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Abstract: Although there are several access control systems in the literature for flexible policy man- 1

agement in multi-authority and multi-domain environments, achieving interoperability & scalability, 2

without relying on strong trust assumptions, is still an open challenge. We present HMBAC, a dis- 3

tributed fine-grained access control model for shared and dynamic multi-authority and multi-domain 4

environments, along with Janus, a practical system for HMBAC policy enforcement. The proposed 5

HMBAC model supports: (a) dynamic trust management between different authorities; (b) flexible 6

access control policy enforcement, defined at domain and cross-domain level; (c) a global source 7

of truth for all entities, supported by an immutable, audit-friendly mechanism. Janus implements 8

the HMBAC model and relies on the effective fusion of two core components. First, a Hierarchical 9

Multi-Blockchain architecture that acts as a single access point that cannot be bypassed by users or 10

authorities. Second, a Multi-Authority Attribute Based Encryption protocol that supports flexible shared 11

multi-owner encryption, where attribute keys from different authorities are combined to decrypt 12

data distributedly stored in different authorities. Our approach was implemented using Hyperledger 13

Fabric as the underlying blockchain, with the system components placed in Kubernetes Docker 14

container pods. We experimentally validated the effectiveness and efficiency of Janus, while fully 15

reproducible artifacts of both our implementation and our measurements are provided. 16

Keywords: Access control; Blockchain; Multi-Blockchain; Multi-Authority; Multi-Domain; Attribute- 17

Based Encryption 18

1. Introduction 19

In recent years, the continuous integration of new communication and computing 20

technologies, along with the rapid adoption of new IoT devices, has led to an enormous 21

increase in generated data. According to Statista [1], the amount of data recorded world- 22

wide is expected to reach 181 ZB (zettabytes) in 2025, from 79 ZB in 2021. This huge amount 23

of data is generated and processed by multiple authorities that belong to different, and 24

sometimes critical, domains. 25

Complex and critical ecosystems, such as healthcare, civil aviation or the energy sector, 26

must integrate the operational, functional, security, and privacy requirements of many 27

types of users and at the same time reconcile the conflicting interests of stakeholders. In 28

addition, in many cases, there is a need for users belonging to one authority to access data 29

maintained by other authorities, within the same or in a different domain. Access to the 30

underlying data should be granted based on the access control policy of the corresponding 31

resource owner and on other restrictions that may be imposed at an inter- or cross-domain 32

level. 33
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For example, in the health sector users may be doctors, patients, medical and adminis- 34

trative personnel of healthcare providers (e.g. hospitals) or technical operators and remote 35

administrators for connected medical devices. In these ecosystems, granular access to data 36

and interoperability of services, are two basic prerequisites that greatly impact the privacy 37

and security aspects of these systems. 38

Traditionally, access control systems have been implemented within enterprises. Initial 39

methods for domain-wise access control were based on centralized cloud solutions [2]. 40

Such solutions require centralized data centers to store and handle various types of data, 41

including user identities, cryptographic keys, and access rights, as well as a trusted cloud 42

system administration, to control the users’ access rights and authorization. Although these 43

systems offer interoperability, fundamental challenges of data security and management 44

persisted. Specifically, there are three major concerns with this design approach. First, 45

an attack on the centralized data center might result in a single point of failure, leading 46

to massive data compromise [3]. Second, strong trust assumptions persist for the cloud 47

infrastructure [4], e.g., cloud administrators are trusted not to abuse their position to gain 48

unauthorized access to resources or interfere with the access privileges of legitimate users. 49

Finally, it is not possible to maintain a globally trusted and immutable access log to allow 50

auditing for possible data access privacy violations. 51

Motivation. As a result of the preceding discussion, more emphasis is required on 52

innovative, decentralized, interoperable, and adaptable trust management systems. The 53

following are two motivating examples. 54

Example 1: Fine grained access to healthcare data. The medical sector includes a variety 55

of domains, such as regulators, hospitals, manufacturers, and insurance providers. At 56

the same time, privacy-sensitive, health-related data may be created by various medical 57

IoT devices such as health monitoring devices (e.g. glucose level, blood pressure, or 58

sleep monitoring systems), or treatment devices (e.g. medical infusion pumps). Users 59

of one authority may require granular access to data maintained by multiple authorities 60

(stakeholders) and domains. For example, while a doctor is on duty, she may require access 61

to the full medical history data maintained in multiple hospital databases, for a patient 62

under emergency treatment; or, an administrator of a medical device manufacturer may 63

require access to the configuration data of connected medical devices installed in different 64

hospitals. In addition, regulators may require that the data be accessible from a single 65

entrance platform, in order to log all data access requests and monitor privacy violations. 66

