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Abstract: In this work we discuss the numerical challenges involved in the computation of the 1
complex eigenvalues of damped multi-flexible-body problems. Aiming at the highest generality, =
the candidate method must be able to deal with arbitrary rigid body modes (free-free mechanisms), s
arbitrary algebraic constraints, and must be able to exploit the sparsity pattern of Jacobians of large 4
systems. We propose a custom implementation of the Krylov-Schur method, proving its robustness s

and its accuracy in a variety of different complex test cases. 6
Keywords: modal analysis; eigenvalues; multibody; damped modes; sparse eigenproblem 7
1. Introduction s

Equations of motion of multibody systems are highly non-linear in general, but there
are cases where one is interested in a linearization of such equations as a way to study the 1o
effects of perturbations around a given configuration. To this end, being able to compute 1
the eigenvalues and eigenvectors of the linearized model is of fundamental importance, 1
and it is not limited to the conventional methods of modal analysis. 13

For instance, among other applications, eigenvectors can be used to perform a compo- 14
nent mode synthesis, also known as modal reduction, that is an effective approach which s
turns a complex system into a surrogate model with a smaller set of coordinates, hence 16
obtaining faster simulations [1] [2] [3] . Another application that require the computation of 17
eigenpairs is the stability analysis of dynamic systems, for instance the aeroelastic stability  1s
of helicopter blades, wind turbines and other slender structures. In this case, one needs to s
implement a complex-valued eigenvalue problem, where the imaginary and real parts of 20
the eigenvalues give an indication of the damping factor and, consequently, an indication 2
about the impending instability [4] [5] . Finally we can mention that, in the field of control 22
theory, often a state space representation of the linearized system is required, and thisis  2s
another problem that motivates the research of efficient methods to recover the eigenvalues 24
of the multibody system [6] [7] . 25

Motivated by the above mentioned applications, in this paper we discuss the numerical 26
difficulties related to the computation of eigenvalues and eigenvectors in multi-flexible- 27
body systems under the most general assumptions: we assume that the system can present  zs
singular modes (also called rigid body or free-free modes), we consider the optional 2o
presence of damping, hence leading to complex-valued eigenpairs, we consider an arbitrary  so
number of parts and constraints, and we assume that the size of the system could be s
arbitrarily large. In particular this last requirement imposes some limitations on the
type of solver, that must preserve the sparsity of the matrices for the sake of acceptable s
computational performance, and that should be able to output just a small subset of s
eigenvalues, either the lowest ones or those clustered around a frequency of interest. 35
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The problem of eigenvalue computation in multibody systems is discussed by various s
authors in literature, although the topic is more common in the field of Finite Element a7
Analysis (FEA). A difficulty of multibody systems with respect to conventional FEA is s
that constraints are ubiquitous and often described by algebraic equations and Lagrange 3o
multipliers. A classical approach is to remove constraints by means of an orthogonal 4
complement that reduces the generalized coordinates to the lowest amount possible, as
discussed for instance in [8] [9] . This idea has the benefit that the linearized equations are <2
those of an unconstrained system, thus a conventional eigenvalue solver can be applied. 43
However, there are also drawbacks that will be discussed in the next paragraphs. as

Alternatively, one can solve an eigenvalue problem paired with constraints, thus s
leading to matrices that are larger but sparser. This approach is shown, for example, in 46
[10] [11] . Despite the increment in the number of unknown eigenvalues and the increment
in the dimension of eigenvectors, we experienced that this approach leads to a simpler 4
formulation. Most important, we noticed that this method preserves the sparsity of the 4o
matrices, so that we could design a solver that can leverage this useful property. 50

An eigenvalue solver that achieved a big popularity in the past years is the Implicit =
Restarted Arnoldi Method (IRAM) [12]. In fact, this is the method implemented in ARPACK, s
a widespread Fortran77 library that can solve generalized eigenvalue problems, with s
both sparse or structured matrices [13]. As such, IRAM would be sufficient to satisfy our sa
requirements, however we experienced that it fails to provide good convergence in some s
difficult cases, so we pointed our attention to the more recent Krylov-Schur method. 56

