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Abstract: In this work we discuss the numerical challenges involved in the computation of the 1

complex eigenvalues of damped multi-flexible-body problems. Aiming at the highest generality, 2

the candidate method must be able to deal with arbitrary rigid body modes (free-free mechanisms), 3

arbitrary algebraic constraints, and must be able to exploit the sparsity pattern of Jacobians of large 4

systems. We propose a custom implementation of the Krylov-Schur method, proving its robustness 5

and its accuracy in a variety of different complex test cases. 6
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1. Introduction 8

Equations of motion of multibody systems are highly non-linear in general, but there 9

are cases where one is interested in a linearization of such equations as a way to study the 10

effects of perturbations around a given configuration. To this end, being able to compute 11

the eigenvalues and eigenvectors of the linearized model is of fundamental importance, 12

and it is not limited to the conventional methods of modal analysis. 13

For instance, among other applications, eigenvectors can be used to perform a compo- 14

nent mode synthesis, also known as modal reduction, that is an effective approach which 15

turns a complex system into a surrogate model with a smaller set of coordinates, hence 16

obtaining faster simulations [1] [2] [3] . Another application that require the computation of 17

eigenpairs is the stability analysis of dynamic systems, for instance the aeroelastic stability 18

of helicopter blades, wind turbines and other slender structures. In this case, one needs to 19

implement a complex-valued eigenvalue problem, where the imaginary and real parts of 20

the eigenvalues give an indication of the damping factor and, consequently, an indication 21

about the impending instability [4] [5] . Finally we can mention that, in the field of control 22

theory, often a state space representation of the linearized system is required, and this is 23

another problem that motivates the research of efficient methods to recover the eigenvalues 24

of the multibody system [6] [7] . 25

Motivated by the above mentioned applications, in this paper we discuss the numerical 26

difficulties related to the computation of eigenvalues and eigenvectors in multi-flexible- 27

body systems under the most general assumptions: we assume that the system can present 28

singular modes (also called rigid body or free-free modes), we consider the optional 29

presence of damping, hence leading to complex-valued eigenpairs, we consider an arbitrary 30

number of parts and constraints, and we assume that the size of the system could be 31

arbitrarily large. In particular this last requirement imposes some limitations on the 32

type of solver, that must preserve the sparsity of the matrices for the sake of acceptable 33

computational performance, and that should be able to output just a small subset of 34

eigenvalues, either the lowest ones or those clustered around a frequency of interest. 35
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The problem of eigenvalue computation in multibody systems is discussed by various 36

authors in literature, although the topic is more common in the field of Finite Element 37

Analysis (FEA). A difficulty of multibody systems with respect to conventional FEA is 38

that constraints are ubiquitous and often described by algebraic equations and Lagrange 39

multipliers. A classical approach is to remove constraints by means of an orthogonal 40

complement that reduces the generalized coordinates to the lowest amount possible, as 41

discussed for instance in [8] [9] . This idea has the benefit that the linearized equations are 42

those of an unconstrained system, thus a conventional eigenvalue solver can be applied. 43

However, there are also drawbacks that will be discussed in the next paragraphs. 44

Alternatively, one can solve an eigenvalue problem paired with constraints, thus 45

leading to matrices that are larger but sparser. This approach is shown, for example, in 46

[10] [11] . Despite the increment in the number of unknown eigenvalues and the increment 47

in the dimension of eigenvectors, we experienced that this approach leads to a simpler 48

formulation. Most important, we noticed that this method preserves the sparsity of the 49

matrices, so that we could design a solver that can leverage this useful property. 50

An eigenvalue solver that achieved a big popularity in the past years is the Implicit 51

Restarted Arnoldi Method (IRAM) [12]. In fact, this is the method implemented in ARPACK, 52

a widespread Fortran77 library that can solve generalized eigenvalue problems, with 53

both sparse or structured matrices [13]. As such, IRAM would be sufficient to satisfy our 54

requirements, however we experienced that it fails to provide good convergence in some 55

difficult cases, so we pointed our attention to the more recent Krylov-Schur method. 56

The Krylov-Schur method has been presented in [14] as an improvement over previous 57

Krylov subspace methods such as IRAM and Lanczos. Because of an efficient and robust 58

restarting strategy, it is often able to converge even in cases where IRAM stalls, and in 59

general it exhibits superior robustness and faster convergence [15]. For these reasons 60

the Krylov-Schur method has become the default for MATLAB eigs command, and it 61

is also available in the SLEPC library [16] , an extension of the PETSC linear algebra 62

library, as well as in the TRILINOS library [17] . However both are large libraries that 63

target supercomputing and require complex build toolchains. On the other hand there 64

are efforts like the SPECTRA C++ library [18], that are lightweight but might not offer all 65

the desired functionalities; for instance SPECTRA contains the Krylov-Schur method in 66

a partially implemented form, making it usable only for symmetric matrices (hence the 67

complex eigenvalue problem is out of reach, making it unuseful for damped eigenmode 68

computation at the moment of writing). The lack of reliable, complete and lightweight 69

open source libraries for computing eigenvalues with the Krylov-Schur method motivated 70

us to develop our C++ version of it, which is described in the following pages. 71