At the same time, new sectors or stakeholders can dynamically join or leave the system. 67

Note that users who are simultaneously members of multiple authorities may require 68

special access. For example, a doctor in a hospital may also be a researcher at a university. 69

This doctor would also require access to (statistical) health data maintained in all hospitals, 70

for research purposes. 71

Example 2: Fine-grained access to data in a multi-domain supply chain. Consider a dis- 72

tributed supply chain tracking system, collectively used by supply chain stakeholders for 73

collecting, integrating and analyzing data from a variety of sources. The various stakehold- 74

ers have different requirements for data access. For example, a container shipping company 75

requires access to data on cargo weight and quantity, while a retail end-user requires 76

access to data on product provenance, storage, and transportation conditions (especially 77

for sensitive merchandise). These systems must be interoperable, but also provide granular 78

access to data. In addition, authorities such as customs or other governmental agencies 79

may also require a single point of access for all queries to data, for global access verifiability, 80

i.e. it must be possible for any entity, either inside or outside the system, to verify all access 81

attempts to the data (either successful or not). 82

Contribution. The main contribution of this paper is to design and implement a 83

secure and efficient access control model specifically targeted to dynamic, multi-domain 84

and multi-authority environments. In particular: 85

• We formally define Hierarchical Multi Blockchain based Access Control (HMBAC), a novel 86

access control model for multi-domain and multi-authority environments. HMBAC 87
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supports: dynamic trust management between different authorities; granular and flexible 88

domain-level access control policy enforcement; a global source of truth for all entities, 89

allowing for an immutable and forensics-by-design auditing mechanism. 90

• We provide Janus [5], an artifact and reproducible implementation of HMBAC for large- 91

scale setup environments. Our implementation uses Hyperledger Fabric as the under- 92

lying blockchain technology. To support system orchestration, we developed APIs to 93

allow controlled user interaction with the blockchain and inter-blockchain synchronization. 94

User interaction with the API occurs through an Electron application, while global 95

system orchestration is achieved through Docker containers and Kubernetes. 96

• Based on our implementation, we have conducted extensive efficiency analysis to 97

actually verify the practicality and efficiency of the proposed access control system. 98

• Our system enforces a single point of entry that cannot be bypassed by users or au- 99

thorities. This is achieved by modifying the well-known MA-ABE scheme of [6] in a 100

distributed two-step decryption procedure. Part of the ABE decryption is performed by 101

the multichain system itself by generating an attribute key linked to the requesting 102

user on the fly. The user will be able to fully decrypt the data, provided that he/she 103

has obtained the relevant attribute keys, which are required by the access policy. We 104

developed a Go library as an add-on for Hashicorp Vault1 and integrated it into Hy- 105

perledger Fabric. Secure attribute key storage is supported by embedding the keys in 106

different Vault instances. 107

We note that although Janus utilizes the hierarchical multichain of [7] as a build- 108

ing block, the proposed HMBAC model is independent of the actual underlying multi- 109

blockchain used; it is possible to implement HMBAC based on other underlying multi- 110

blockchains. 111

2. Related work 112

During the last few years, several research attempts tried to provide fine-grained 113

access control in the dynamic multi-authority and multi-domain setting, while main- 114

taining interoperability [8]. Some of these works have focused on decentralization and 115

privacy-preserving encryption [9], [10], [11]. Such targeted solutions enable adequate com- 116

patibility and fine-grained access control; however, they fail to combine credentials issued 117

by independent authorities. Other solutions rely on privacy-preserving encryption, such 118

as Attribute-Based Access Control (ABAC). For example, [12] proposes a decentralized 119

MA-ABAC (DMA-ABAC) scheme for multi-domain healthcare ecosystems. Despite that au- 120

thorities are able to control independently their security settings and enforce cross-domain 121

policies, the lack of a mechanism obliging users to use the system for accessing the data, in 122

combination with the absence of global verifiability, lead to strong trust assumptions. In [13] 123

an ABAC solution is designed for the shared multi-owner setting, assuming a distributed 124

setting with multiple authorities. The authorities own pieces of data and may issue at- 125

tribute keys that users may combine to access data belonging to different authorities. Even 126

though the proposed solution strengthens the restrictions for accessing data, it falls short on 127

addressing the challenge of inter- and cross-domain policy enforcement, i.e., dynamically 128

defining access policies both to control access for all authorities within a domain or for all 129

authorities belonging in different domains. Many works try to solve this problem by using 130

Multi-Authority Ciphertext Policy Attribute Based Encryption (MA-CP-ABE) schemes. For 131

example, the authors of [7] present a hierarchical multichain access model suitable for 132

multi-owner setting specifically for healthcare environments. With the use of MA-CP-ABE, 133

in encrypting the data, the proposed model achieves both inter- and cross-domain policy 134

management. However since multi-domain and multi-authority environments are inher- 135

ently large-scale, the lack of an end-to-end implementation makes it hard to actually assess 136

the efficiency and practicality of [7] in actual applications. 137

1 https://www.vaultproject.io
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Table 1. Comparative assessment of the various characteristics prevalent in the relevant literature.