The Krylov-Schur method has been presented in [14] as an improvement over previous sz
Krylov subspace methods such as IRAM and Lanczos. Because of an efficient and robust s
restarting strategy, it is often able to converge even in cases where IRAM stalls, and in s
general it exhibits superior robustness and faster convergence [15]. For these reasons o
the Krylov-Schur method has become the default for MATLAB eigs command, and it e
is also available in the SLEPC library [16] , an extension of the PETSC linear algebra e
library, as well as in the TRILINOS library [17] . However both are large libraries that s
target supercomputing and require complex build toolchains. On the other hand there s
are efforts like the SPECTRA C++ library [18], that are lightweight but might not offer all e
the desired functionalities; for instance SPECTRA contains the Krylov-Schur method in 6
a partially implemented form, making it usable only for symmetric matrices (hence the 7
complex eigenvalue problem is out of reach, making it unuseful for damped eigenmode s
computation at the moment of writing). The lack of reliable, complete and lightweight e
open source libraries for computing eigenvalues with the Krylov-Schur method motivated 7o
us to develop our C++ version of it, which is described in the following pages. 7

In the next session we will discuss how to obtain the needed matrices from a lineariza- 7=
tion of the multibody system, then we will review different formulations for expressing the 7
eigenvalue problem, with or without constraints, with or without damping, then we will dis- 7
cuss some computational aspects related to the implementation of the sparsity-preserving 7
Krylov-Schur solver, and finally we will show some applications and benchmarks. 76

2. Linearization of Multibody Structures 7

We introduce the semi-explicit Differential Algebraic Equations (DAE) of a generic,
nonlinear multi-flexible body system with generalized coordinates g € R":

{M(q)ii +Cqlag, )Ty = f(a,4,t) — f,(4) (1)
C(q,t) =0 2)
where C(q,t) = 0 is a vector of m holonomic-rheonomic constraints with a m x n sparse
jacobian Cy(g,t) = aCa(Z,t)‘ Also, f is the vector of external and internal forces, and f,

represent the gyroscopic and centrifugal components of the inertial forces (the full inertial s
forces are in fact f; = Mij + f ). o1
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This DAE can be linearized about the dynamic equilibrium point, obtaining:

{M (9)84 + R(q,4)5q +K(9,4,4,7)59 + C4(q,1)T6y =0 3)
Cqlq,t)0g =0 @)

In the formula above, the damping matrix R comes from the linearization of inter-
nal/external forces f about g, plus the linearization of f o the quadratic part of the inertial
forces, hence:

af(q,q,t) Of (@)
Rig.q) =~ 00 fgq" ©
:Rf-i-Ri (6)

Note that the R; part is responsible of the so called gyroscopic damping , and it is null for =
q - 0. 83
The tangent stiffness K contains both the effect of the linearization of internal and
external forces, that is the conventional stiffness matrix K iz plus K;, the linearization of the
inertial forces! about g, plus K¢, the linearization of the constraint reaction forces C, (9, t)T'y:
the latter can introduce a contribution to the tangent stiffness because of the geometric

effect of changes in C,(g, t) about the linearization point *%, that is:

a(M(q)j + T ‘
K = (q;;’ fg)+3(Cq(g;1t) 7)_8f(gqu,t) )

= K; + Kc + Ks ®)

Often times, especially in the FEA literature, the Ky matrix is split in two components s
Ky = Ky, + Ky, where Ky, is the material stiffness and Ky, is the geometric stiffness - the e
latter is caused, for example, by change of orientation of internal forces in beams, and s
its effect is null in configurations that have no initial stress at the linearization point. A &
further splitting can be done by distinguishing internal forces, caused by finite elements, s
and external forces, caused by applied loads, thus f(q,4,t) = f(q,4,t)int + f(q, G, t)ext, o
and Ky = Ky, int + K fint T Ky ext T K feext: In many cases Ky,,; matrices are of small value o
if compared to Ky;,; matrices and can be neglected, but in other cases, for example when o
considering aerodynamic loads, they might be relevant. 02

We remark that (3) and (4) require the introduction of constraints via jacobian matrices
Cy(q,t) and Lagrange multipliers 7: in fact in the following we will handle this compli-
cation by solving constrained eigenvalue problems. However one might wonder if there
is an alternative approach that avoids C,(g, t) and dv at all, so that a conventional (not
constrained) eigenvalue solver could be used. Actually this would be possible, for example
by running a QR decomposition on the C; matrix in order to find a & € R™™™ matrix
such that 27C,(g,t)T = 0. In this way, one could introduce a smaller set of independent
variables y € R"~" for whom ¢ = Zj, hence rewriting the DAE (1) as a simple ODE

E'M(q)Z§ +E"M(q)Zy = " f(q,4,t) — &' f(q) )

1 This term is null if the system is studied in a static configuration, as often happens, but might be relevant

otherwise, for example when studying eigenmodes of a wind turbine while it is rotating.