In the next session we will discuss how to obtain the needed matrices from a lineariza- 72

tion of the multibody system, then we will review different formulations for expressing the 73

eigenvalue problem, with or without constraints, with or without damping, then we will dis- 74

cuss some computational aspects related to the implementation of the sparsity-preserving 75

Krylov-Schur solver, and finally we will show some applications and benchmarks. 76

2. Linearization of Multibody Structures 77

We introduce the semi-explicit Differential Algebraic Equations (DAE) of a generic,
nonlinear multi-flexible body system with generalized coordinates q ∈ Rn:{

M(q)q̈ + Cq(q, t)Tγ = f (q, q̇, t)− f g(q̇)

C(q, t) = 0

(1)

(2)

where C(q, t) = 0 is a vector of m holonomic-rheonomic constraints with a m× n sparse 78

jacobian Cq(q, t) = ∂C(q,t)
∂q . Also, f is the vector of external and internal forces, and f g 79

represent the gyroscopic and centrifugal components of the inertial forces (the full inertial 80

forces are in fact f i = Mq̈ + f g). 81
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This DAE can be linearized about the dynamic equilibrium point, obtaining:{
M(q)δq̈ + R(q, q̇)δq̇ + K(q, q̇, q̈, γ)δq + Cq(q, t)Tδγ = 0

Cq(q, t)δq = 0

(3)

(4)

In the formula above, the damping matrix R comes from the linearization of inter-
nal/external forces f about q̇, plus the linearization of f g, the quadratic part of the inertial
forces, hence:

R(q, q̇) = −∂ f (q, q̇, t)
∂q̇

+
∂ f g(q̇)

∂q̇
(5)

= R f + Ri (6)

Note that the Ri part is responsible of the so called gyroscopic damping , and it is null for 82

q̇ = 0. 83

The tangent stiffness K contains both the effect of the linearization of internal and
external forces, that is the conventional stiffness matrix K f , plus Ki, the linearization of the
inertial forces1 about q, plus Kc, the linearization of the constraint reaction forces Cq(q, t)Tγ:
the latter can introduce a contribution to the tangent stiffness because of the geometric
effect of changes in Cq(q, t) about the linearization point 23, that is:

K(q, q̇, q̈, γ) =
∂(M(q)q̈ + f g)

∂q
+

∂(Cq(q, t)Tγ)

∂q
− ∂ f (q, q̇, t)

∂q
(7)

= Ki + Kc + K f (8)

Often times, especially in the FEA literature, the K f matrix is split in two components 84

K f = K fm + K fg where K fm is the material stiffness and K fg is the geometric stiffness - the 85

latter is caused, for example, by change of orientation of internal forces in beams, and 86

its effect is null in configurations that have no initial stress at the linearization point. A 87

further splitting can be done by distinguishing internal forces, caused by finite elements, 88

and external forces, caused by applied loads, thus f (q, q̇, t) = f (q, q̇, t)int + f (q, q̇, t)ext, 89

and K f = K fmint + K fgint + K fmext + K fgext. In many cases K f ext matrices are of small value 90

if compared to K f int matrices and can be neglected, but in other cases, for example when 91

considering aerodynamic loads, they might be relevant. 92

We remark that (3) and (4) require the introduction of constraints via jacobian matrices
Cq(q, t) and Lagrange multipliers δγ: in fact in the following we will handle this compli-
cation by solving constrained eigenvalue problems. However one might wonder if there
is an alternative approach that avoids Cq(q, t) and δγ at all, so that a conventional (not
constrained) eigenvalue solver could be used. Actually this would be possible, for example
by running a QR decomposition on the Cq matrix in order to find a Ξ ∈ Rn×m matrix
such that ΞTCq(q, t)T = 0. In this way, one could introduce a smaller set of independent
variables y ∈ Rn−m for whom q̇ = Ξẏ, hence rewriting the DAE (1) as a simple ODE

ΞT M(q)Ξÿ + ΞT M(q)Ξ̇ẏ = ΞT f (q, q̇, t)− ΞT f g(q̇) (9)

1 This term is null if the system is studied in a static configuration, as often happens, but might be relevant
otherwise, for example when studying eigenmodes of a wind turbine while it is rotating.