Relevant Access Application Multi-owner Dynamic Trust Inter-Domain&Cross-Domain Enforces Single Global source Implementation
literature Model environment setting1 management2 policy management point of access3 of truth4 (artifact)

[7] Hierarchical Multichains Healthcare Yes (MA-CP-ABE) Yes Inter & Cross-Domain Yes Yes No
[9] Token-based IoT No Yes Inter-Domain Yes Yes WAVE [14]

[10] Token & Crypto-based IoT No Yes No (user-based) No Yes Droplet [15]
[12] DMA-ABAC Healthcare Yes (ABGS) Yes Cross-Domain No No No
[13] CP-ABKS M-A Yes (ABKS-SM) Yes No No No No
[16] Hierarchical M-A Yes (MA-CP-ABE) No Inter-Domain No No No
[17] Hybrid encryption WBAN Yes (MA-CP-ABE) Yes Inter-Domain Yes No No
[18] Attribute-based Mobile Things Yes (MA-CP-ABE) Yes Inter-Domain Yes No No
[19] Hierarchical M-A Yes (MD-AC) Yes No No No No
[20] Tree structure Smart City Yes (CP-ABE) Yes Inter & Cross-Domain No No No
[21] SEMAAC IoT & Healthcare Yes (CP-ABE) Yes No Yes No No
[22] Attribute-based IoT Yes (MA-CP-ABE) Yes No (user-based) No No No
[23] Token-based M-A Yes (MA-CP-ABE) Yes Inter-Domain No Yes No
[24] ECC IoT & Healthcare Yes (MA-CP-ABE) No Inter-Domain Yes No No
[25] Attribute-based Supply Chain Yes (MA-CP-ABE) Yes No (user-based) Yes Yes No
[26] Attribute-based IIoT Yes (CP-ABE) Yes No (user-based) Yes No No
[27] ABSC M-A Yes (MA-CP-ABSC) No No (user-based) Yes No No
[28] FADB Transportation Yes (CP-ABE) No No Yes Yes No
[29] Credential-based IoMT No Yes No (user-based) Yes Yes No
[11] EACMS Healthcare No Yes No (user-based) No Yes No

Our approach HMBAC M-A & M-D Yes (MA-CP-ABE) Yes Inter & Cross-Domain Yes Yes Janus [5]

1 Combines credentials issued by independent authorities. 2 Dynamic join and leave of authorities in an efficient way. 3 Data can be accessed only through the system.
4 All data access attempts are immutably recorded and globally verified.

In [16] a MA-CP-ABE scheme is proposed that supports range policy, which however 138

maintains the need for a trusted central authority. In [17], authors adopt the idea of hybrid 139

encryption to reduce the computational overhead of data encryption, using a symmetric key 140

to encrypt data and a MA-CP-ABE mechanism to encrypt the symmetric key. The authors 141

in [18], also propose a MA-CP-ABE scheme combined with an outsourced decryption 142

and zero knowledge proof for the Internet of mobile things. In [22], another MA-CP-ABE 143

scheme is proposed suitable for IoT applications and devices with low computational 144

capabilities. Decryption operations are outsourced to fog for efficiency reasons, but no 145

policy management is supported. The authors of [23] introduce a token-based access 146

control scheme which uses smart contract and blockchain to generate decryption keys 147

according to verified user attributes. In [24] Elliptic Curve Cryptography (ECC) and 148

MA-CP-ABE are combined to create an access control system that supports the setting 149

of multiple authorities, but the addition or removal of authorities remains inefficient. In 150

[25] the authors propose a privacy-preserving MA-CP-ABE scheme for blockchain-based 151

applications in the supply chain. This model achieves fine-grained access control and 152

versatile authorization and also protects user’s private key from leakage even when some 153

attributes authorities fail. However, in most of the above solutions, trust expectations about 154

global transaction verifiability persist. Strong trust assumptions are required to ensure that 155

all access transactions to the encrypted data are immutably logged and may be globally 156

verified by all entities. In [21] the authors also suggest an access model based on CP- 157

ABE for IoT in healthcare and even though they achieve the collaboration of independent 158

authorities they do not solve the need for inter and cross domain policy management. In 159