For instance, this term accounts for the gravity-induced stiffness of a pendulum, where increments in the
rotation of the pendulum generate changes in C, to account for the rotation in the direction of the reaction
force at the pendulum hinge. If the other sources of stiffness are more relevant (ex. springs, elastic internal
forces in beams, etc.), or if A is small at the linearization point, then this term might be neglected.

This implies that a static or dynamic analysis should be performed right before computing eigenvectors, as the
value of v must be known when computing (7).


https://doi.org/10.20944/preprints202212.0336.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2022 d0i:10.20944/preprints202212.0336.v1

This can be linearized to give a single expression which is alternative to (3)(4):

My(q)6y + Ry(q,4)6y + Ky(q,9,4)dy =0 (10)
with
My(q) = 8"M(q)3 (11)
Ry(q) = —ETaﬂg’yq’t) + ETafg;q) + ETM(q)aaEyy (12)
Kota.ii) = (o mpe+ s 2 (e s 3 ) )
N (aaETM(q)E+ HTNg(yﬂl)p>
B e L@ By ) e

However we note that the expression of My, Ry and Ky is substantially more intricate* o
than the expression of M, R and K in (5),(7), for instance (13) require the knowledge of s
E and 927 /9y. Moreover, the multiplications by & and ZT will destroy the sparsity of s
the original matrices M, R, K: this is not an issue in problems of small size, but for large s
problems this would lead to unacceptable memory and performance requirements. For o
these reasons, we prefer to proceed with the linearization expressed in (3)(4), at the cost s
of dealing with contraints during the iterative eigenvalue solution process. The following e
section will explain how to use the M, R, K, C; matrices to this end. 100

3. Modal Analysis 101

We can distinguish two types of modal analysis: in the first case we search for real- 102
valued eigenvalues of the undamped system, in the second case we search for complex- 10
valued eigenvalues of the damped system. The former can be considered a sub case of the 10
latter for R = 0, hence a single solver could attack both problems, however it is better to  10s
adopt two different solution schemes in order to exploit some optimizations that lead to 106

high computational performance if the damping is of no interest. 107
3.1. Undamped Case - Real-Valued 108
We recall some basic concepts in eigenvalue analysis of dynamic systems. 109

For the simple case of an unconstrained, undamped system with R = 0, with solutions
q= Z(q)iezwt + q)ie—zwt)

Mg+Kqg=0 (14)
it is possible to compute the eigenmodes from the following characteristic expression:

(—w%M + K) @, =0 (15)

Under simplifying assumptions such as negligible effects terms Zand 0BT/ 9y, the reduced matrices can be
approximated as My(q) =~ ETME, Ry(q) =~ ETRE, Ky(q) ~ ETKE. However we experienced that such a
simplification is possible only when assuming that the constraints do not change direction in a significant way:
in fact an oscillating pendulum would give zero natural frequency in this case.
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that leads to a standard eigenvalue problem (SEP) with eigenvalues A; = (uiz and matrix

C=MK
(M*lK ~ /\i1> ® =0 (16)
(C=AD®P; =0 (17)
For symmetric K and M, by the spectral theorem, eigenpairs are real. 110
However there are some difficulties that prevent the direct use of (16) in engineering 111
problems of practical interest: 112
it works only if there are no constraints (no C; jacobian matrix); 113

e itrequires the inversion of the M matrix: even if M is often diagonal-dominant and 114
easy to invert, this is not true in general and it could destroy the sparsity of the matrices s

in case of large systems; 116
e we may be interested in just a small subset of eigenvalues, usually the lower modes, 17
so we need an iterative scheme that is able to do this. 118

We compute the modes of the constrained undamped multibody system with the follow-
ing Generalized Eigenvalue Problem (GEP):

K cI. M 0].
_ q = A .
[Cq O}DI /\l[ 0 0]‘1” (18)

where we introduced the augmented eigenvector

and where we recover natural frequencies as:

wi=V-Ai, fi=wi/2n (19)

We remark that one could change the sign in the left hand side of (18), this would get 1o
positive eigenvalues and then one would compute w; = v/A; instead. 120

