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Abstract: Soil moisture modeling is necessary for many hydrometeorological and agricultural 

applications. One of the ways in which modeling of soil moisture (SM) can be improved is by 

assimilating SM observations to update the model states. Remotely sensed SM observations are 

prone to being riddled with data discontinuities, namely in the horizontal and vertical spatial, and 

temporal dimensions. A set of synthetic experiments were designed in this study to assess how 

much impact each of these individual components of spatiotemporal gaps can have on the modeling 

performance of SM as well as streamflow. Results show that not having root-zone SM estimates 

from satellite derived observations is most impactful in terms of modeling performance. Having 

temporal gaps and horizontal spatial gaps in the satellite SM data also impacts modeling 

performance, but to a lesser degree. Real-data experiments with the remotely sensed Soil Moisture 

Active Passive (SMAP) product generally brought improvements to the SM modeling performance 

in the upper soil layers, but not so much in the bottom soil layer.  The updating of model SM states 

with observations also resulted in some improvements in the streamflow modeling performance 

during the synthetic experiments, but not during the real-data experiments. 
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1. Introduction 

Soil moisture is a key variable in both hydrological and atmospheric modeling, as it 

influences the partitioning of water and energy fluxes between the land surface and the 

atmosphere. Accurate knowledge of soil moisture is important for many applications, 

such as numerical weather prediction, climate modeling, flood forecasting, drought 

monitoring and irrigation management [1,2]. While traditional in-situ soil moisture 

measurements may offer more accuracy, the global availability of these measurements is 

rather limited. Even in watersheds where soil moisture measurements are actively being 

taken, the network of point measurement locations is usually sparse, thereby unable to 

provide a proper representation of the spatial variability of soil moisture over larger areas 

[3].    

In recent decades, multiple satellite platforms have started operating that help 

provide soil moisture estimates at a global scale, albeit at a relatively coarse spatial 

resolution and only for the uppermost layer of soil. Some of these remote sensing missions 

are even dedicated to soil moisture, namely the Soil Moisture and Ocean Salinity (SMOS) 

mission [4] and the Soil Moisture Active Passive (SMAP) mission [5]. Both SMOS and 

SMAP missions are using passive L-band (1.4 GHz) microwave radiometers to generate 

surface soil moisture estimates for approximately top 5 cm of soil, at a native spatial 

resolution of around 36 km and a temporal resolution of about 1-3 days [6]. There is also 

the upcoming NASA-ISRO Synthetic Aperture Radar (NISAR) mission [7] to be launched 

in 2023, which will use active L-band (1.26 GHz) backscatter measurements to provide 

global soil moisture estimates at a spatial resolution of 200 m every 6 days.   
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To get soil moisture estimates for both surface and subsurface soil layers (also known 

as root-zone soil moisture or profile soil moisture) with a higher spatiotemporal 

resolution, land surface models or distributed hydrological models can be used. However, 

these modeled estimates can have large uncertainties depending on the source of the 

forcing data, as well as the parameterization and structure of the model itself [8]. It has 

been found that some of these modeling errors can be reduced by integrating remotely 

sensed soil moisture information into the model through the process of data assimilation 

[9-12]. One of the things that can be done using data assimilation techniques is that 

internal model states can be updated with collocated observations in an optimal fashion 

at each observation time step, which may lead to better model prediction at the 

subsequent time steps.  

One of the common practical issues that arise during the assimilation of remotely 

sensed soil moisture data is the question of how to address the spatiotemporal gaps within 

the data [13,14]. The spatial gaps may be split into two categories, gaps in the horizontal 

direction and in the vertical direction. In the horizontal direction, data discontinuity may 

be caused by the soil moisture retrieval algorithms not being able to accurately generate 

an estimate over some grid cells due to dense vegetation, hilly terrain, frozen soil, radio 

frequency interference etc. [15,16]. Also, especially in the case of data assimilation in 

models representing larger watersheds, it is probable that when a satellite passes over the 

watershed, its viewing angle does not cover the whole watershed, thus leaving a spatial 

gap in the soil moisture map for that overpass [17,18]. As for the gaps in the vertical 

direction, since passive microwave sensors are only effective at estimating soil moisture 

of the uppermost layer of soil, the root-zone layer of hydrological models cannot be 

updated directly using remotely sensed soil moisture estimations. Finally, the temporal 

gaps in remotely sensed soil moisture datasets are due to the geometry of the satellite 

orbits, which lead to longer revisit times over any specific location.  

When sequential data assimilation methods are used, for example the Ensemble 

Kalman Filter (EnKF) [19], no additional steps are needed on account of the temporal gaps, 

because these methods pause the model simulation to make an update only when 

observations become available, and then resume the simulation until the next set of 

observations are available. Next, the issue of not having root-zone soil moisture 

observations during data assimilation can be dealt with in multiple ways. The simplest 

approach is to update the surface layer of the model with corresponding surface layer soil 

moisture estimates from remote sensing, and let the model propagate this added 

information downwards to the root-zone layer through the inherent model physics [20-

22]. Results from these studies show that it is possible to improve soil moisture simulation 

of both layers by updating only the surface layer. Another approach is to apply an indirect 

update to the root-zone layer of the model, based on the update increment applied to the 

surface layer and the covariance between the soil moisture of different layers [23-25]. 

These studies show that the simulated soil moisture at varying depths can be improved 

by using this approach. When using the EnKF for example, this can be accomplished by 

including the root-zone layer in the state vector to be updated, in addition to including 

the surface layer.  

The root-zone layer can even be directly updated along with directly updating the 

surface layer, if corresponding root-zone layer estimates based on remotely sensed surface 

layer measurements are generated prior to performing data assimilation (to be assimilated 

as ‘observations’), using methods like the Soil Moisture Analytical Relationship (SMAR) 

or the exponential filter [26-27]. Some studies have even assimilated root-zone soil 

moisture data that have been previously generated using other land surface models, such 

as the publicly available H-SAF SM-DAS-2 product, produced by assimilating ASCAT soil 

moisture data into the ECMWF Land Data Assimilation System and distributed by the 

European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) 

[28]. Even though the results from these studies too are positive, it is not quite clear which 

of the three abovementioned approaches are more effective given that usually only a 

single approach is employed in a single study.  
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Similar to the issue of whether and how to update the root-zone soil moisture, 

multiple approaches can be investigated when the remotely sensed soil moisture maps 

used in data assimilation are spatially incomplete in the horizontal direction. This may be 

less of a concern when lumped or semi-distributed models are used [29,30], because in 

this case, the irregularly shaped basin of the model is more likely to be larger in area than 

the spatial resolution of the observation data, thereby necessitating the averaging of 

multiple observation grid cells. So, it will still be possible to update the model state if 

observed data of a few grid cells are missing. But for finer resolution distributed 

hydrological models or land surface models whose grid spatial resolution is closer to that 

of the remotely sensed observations, this problem of having horizontal spatial 

discontinuity needs to be addressed before performing data assimilation. The simplest, 

and most commonly used approach is to update only the grid cells for which observations 

are available and let the remaining grid cells retain their model simulated values [31-33]. 

Alternatively, the soil moisture state of an unobserved grid cell may also be updated if 

other nearby grid cells have observations available and are correlated with the 

unobserved grid cell [25,34,35]. This approach is similar to the covariance-based approach 

described previously for vertical spatial gaps. It is also possible to estimate the soil 

moisture of unobserved grid cells prior to data assimilation using methods like 

geostatistical modeling, and then use these estimates as ‘observations’ for data 

assimilation [17]. 

All these methodologies that account for missing data in the horizontal spatial 

direction during data assimilation are shown to be able to improve modeling performance 

when compared to modeling performance without data assimilation. However, data 

assimilation studies are hard to find in the literature where the impacts of having spatial 

data discontinuities in both the horizontal and vertical directions of remotely sensed soil 

moisture, as well as temporal data gaps, are assessed within the same modeling 

framework. Looking at all these aspects of data discontinuity using the same model, 

datasets and study area will make it easier to compare which kind of data gap is more 

detrimental to modeling performance, and which kind of modeling approach is better 

suited to circumvent this problem of missing data. This study was therefore aimed at 

adding to the existing literature on this topic by carrying out multiple synthetic data 

assimilation experiments using the EnKF algorithm and the WRF-Hydro modeling 

system, to investigate how the ability of the model to simulate soil moisture may be 

affected by having spatiotemporal gaps in the observation data. To do this, spatiotemporal 

discontinuity information was extracted from SMAP datasets and then imposed on 

synthetically generated observation datasets to mimic the conditions found in actual 

remotely sensed datasets. The impact of these different soil moisture assimilation 

scenarios on the model’s ability to accurately simulate streamflow was also investigated. 