2 For instance, this term accounts for the gravity-induced stiffness of a pendulum, where increments in the
rotation of the pendulum generate changes in Cq to account for the rotation in the direction of the reaction
force at the pendulum hinge. If the other sources of stiffness are more relevant (ex. springs, elastic internal
forces in beams, etc.), or if λ is small at the linearization point, then this term might be neglected.

3 This implies that a static or dynamic analysis should be performed right before computing eigenvectors, as the
value of γ must be known when computing (7).
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This can be linearized to give a single expression which is alternative to (3)(4):

MY(q)δÿ + RY(q, q̇)δẏ + KY(q, q̇, q̈)δy = 0 (10)

with

MY(q) = ΞT M(q)Ξ (11)

RY(q) = −ΞT ∂ f (q, q̇, t)
∂ẏ

+ ΞT
∂ f g(q̇)

∂ẏ
+ ΞT M(q)

∂Ξ̇ẏ
∂ẏ

(12)

KY(q, q̇, q̈) =
(

∂ΞT

∂y
M(q)Ξ + ΞT ∂M

∂y
(q)Ξ + ΞT M(q)

∂Ξ
∂y

)
ÿ (13)

+

(
∂ΞT

∂y
M(q)Ξ̇ + ΞT M(q)

∂y
Ξ̇
)

ẏ

− ∂ΞT

∂y
f (q, q̇, t)− ΞT ∂ f (q, q̇, t)

∂y
+

∂ΞT

∂y
f g(q̇) + ΞT

∂ f g(q̇)

∂y

However we note that the expression of MY, RY and KY is substantially more intricate4
93

than the expression of M, R and K in (5),(7), for instance (13) require the knowledge of 94

Ξ̇ and ∂ΞT/∂y. Moreover, the multiplications by Ξ and ΞT will destroy the sparsity of 95

the original matrices M, R, K: this is not an issue in problems of small size, but for large 96

problems this would lead to unacceptable memory and performance requirements. For 97

these reasons, we prefer to proceed with the linearization expressed in (3)(4), at the cost 98

of dealing with contraints during the iterative eigenvalue solution process. The following 99

section will explain how to use the M, R, K, Cq matrices to this end. 100

3. Modal Analysis 101

We can distinguish two types of modal analysis: in the first case we search for real- 102

valued eigenvalues of the undamped system, in the second case we search for complex- 103

valued eigenvalues of the damped system. The former can be considered a sub case of the 104

latter for R = 0, hence a single solver could attack both problems, however it is better to 105

adopt two different solution schemes in order to exploit some optimizations that lead to 106

high computational performance if the damping is of no interest. 107

3.1. Undamped Case - Real-Valued 108

We recall some basic concepts in eigenvalue analysis of dynamic systems. 109

For the simple case of an unconstrained, undamped system with R = 0, with solutions
q = Σ(Φieiωt + Φie−iωt)

Mq̈ + Kq = 0 (14)

it is possible to compute the eigenmodes from the following characteristic expression:(
−ω2

i M + K
)

Φi = 0 (15)

4 Under simplifying assumptions such as negligible effects terms Ξ̇ and ∂ΞT/∂y, the reduced matrices can be
approximated as MY(q) ≈ ΞT MΞ, RY(q) ≈ ΞT RΞ, KY(q) ≈ ΞTKΞ. However we experienced that such a
simplification is possible only when assuming that the constraints do not change direction in a significant way:
in fact an oscillating pendulum would give zero natural frequency in this case.
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that leads to a standard eigenvalue problem (SEP) with eigenvalues λi = ω2
i and matrix

C = M−1K: (
M−1K− λi I

)
Φi = 0 (16)

(C− λi I)Φi = 0 (17)

For symmetric K and M, by the spectral theorem, eigenpairs are real. 110

However there are some difficulties that prevent the direct use of (16) in engineering 111

problems of practical interest: 112

• it works only if there are no constraints (no Cq jacobian matrix); 113

• it requires the inversion of the M matrix: even if M is often diagonal-dominant and 114

easy to invert, this is not true in general and it could destroy the sparsity of the matrices 115

in case of large systems; 116

• we may be interested in just a small subset of eigenvalues, usually the lower modes, 117

so we need an iterative scheme that is able to do this. 118

We compute the modes of the constrained undamped multibody system with the follow-
ing Generalized Eigenvalue Problem (GEP):

−
[

K CT
q

Cq 0

]
Φ̂i = λi

[
M 0
0 0

]
Φ̂i (18)

where we introduced the augmented eigenvector

Φ̂i = {ΦT
i , ξT

i }T .

and where we recover natural frequencies as:

ωi =
√
−λi, fi = ωi/2π (19)