The solution of the problem (18) generates n 4 m eigenvalues, where only # are of 121
interest, and m are spurious modes with A ~ +co that can be discarded. The same filtering 122
must be done for the corresponding eigenvectors. Moreover, the last m components of  12:
the eigenvectors, namely ¢;, can be just discarded or used to get an insight about reaction 124
forces, because they represent the amplitude of reactions in constraints during the periodical 125
motion of the system. 126

Alternatively, one can solve

K 0] . [M CT} 5
_ D = A\ TP (20)
[0 o " tlgg o]

but this would produce m spurious modes with A =~ 0. This is acceptable unless one 12
is interested in structures featuring rigid body modes °, because the rigid body modes  12s
have A; = 0 too, and this would prevent an easy detection of such modes because they 120
will mix with the spurious modes. In this formulation (20), the last m components of the 10
eigenvectors, namely ¢;, represent the second integration of reaction forces/moments of 13
the constraints, which can be discarded since no physical meaning exists. 132

The matrices that appear in the two forms of the GEP have different properties, and a3
this is relevant when we will choose the optimal solution scheme. In the GEP (18), the A 134
matrix is non-singular only if there are no rigid body modes, as it is z-times rank deficient 135

5 Rigid body modes are sometimes called free-free modes in literature. In 3D space, a structure that is not

constrained to the ground, like a flying boomerang, will produce 6 rigid body modes with w; = 0. In 2D space,
one expects 3 rigid body modes.
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in presence of z rigid body modes, moreover the B matrix is always singular and not 13
invertible. Hence both matrices are not invertible in the most general case. On the other 137
hand, in the GEP (20), the A matrix is singular, but B matrix is always non-singular and  1ss
invertible, regardless of the presence of rigid body modes, because M is positive definite 130
and C is assumed to be full rank. This would make GEP (20) a better choice respect to GEP 140
(18) because one could always transform it to a SEP via C = B~1A. However, as we will see 141
later, solving the SEP in this form is not what we need in case of large systems, where we 1
want a limited number of eigenpairs starting from the smallest ones: if so, a shift and invert 1
approach is needed, where the non-singularity of B is irrelevant, and we would rather need 14
the inversion of A: in this case, neither GEP (18) nor GEP (20) would fit this requirement. 14
However, the shift and invert approach requires a regularized form of the inverse matrix, 1as
by means of a ¢ shift parameter as in C = (A — ¢B) !B, so both approaches could work in 147
this setting, except for o = 0. 148

Finally, we note that, when the K matrix is symmetric, both A and B are symmetric, 140
therefore optimized linear solvers for the inner loop of the Krylov-Schur solver could be  1s0
used in sake of higher speed (that is, the (A — ¢B)~! problem can be approached via LDLt 151
decompositions rather than LU decompositions in case of direct solvers, or via MINRES 152
rather than GMRES in case of Krylov solvers). 153

3.2. Damped Case - Complex-Valued 154

The conventional modal analysis of the damped system
Mg+Rg+Kg=0 (21)

with solutions g = ®¢ is formulated as a quadratic eigenvalue problem (QEP), either
with left or right eigenvectors:

(A*M+AR+K)® =0 (22)

¥*(A’M +AR+K) =0 (23)
We recall some useful properties. Since coefficients of (22) are real, any complex roots  1ss
must appear as complex conjugate pairs. The QEP generates 21 eigenvalues, that are finite 1se

if M is non singular; if M, R, K are real, or Hermitian, then eigenvalues can be a mix of real  1s7
values or complex conjugate pairs (A, A); if M is Hermitian positive definite and R, K are  1se

Hermitian positive semidefinite, then Re(A) < 0. 150
e complex conjugate pairs (A, A) correspond to underdamped modes, oscillatory and  1e0
decaying for Re(A) < 0; 101
e purely imaginary conjugate pairs (A, A1), Re(A) = 0 correspond to undamped modes, 1s2
purely harmonic and not decaying; 163
e real modes with Re(A) < 0 and no imaginary part correspond to overdamped modes, 1ee
not oscillatory, exponential decaying; 165
e inall cases, Re(A) > 0 indicates an unstable system; 166

for the class of damped systems, also eigenvectors ®; are complex, with elements:
q)i,j = aj; + ibi,j = (5i,]'eiﬁi'j

where both the amplitude and the phase of the entire eigenvector can be arbitrary (but e
the relative amplitude 6; ;/J; x of each component is unaltered by whatever normaliza- 1es
tion, and the relative phase of each component is constant §; ; — B; x = constjr); 169
e the two eigenvectors of a complex conjugate pair are also conjugate. 170