Lastly, the data assimilation experiments were repeated with SMAP data as observations 

instead of synthetic observations. 

2. Materials and Methods 

2.1. Study Area 

 

The 721-km long Susquehanna River is situated in the Northeastern United States, 

and its 71,432 km2 drainage basin covers parts of the New York (NY), Pennsylvania (PA), 

and Maryland (MD) states [36]. With a mean annual flow of around 1,100 m3/s, it drains 

into the Atlantic Ocean through the Chesapeake Bay, and accounts for about 50 % of the 

freshwater inputs of the bay [37].  

The Susquehanna River basin has a humid continental climate with a mean annual 

temperature of 9.7 °C and mean annual precipitation of 980 mm. The warmest months are 

June to August, and coldest months are January and February. As for precipitation, the 

highest amounts are seen in May to July, and lowest amounts in January and February. 

During winter months, snowfall occurrences are more prominent in the northern portion 
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of the watershed. And in the summer, higher temperatures are common along with locally 

intense convective storms. While in the late summer to fall seasons, the watershed 

becomes prone to floods brought about by tropical storms and hurricanes originating in 

both the Atlantic Ocean and the Gulf of Mexico [36,37]. Droughts have also affected the 

watershed in the past, although with a lesser frequency than floods [38].  

The physiography of the watershed includes high plateaus, mountains, valleys, and 

ridges, and the soils of the watershed are predominantly silt loam and loam. The most 

common land cover category is forest (63 %), followed by cropland (19 %), pasture (7 %) 

and urban development (9 %) [36]. There are multiple large water infrastructures near the 

downstream end of the watershed, namely the Safe Harbor Dam, Holtwood Dam, and the 

Conowingo Dam. To avoid the complexities that would arise if these dams were 

incorporated into the hydrological model, only the drainage area upstream of Harrisburg, 

PA was considered for this study, whose area is about 60,600 km2 (Figure 1). 

 

Figure 1. Topography of the Susquehanna River watershed and the locations of the in-situ 

streamflow and soil moisture measuring stations. The complete watershed is shown in red, and the 

modelled portion of the watershed is shown in blue which excludes the large downstream dams. 

For the purposes of model parameter calibration and data assimilation performance 

assessment, in-situ measurements of soil moisture at different soil depths were collected 

from the International Soil Moisture Network (ISMN) database [3]. A total of four stations 

were selected, two of which (Geneva, NY and Rock Springs, PA) are part of the Soil 

Climate Analysis Network (SCAN) [39] and the other two (Ithaca, NY and Avondale, PA) 

are part of the U.S. Climate Reference Network (USCRN) [40]. All these measurement 

stations use Stevens HydraProbe sensors to measure soil moisture at 5, 10, 20, 50 and 100 

cm soil depths. It should be noted that three out of these four in-situ stations are located 

outside of the Susquehanna River watershed’s boundary. This did not pose any problems 

because they are still located within the land surface model (LSM) domain as shown in 

Figure 1. The LSM used for this study utilizes square grids to discretize a larger 

rectangular domain, and therefore all the grid cells within the LSM domain were included 

in the calibration process and provided soil moisture estimates during the assimilation 
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experiments. However, when quantifying basin-averaged soil moisture modelling 

performance later in the Results and Discussion section, grid cells outside of the modelled 

basin boundary were masked out.   

In-situ measurements of streamflow were also collected for model parameter 

calibration, data assimilation performance assessment, and to help select the timeframes 

of model calibration/validation and assimilation experiments. The locations of these 

selected United States Geological Survey (USGS) measurement locations are shown in 

Figure 1, which are in Vestal, NY, Lock Haven, PA, Sunbury, PA, and Harrisburg, PA. 

2.2. Hydrological Modeling 

The WRF-Hydro modeling system [41], developed by the National Center for 

Atmospheric Research (NCAR), is a fully distributed system that consists of multiple 

modules, namely a column land surface module, surface overland and saturated 

subsurface lateral flow modules, channel routing and reservoir routing modules, and a 

conceptual baseflow module. The Noah-MP option [42] was selected for the column land 

surface module. Soil moisture was simulated in Noah-MP for four soil layers, having a 

total thickness of 200 cm. The thicknesses of the individual layers were defined to be 5, 35, 

60 and 100 cm. The thickness of the top layer was chosen to be 5 cm to be compatible with 

remotely sensed soil moisture estimates. These thicknesses were uniform throughout the 

model domain.  

It is possible to keep some of the other WRF-Hydro modules switched off, but all of 

them were activated for this study so that both soil moisture and streamflow are 

simulated. This way, the impact of updating soil moisture values on streamflow 

generation can be investigated, which is caused by the propagation of assimilated 

information through the lateral surface and subsurface terrain routing, and channel 

routing of water. The subsurface runoff in WRF-Hydro uses a quasi-3D flow equation as 

implemented in the Distributed Hydrology Soil Vegetation Model (DHSVM), the surface 

runoff calculation uses a fully unsteady diffusive wave formulation, and a one-

dimensional, variable time-stepping, diffusive wave gridded routing method was used 

for channel routing. Readers are referred to [41] for complete technical descriptions of 

WRF-Hydro. 

  To set up the model domain for the study area, soil texture information was 

collected from the 16-category hybrid STATSGO/FAO soil texture map produced by 

NCAR, the land use information was that of the 20-cateory IGBP-modified MODIS land 

use dataset, and the 30 arc-second version of the HydroSHEDS data was used as elevation 

information. A 5-km grid size was chosen for the column land surface module and a 1-km 

grid size was used for the terrain routing and channel routing modules. The decision to 

use these horizontal resolutions was made based on a trade-off between satisfactory 

model performance and trying not to overwhelm available computing resources, as WRF-

Hydro is a computationally intensive modeling system. As for the time steps of the 

different model components, the land surface module was run hourly, and both the 

terrain and channel routing modules had a time step of one minute.  

WRF-Hydro was initially developed for easy coupling with the Weather Research 

and Forecasting (WRF) atmospheric modeling system [43], but it can also be used in an 

offline mode, i.e., not coupled with any atmospheric model. In this case, the 

meteorological forcings from any independent source need to be provided to WRF-Hydro, 

which are the incoming shortwave and longwave radiation, specific humidity, air 

temperature, surface pressure, near surface wind in two orthogonal directions, and liquid 

water precipitation rate. For this study, these meteorological data were sourced from the 

ERA5 reanalysis product [44]. ERA5 datasets are generated by the European Centre for 

Medium-Range Weather Forecasts (ECMWF) using their Integrated Forecast System (IFS), 

which combines model data with observations through a 4D-Var data assimilation 

scheme. The 10-member ensemble version of ERA5 was used for this study, which has a 

temporal resolution of 3 hours and a spatial resolution of 0.5 decimal degrees.  
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Prior to using the WRF-Hydro model for data assimilation experiments, the model 

was calibrated against in-situ soil moisture and streamflow data using the Pareto 

Archived Dynamically Dimensioned Search (PADDS) algorithm [45]. PADDS is the multi-

objective version of DDS [46], which is a stochastic and heuristic global-search 

optimization algorithm. For single-objective problems, DDS starts searching for the 

optimum globally, and then narrows its search to local regions when the user-specified 

maximum number of model iterations is approaching. In the case of multi-objective 

calibration, PADDS tries to define the Pareto front between the objective functions, on 

which improving one objective function deteriorates the other(s). For this study, the 

hypervolume contribution selection metric was used in PADDS, and the neighborhood 

perturbation factor was set to the recommended default value of 0.2. 

2.3. Remotely Sensed Soil Moisture 

SMAP soil moisture data was used in this study for direct assimilation during the 

real-data experiments, as well as for using the spatiotemporal gap patterns of this dataset 

during the synthetic experiments. Specifically, the version 4 of SMAP Enhanced L2 

Radiometer Half-Orbit 9 km EASE-Grid Soil Moisture was used. This dataset, provided 

by the National Aeronautics and Space Administration (NASA), has a 13-hour latency, 

and has the unit of volumetric soil moisture, which is the same as the WRF-Hydro model 

soil moisture outputs. Data from only the descending pass of the satellite orbits were used 

in this study, which has a retrieval time of 6 am (local time). The soil moisture retrieval 

algorithm assumes the surface soil, vegetation, and air to be in thermal equilibrium in the 

early morning, and so the morning retrievals are expected to be of slightly better quality.  