We remark that one could change the sign in the left hand side of (18), this would get 119

positive eigenvalues and then one would compute ωi =
√

λi instead. 120

The solution of the problem (18) generates n + m eigenvalues, where only n are of 121

interest, and m are spurious modes with λ ≈ ±∞ that can be discarded. The same filtering 122

must be done for the corresponding eigenvectors. Moreover, the last m components of 123

the eigenvectors, namely ξi, can be just discarded or used to get an insight about reaction 124

forces, because they represent the amplitude of reactions in constraints during the periodical 125

motion of the system. 126

Alternatively, one can solve

−
[

K 0
0 0

]
Φ̂i = λi

[
M CT

q
Cq 0

]
Φ̂i (20)

but this would produce m spurious modes with λ ≈ 0. This is acceptable unless one 127

is interested in structures featuring rigid body modes 5, because the rigid body modes 128

have λi ≈ 0 too, and this would prevent an easy detection of such modes because they 129

will mix with the spurious modes. In this formulation (20), the last m components of the 130

eigenvectors, namely ξi, represent the second integration of reaction forces/moments of 131

the constraints, which can be discarded since no physical meaning exists. 132

The matrices that appear in the two forms of the GEP have different properties, and 133

this is relevant when we will choose the optimal solution scheme. In the GEP (18), the A 134

matrix is non-singular only if there are no rigid body modes, as it is z-times rank deficient 135

5 Rigid body modes are sometimes called free-free modes in literature. In 3D space, a structure that is not
constrained to the ground, like a flying boomerang, will produce 6 rigid body modes with ωi = 0. In 2D space,
one expects 3 rigid body modes.
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in presence of z rigid body modes, moreover the B matrix is always singular and not 136

invertible. Hence both matrices are not invertible in the most general case. On the other 137

hand, in the GEP (20), the A matrix is singular, but B matrix is always non-singular and 138

invertible, regardless of the presence of rigid body modes, because M is positive definite 139

and Cq is assumed to be full rank. This would make GEP (20) a better choice respect to GEP 140

(18) because one could always transform it to a SEP via C = B−1 A. However, as we will see 141

later, solving the SEP in this form is not what we need in case of large systems, where we 142

want a limited number of eigenpairs starting from the smallest ones: if so, a shift and invert 143

approach is needed, where the non-singularity of B is irrelevant, and we would rather need 144

the inversion of A: in this case, neither GEP (18) nor GEP (20) would fit this requirement. 145

However, the shift and invert approach requires a regularized form of the inverse matrix, 146

by means of a σ shift parameter as in C = (A− σB)−1B, so both approaches could work in 147

this setting, except for σ = 0. 148

Finally, we note that, when the K matrix is symmetric, both A and B are symmetric, 149

therefore optimized linear solvers for the inner loop of the Krylov-Schur solver could be 150

used in sake of higher speed (that is, the (A− σB)−1 problem can be approached via LDLt 151

decompositions rather than LU decompositions in case of direct solvers, or via MINRES 152

rather than GMRES in case of Krylov solvers). 153

3.2. Damped Case - Complex-Valued 154

The conventional modal analysis of the damped system

Mq̈ + Rq̇ + Kq = 0 (21)

with solutions q = Φeλt is formulated as a quadratic eigenvalue problem (QEP), either
with left or right eigenvectors:

(λ2M + λR + K)Φ = 0 (22)

Ψ∗(λ2M + λR + K) = 0 (23)

We recall some useful properties. Since coefficients of (22) are real, any complex roots 155

must appear as complex conjugate pairs. The QEP generates 2n eigenvalues, that are finite 156

if M is non singular; if M, R, K are real, or Hermitian, then eigenvalues can be a mix of real 157

values or complex conjugate pairs (λ, λ); if M is Hermitian positive definite and R, K are 158

Hermitian positive semidefinite, then Re(λ) ≤ 0. 159

• complex conjugate pairs (λ, λ) correspond to underdamped modes, oscillatory and 160

decaying for Re(λ) < 0; 161

• purely imaginary conjugate pairs (λ, λ), Re(λ) = 0 correspond to undamped modes, 162

purely harmonic and not decaying; 163

• real modes with Re(λ) ≤ 0 and no imaginary part correspond to overdamped modes, 164

not oscillatory, exponential decaying; 165

• in all cases, Re(λ) > 0 indicates an unstable system; 166

• for the class of damped systems, also eigenvectors Φi are complex, with elements:

Φi,j = ai,j + i bi,j = δi,je
iβi,j

where both the amplitude and the phase of the entire eigenvector can be arbitrary (but 167

the relative amplitude δi,j/δi,k of each component is unaltered by whatever normaliza- 168

tion, and the relative phase of each component is constant βi,j − βi,k = constjk); 169