Oscillatory modes, corresponding to a complex conjugate pair (A,A), Re(A) < 0, can
be written in a more engineering-oriented way as done in 1-dof systems, Ael~¢@*iwa)t |
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Be(~¢w—iwi)t wwhere one has the following expressions for natural (undamped) frequencies
wj, damped frequencies w,; and damping factors {;:

wi = Al fi = wi/2m (24)
wgi =Im(A;), fai=wai/2m (25)
li = —Re(M;)/wj (26)

Wy i = Wiy/ 1-— gz (27)

Although there exist algorithms that can solve (22) directly, often the QEP is trans-
formed to a SEP or GEP so that a conventional solver like Arnoldi or Krylov-Schur can be
used. This can be done expressing the problem in state space: we introduce an augmented
eigenvector that contains both the eigenvector ®; € R", and the eigenvector A;®; € R":

o = {of 1@}

This can be used to transform the QEP (22) into the following GEP with double the original

size:
0 I I 0
U Rle=nly vl 29)
Additionally, one can consider the constraints by introducing Lagrange multipliers
¢; € R™ that correspond to the m constraints enforced as C;®; = 0, thus obtaining a
constrained QEP:
AM®; + A\iR®; + K®; + C1&; =0 (29)
—Cy®; =0 (30)

Finally, introducing the augmented eigenvector ®; € R?**" ag

of = (o] \@], ¢}

1

and by making use of simple linear algebra, we can write the constrained QEP as a
constrained GEP:

0 I 0 I 0 0
-K —R —Cl|®; =70 M 0|, (31)
-C;, 0 0 0 0 O

An alternative formulation is based on the solution of the following GEP, where the
spurious modes related to the constraint equations are zero instead of infinite:

0 I 0 I 0 0
-K —R 0|®; =10 M C]|&, (32)
0 0 0 G 0 0
that corresponds to
{A?Mcp,» + AiR®; + K®; + Cy 1;&; =0 (33)
Cori®@; =0 (34)
We experienced that the most efficient way to compute eigenpairs of the constrained 17
damped system is the first approach, i.e. the GEP (31). 172
4. Computing Eigenpairs with Sparse Matrices 173

When the number of unknowns n grows, it is not possible to compute all the 1 174
eigenvalues and eigenvectors, both for reasons of computational time and for the extreme 175


https://doi.org/10.20944/preprints202212.0336.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2022 d0i:10.20944/preprints202212.0336.v1

requirement of memory needed for storing all the eigenvectors. In fact, many analyses that 176
require the computation of eigenmodes in practice require a small set of them. 177

There are iterative methods that preserve the sparsity of matrices and that can compute 17s
a limited set of k eigenvectors: most notably these are the IRAM (Implicitly Restarted 7o
Arnoldi method), Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG)  1s0
and lastly the Krylov-Schur method. 161

The problem is that they compute the largest k, not the smallest ones, that is exactly e
the opposite of our interest. This issue can be solved adopting a Moebius transform of the 1es

eigenvalue problem. We proceed as follows. 184
For the undamped constrained case, first we formulate the generalized eigenvalue
problem (GEP):
Ad; = \;Bd; (35)
- e
= q
A [_ c, 0 } (36)
M 0
B= [ 0 O} (37)

then we adopt a Moebius transform of the eigenvalue problem, namely the shift and invert
strategy that computes eigenvalues y; in the following problem:

(C—ul)® =0 (38)

C=(A-0B)"'B (39)
1 1

]/l:)\_a A:ﬁ—i—a (40)

After the eigenvalue problem (38) is solved for k pairs of (y;, ®;), one recovers the 1ss
original A; hence the original w; using (40). 186
For the damped constrained case, we formulate a GEP of the type

Ad; = A;Bd; (41)
0 I 0

A=|-K -R -CJ (42)
-C, 0 0
I 00

B=|0 M 0 (43)
0 0 0

then, similarly to the undamped case, we apply the shift-invert Moebius transformation ez
to solve (C — pu;I)®; = 0 with C = (A — ¢B)~!B, obtaining pairs (y;, ®;), and finally s
recovering A = 1 4 ¢. 180