 

Figure 2. Spatiotemporal gaps in SMAP data over the study area from 1st June 2018 to 15th June 2018. 

All the assimilation experiments were conducted for the summer-fall months to 

avoid the winter months where frozen soil and snow cover make it challenging to estimate 

soil moisture from satellites, and to avoid the spring months when soil moisture 

assimilation may have a lesser impact on snowmelt-driven streamflow. Therefore, 

filtering the SMAP data for snow covered or frozen soil conditions was not necessary. To 

illustrate the patterns of spatiotemporal gaps in the SMAP dataset, soil moisture maps 

over the study domain are presented in Figure 2 for the first 15 days of June 2018. When 

horizontal spatial coverage within the watershed boundary is considered, some days 

there is full coverage, some days have zero coverage, and some days have partial 

coverage. Within the experiment months of June-October, about 38 % of days have full 
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coverage, another 38 % have zero coverage, and the remaining 24 % of days have partial 

coverage. 

2.4. Data Assimilation 

2.4.1. Ensemble Kalman Filter (EnKF) 

The EnKF was chosen as the preferred data assimilation method in this study because 

it was found to be the predominant method of choice in the existing soil moisture 

assimilation literature. This is so because the EnKF is well suited for high dimensional 

nonlinear problems, is computationally efficient and easy to implement albeit with a 

limitation of Gaussian error assumption [47]. Alternatives to EnKF include the Particle 

Filter (PF) which does not require any assumptions of Gaussian error and sometimes even 

slightly outperform EnKF. However, it is possible for PF to underperform EnKF and be 

generally comparable to EnKF at other times, all the while carrying a larger computational 

burden, leading to fewer users [48,49]. 

EnKF is a Monte Carlo based approach that allows model uncertainties to be 

estimated from a model ensemble spread that is assumed to be large enough to represent 

the true uncertainty of the simulation [50]. It works in two steps: a forecast step, and an 

analysis step. In the forecast step, ensembles are generated by either perturbing the forcing 

data, model states, model parameters, or any combination between them. Then the model 

is propagated to a future time step where observations are available. In the analysis step, 

uncertainty between the ensembles of model forecast and the observation is compared. If 

it is a state-updating scheme, then the model state at time t will be updated using the 

following equation, which gives more weight to the component between the model 

forecast and observation that has the least uncertainty: 

𝑥𝑡
𝑎 =  𝑥𝑡

𝑏 + 𝐾𝑡(𝑦𝑡 − 𝐻𝑡𝑥𝑡
𝑏), (1) 

where 𝑥𝑡
𝑎 is the updated state (a.k.a. analysis), 𝑥𝑡

𝑏 is the forecast state (a.k.a. background), 

𝐾𝑡 is the Kalman gain, 𝑦𝑡  is the observation, and 𝐻𝑡  is the observation operator. The 

analysis, background and observation operator took different forms in this study (either 

scalar, vector, or matrix) depending on the different scenarios and will be discussed in the 

subsequent section. The Kalman gain, which acts as a weighted average between the 

model forecast and the observation, is computed as follows: 

𝐾𝑡 =  𝑃𝑡
𝑏𝐻𝑡

−1(𝐻𝑡𝑃𝑡
𝑏𝐻𝑡

−1 + 𝑅𝑡)−1, (2) 

where 𝑅𝑡 is the observation matrix, and 𝑃𝑡
𝑏  is the model covariance matrix, which is 

calculated as: 

𝑃𝑡
𝑏 =  

1

𝑁−1
(𝑥𝑡

𝑏 − 𝑥𝑡
𝑏̅̅ ̅)(𝑥𝑡

𝑏 − 𝑥𝑡
𝑏̅̅ ̅)−1, (3) 

where N is the number of ensemble members and 𝑥𝑡
𝑏̅̅ ̅ is the ensemble mean of the 

background. 

The model forecast uncertainties can be thought of to be primarily coming from the 

forcing data, model parameter and model structure. The variability within the 10-member 

ensemble of the ERA5 forcing data are assumed to contain a sufficient amount of forcing 

uncertainty. The remaining two categories of uncertainty, model parameter and structure, 

are represented jointly in this study by directly perturbing the soil moisture in the model 

background. All the experiments in this study were conducted with 24 ensemble members 

generated by combining the different sources of uncertainties together as follows.  

First, nine out of the 10 ensemble members of ERA5 forcings (the tenth member was 

set aside to be used as synthetic truth, which is explained further in the next section) were 

duplicated into 24 members, of which only nine are unique members. Using these 24 

forcing members to run the model 24 times provided a 24-member ensemble of soil 

moisture states, of which again only nine are unique members, and the rest are duplicates 

of those nine. Next, the soil moisture states of each of these 24 members were perturbed 

with unique random noise, leading to a model background of 24 unique members. As 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 December 2022                   doi:10.20944/preprints202212.0349.v1

https://doi.org/10.20944/preprints202212.0349.v1


 

 

perturbations, temporally and spatially uncorrelated additive Gaussian noise was used 

having a zero mean and standard deviation of 0.05 m3/m3. This value was decided upon 

after multiple trials to determine what magnitude of noise leads to maximum post-

assimilation improvement in terms of root-mean-squared-error (RMSE).  

For the synthetic experiments, the soil moisture observation uncertainty was 

estimated using a temporally and spatially uncorrelated zero mean Gaussian distribution 

having a standard deviation of 0.04 m3/m3, mirroring the baseline science requirements of 

the SMAP mission [5]. And for the real-data experiments, observation uncertainty was 

estimated using the triple collocation analysis method, which is discussed in Section 2.4.3. 

Also, all assimilation experiments had a lead time of 24 hours i.e., the model propagations 

were paused at 6 am (local time) every day to calculate the analysis only if observations 

were available, thereby coinciding with the time of SMAP data retrievals. Experimental 

model runs were commenced separately for 2018 (which had a relatively wet summer-fall 

season) and 2020 (a drier than average summer-fall season), with each simulation 

spanning from June 1st to October 31st of the corresponding year. 

2.4.2. Synthetic Experiments 

 

Figure 3. Flowchart describing the design of the synthetic experiments. 

A set of synthetic experiments, a.k.a. Observation System Simulation Experiments 

(OSSE), were designed for this study, where assimilation was performed not with soil 

moisture observations from the real world, but rather with synthetically generated 

observations. The overall methodology of generating these synthetic observations and 

applying them in the EnKF is presented in Figure 3. First, the WRF-Hydro model was run 

with forcings from nine out of the 10 ERA5 ensemble members, generating nine 

projections of soil moisture to be used as the ‘open loop’, i.e., what happens if the model 

is run without any data assimilation. Next, the WRF-Hydro model was run with the 

remaining tenth member of the ERA5 forcings, generating another projection of soil 

moisture, which was considered to be the ‘synthetic truth’. The goal of all the synthetic 

experiments was to apply EnKF in order to guide the open loop simulations closer to this 

synthetic truth.  

In the natural world, these true values are never accurately known, because all 

observations are always prone to some type of error such as instrument error or operator 

error. Therefore, random Gaussian noise was added to this synthetic truth soil moisture 

(as described in the previous section) to prepare it for using as a synthetic observation for 
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the assimilation experiments. The EnKF algorithm then compared between the 

uncertainties of this synthetic observation and the model forecast uncertainties (as 

described in the previous section) to determine the final post-assimilation soil moisture. 

It should be pointed out that both the open loop and post-assimilation simulations have 

multiple ensemble members (nine and 24 respectively) while the synthetic truth has only 

a single member. Therefore, to consistently evaluate between the three types of data, only 

the ensemble mean of the open loop and post-assimilation soil moisture data was 

considered. 

 

Figure 4. Different spatial configurations of soil moisture assimilation tested in this study. 