[27] an Attribute-based Signcryption (ABSC) scheme is proposed that relies on a central 160

certificate authority to verify the attribute authorities and thus maintains strong trust 161

assumptions. 162

Other works use hierarchical attribute-based access models, e.g. [19,20,30–32]. For 163

example, [19] presents a hierarchical Multi-Dimensional Access Control (MD-AC) model 164

for the authorization of multiple participants in the cloud. Also [20] relies on a trusted 165

third party (TTP) and an attribute mapping center (MC) incorporating CP-ABE to provide 166

granular access to users. Both works use the cloud for efficiency reasons assuming strong 167

trust. In general, although hierarchical attribute-based access models are flexible and 168

scalable, they are not suitable for multi-authority, multi-domain environments, where roles 169

may not have a global and strict hierarchy. 170

The current state-of-the-art leverages blockchain technology to provide a variety 171

of fully autonomous and hybrid solutions [33,34]. Although blockchain technology is 172

more difficult to administer may introduce efficiency issues, it provides, by design, global 173

verifiability of data access transactions. An immutable ledger can ensure the integrity of 174

transactions and data while also enforcing trust among multiple untrustworthy parties 175

[35]. For example in [28] the authors propose a fine-grained access control scheme for 176

transportation ecosystems based on blockchain, that embraces the multi-owner setting 177
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with the use of CP-ABE. The system provides global verifiability and data integrity, but 178

cannot support dynamic joins and leaves of nodes, or a dynamic policy management. 179

Hybrid solutions move some of the services previously supported by cloud providers 180

to the blockchain. While this approach resolves some of the issues (e.g. data integrity), 181

others problems, such as strong trust assumptions for the cloud operator, still remain 182

[36–38]. Although autonomous solutions are entirely based on blockchain, they are still 183

limited by the level of efficiency that can be supported [11,26,28,29]. In addition, practical 184

implementations for schemes such as the ones discussed above hardly exist in the literature. 185

In conclusion as depicted in Table 1, the proposed HMBAC model is capable of sup- 186

porting fine-grained access control for any multi-authority and multi-domain (M-A&M-D) 187

environment, and it also supports flexible inter- and cross-domain policy management and 188

enforcement. At the same time, our HMBAC implementation, Janus, is one of the few fine- 189

gained M-A&M-D access control models that are supported by an artifact implementation. 190

3. Background 191

This section briefly describes the two fundamental components of our model: the 192

MA-CP-ABE scheme and the Hierarchical Multi-Blockchain architecture. 193

3.1. MA-CP-ABE 194

Multi-Authority Ciphertext-Policy Attribute Based Encryption (MA-CP-ABE) was 195

initially proposed by [39] as an application of Attribute Based Encryption in which any 196

party can become an authority with no global coordination requirements. However, the 197

scheme required a trusted central authority to collect all master private keys from all AAs 198

to compute the collective secret terms for system initialization. The MA-CP-ABE was 199

later extended by [6] introducing fully decentralized CP-ABE systems for both composite- 200

order and prime-order groups by utilizing the user’s Global Identifier (GID) in the key 201

to resist collusion attempts. Several other works have extended the characteristics of the 202

scheme to allow fine-grained data access with attribute revocation for cloud data storage 203

[40], improved efficiency [41] and storage space saving by using hierarchical attributes to 204

compress redundant ciphertext information ([42], [43]). 205

With an MA-CP-ABE scheme, multiple authorities agree on a set of global parameters
GP and, based on these parameters, each authority X generates a public/secret key pair
PKX , SKX . Data m can then be encrypted based on a mutually agreed access policy P (in the
form of a matrix), using the public keys of all the authorities, i.e.: ct = Enc(m,P, GP, {PK}).
With MA-CP-ABE schemes, any party can become an authority, and there is no requirement
for a global root authority. More importantly, users can combine attributes issued by
different authorities, provided that each user has a unique global identity GID. Any
authority X may issue to any user U, attribute keys for an attribute attr, using its private
key, the global parameters and the user identifier:

KU,attr = KeyGen(GIDU, GP, attr, SKX).