Right eigenvectors ®; are not affected by the Moebius transform. Just in case one is 190
interested in the left eigenvectors as in ¥; (C — A;I) = 0, then those are recovered solving e
z}(C — u;I) = 0 and using the transform z = (A — 0B)*¥;. 102

User-defined values of ¢ can be used to extract eigenvalues in specific frequency 1o
ranges. In fact the iterative solver will return the k eigenvalues that are closer, in absolute 194
value, to 0. 105

If the shift parameter ¢ is zero or close to it, as often happens, one can see that the 106
largest k eigenvalues i computed by the Krylov-Schur solver will become the smallest k 107
eigenvalues A, for the modes closer to zero frequency. 108

As a special case, for ¢ = 0, one has C = A lBand A = %, that for a uncon- 1ee
strained problem (no C, jacobian) it corresponds to solving the inverse eigenvalue problem 200
(KM — p;I)®; = 0.
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Table 1. Different options for the eigenpair computation.

GEP Notes
real eigenpairs, w; = /A;
A singular if rigid body modes

_ _ real eigenpairs, w; = /—A;
A=[-K] B=[M] A singular if rigid body modes
real eigenpairs, w; = \/—A;
Undamped Ao [—K —Cﬂ B_ {M 0} HA,H = oo for each constraint

3 A singular if rigid body modes

Constrained - B singular
real eigenpairs, w; = \/—A;
[-K O] B— {M Cﬂ A; = 0 for each constraint

Undamped

A singular
B nonsingular

"0 I } [ I O} complex eigenpairs, w; = [|A|
B—

Damped A= A singular if rigid body modes

B singular

I IA;]| = oo for each constraint
gamlt)ec.l q A= é< OR g A singular if rigid body modes
onstraine L™ ~q

r o I 0 I 0 0 complex eigenpairs, w; = [|A;]|
B singular
m o I 0 I 0 0 complex eigenpairs, w; = [[A;]|
0| B=
0

A; = 0 for each constraint
A singular
B nonsingular

In general one can adjust the ¢ shift value so that it provides the best numerical 202
performance, in detail it provides a regularization of A and helps solving the linear problem 2o
in (39) also in the case where A or B are singular or close to singularity. This is what 204
happens in many cases when doing modal analysis of engineering structures, especially if zos
the structure has rigid body modes. In fact, our default method is to extract all lower modes 206
including rigid body modes, and at this end we experienced that a value of 0 = 1 x 1073 207
works well retrieving also the six A ~ 0 modes and cures the ill-posedness problems. 208

Krylov-Schur and Arnoldi methods draw on a single computational primitive, that is
the product of a sparse matrix C by a vector v for the solution of the problem (C — p;I)®; =
0. However in our case C = (A — ¢B) !B, hence pre-computing such C matrix is out of
question because the exact inversion of (A — ¢B) would require too much CPU time and
would destroy the sparsity. Since only the product primitive Cv is required for the iterative
solver, an acceptable tradeoff is to return the result of the product r = Cv by doing these
steps:

z = Bo (44a)
r=(A—-0B) !z (44b)

Here we note that Eq.(44b) in the second step requires a linear system solution. This 200
can be a computational bottleneck, but a substantial speedup can be achieved observing 210
that the coefficient matrix (A — 0B) is constant, therefore one can factorize it once at the 21
beginning of the Krylov-Schur iterations, and perform only the back substitutions in (44b). =212

An alternative, that preserve sparsity of the matrices and can fit better in scenarios 23
with millions of unknowns, is that (44b) is solved iteratively via truncated MINRES or 214
GMRES iterative methods. If the number of unknowns is in the range of tens of thousands, =1s
however, we experienced that the factorization via a direct method performs faster. 216

5. Implementation of the Krylov-Schur Solver 217

The Krylov-Schur method has been introduced in 2001 [14], leading to improved 2.
performance respect to other Krylov subspace methods, such as Arnoldi and Lanczos, 2
which have been used for decades in the field of eigenvalue computation. The notorious 2z
Implicitly-Restarted Arnoldi Method, implemented for example in the ARPACK library, or 222
the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG), implemented 222


https://doi.org/10.20944/preprints202212.0336.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2022 d0i:10.20944/preprints202212.0336.v1

for example in the BLOPEX library, both fail to converge for those problems whose matrix is 223
of type (18), (20), (31) or (32) and wide mass ratios or strongly ill-conditioned blocks are 224
present. 225

