interpretation technique, or field. It could potentially be used for 
any neural network that has been trained on a 2D-binding representation of sequences, 
and any interpretation technique that produces per-pixel attribution scores. Additionally, 
with some modifications, it can easily be extended to other domains where input se-
quences can be represented by a 2D-interaction matrix, such as protein-protein or protein-
DNA interactions. Importantly, attribution sequence alignment considers only the scores 
from the interpretation matrix, without imposing any additional constraints on the align-
ment. This allows for greater flexibility and adaptability in its use. 

5. Conclusions 
In conclusion, we have introduced a DL model interpretation method that can extract 

biologically relevant information from trained miRNA:target site prediction DL models. 
We have demonstrated that this interpretation method can be used to interpret such mod-
els, as well as to narrow down their predictions on long target sequences. We believe that 
our method can facilitate the use of DL models for miRNA:target gene prediction, as well 
as the extraction of biological insight from DL models. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1, Figure S1: Comparison of the effect of the number of background samples 
on computational time and variation of importance score.; Table S2: Manually extracted values from 
Figure 1C from Brennecke et al., 2005.; Figure S3: Scoring the positions in an artificial gene sequence 
to find areas with binding sites.; Figure S4: Interaction between miRNA and binding site visualize 
as sequence alignment. 
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