A total of seven different scenarios were tested to investigate the impacts of 

spatiotemporal gaps in observed data on assimilation performance, by comparing these 

scenarios with the open loop (no assimilation) model runs. The spatial configurations of 

these scenarios are visualized in Figure 4. Scenario-1 is the most ideal situation, where 

observed data is available for all model grid cells in all soil layers. Also, data is available 

every day, i.e., there are no temporal gaps. Scenario-2 also has no temporal gaps and has 

observed data available for all model grid cells, but only for the topmost soil layer. This 

scenario is more realistic than Scenario-1 because satellite sensors are unable to detect soil 

moisture of root-zone layers. Scenario-3 is spatially similar to Scenario-2, the only 

difference being that temporal gaps are introduced here. This was done by not performing 

assimilation on any model grid cell during the days on which there are no SMAP data 

over the entire model domain. This scenario is intended to isolate the impacts of having 

temporal gaps in data, from the impacts of spatial gaps. 

From Scenario-4 onwards, both spatial and temporal gaps available in the SMAP 

dataset were superimposed on the synthetic observations, by assuming that grid cells 

which do not have SMAP observations on a particular day, does not have synthetic 

observations either. In Scenario-4 only those grid cells were updated with synthetic 

observations, for which SMAP data is available in the corresponding day. In Scenario-5 

on the other hand, some of the top layer grid cells without available observations were 

updated as well. This was accomplished using the following technique. In Scenarios 1-4, 

assimilation was point-based or zero-dimensional i.e., each grid cell of each soil layer was 

updated separately and independently. In other words, the background matrix 𝑥𝑡
𝑏 and 

observation matrix 𝑦𝑡  contained the soil moisture value of only one grid cell, and therefore 
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the observation operator took the form of a scalar, 𝐻𝑡  = 1. In Scenario-5 however, 

assimilation was performed two-dimensionally (in two of the horizontal directions). 

For example, if a grid cell has no observation but three of its surrounding grid cells 

do, then the background matrix will have four components: soil moisture of the grid cell 

to be updated and those of the surrounding three grid cells. The observation matrix will 

have only three components, as the grid cell to be updated does not have any 

observations. And the observation operator will be the 3x4 matrix, 𝐻𝑡  = [0 1 0 0; 0 0 1 0; 0 

0 0 1]. By setting up the matrices this way, the grid cell with missing observation will be 

updated based on the covariance between it and the surrounding three grid cells as 

calculated in Equation (3). It was determined through trial-and-error that the optimum 

number of surrounding grid cells to be utilized for this approach is a maximum of five 

grid cells having the same land use category and located within a radius of 25 km from 

the grid cell to be updated. Putting a constraint on the location of the utilized surrounding 

grid cells in this way, a.k.a. localization, helps prevent grid cells to be updated through 

spurious correlations between faraway grid cells [51]. It should be noted this led to some 

of the top layer grid cells not being updated as they did not have any available 

observations within a 25 km radius. 

In Scenario-6, only for the grid cells that have observations available, a one-

dimensional assimilation (in the vertical direction) approach was taken to update all four 

soil layers based on the correlation between the soil moisture of the top and bottom layers. 

In this case, the background matrix contained four components: soil moisture of the four 

soil layers, and the observation matrix had only one component: the observation at the 

top layer. The observation operator becomes the following vector in this case, 𝐻𝑡  = [1 0 0 

0]. Finally, Scenario-7 combines both the approaches of Scenario-5 and Scenario-6. For top 

layer grid cells in which observations were available, one-dimensional assimilation was 

carried out on all four soil layers of those grid cells the same way as described for Scenario-

6. Otherwise, for top layer grid cells that did not have corresponding observations but 

some of its surrounding grid cells within 25 km did have observations, a three-

dimensional approach (two horizontal directions and one vertical direction) was 

undertaken. The background matrix in this case will have (assuming only two 

surrounding top layer grid cells have observations in this example) six components: soil 

moisture of all four layers of the grid cell to be updated, and surface soil moisture of the 

two surrounding grid cells that have observations. The observation matrix will have two 

components: observation over the two selected surrounding grid cells. And the 

observation operator will be the 2x6 matrix, 𝐻𝑡  = [0 0 0 0 1 0; 0 0 0 0 0 1].  

To summarize the scenarios, Scenario-1 represents the configuration which may 

theoretically provide the maximum benefit from data assimilation (in terms of 

improvement of soil moisture simulation accuracy compared to the open loop), because 

synthetic observations are available over all layers in all grid cells to guide the model 

towards the synthetic truth. Scenarios 2-4 represent the gradual loss of this benefit due to 

not having observations for bottom layers, and the introduction of spatiotemporal gaps in 

the top layer observations. Finally, Scenarios 5-7 are meant to represent how much of these 

lost benefits in Scenarios 2-4 relative to the hypothetical optimum of Scenario-1, can be 

recovered through the application of the abovementioned technique of utilizing the 

covariance matrix of EnKF. 

2.4.3. Real-data Experiments 

In addition to all these synthetic experiments where the WRF-Hydro model was 

updated with synthetic observations of soil moisture with a goal of reaching closer to the 

synthetic truth, some real-data experiments, a.k.a. Observation System Experiments (OSE) 

were also performed where the WRF-Hydro model was updated with SMAP observations 

with a goal of reaching closer to the in-situ soil moisture observations. Some of the major 

differences between the synthetic and real-data experiments are as follows. In the case of 

real-data experiments, only Scenarios 4-7 were performed, because the observed data of 

all layers over all domain grid cells for every day which are required for Scenarios 1-3, is 
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not possible to be provided by SMAP. Also, during the synthetic experiments, 

assimilation performance was measured for all model grid cells because of the availability 

of synthetic truth data over all model grid cells. But in the case of real-data experiments, 

the assimilation performance was calculated only for four grid cells over which in-situ 

data was available. 

Furthermore, the SMAP data was taken through a few pre-processing steps before 

being used for data assimilation purposes. First, the 9 km horizontal resolution of the 

dataset was resampled into 5 km using the nearest neighbor method, to match with the 

resolution of the model. Next, the SMAP data was rescaled to the model space (a.k.a. bias 

correction) by using a cumulative distribution function (CDF) matching method [52]. This 

is intended to correct any climatological differences between the SMAP data and the 

modelled soil moisture, because the EnKF can adjust random errors only and not 

systematic biases [53,54].  

Lastly, the uncertainty information of the SMAP data, which is required for EnKF, 

was estimated using the triple collocation analysis method [55].  The calculation of error 

variance of the SMAP observations by triple collocation analysis requires collocated data 

from three independent datasets or triplets. The two other datasets used in this study in 

addition to SMAP were the ensemble mean of open loop model simulations and the SMOS 

L2 soil moisture product. The open loop data was chosen as the reference data for triple 

collocation analysis, meaning that the errors will be estimated in the model space. The 

benefit of choosing SMOS as the third dataset is that SMAP and SMOS data are both 

distributed in the same units of volumetric soil moisture, and so an additional step of unit 

conversion could be avoided. SMOS data also satisfy the independence requirement of 

triple collocation, as SMAP and SMOS retrievals are based on different algorithms applied 

on information from different satellites. And like the SMAP data, the SMOS data too was 

rescaled to the reference data using CDF matching to ensure that the errors of the triplets 

were unbiased relative to each other. The errors for the SMAP data were estimated for 

each grid cell separately, and the errors were assumed to be time-invariant considering 

the limited seasonal nature of this study. 

3. Results and Discussion 

3.1. Model Calibration and Validation 

Calibration of the model parameters are not essential for conducting synthetic 

experiments because all the observations are synthetically generated using the model 

itself. But for setting up the real-data experiments where real observations will be 

assimilated into the model to get the model to behave more like the real world, it helps if 

the model parameters are tuned so that the model simulated soil moisture is as close to 

the in-situ soil moisture as possible. The aim of data assimilation would then be to 

improve the simulations further than what parameter calibration alone could achieve.  

Calibrating the model for such a large watershed with in-situ soil moisture 

information from only four locations is a challenge, and so a multi-objective calibration 

approach was chosen to increase the robustness of the calibration process, where the 

model parameters were calibrated against both in-situ soil moisture and streamflow 

observations. An additional benefit of calibrating against streamflow is that the impact of 

soil moisture assimilation on the generation of streamflow could then be better analyzed. 

To reduce the risks of equifinality by calibrating a smaller set of model parameters, a 

sensitivity analysis was first performed on different model parameters of WRF-Hydro. 