On the contrary, the robustness of the Krylov-Schur method guarantees satisfying 226
results also for the most critical conditions, thus becoming the elected choice for the =27
following tests. Our implementation follows the guidelines in [19] as reported in the =2z
Algorithm 1. It has been extended to the case of complex and sparse matrices, and has been 22
included in the open-source multibody library CHRONO [20]. 230

On a parent level of the Krylov-Schur solver, specific routines constructs an eigenvalue 23
problem in accordance with (31) or with (18) for the undamped case. This will push the 2s:
spurious constraint modes to infinity, being of less disturbance for the usual low-frequency 233
area of interest for engineering applications. 238

The code offers the possibility to specify different problem formulation, either direct 235
or in shift-invert, by providing different Or_CV(v) operators in Algorithm 2. For instance, =3
in Algorithm 3 we show the implementation for the shift-invert case, implementing (44a) 237
and (44b) 238

Solutions of linear systems required by the method can be theoretically provided by 23
any linear solver enabled for complex values; practically, given the relatively high accuracy 240
required by the solution and the ill-conditioning of some matrices, direct solvers are almost 24
mandatory for this application, relegating iterative solvers only for systems with higher zs
degrees of freedom. While for smaller and simpler problems the choice of the solver is 243
not critical (allowing the use of e.g. SparseLU and SparseQR functions from the popular 2.
C++ linear algebra library EIGEN [21]), for most of the real cases more advanced solvers zas
are required, like Pardiso MKL or MUMPS [22]. Given the importance of this choice, our s
Krylov-Schur implementation has been made solver agnostic: the user can indeed provide 24
one of its own choice. 248

For the undamped case, as (18), the value of ¢ in the shift-invert procedure is assigned  zas
as a small positive real value ¢ = € (by default we used ¢ = 1072 in our tests) in order s
to return the lowest eigenmodes, including those with zero eigenvalues in case there are  2s:
rigid body modes. A small negative real value would work as well, but the numerical s
conditioning of the problem would be worse. If one needs specific eigenmodes clustered  2ss
about some specific frequency f., we set it as ¢ = — f2. For the damped case, we use a 25
complex shift ¢ = og + ioy, with a small real value og = € and no imaginary part if we are  2ss
interested in the lowest eigenvalues, for instance o = 103 4 i0, or with a finite imaginary zse

part if we need eigenmodes clustered about a f. frequency: o = eg + ife. 287
The Krylov-Schur decomposition is then solved by using EIGEN linear algebra library 2se
eigensolvers [21]. 250

An important contribution to the stability of the method is given by a trivial and zeo
inexpensive pre-conditioning of the Jacobian matrix C;. While stiffness and damping = ze:
matrices have usually terms on the order at least of 10°, the Jacobian matrix is usually a2
in the order of 10°. This change affects only the Lagrange multipliers  and the relative zes
eigenvector counterpart ¢; that should be re-scaled back of the same factor (if they are of  zes
any interest to the user). This simple change in the matrices allows, in some corner case, a  zes
significant reduction of the residuals even just after the first iteration of the method. 266

6. Results 267

The Krylov-Schur method has been tested on various scenarios, including real-case zes
problems, in order to assess the accuracy and scalability of the method. Relevant test 20
conditions include flexible elements, rigid bodies, generic constraints, free-free modes in 270
various combination. 21

Test are using the newly-implemented quadratic Krylov-Schur eigen solver, Pardiso 27
MKTL direct linear solver and results are compared to the eigs solver of MATLAB (that turns =7
out to be an implementation of Krylov-Schur solver as well). The hardware includes an  27s
Intel i7 6700HQ with 16 GB RAM. 275


https://doi.org/10.20944/preprints202212.0336.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2022 d0i:10.20944/preprints202212.0336.v1

Algorithm 1 Krylov-Schur

1: procedure KRYLOV-SCHUR(OP_CV() k, m)

2: Q(,1) := vl/norm(vl)

3 p:=1

4. isC:=0

5: [Q, H] := KRYLOVEXPANSION(OP_CV(),Q, H,0, k)

6 whilei <imax & p <k do

7 i+ +

8 isC:=0

9: [Q, H] := KRYLOVEXPANSION(OP_CV(),Q, H, k + isC, m)
10: U, T,isC] := SORTSCHUR(H(p : m,p : m),k — p+1)
11: H(p:mp:m):=T