• the two eigenvectors of a complex conjugate pair are also conjugate. 170

Oscillatory modes, corresponding to a complex conjugate pair (λ, λ), Re(λ) < 0, can
be written in a more engineering-oriented way as done in 1-dof systems, Ae(−ζω+iωd)t +
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Be(−ζω−iωd)t, where one has the following expressions for natural (undamped) frequencies
ωi, damped frequencies ωd,i and damping factors ζi:

ωi = ‖λi‖, fi = ωi/2π (24)

ωd,i = Im(λi), fd,i = ωd,i/2π (25)

ζi = −Re(λi)/ωi (26)

ωd,i = ωi

√
1− ζ2 (27)

Although there exist algorithms that can solve (22) directly, often the QEP is trans-
formed to a SEP or GEP so that a conventional solver like Arnoldi or Krylov-Schur can be
used. This can be done expressing the problem in state space: we introduce an augmented
eigenvector that contains both the eigenvector Φi ∈ Rn, and the eigenvector λiΦi ∈ Rn:

ΦT
i = {ΦT

i , λiΦ
T
i }

This can be used to transform the QEP (22) into the following GEP with double the original
size: [

0 I
−K −R

]
Φi = λi

[
I 0
0 M

]
Φi (28)

Additionally, one can consider the constraints by introducing Lagrange multipliers
ξi ∈ Rm that correspond to the m constraints enforced as CqΦi = 0, thus obtaining a
constrained QEP: {

λ2
i MΦi + λiRΦi + KΦi + CT

q ξi = 0

− CqΦi = 0

(29)

(30)

Finally, introducing the augmented eigenvector Φ̂i ∈ R2n+m as

ΦT
i = {ΦT

i , λiΦ
T
i , ξT

i }

and by making use of simple linear algebra, we can write the constrained QEP as a
constrained GEP:  0 I 0

−K −R −CT
q

−Cq 0 0

Φ̂i = λi

I 0 0
0 M 0
0 0 0

Φ̂i (31)

An alternative formulation is based on the solution of the following GEP, where the
spurious modes related to the constraint equations are zero instead of infinite: 0 I 0

−K −R 0
0 0 0

Φ̂i = λi

 I 0 0
0 M CT

q
Cq 0 0

Φ̂i (32)

that corresponds to {
λ2

i MΦi + λiRΦi + KΦi + CT
q λiξi = 0

CqλiΦi = 0

(33)

(34)

We experienced that the most efficient way to compute eigenpairs of the constrained 171

damped system is the first approach, i.e. the GEP (31). 172

4. Computing Eigenpairs with Sparse Matrices 173

When the number of unknowns n grows, it is not possible to compute all the n 174

eigenvalues and eigenvectors, both for reasons of computational time and for the extreme 175

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 December 2022                   doi:10.20944/preprints202212.0336.v1

https://doi.org/10.20944/preprints202212.0336.v1


requirement of memory needed for storing all the eigenvectors. In fact, many analyses that 176

require the computation of eigenmodes in practice require a small set of them. 177

There are iterative methods that preserve the sparsity of matrices and that can compute 178

a limited set of k eigenvectors: most notably these are the IRAM (Implicitly Restarted 179

Arnoldi method), Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) 180

and lastly the Krylov-Schur method. 181

The problem is that they compute the largest k, not the smallest ones, that is exactly 182

the opposite of our interest. This issue can be solved adopting a Moebius transform of the 183

eigenvalue problem. We proceed as follows. 184

For the undamped constrained case, first we formulate the generalized eigenvalue
problem (GEP):

AΦ̂i = λiBΦ̂i (35)

A =

[
−K −CT

q
−Cq 0

]
(36)

B =

[
M 0
0 0

]
(37)

then we adopt a Moebius transform of the eigenvalue problem, namely the shift and invert
strategy that computes eigenvalues µi in the following problem:

(C− µi I)Φ̂i = 0 (38)

C = (A− σB)−1B (39)

µ =
1

λ− σ
λ =

1
µ
+ σ (40)

After the eigenvalue problem (38) is solved for k pairs of (µi, Φ̂i), one recovers the 185

original λi hence the original ωi using (40). 186

For the damped constrained case, we formulate a GEP of the type

AΦ̂i = λiBΦ̂i (41)

A =

 0 I 0
−K −R −CT

q
−Cq 0 0

 (42)