This led to the choosing of the following four most influential parameters for calibration: 

soil porosity (MAXSMC), deep drainage coefficient (SLOPE), lateral saturated soil 

hydraulic conductivity (LKSATFAC), and slope of conductance to photosynthesis 

relationship (MP). These four parameters were automatically calibrated using 400 

iterations of the PADDS algorithm. A two-year spin-up period was added to the different 

calibration and validation periods as mentioned above.    

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 December 2022                   doi:10.20944/preprints202212.0349.v1

https://doi.org/10.20944/preprints202212.0349.v1


 

 

At the outlet of the modelled portion of the watershed, Harrisburg, it was found that 

in the decade to 2020, the mean summer-fall flows (averaging all the mean daily flows 

within June to October) ranged from 245 m3/s to 1,699 m3/s, with a 10-year average of 680 

m3/s. Only two of the years within the decade stand out as wet outliers, 2011 (annual 

maximum daily flow of 16,357 m3/s) and 2018 (annual maximum daily flow of 8,603 m3/s). 

In the wettest year of 2011, Tropical Storm Lee resulted in a 100-year return period flood. 

As soil moisture data assimilation has the potential to improve peak-flow simulation 

depending on how well the antecedent soil wetness is represented, it was decided that 

one of the wet years would be used for the assimilation experiments.  

Table 1. Calibration and validation performance of the model in terms of correlation coefficient (R), 

unbiased root-mean-squared-error (ubRMSE), bias, and Nash-Sutcliffe efficiency (NSE). 

 Calibration (2011/wet year) Validation (2018/wet year) Validation (2020/dry year) 

 Soil Moisture Flow Soil Moisture Flow Soil Moisture Flow 

 
R 

ubRMSE 

(m3/m3) 

Bias 

(m3/m3) 
NSE R 

ubRMSE 

(m3/m3) 

Bias 

(m3/m3) 
NSE R 

ubRMSE 

(m3/m3) 

Bias 

(m3/m3) 
NSE 

Layer 1 0.81 0.056 0.092 

0.78 

0.68 0.041 0.071 

0.77 

0.57 0.053 0.062 

0.71 Layer 2 0.84 0.048 0.103 0.68 0.037 0.064 0.75 0.042 0.079 

Layer 3 0.75 0.026 0.062 0.63 0.027 0.054 0.64 0.021 0.044 
 

Since any year prior to 2015 could not be used for the data assimilation experiments 

(the SMAP data used in this study is available from 2015), the wettest year of 2011 was 

chosen for model calibration and the second wettest year of 2018 was chosen for both 

model validation and data assimilation experiments. The calibration/validation 

performances are presented in Table 1. The modeling performance of soil moisture 

compared against the in-situ observations are presented in terms of correlation coefficient 

(R), unbiased root-mean-squared-error (ubRMSE), and bias. Also, the values presented in 

Table 1 are the averaged values of four grids where in-situ data is available. The modeling 

performance of streamflow is presented in terms of Nash-Sutcliffe efficiency (NSE) 

calculated at Harrisburg, the basin outlet. Even though the model was calibrated for a wet 

year, it was found that the validation performance on a dry year (2020) was comparable 

to the validation performance on a wet year (2018). Thereafter it was decided to run the 

assimilation experiments on a dry year (2020) as well. 

3.2. Synthetic Experiments 

Spatially averaged (over the watershed) and temporally averaged (over June-

October) improvements brought about by data assimilation are presented in Figure 5. 

Here, improvements in three evaluation metrics (ubRMSE, R, bias) are shown in terms of 

the difference between the values of those metrics during open loop model runs and the 

values of those metrics after assimilation. As intuitive, Scenario-1, where soil moisture of 

all grid cells in all soil layers were updated with respective observations every day, has 

the largest improvements out of all seven. In 2018, the layer-averaged improvements 

(defined as the average improvement of all four soil layers) for Scenario-1 are 0.0016 m3/m3 

(ubRMSE), 0.025 (R) and 0.001 m3/m3 (bias). For the rest of the scenarios, the layer-

averaged improvements are presented here in the following text as a percentage of the 

maximum Scenario-1 layer-averaged improvements, instead of in their original units as 

shown in Figure 5. 
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Figure 5. Basin-averaged soil moisture improvements in all scenarios for 2018 (left) and 2020 (right). 

In Scenario-2, where soil moisture of all grid cells in only the surface soil layer was 

updated every day, the layer-averaged improvements are 31 % (ubRMSE), 35 % (R) and 

38 % (bias) of the layer-averaged improvements that were achieved for Scenario-1 in 2018, 

and 48 % (ubRMSE), 51 % (R) and 56 % (bias) in the case of 2020. In Scenario-3, which is 

the same as Scenario-2 except that SMAP derived temporal gaps were introduced, the 

layer-averaged improvements drop further to 21 % (ubRMSE), 23 % (R), and 25 % (bias) 

of Scenario-1 in 2018, and 38 % (ubRMSE), 39 % (R), and 43 % (bias) in 2020.  

In Scenario-4, where SMAP-derived horizontal spatial gaps were introduced in 

addition to SMAP-derived temporal gaps, the layer-averaged improvement is reduced 

even more to 18 % (ubRMSE), 20 % (R), and 22 % (bias) of Scenario-1 in 2018, and 35 % 

(ubRMSE), 34 % (R), and 38 % (bias) in 2020. To summarize, compared to the theoretical 

maximum improvements that can be achieved by Scenario-1, a substantial amount of that 

improvement is lost when the lower model soil layers are not updated. The second largest 

reduction in assimilation performance happens when the grid cells are not updated every 

day. And lastly, horizontal spatial gaps cause an even smaller amount of reduction.   

So far Scenario-4 is the most realistic configuration, because remotely sensed soil 

moisture observations also suffer from missing data in vertical, horizontal, and temporal 

dimensions. And as previously discussed, a common workaround to this problem in the 

context of data assimilation is to update the unobserved model grid cells based on the 

covariance between soil moisture of the unobserved and nearby observed grid cells. 

Doing this in Scenario-5 only for the horizontal spatial dimension increases the layer-

averaged improvements up to 20 % (ubRMSE), 21 % (R), and 24 % (bias) of Scenario-1 

levels in 2018, and 37 % (ubRMSE), 36 % (R), and 41 % (bias) in 2020. In Scenario-6, where 

the covariance matrix of EnKF was used to update unobserved grid cells of lower soil 

layers instead of the surface soil layer, layer-averaged improvements are 44 % (ubRMSE), 

45 % (R), and 59 % (bias) of Scenario-1 in 2018, and 65 % (ubRMSE), 73 % (R), and 80 % 

(bias) in 2020. In Scenario-7, where unobserved grid cells of all soil layers were updated, 

layer-averaged improvements reach 46 % (ubRMSE), 47 % (R), and 60 % (bias) of Scenario-

1 in 2018, and 66 % (ubRMSE), 75 % (R), and 81 % (bias) in 2020. As it was already 

determined that not updating lower soil layers causes a significant reduction in 
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assimilation performance, it makes sense that updating unobserved grid cells in the lower 

soil layers is much more beneficial than updating unobserved grid cells in the surface soil 

layer.  

Finally in Scenario-7, even after updating the unobserved grid cells in all soil layers 

using the covariance matrix of EnKF, the assimilation performance could not be brought 

up to the levels of Scenario-1. Part of the reason is that the temporal data gaps are still 

present in Scenario-7. Under real-data conditions, and if the modeling system is not 

needed for real-time purposes such as operational forecasting, higher level data products 

(with higher latency) may be used for data assimilation which usually have their temporal 

gaps (as well as spatial gaps) filled through external means. Another reason why Scenario-

7 failed to reach the improvement levels of Scenario-1 could be because of inherent 

limitations of the covariance matrix technique. Future studies are recommended where 

soil moisture of all unobserved grid cells is estimated independently outside of the data 

assimilation framework, and then brought in to update the model states in a grid-by-grid 

fashion. 

 

Figure 6. Temporal distribution of basin-averaged soil moisture simulation errors for all soil layers 

and for scenarios 1, 2 & 7.  