12: Hl:p—1,p:m):=HQ1:p—-1Lp:mU

13 Q. p:m)=Q(,p:mU

14: Hm+1,p:m):=H(m+1,m)U(end,:)

15: Q:=[Q(,1:K),Q(, m+1)]

16: H:=[HQ:k1:k);H(m+1,1:k)]

17: CHECKCONVERGENCE(H, k + isC, p, tol)

18: end while

19: (i, @] :=EIGH(1: k+1isC,1: k+isC))
20: ® = Q(:,k+isC)®Py

21: return y, ®

22: end procedure

Algorithm 2 Krylov Expansion

1: procedure KRYLOVEXPANSION(OP_CV(),Q, H, ks, k)
2 fork =ks;+1:k, do

3 v :=0P_Cv(Q(:, k))

4: isC:=0

5: w:=Q(,1:k)v

6: v—=Q(,1:k)w

7 w2:=Q(:,1:k)v

8 v—=Q(,1:k)w2

9: w+= w2

10: nv := norm(v)

11: Q(,k+1):=v/nv

12: H(1:k+1,k) := [w;no]
13: end for

14: end procedure

Algorithm 3 Op_Cv operator

1: procedure OP_CV(v)

2: z = Bv
3: r= (A — (J'B)_1
4: return r

5: end procedure
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Figure 1. Cantilever Test.

Table 2. Test beams properties.

Property Value
Young Modulus 100 MPa
Density 1000 kg m 3
Section 0.3m x 0.06m
Poisson Ratio 0.31

Rayleigh Damping a«=1x10"3,8=1x 107>

6.1. Hybrid Flexible and Rigid Bodies with Constraints 276

Constraining the system results in additional zero-valued block in the system matrices, =77
thus potentially compromising the stability for the inner linear solver. In the following test 27s
case an Euler beam with properties set according to Tab. 2 is fixed at the base, while its 27
tip is constrained to a rigid body of heavier mass (4000 kg) (Fig. 1). The method has been  zs0
tested with end masses up to 10 x 108 in order to prove its robustness. An additional test ze:
case with a crank-rod-piston assembly shows the use of tetrahedral mesh (Fig. 2). 202

6.2. Free-free Modes 203

The presence of unconstrained bodies results in degenerated modes whose eigenvalues  2es
are pushed towards infinity. The method guarantees proper stability also for this degenerate zes
case (Fig. 3). It might be noticed how each degree of freedom contributes to the overall zs6
residual: the first half represents the positional degrees of freedom, while the second 2s7
represents the velocities (usually of less interest). Beam properties are the same as Tab.2.  zss

6.3. Wind turbine 289

This medium-scale real test case involves a modern large-size wind turbine, courtesy  2e0
of a commercial original equipment manufacturer in wind industry. The test includes 20
constrained flexible as well as free rigid bodies. Given the wide ratio between smaller 2.2
and bigger eigenvalues (the A matrix results in a reversed conditioning number of 1071%), 203
the preconditioning of the Jacobian matrix of the constraints has proved to be essential 204
for the robustness and accuracy of the results. The problem is non-symmetric. Given the 2es
sensitivity of the results they have been hidden and only the residuals are shown in Fig. 4. 206
Problem size is on the order of the thousands. 207

6.4. Scalability 208

The scalability of the method has been tested against a grid of Euler beams, whose 200
size and number of cells is parametrized in order to provide different scales to the same 00
problem. Each beam is fixed at every intersection with the grid. For each test, the lower 100 301
modes have been computed. The number of elements are three and two, respectively along oz
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Figure 5. Scalability Test.

each cell longitudinal and vertical direction. The ratio between longitudinal and vertical sos
number of cells is kept constant across the different tests. The results basically show a linear  sos
relation (R? = 0.9996) between the number of degrees of freedom of the original problem o5
and the time cost of the Krylov-Schur solver Fig. 5, with a little additional overhead for sos
smaller-scale tests. Results do not include the time expense for the assembly of the matrices. o7
Again, the beam properties are set according to Tab.2. 308

7. Conclusions 300

The proposed implementation of the Krylov-Schur solver successfully proves to ef- 310
fectively handle a wide variety of test cases, including free-free modes, constraints, rigid s
and flexible systems, resulting in either real or complex, symmetric or asymmetric matrices s
of the associated eigenvalue problem. The ample availability of the software guaranteesa  s1s
vast dissemination of the method, offering the best platform for further improvements. 314
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