Finally, users can combine their attribute keys, issued by multiple authorities, to 206

decrypt an ABE-encrypted ciphertext ct, provided that their set of attributes satisfies an 207

access rule within P, i.e.: m = Dec(ct, GP, {KU,attr}). Although the scheme enables a 208

combination of attributes issued by different authorities, it remains collision resistant, 209

meaning that different users cannot combine their attributes, since each attribute key is 210

assigned to a different GID. 211

An example of MA-CP-ABE is illustrated in Fig. 1. Several organizations belonging to 212

different domains may agree on inter-domain or cross-domain access policies. A domain- 213

wise policy for hospitals may be, for example, to allow access to patient health for doctors 214

at any hospital, if the patient is under emergency treatment. A cross-domain policy for the 215

hospital domain may be to allow access to anonymized data to researchers; or, access to 216

configuration data of medical devices to authorized manufacturer admins. Users may be 217

given attribute keys from different organizations (authorities) and combine them, since 218
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CBA D

User 1 (GID1) User 2 (GID2) User 3 (GID3)

KGID2, B_Doctor
KGID2, Researcher

KGID1, A_Doctor KGID3, RemoteAdmin

Hospitals Research 
Institutes

Medical Device 
Manufacturers

Figure 1. MA-ABE attribute binding and key generation

each attribute key is linked to the global identifier of a user. However, keys issued to 219

different users cannot be combined. The challenge, from an implementation perspective, is 220

to create an architecture that supports efficient MA-ABE decentralization and distribution 221

of the decryption functionality, without compromising security. 222

In our system, we will utilize and properly modify the MA-CP-ABE scheme of [6] 223

since: (i) It is a well recognized multi-authority ABE scheme which supports collision 224

resistance, i.e. although the users may acquire attribute keys from different authorities, it is 225

not possible to combine attribute keys that were issued to different users. (ii) It is supported 226

by actual implementations. (iii) Its decryption process can be executed sequentially, where 227

some attribute keys are applied first, for partial decryption. The partially decrypted data 228

can then be fully decrypted in a second phase, possibly by another entity. In our system, we 229

will exploit this to cryptographically enforce a single point of access for all users. Note that 230

although Janus applies the MA-CP-ABE scheme of [6], other MA-ABE schemes which satisfy 231

the above requirements could be applied to support additional functionality. For example 232

in scenarios where data deletion is required, it is possible to extend Janus implementation 233

by applying the MA-CP-ABE scheme of [44] which supports data deletion assurance. 234

3.2. Hierarchical Multi Blockchain 235

A Hierarchical Multi-Blockchain was proposed in [7] as a solution for fine-grained 236

access to data in medical environments, with multiple participants (e.g. hospitals, medical 237

device manufacturers, insurance companies, etc.), and multiple types of users (e.g. doctors, 238

technical staff, etc.). This architecture was intended to enable autonomous administration 239

of trusted medical data and transactions between mutually untrustworthy stakeholders, 240

while at the same time providing a built-in forensic mechanism optimized for granular 241

auditing. End users from a variety of health care domains can access and securely exchange 242

medical data, provided that a domain-specific access policy is adhered to. 243

Fig. 2 illustrates the architecture of a Hierarchical Multi-Blockchain. At the first level, a 244

Proxy Blockchain is the single access point for participating users. This provides interoperabil- 245

ity between independently managed trust authorities and also acts as an immutable single 246

source of truth for all transactions. At the second level, one or more Domain Blockchains 247

enable each domain (e.g., hospitals, device manufacturers, insurance providers) to enforce 248

their policies and provide fine-grained access control via Attribute Based Encryption (ABE). 249

Databases are handled locally by each entity, and data are encrypted with the attribute 250

keys based on the access policy of the corresponding domain. Services at all levels are 251

implemented by smart contracts published on the relevant blockchain. 252

Other studies have also adapted hierarchical multi block-chain for secure data storage 253

and sharing in various environments. For example, in [45] the authors propose such a 254

model as a solution for massive data traffic in IoT environments, while in [46] and [47] 255

a similar multi-domain blockchain architecture is presented as an answer to scalability 256
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Local Databases

Figure 2. Hierarchical Multi Blockchain architecture [7]

issues. In [48], the authors propose an architecture to minimize IoT information loss 257

by using multiple blockchain groupings, linking them in hierarchical chains. A similar 258

scheme is used in [49] for fine-grained audit capability using sensor values to strengthen 259

confidence. The authors in [50] use sidechains to ensure hierarchical fine-grained data 260

access, but the proposed architecture lacks domain isolation and cannot be used for flexible, 261

manageable domain-wise and cross-domain access policy enforcement. Other applications 262

of hierarchical multi-blockchains involve domain level supervision systems [51]. 263

Despite the growing evolution of Hierarchical Multi Block-chain applications, nu- 264

merous open challenges remain, especially from the aspect of security (e.g. strong trust 265

assumptions) and implementation (e.g., synchronization between multiple blockchains 266

and inter-blockchain communication). 267

4. HMBAC Design & Implementation 268

First, we formally define the HMBAC model (Section 4.1) and, on the basis of it, we de- 269

scribe an HMBAC architecture design (Section 4.2), based on the underlying building blocks. 270

The architecture is eventually translated into Janus, an actual HMBAC implementation 271