B =

I 0 0
0 M 0
0 0 0

 (43)

then, similarly to the undamped case, we apply the shift-invert Moebius transformation 187

to solve (C − µi I)Φ̂i = 0 with C = (A − σB)−1B, obtaining pairs (µi, Φ̂i), and finally 188

recovering λ = 1
µ + σ. 189

Right eigenvectors Φi are not affected by the Moebius transform. Just in case one is 190

interested in the left eigenvectors as in Ψ∗i (C− λi I) = 0, then those are recovered solving 191

z∗i (C− µi I) = 0 and using the transform z = (A− σB)∗Ψi. 192

User-defined values of σ can be used to extract eigenvalues in specific frequency 193

ranges. In fact the iterative solver will return the k eigenvalues that are closer, in absolute 194

value, to σ. 195

If the shift parameter σ is zero or close to it, as often happens, one can see that the 196

largest k eigenvalues µ computed by the Krylov-Schur solver will become the smallest k 197

eigenvalues λ, for the modes closer to zero frequency. 198

As a special case, for σ = 0, one has C = A−1B and λ = 1
µ , that for a uncon- 199

strained problem (no Cq jacobian) it corresponds to solving the inverse eigenvalue problem 200(
K−1M− µi I

)
Φi = 0. 201
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Table 1. Different options for the eigenpair computation.

GEP Notes

Undamped A =
[
K
]

B =
[
M
] real eigenpairs, ωi =

√
λi

A singular if rigid body modes

A =
[
−K
]

B =
[
M
] real eigenpairs, ωi =

√
−λi

A singular if rigid body modes

Undamped
Constrained

A =

[
−K −CT

q
−Cq 0

]
B =

[
M 0
0 0

] real eigenpairs, ωi =
√
−λi

‖λi‖ = ∞ for each constraint
A singular if rigid body modes
B singular

A =

[
−K 0

0 0

]
B =

[
M CT

q
Cq 0

] real eigenpairs, ωi =
√
−λi

λi = 0 for each constraint
A singular
B nonsingular

Damped A =

[
0 I
−K −R

]
B =

[
I 0
0 M

] complex eigenpairs, ωi = ‖λi‖
A singular if rigid body modes
B singular

Damped
Constrained

A =

 0 I 0
−K −R −CT

q
−Cq 0 0

 B =

I 0 0
0 M 0
0 0 0

 complex eigenpairs, ωi = ‖λi‖
‖λi‖ = ∞ for each constraint
A singular if rigid body modes
B singular

A =

 0 I 0
−K −R 0

0 0 0

 B =

 I 0 0
0 M CT

q
Cq 0 0

 complex eigenpairs, ωi = ‖λi‖
λi = 0 for each constraint
A singular
B nonsingular

In general one can adjust the σ shift value so that it provides the best numerical 202

performance, in detail it provides a regularization of A and helps solving the linear problem 203

in (39) also in the case where A or B are singular or close to singularity. This is what 204

happens in many cases when doing modal analysis of engineering structures, especially if 205

the structure has rigid body modes. In fact, our default method is to extract all lower modes 206

including rigid body modes, and at this end we experienced that a value of σ = 1× 10−3
207

works well retrieving also the six λ ≈ 0 modes and cures the ill-posedness problems. 208

Krylov-Schur and Arnoldi methods draw on a single computational primitive, that is
the product of a sparse matrix C by a vector v for the solution of the problem (C− µi I)Φi =
0. However in our case C = (A− σB)−1B, hence pre-computing such C matrix is out of
question because the exact inversion of (A− σB) would require too much CPU time and
would destroy the sparsity. Since only the product primitive Cv is required for the iterative
solver, an acceptable tradeoff is to return the result of the product r = Cv by doing these
steps:

z = Bv (44a)

r = (A− σB)−1z (44b)

Here we note that Eq.(44b) in the second step requires a linear system solution. This 209

can be a computational bottleneck, but a substantial speedup can be achieved observing 210

that the coefficient matrix (A− σB) is constant, therefore one can factorize it once at the 211

beginning of the Krylov-Schur iterations, and perform only the back substitutions in (44b). 212

An alternative, that preserve sparsity of the matrices and can fit better in scenarios 213

with millions of unknowns, is that (44b) is solved iteratively via truncated MINRES or 214

GMRES iterative methods. If the number of unknowns is in the range of tens of thousands, 215

however, we experienced that the factorization via a direct method performs faster. 216

5. Implementation of the Krylov-Schur Solver 217

The Krylov-Schur method has been introduced in 2001 [14], leading to improved 218

performance respect to other Krylov subspace methods, such as Arnoldi and Lanczos, 219

which have been used for decades in the field of eigenvalue computation. The notorious 220