Another key finding from Figure 5 is that the improvement magnitudes are much 

larger in 2020 (dry summer) compared to 2018 (wet summer). This difference may be 

better explained through Figure 6, where the temporal distribution of spatially averaged 

(over the watershed) RMSE is presented. Only three out of seven scenarios are presented 

for brevity. The term ‘improvement’ used so far is essentially the difference between the 

black and blue lines (i.e., open loop and post-assimilation model errors) in Figure 6. For 

each soil layer within each scenario, post-assimilation model errors have somewhat 

similar ranges between the two years. Rather it is the range of open loop model errors that 

are starkly different between the years. Therefore, the larger magnitude of open loop 

errors is what is mainly contributing to the larger improvements in 2020 compared to 
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2018. Incidentally, the forcings in the ERA5 ensemble member (out of the 10) that was 

randomly chosen to generate the synthetic truth is farther away from the ensemble mean 

in 2020 than in 2018, causing the larger open loop model errors, especially the bias 

component of errors (Figure 5). Regardless of the different magnitudes of open loop RMSE 

in the two years, the EnKF algorithm was able to bring down the open loop RMSE in both 

years to a similar level (Figure 6). This indicates that if there is available room for 

improvement, the EnKF can, at least under ideal situations such as this synthetic 

experiment, effectively improve modelling performances.           

Looking at the improvements in the individual soil layers in Scenario-2 (Figures 5,6), 

it is interesting to observe that even though soil moisture in only the surface soil layer was 

updated, improvements occurred at all four soil layers. The changes being made to the 

surface soil moisture are therefore being propagated to the lower soil layers through 

model physics. However, the improvements to the bottom soil layers are greater when 

they are being actively updated either in a zero-dimensional (Scenario-1), one-

dimensional (Scenario-6) or three-dimensional (Scenario-7) manner. In fact, actively 

updating the model states of the bottom layers appear beneficial for the top layer as well. 

For instance, the magnitude of the top layer improvement is higher in Scenario-1 than in 

Scenario-2, even though the only difference between these scenarios is whether bottom 

layers are actively updated or not. 

 

Figure 7: Spatial distribution of soil moisture improvements in Layer-1 of Scenario-1 for 2018 (a) 

and 2020 (b). Correlation between open loop errors and post-assimilation improvements for 2018 

(c) and 2020 (d) 

The spatial distribution of temporally averaged (over June-October) improvements 

of the surface soil moisture in Scenario-1 are shown in Figure 7 (a-b). The magnitudes of 

improvement are not spatially uniform. Model grid cells located at the northeast corner 

of the watershed have higher levels of improvement in 2018, and in the southwestern 

region in the case of 2020.  To identify the factors creating these spatial patterns, 

correlations between the improvements of the watershed grid cells and different variables 

were plotted, including meteorological variables such as seasonal precipitation and 

temperature, as well as static physiographic variables such as soil type and land use. No 

significant correlation could be identified between the spatial patterns of the 

improvements with the spatial patterns of either the meteorological or physiographic 
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variables.  Rather, the strongest predictor of the improvement patterns is the magnitude 

of the open loop model error, as shown in the Figure 7 (c-d). In other words, the grid cells 

in which open loop RMSE was higher, saw a larger improvement after assimilation. This 

is similar to the finding for watershed averaged open loop RMSE and improvements, as 

previously discussed in Figure 6. 

3.3. Real-data Experiments 

The experiment of Scenario-7 was repeated for real-data conditions, whereby instead 

of synthetic soil moisture observations, SMAP observations were used to update model 

soil moisture. It should be noted that all available SMAP data with a ‘retrieval successful’ 

flag was utilized for assimilation, regardless of whether the data also had a ‘recommended 

quality’ flag or not. Due to large portions of the study area being forested, if only data 

having ‘recommended quality’ flags were to be used, a vast majority of the dataset would 

be rendered unusable. Whereas in the synthetic experiments the goal was to guide the 

model soil moisture values towards the synthetic truth, in the real-data experiments the 

goal was to guide the model soil moisture values towards the in-situ observations. 

Another major difference between the synthetic and real-data experiments is that during 

the synthetic experiments, synthetic truth was available over all model grid cells and over 

all four soil layers for evaluating the post-assimilation model performance. But for the 

real-data experiments, in-situ soil moisture data was available only over four model grid 

cells.  

 

Figure 8. Soil moisture values of open loop model, in-situ observations and SMAP observations at 

four in-situ measurement stations in 2018 (top row) and 2020 (bottom row).  

To compare the spatially averaged model soil moisture values with point-scale in-

situ ones, the in-situ data was assumed to be representative of the soil moisture of the 

corresponding 25 km2 model grid cell. Also as previously mentioned, in-situ observations 

were measured at 5, 10, 20, 50 and 100 cm soil depths. To compare depth-averaged model 

soil moisture values with point-scale in-situ ones, the in-situ data at 5 cm depth was 

assumed to be representative of the first model soil layer of 5 cm thickness (0-5 cm depth), 

the mean of the 10 and 20 cm in-situ data was used to represent the second model soil 

layer of 35 cm thickness (5-40 cm depth), and the mean of the 50 and 100 cm in-situ data 

was compared with the third model soil layer of 60 cm thickness (40-100 cm depth). Such 
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spatial scale mismatches (in both horizontal and vertical directions) are expected to 

inevitably introduce some errors to the estimates of the data assimilation performance. 

The surface soil moisture values of the four available in-situ stations are plotted in 

Figure 8 along with the corresponding open loop model soil moisture and remotely 

sensed SMAP soil moisture. As there is a bias between the SMAP data and the model in 

most cases, the SMAP data was rescaled to the model climatology before performing data 

assimilation. However, because of this rescaling process, only the information about the 

relative variability within the SMAP data could be utilized through data assimilation, and 

not its absolute values [56]. Similarly, because of the existing bias seen between the in-situ 

and modelled data, the goal of the real-data assimilation experiments will not be to guide 

the model simulations of soil moisture towards in-situ data in terms of absolute values. 

Instead, the goal will be to modify the relative variability of the modelled soil moisture 

towards the relative variability of the in-situ soil moisture. The results from the real-data 

experiments (ubRMSE, R, and bias computed between the modelled and in-situ soil 

moisture) are presented in Table 2, along with the ubRMSE, R, and bias computed 

between the original SMAP data (prior to bias correction) and in-situ soil moisture 

observations over the surface layer. All the values in Table 2 are the averaged values over 

the four grid cells where in-situ data is available.  

Table 2. Unbiased root-mean-squared-error (ubRMSE), correlation coefficient (R), and bias 

calculated between in-situ soil moisture observations and open loop model runs (OL), remotely 

sensed SMAP data (RS), and post-assimilation model runs (DA). 
 

Layer 1 Layer 2 Layer 3 
 

2018 (wet) 2020 (dry) 2018 (wet) 2020 (dry) 2018 (wet) 2020 (dry) 
 

OL RS DA OL RS DA OL DA OL DA OL DA OL DA 

ubRMSE 

(m3/m3) 

0.041 0.040 0.040 0.053 0.052 0.051 0.037 0.036 0.042 0.041 0.027 0.028 0.021 0.022 

R 0.68 0.73 0.72 0.57 0.61 0.66 0.68 0.71 0.75 0.78 0.63 0.64 0.64 0.60 

Bias 

(m3/m3) 

0.071 0.026 0.071 0.062 0.039 0.062 0.064 0.064 0.079 0.079 0.054 0.054 0.044 0.044 

 

In the first soil layer, assimilation of SMAP data caused small improvements in the 

simulated soil moisture for both 2018 and 2020. This is consistent with the fact that the 

SMAP data in both of those years is slightly better at representing in-situ data (in terms of 

ubRMSE and R) than the open loop model. Even though SMAP data is much better at 

representing in-situ data in terms of bias compared to open loop model, assimilation was 

unable to improve the model bias in any soil layer because of the bias-correction of SMAP 

data prior to assimilation. Minor improvements in the model simulation are also true for 

the second soil layer, but assimilation fails to improve soil moisture simulation in the third 

soil layer. In fact, assimilation causes a slight overall decrease in model performance in 

the third layer. It may be reminded that SMAP data was directly assimilated into the first 

layer, while the bottom two layers were updated based on the covariance between the top 

and bottom model layers. Therefore, improvements in the upper two layers, yet failure to 

do so in the bottom layer, may indicate a poor representation in the model of the cross 

correlations between the different soil layers that exist in nature, and which is embedded 

in the in-situ data. 