(Section 4.3). 272

4.1. HMBAC access model 273

At a high level, the goal of HMBAC is to allow users belonging to different stakeholders 274

(authorities) from different domains to have controlled access to data owned by multiple 275

stakeholders. Moreover, the model must support interoperable use of credentials issued 276

by different authorities, while the inter- and cross-domain policy management must be 277

controlled at a domain level. 278

Hierarchical multiblockchains (Sect.3.2) play a central role in the HMBAC model. 279

The Proxy Blockchain layer answers the first goal by allowing the interoperable use and 280

verification of credentials issued and managed independently by different authorities and 281

domains. Then, the various Domain Blockchains answer the second goal by allowing 282

authorities belonging in different domains to define inter- and cross-domain policies for 283

their data and to manage the authority membership in their domain, without affecting 284

other domains. 285

Following the approach of [52], we define the HMBAC mo-del by representing the 286

logical relations among the access control components, as shown in Fig. 3. A user (U) 287

belonging to one or more authorities (Au) (for example, a hospital) is assigned attributes 288

from a pool of attributes (UA). One or more authorities may issue attributes to users, which 289

is depicted as the attribute authority (AA) relation in Fig. 3. Each authority is associated 290
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Figure 3. HMBAC access model: element sets and relations

with a single domain (D), and each domain contains multiple Au. A key element in the 291

HMBAC model is the hierarchical multi-blockchain presented in Section 3.2. All domains, 292

and thus all authorities, constitute the proxy blockchain (PBc), i.e. are the stakeholders for 293

the first layer of the multi-blockchain. Then, at the second layer, various domain block- 294

chains (DBc) may be constructed. Each group of authorities with similar characteristics 295

form a different DBc (e.g one DBc is constructed by the hospital stakeholders, while another 296

DBc is constructed by the manufacturers). Objects (OB), representing data or services 297

accessible by users and operated by subjects (S), are encrypted with attribute keys (AK) 298

created by the pool of UA. With the terms user attribute authorities (UAA) and subject 299

attributes (SA) we represent the logical connection between users and subjects with the UA 300

pool. 301

For a user to gain access to encrypted data, three checkpoints must be met. First, 302

an attribute verification function (AVF) executed on the PBc will verify the validity of user 303

attributes. Then the authorization function (AF), placed on the DBc, will verify whether the 304

presented user’s attributes are sufficient, based on the relevant inter-domain (IDP) and 305

cross-domain (CDP) policies, to authorize the access request. Finally. the decryption function 306

(DF) also executed in the relevant DBc of the data owner, will partially decrypt the data, 307

which will be fully decrypted by the user, with the proper user attribute keys. 308

Table 2, summarizes the basic sets and functions of the proposed HMBAC model, as 309

well as a formal analysis of the three functions specified for data access and decryption. 310

Users, objects, and keys can be assigned attribute values directly from an attribute func- 311

tion att from a set of values in the range, denoted Range(attu), Range(attOB), Range(attK) 312

respectively. Users are assigned to multiple authorities (defined by many to many func- 313

tions directUAu) and also authorities are assigned to one domain (defined by one to many 314

functions directDAu). 315
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Table 2. Basic sets and functions of HMBAC model

Basic Sets and Functions

-U, Au, S, K, D: finite sets of users, authorities, subjects, keys, domains
-UA, OA, AK: finite sets of user, object and keys attribute functions

- PBc, DBc: fine sets of Proxy and Domain blockchain services
-IDP, CDP: fine sets of inter and cross domain policies

-OB, OP, DAS: fine sets of objects, operations and data services
-attType : UA = {set}, defines user attributes to be set valued only.
-attType : AK = {set}, defines keys attributes to be set valued only

Each attribute attU in UA maps users or authorities to a set of attribute
values in Range(attU). Formally, attu : U ∪ Au → 2Range(attU )

Each attribute attOB in OA maps objects in OB to attributes values.
Formally, attOB : OB → 2Range(attOB)

Each attribute attK in AK maps keys in K to attribute values.
Formally, attK : K → 2Range(attK)

Direct UAu : U → 2Au , mapping each user to a set of authorities.
Direct DAu : D → 2Au , mapping each domain to a set of authorities.

Effective Attributes of Users, Subjects and Keys

For each attribute attU in UA, e f f ectiveAu attU : Au → 2Range(attU )

For each attribute attU in UA, e f f ectiveU attU : U → 2Range(attU )

US : S → U , mapping each subject to a user

For each attribute attU in UA, e f f ectiveS attU : S → 2Range(attU ) ,
mapping each subject to a set of values for its e f f ectiveU attU .