Implicitly-Restarted Arnoldi Method, implemented for example in the ARPACK library, or 221

the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG), implemented 222
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for example in the BLOPEX library, both fail to converge for those problems whose matrix is 223

of type (18), (20), (31) or (32) and wide mass ratios or strongly ill-conditioned blocks are 224

present. 225

On the contrary, the robustness of the Krylov-Schur method guarantees satisfying 226

results also for the most critical conditions, thus becoming the elected choice for the 227

following tests. Our implementation follows the guidelines in [19] as reported in the 228

Algorithm 1. It has been extended to the case of complex and sparse matrices, and has been 229

included in the open-source multibody library CHRONO [20]. 230

On a parent level of the Krylov-Schur solver, specific routines constructs an eigenvalue 231

problem in accordance with (31) or with (18) for the undamped case. This will push the 232

spurious constraint modes to infinity, being of less disturbance for the usual low-frequency 233

area of interest for engineering applications. 234

The code offers the possibility to specify different problem formulation, either direct 235

or in shift-invert, by providing different OP_CV(v) operators in Algorithm 2. For instance, 236

in Algorithm 3 we show the implementation for the shift-invert case, implementing (44a) 237

and (44b). 238

Solutions of linear systems required by the method can be theoretically provided by 239

any linear solver enabled for complex values; practically, given the relatively high accuracy 240

required by the solution and the ill-conditioning of some matrices, direct solvers are almost 241

mandatory for this application, relegating iterative solvers only for systems with higher 242

degrees of freedom. While for smaller and simpler problems the choice of the solver is 243

not critical (allowing the use of e.g. SparseLU and SparseQR functions from the popular 244

C++ linear algebra library EIGEN [21]), for most of the real cases more advanced solvers 245

are required, like Pardiso MKL or MUMPS [22]. Given the importance of this choice, our 246

Krylov-Schur implementation has been made solver agnostic: the user can indeed provide 247

one of its own choice. 248

For the undamped case, as (18), the value of σ in the shift-invert procedure is assigned 249

as a small positive real value σ = ε (by default we used σ = 10−3 in our tests) in order 250

to return the lowest eigenmodes, including those with zero eigenvalues in case there are 251

rigid body modes. A small negative real value would work as well, but the numerical 252

conditioning of the problem would be worse. If one needs specific eigenmodes clustered 253

about some specific frequency fc, we set it as σ = − f 2
c . For the damped case, we use a 254

complex shift σ = σR + iσI , with a small real value σR = ε and no imaginary part if we are 255

interested in the lowest eigenvalues, for instance σ = 10−3 + i0, or with a finite imaginary 256

part if we need eigenmodes clustered about a fc frequency: σ = εR + i fc. 257

The Krylov-Schur decomposition is then solved by using EIGEN linear algebra library 258

eigensolvers [21]. 259

An important contribution to the stability of the method is given by a trivial and 260

inexpensive pre-conditioning of the Jacobian matrix Cq. While stiffness and damping 261

matrices have usually terms on the order at least of 106, the Jacobian matrix is usually 262

in the order of 100. This change affects only the Lagrange multipliers γ and the relative 263

eigenvector counterpart ξi that should be re-scaled back of the same factor (if they are of 264

any interest to the user). This simple change in the matrices allows, in some corner case, a 265

significant reduction of the residuals even just after the first iteration of the method. 266

6. Results 267

The Krylov-Schur method has been tested on various scenarios, including real-case 268

problems, in order to assess the accuracy and scalability of the method. Relevant test 269

conditions include flexible elements, rigid bodies, generic constraints, free-free modes in 270

various combination. 271

Test are using the newly-implemented quadratic Krylov-Schur eigen solver, Pardiso 272

MKL direct linear solver and results are compared to the eigs solver of MATLAB (that turns 273

out to be an implementation of Krylov-Schur solver as well). The hardware includes an 274

Intel i7 6700HQ with 16 GB RAM. 275
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Algorithm 1 Krylov-Schur

1: procedure KRYLOV-SCHUR(OP_CV(),k, m)
2: Q(:, 1) := v1/norm(v1)
3: p := 1
4: isC := 0
5: [Q, H] := KRYLOVEXPANSION(OP_CV(),Q, H, 0, k)
6: while i < imax & p < k do
7: i ++
8: isC := 0
9: [Q, H] := KRYLOVEXPANSION(OP_CV(),Q, H, k + isC, m)

10: [U, T, isC] := SORTSCHUR(H(p : m, p : m), k− p + 1)
11: H(p : m, p : m) := T
12: H(1 : p− 1, p : m) := H(1 : p− 1, p : m)U
13: Q(:, p : m) := Q(:, p : m)U
14: H(m + 1, p : m) := H(m + 1, m)U(end, :)
15: Q := [Q(:, 1 : k), Q(:, m + 1)]
16: H := [H(1 : k, 1 : k); H(m + 1, 1 : k)]
17: CHECKCONVERGENCE(H, k + isC, p, tol)
18: end while
19: [µ, ΦH ] := EIG(H(1 : k + isC, 1 : k + isC))
20: Φ = Q(:, k + isC)ΦH
21: return µ, Φ
22: end procedure