The results for the four individual stations are also presented in Table 3. Here, only 

the correlation coefficient values are shown, since the bulk of the improvement (or 

degradation) caused by data assimilation is best expressed by this metric as seen in Table 

2. There is no improvement in terms of bias since the SMAP observations were rescaled 

to the model space, and the improvements in terms ubRMSE are also minimal. Similar to 

Table 2, all the R values presented in Table 3 have either been computed between the 

modelled and in-situ soil moisture, or between the original SMAP data (prior to bias 
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correction) and in-situ soil moisture observations over the surface layer. Based on the R 

values of open loop, it could be stated that the calibrated model is generally well capable 

of simulating the temporal variability of the in-situ soil moisture data, with a few 

exceptions such as the first soil layer at Ithaca in 2020, or the third soil layer at Geneva in 

2020.  

Table 3. Correlation coefficient (R) values for individual in-situ measurement locations, calculated 

between in-situ soil moisture observations and open loop model runs (OL), remotely sensed SMAP 

data (RS), and post-assimilation model runs (DA).  
 

Layer 1 Layer 2 Layer 3 
 

2018 (wet) 2020 (dry) 2018 (wet) 2020 (dry) 2018 (wet) 2020 (dry) 
 

OL RS DA OL RS DA OL DA OL DA OL DA OL DA 

Avondale  0.77   0.82   0.81   0.76   0.70   0.75   0.73   0.76   0.76   0.71   0.33   0.24   0.84   0.86  

Geneva  0.50   0.78   0.54   0.67   0.61   0.70   0.47   0.52   0.71   0.74   0.47   0.57   0.16   0.27  

Ithaca  0.79   0.80   0.84   0.25   0.57   0.54   0.85   0.88   0.73   0.86   0.85   0.88   0.69   0.69  

Rock 

Springs 

 0.68   0.53   0.68   0.62   0.56   0.66   0.68   0.70   0.80   0.82   0.87   0.85   0.85   0.58  

 

After assimilating SMAP data into the model, the temporal variability of simulated 

soil moisture was generally improved, albeit slightly, again with a few exceptions. The 

relatively smaller improvements in real-data experiments as compared to the synthetic 

experiments, and the degradations in the few cases may be explained as follows. It was 

demonstrated through the synthetic experiments that if high-quality observations of the 

true soil moisture are assimilated into the model, then the model soil moisture will be 

nudged closer to the true soil moisture. In that case the observations, open loop model 

runs, and true soil moisture were all generated from the same source (WRF-Hydro model) 

and were well known when calculating the evaluation metrics. But in this real-data 

experiment, remotely sensed SMAP soil moisture is used as observations to nudge the 

modelled soil moisture towards in-situ soil moisture. Each of these datasets have 

conceptually different sources having different spatial scales: one estimated from 

remotely sensed microwave data, one generated based on physical equations in a model, 

and one measured physically in the field.  

The errors between each of these datasets and the ‘true’ soil moisture actually 

occurring in nature is not well known. As a result, the improvement in terms of R between 

the post-assimilation model simulated soil moisture and in-situ soil moisture depended 

partially on how well SMAP data happened to agree with corresponding in-situ soil 

moisture data. Therefore, performing assimilation with an observation data of higher 

quality may have contributed to further improvements in model performance. Other 

detrimental factors, that can impact any real-data experiment, include errors in the in-situ 

dataset (which appears to be an issue for the 2020 data of Rock Springs, as noticeable in 

Figure 8), errors introduced during the spatial rescaling of data, using time-invariant 

observation errors in EnKF, the soil/vegetation properties of the model grid cell not being 

representative of the local conditions, and so on. Finally, these results are specific to the 

modeling framework and observation datasets that were used in this study, and therefore 

using a different model or a different remotely sensed soil moisture dataset may lead to 

different, and perhaps better simulations of these in-situ target datasets. 

3.4. Streamflow Modeling Performance 

The impacts of updating model soil moisture on the simulated streamflow during 

the synthetic experiment (Scenario-1) are presented in Figure 9. The first row shows the 

spatially averaged (over the watershed) 3-day average precipitation. In the second row 

are the changes in the watershed-averaged modelled soil moisture (defined as post-

assimilation soil moisture minus the open loop soil moisture) due to the assimilation of 
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synthetic soil moisture observations. Similarly, the third row shows the changes in the 

streamflow at the watershed outlet point of Harrisburg (defined as post-assimilation 

streamflow minus the open loop streamflow) caused by the same assimilation of synthetic 

soil moisture observations. When soil moisture in the model is increased during data 

assimilation, extra water is essentially added to the water budget and vice versa. The 

similarity of temporal variations between Figure 9 (c) and Figure 9 (e) helps visualize this 

phenomenon for 2018 (wet summer). Consequently, when soil moisture is added to the 

system, streamflow at the watershed outlet is also increased, and vice versa.  

 

Figure 9. Watershed-averaged 3-day precipitation average, changes in watershed-averaged soil 

moisture due to data assimilation with Scenario-1, and changes in streamflow of watershed outlet 

due to data assimilation in 2018 (left column) and 2020 (right column). 

Note that the magnitude of the changes in soil moisture does not correspond to a 

similar magnitude of change in streamflow. This is because in addition to adding or 

subtracting the total amount of water in the water budget, data assimilation of soil 

moisture causes redistribution of existing water within different fluxes. For example, 

when soil moisture is reduced during data assimilation, this increases the storage capacity 

of the soil and thus any concurrent precipitation event will generate less surface runoff 

than if data assimilation had not been performed. Therefore, some portion of the 

streamflow source will now be transformed from quick surface runoff to slower moving 

baseflow, which will be added to the stream at a later period. Similarly, if soil moisture is 

increased during a wet period when the soil is already near saturation, for example on 

around 15 August 2018, a larger portion of the precipitation event will now join the 

streamflow as direct surface runoff.  

As previously discussed, for 2018 the open loop soil moisture and synthetic truth soil 

moisture were relatively close to each other in magnitude, and the open loop soil moisture 

both underestimated and overestimated the synthetic truth soil moisture at times, as 

depicted in Figure 9 (c). But as also discussed previously, for 2020 it just so happened that 

the open loop soil moisture highly underestimated the synthetic truth soil moisture all 

throughout the experiment period, as shown in Figure 9 (d). Therefore, data assimilation 

only increased the soil moisture of the open loop, resulting in only positive changes to the 

outlet streamflow. Even though the magnitude of soil moisture increases in 2020 are much 
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greater than the soil moisture increases in 2018, the magnitude of streamflow increases in 

2020 are relatively lower than 2018. This can be explained by the fact that 2020 had a dry 

summer, with lower precipitation values and lower soil saturation percentages compared 

to 2018. This combination of unsaturated soil and lack of heavy rainstorms meant that 

much of the added soil moisture was gradually added to the stream via baseflow. 

Now that is has been established that the soil moisture-streamflow interactions of 

this modeling framework are behaving realistically and as intuitively expected, the next 

question might be whether updating soil moisture with observations cause the simulated 

streamflow to shift towards the desired direction, i.e., closer to the true streamflow. In 

other words, if the goal of a modeling exercise is to improve the simulation of streamflow, 

will updating model soil moisture states alone with observations achieve this goal? The 

model simulated streamflow resulting from soil moisture data assimilation in the 

synthetic experiments are plotted in Figure 10, along with the open loop model run and 

synthetic truth. The NSE and log-NSE values presented were both calculated using the 

post-assimilation model streamflow and the synthetic truth version of streamflow.  

 

Figure 10. Simulated streamflow at the watershed outlet (Harrisburg) for all seven assimilation 

scenarios as well as the open loop model run, and synthetic truth model run in 2018 (top) and 2020 

(bottom).  

In the wet year of 2018 and compared to the open loop, assimilation of soil moisture 

causes no significant modifications to the overall streamflow (in terms NSE and log-NSE) 

in all of the synthetic scenarios, except minor improvements in Scenario-1. The NSE value 

increased from 0.95 (OL) to 0.96 (S-1), and the log-NSE value increased from 0.97 (OL) to 

0.98 (S-1). However, in terms of absolute error, during the heavy rainfall period on around 

15 August 2018, adjusting antecedent soil moisture caused an error reduction in Scenario-

1 of 544 m3/s (also shown in Figure 9-e). To achieve such gains though, soil moisture of all 

grid cells of the model needs to be updated as in Scenario-1, because no such significant 

absolute error reduction occurred in any other scenario. 