For each attribute attK in AK, e f f ectiveK attK : K → 2Range(attK) .

Attribute verification function (AVF)

A subject s ∈ S is allowed to perform op ∈ OPAVF on a service
sr ∈ PBc if the e f f ectiveS attU ∈ UA. Formally,

OPAVF(s : S, sr : PBc) = True

Authorization function (AF)

A subject s ∈ S is allowed to perform op ∈ OPAF on a service
sr ∈ DBc if the e f f ectiveS attU satisfy policies stated in

AuthDBc(s : S, sr : IDP ∪ CDP). Formally,
AuthDBc(s : S, sr : IDP ∪ CDP) = True

Decryption function (DF)

A subject s ∈ S is allowed to perform an operation op ∈ OPDF
on an object ob ∈ OB in data access services ds ∈ DAS, if

{OPAVF(s : S, sr : PBc) ∩ AuthDBc(s : S, sr : IDP ∪ CDP)} = True
and has keys k ∈ K such as OPDF(ob ∈ OB|obk ∈ K|sk ∈ K) = True.

4.2. HMBAC architecture design 316

The system architecture is designed with real-world requirements in mind, notably 317

those of the medical sector. Note however that other digital environments can easily be 318

supported. 319
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Figure 4. The proposed HMBAC architecture with the HMBAC model of Fig.3

In our implementation we consider two domains: hospitals and medical device man- 320

ufacturers. Hospitals may involve users with various roles such as doctors, emergency 321

doctors or researchers. Similarly, manufacturers may support various roles such as device 322

technicians. According to the access control policies that may be defined within a domain, 323

or cross-domain, granular access may be allowed. For example: 324

• Access Rule 1: A doctor on duty may access all the medical records at all hospitals, of a patient 325

under emergency treatment (hospital-domain access rule). 326

• Access Rule 2: A manufacturer’s support technician may read or update the firmware of 327

supported medical devices installed at any hospital (cross-domain access rule). 328

Fig. 4 describes the proposed HMBAC architecture, as well as its mapping to the 329

generic HMBAC model (presented in Fig.3). The architecture is comprised of three building 330

blocks. The Frontend Layer, is a web application which allows authorized users to interact 331

with the system and post data access queries. It consists of a web user interface (UI) and 332

frontend services that support the communication between the frontend and the rest of the 333

system. 334

The Blockchain Infrastructure is a middleware that implements all system services and 335

provides controlled access to data, which are maintained off-chain individually by each 336

stakeholder. It implements the hierarchical multi-blockchain, which consists of one Proxy 337

Blockchain (PBC) and one or more Domain Blockchains (DBCs). As described in Section 3.2, 338

the PBC acts as a single access point for users, while the DBCs enable the management, 339

implementation and enforcement of flexible and granular access policies at the domain 340

level. The integration of the blockchain components is supported by special-purpose APIs 341

both for inter- blockchain synchronization (Inter-BC API), user interaction (Frontend API) 342

and data (Database API). 343

Finally, the Data Layer contains the individually managed databases that store all data 344

off-chain and ABE encrypted. As data are encrypted with ABE and the decryption process 345

requires partial decryption through the corresponding DBC, the system enforces data 346

access through the HMBAC system. Note that CA management at the stakeholder level is 347

managed outside our system and our main goal is to offer credential interoperability, i.e. 348

credentials issued from independent authorities are mutually trusted, without assuming 349

a globally trusted root authority. In the following subsection, we describe in detail the 350

services provided by each building block. 351
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4.2.1. Frontend layer 352

A web UI enables users to login to the system and post data access queries. To 353

access the system, two-factor authentication is enforced: the user must provide valid login 354

credentials (e.g. a password) and a valid attribute certificate issued by a stakeholder. We 355

assume that the user credentials are managed individually and stored securely by each user. 356

The communication between the Frontend Layer and the Blockchain Infrastructure services 357

is realized by endpoints implemented as Frontend Services and Frontend API. Finally, 358

when the user eventually receives the partially decrypted response data via the Frontend 359

API, the Frontend Services will grant access to the user of the attribute keys needed to fully 360

decrypt the data. 361

4.2.2. Data layer 362

Stakeholders manage their data off-chain. Recall that data are MA-ABE encrypted 363

based on predefined domain or cross-domain policies. To enforce accessing data only 364

via HMBAC, for each domain a distinct domain attribute key pair is assigned. During the 365

ABE data encryption, all policies are modified by applying an additional ‘AND’ rule with 366

the corresponding domain attribute key. For example, data encrypted based on access 367

Rule 1 defined in Section 4.2, for decryption would require the following attribute keys: 368