Algorithm 2 Krylov Expansion

1: procedure KRYLOVEXPANSION(OP_CV(),Q, H, ks, ke)
2: for k = ks + 1 : ke do
3: v :=OP_CV(Q(:, k))
4: isC := 0
5: w := Q(:, 1 : k)′ v
6: v−= Q(:, 1 : k)w
7: w2 := Q(:, 1 : k)′ v
8: v−= Q(:, 1 : k)w2
9: w+= w2

10: nv := norm(v)
11: Q(:, k + 1) := v/nv
12: H(1 : k + 1, k) := [w; nv]
13: end for
14: end procedure

Algorithm 3 Op_Cv operator

1: procedure OP_CV(v)
2: z = Bv
3: r = (A− σB)−1z
4: return r
5: end procedure
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(a) Cantilever Models.
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Figure 1. Cantilever Test.

Table 2. Test beams properties.

Property Value

Young Modulus 100 MPa
Density 1000 kg m−3

Section 0.3 m× 0.05 m
Poisson Ratio 0.31
Rayleigh Damping α = 1× 10−3, β = 1× 10−5

6.1. Hybrid Flexible and Rigid Bodies with Constraints 276

Constraining the system results in additional zero-valued block in the system matrices, 277

thus potentially compromising the stability for the inner linear solver. In the following test 278

case an Euler beam with properties set according to Tab. 2 is fixed at the base, while its 279

tip is constrained to a rigid body of heavier mass (4000 kg) (Fig. 1). The method has been 280

tested with end masses up to 10× 108 in order to prove its robustness. An additional test 281

case with a crank-rod-piston assembly shows the use of tetrahedral mesh (Fig. 2). 282

6.2. Free-free Modes 283

The presence of unconstrained bodies results in degenerated modes whose eigenvalues 284

are pushed towards infinity. The method guarantees proper stability also for this degenerate 285

case (Fig. 3). It might be noticed how each degree of freedom contributes to the overall 286

residual: the first half represents the positional degrees of freedom, while the second 287

represents the velocities (usually of less interest). Beam properties are the same as Tab.2. 288

6.3. Wind turbine 289

This medium-scale real test case involves a modern large-size wind turbine, courtesy 290

of a commercial original equipment manufacturer in wind industry. The test includes 291

constrained flexible as well as free rigid bodies. Given the wide ratio between smaller 292

and bigger eigenvalues (the A matrix results in a reversed conditioning number of 10−19), 293

the preconditioning of the Jacobian matrix of the constraints has proved to be essential 294

for the robustness and accuracy of the results. The problem is non-symmetric. Given the 295

sensitivity of the results they have been hidden and only the residuals are shown in Fig. 4. 296

Problem size is on the order of the thousands. 297

6.4. Scalability 298

The scalability of the method has been tested against a grid of Euler beams, whose 299

size and number of cells is parametrized in order to provide different scales to the same 300

problem. Each beam is fixed at every intersection with the grid. For each test, the lower 100 301

modes have been computed. The number of elements are three and two, respectively along 302
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(a) Second Mode at 52Hz . (b) Sixth Mode at 200 Hz.

Figure 2. Benchmark for multi-body system with constraints: flexible crank, rod and piston bodies
with bearings.

(a) Free-free Models.
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(b) Free-free eigensolver residuals.

Figure 3. Benchmark with multiple rigid body modes.
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Figure 4. Wind Turbine Test Residuals.

(a) Beam-Grid Model.
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(b) Beam-Grid Time Cost.

Figure 5. Scalability Test.

each cell longitudinal and vertical direction. The ratio between longitudinal and vertical 303

number of cells is kept constant across the different tests. The results basically show a linear 304

relation (R2 = 0.9996) between the number of degrees of freedom of the original problem 305

and the time cost of the Krylov-Schur solver Fig. 5, with a little additional overhead for 306

smaller-scale tests. Results do not include the time expense for the assembly of the matrices. 307

Again, the beam properties are set according to Tab.2. 308

7. Conclusions 309

The proposed implementation of the Krylov-Schur solver successfully proves to ef- 310

fectively handle a wide variety of test cases, including free-free modes, constraints, rigid 311

and flexible systems, resulting in either real or complex, symmetric or asymmetric matrices 312

of the associated eigenvalue problem. The ample availability of the software guarantees a 313

vast dissemination of the method, offering the best platform for further improvements. 314
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