In the dry year of 2020, no such significant absolute error reduction occurred in any 

of the scenarios at all, as the modification to the streamflow tended to be somewhat 

uniform all throughout the season (also shown in Figure 9-f). As previously discussed, 
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this is expected because correcting soil moisture is more likely to improve peak flow 

simulation during wet periods when the soil state remains closer to saturation. But the 

overall streamflow simulation (in terms of NSE and log-NSE) did improve for all scenarios 

compared to the open loop, with the highest improvement seen in Scenario-1. The NSE 

value increased from 0.86 (OL) to 0.9 (S-1) and 0.88 (S-7). The log-NSE value increased 

from 0.95 (OL) to 0.98 (S-1) and 0.97 (S-7). 

In the real-data experiments, the open loop model performances are much lower to 

begin with compared to the synthetic experiments. This is expected because as explained 

previously for soil moisture, the open loop and the truth were both generated by the 

model in the case of synthetic experiments. Whereas for real-data experiments, the open 

loop performance is the outcome of a complex parameter-tuning process trying to emulate 

the in-situ data. In the wet year of 2018 updating model soil moisture states with SMAP 

data in the Scenario-7 configuration resulted in NSE value staying unchanged at 0.77, and 

the log-NSE value increasing from 0.82 to 0.84. This is somewhat commensurate with the 

wet year assimilation gains seen in the synthetic experiments. But in the dry year of 2020, 

no gains at all are achieved contrary to the synthetic experiments. Rather, there is a 

decrease in model performance. The NSE value drops from 0.71 (OL) to 0.7 (S-7), while 

the log-NSE (which gives more weight to the baseflow simulation performance) dropped 

from 0.61 (OL) to 0.5 (S-7). One important factor that may partially explain the relatively 

poor dry year assimilation performance is that the model parameters being used for these 

experiments have been calibrated based on the data of a wet year and using this model 

for running dry year assimilation experiments was an afterthought. Perhaps using a 

model that is better calibrated against dry conditions may be able to improve the 

streamflow simulation for dry years as well.   

Another possible cause behind the real-data experiments not leading to improved 

streamflow is that, while the hydrological processes connecting soil moisture and 

streamflow were exactly the same for both the hydrological model and synthetic truth in 

the synthetic experiments, such was not the case for real-data experiments. The exact 

mechanisms by which any changes in real-world soil moisture translates into the real-

world streamflow is unknown and most likely different from that of the model.  Finally, 

model structure also matters. A majority of hydrological models offer a rather crude 

conceptualization of baseflow/groundwater flow.  WRF-Hydro is perhaps an exception, 

where saturated subsurface flow is based on the Dupuit-Forchheimer assumption. Yet, 

using groundwater flow models based on the transient groundwater flow equation, such 

as MODFLOW, would probably better simulate low streamflow dominated by baseflow 

conditions.    

Other studies have indicated that assimilating soil moisture to improve streamflow 

is a hit-and-miss approach depending on what exact methods and datasets are used in the 

process, and that assimilating soil moisture alone may not be sufficient for this purpose 

[32,57-58]. Therefore, a trial-and-error strategy is required to determine which modeling 

framework is most beneficial to improve the streamflow simulation for a particular 

watershed, and whether to assimilate soil moisture, streamflow, or a combination of both. 

Also, this study took a deterministic approach by comparing between the ensemble mean 

of the 24-member post-assimilation outputs and that of the 9-member open loop outputs. 

For a probabilistic approach to data assimilation, performance metrics like the Continuous 

Ranked Probability Score (CRPS) may be recommended, which is able to provide 

information about the spread of the forecast ensemble as well. 

4. Conclusions 

A set of synthetic experiments were designed in this study to assess the impacts of 

spatiotemporal discontinuities in the remotely sensed soil moisture data on the 

performance of hydrological data assimilation. For this purpose, the WRF-Hydro model 

was set up over the Susquehanna River watershed. SMAP was selected as the example of 

a remotely sensed soil moisture product, and the EnKF was selected as the data 
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assimilation algorithm. The model was forced with the ERA5 10-member ensemble. Nine 

of those 10 members were used to generate open loop model runs and the remaining tenth 

member was considered as a synthetic truth. These nine different forcing projections were 

combined with soil moisture state perturbations to represent the overall modeling 

uncertainty in the EnKF assimilation framework to create 24 post-assimilation ensemble 

members in total.  

The synthetic experiments consisted of the following seven different scenarios: 1) soil 

moisture states of all model grid cells in all soil layers were updated every day with 

synthetic soil moisture observations, 2) all grid cells of the surface soil layer were updated 

every day, 3) same as 2 but no updates were made on days in which SMAP data is not 

available, 4) same as 3 but no updates were made on model grid cells over which SMAP 

data is not available, 5) same as 4 but surface layer model grid cells with missing 

observations are updated based on the covariance between them and nearby grid cells 

that have observations, 6) same as 4 but grid cells in bottom soil layers with missing 

observations are updated based on the covariance between them and nearby surface grid 

cells that have observations, and 7) combining 5 and 6 i.e., updating all grid cells with 

missing observations based on nearby grid cells that have observations. All of these 

scenarios were then compared with the open loop scenario. 

Results show that out of all the scenarios, the best improvement in simulated soil 

moisture is achieved when synthetic soil moisture observations are assimilated into the 

model in all grid cells of all soil layers. Introducing spatiotemporal discontinuities in the 

observation data reduces assimilation performance. The largest reduction happens 

because of the unavailability of root-zone observations, followed by temporal data gaps 

and horizontal spatial gaps. In practice, satellite soil moisture datasets have all three of 

these missing components. The reduction in data assimilation performance due to the 

presence of these data discontinuities can be somewhat offset by indirectly updating the 

states of unobserved model grid cells. The indirect update is made based on the covariance 

between the soil moisture of an unobserved grid cell and one or more nearby observed 

grid cells. Results also show that if high-quality observations are available, then the 

magnitude of improvements brought about by data assimilation will be mostly dictated 

by how much model error there is in the pre-assimilation open loop model runs. 

Real-data experiments were also performed where SMAP data was assimilated into 

the model to try and help the variability of simulated soil moisture to match that of the in-

situ soil moisture. Some parameters of the WRF-Hydro model were calibrated against in-

situ soil moisture and streamflow to make the model mimic in-situ conditions as best as 

it can prior to data assimilation. In-situ soil moisture measurements were available for 

only four locations within the study area. Results indicate that data assimilation was able 

to generally improve the ubRMSE and correlation coefficient values between the model 

simulated and in-situ soil moisture for the top two model soil layers. One of the reasons 

behind the less than optimum performance (compared to something like a synthetic 

experiment) is that the SMAP observations are not a high-quality representation of the in-

situ observations. Large portions of the study area are forested which negatively impacts 

microwave retrieval-based soil moisture products like SMAP.  

The impact of updating model soil moisture on the simulation of streamflow was 

also analyzed. It was found that when soil moisture is added to the model through data 

assimilation during a wet period when the soil is already near saturation, this increases 

surface runoff after a heavy rainfall event and causes significant increases in the 

streamflow. Increasing soil moisture during a dry period does not have this effect and the 

newly added water is rather added to the streamflow via baseflow. On the other hand, 

reducing the model soil moisture increases soil storage capacity and therefore decreases 

post-rainfall surface runoff by encouraging more infiltration. Even though assimilating 

soil moisture into the model impacts the generation of streamflow, the timing and 

magnitude of changes imposed on the simulated streamflow does not necessarily improve 

the accuracy of streamflow. Some improvements in the NSE and log-NSE of streamflow 

simulations were achieved in the synthetic experiments where high-quality soil moisture 
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observations were assimilated. But for poorer-quality SMAP data assimilation scenarios, 

streamflow accuracy was rather reduced in terms of NSE and log-NSE for the dry 

experiment year, which may also have been impacted by the use of a model calibrated 

specifically for wet conditions.  

Finally, if the goal is to improve the streamflow modeling performance of a particular 

study area through the assimilation of observed soil moisture, it may be recommended to 

explore through multiple modeling/assimilation strategies and multiple observation 

datasets to find the best fit.  Direct assimilation of streamflow into the model in 

combination with soil moisture is another avenue for further improvement of streamflow 

modeling performance. It should be noted that all the results presented in this study are 

for a 24-hour lead time. Any improvements achieved through data assimilation at a 

shorter lead time is likely to peter out as the lead time of forecast increases. Since 

streamflow observations provide short-lived information about a flux but soil moisture 

observations have a longer memory of the soil water storage, future research may be 

recommended where the impacts of combined soil moisture-streamflow assimilation on 

the modeling performance at different lead times are investigated. 
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