Kdoctor, KonDuty, and Khospitals. The key Kdoctor corresponds to a long-term attribute and 369

KonDuty to a temporal attribute. Finally Khospitals is the hospital domain’s attribute key, 370

generated using the hospital domain’s attribute key pair PKH , SKH . 371

4.2.3. Hierarchical Blockchain infrastructure 372

The Proxy Blockchain (PBC) receives the user requests via the Frontend API and imple- 373

ments three main services through smart contracts. User requests along with the provided 374

attribute certificate(s) are handled by the Proxy Smart Contract (PSC). The PSC will first trig- 375

ger a certificate validation process, executed by Trust Management Smart Contract (TMSC). 376

The TMSC will validate the long-term (and possible temporal) attributes assigned to users 377

via a typical challenge-response signature verification process. Note that users can access 378

the HMBAC services only via an authenticated channel (the Frontend API) and after success- 379

ful attribute authentication (by the PBC). If user attributes are verified, the PSC will then 380

forward the request to the relevant Domain Blockchain for further processing and wait 381

to receive the response via Inter-BC API. The response will eventually be sent back to the 382

user via the Frontend API. The transaction history is recorded on the PBC. The Logging 383

Smart Contract (LSC) creates a log for each incoming user request, until the transaction is 384

completed. 385

The Domain Blockchains (DBC) may receive user requests only from the PBC via the 386

Inter-BC API and implement the following services. Each DBC contains an Access Control 387

Smart Contract (ACSC) which enforces the access control policy of the particular domain. 388

This includes both intra-domain and cross-domain access policies that control access to data 389

maintained by the domain’s stakeholders. The ACSC checks if the user attributes (already 390

validated at the PBC) are sufficient for the specific request, according to the predefined 391

access policy. In this case, the request is forwarded to the relevant database(s) via Database 392

API. Note that depending on the request, the API can retrieve ABE-encrypted data from 393

multiple sources, for example, when a user is requesting data from multiple stakeholder’s 394

databases. 395

When the encrypted data return from the Data Layer, the Database API passes them 396

to Key Store Smart Contract (KSSC), which has access to the relevant domain’s attribute 397

public/private key pair (e.g., PKH , SKH in the case of the Hospital DBC). The KSSC will 398

first use the private key SKH to generate the hospital domain attribute key (Khospitals) based 399

on the GID of the requesting user, to partially decrypt the data. The partially decrypted 400

data will be forwarded to the PBC (via the Inter-BC API) and eventually to the user (via the 401

Frontend API). The user must finally apply his attribute keys to fully decrypt and access 402

the data (i.e., the attribute keys Kdoctor and KonDuty in our example). 403
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4.3. Janus implementation 404

The implementation of the system relies on the integration of various technologies. 405

For implementing the Frontend component, an Electron2 application was developed, while 406

blockchains (PBC and DBCs) were developed on the Hyperledger Fabric platform, with 407

Raft3 as the underlying consensus mechanism. Functionality is implemented through Smart 408

Contracts developed in Javascript (the full open-source implementation can be found in [5] 409

as a reproducible artifact). 410

Janus orchestration relies on Kubernetes4. For security and design modularity, all the 411

components of the multi-blockchain infrastructure were developed in distinct Kubernetes 412

Pods, thus providing software isolation and containerization. In particular, each smart 413

contract, as well as the Frontend, the Inter-BC and the Database APIs are executed as 414

separate Pods. To secure the interaction between Pods, an Ingress API supports TLS 415

termination between the Pods. 416

To support the deployment of independent certificate infrastructures, each partici- 417

pating stakeholder establishes and maintains a Certificate Authority (CA), responsible for 418

issuing and revoking certificates for their users who interact with the system. To sim- 419

plify the deployment, one CA is considered to be a mutually trusted authority and is 420

responsible for issuing certificates used by the system components (e.g. for Pods’ TLS 421

connections). Although this is not a strong requirement (e.g. it can be removed by applying 422

cross-certification between the stakeholders), it simplifies the deployment process and it is 423

a reasonable assumption for multi-domain environments. For example, in the healthcare 424

sector, the ministry of health might have the role of the mutually trusted authority. In 425

our system, we use Hyperledger Fabric Certificate Authority (provided by the Hyperledger 426

platform) to implement the CAs of the stakeholders. Each CA runs as an instance for each 427

entity in a separate Kubernetes Pod. 428

Hashicorp Vault5 is used as an external application to issue, manage and store user and 429

authority credentials and keys. Although it is an off-the-shelf solution, we designed an 430

ABE plugin for Vault, written in Golang, to implement a two-step ABE decryption and 431

support the partial decryption process via the KSSC. Additionally, we run different Vault 432

instances, one for simulating user-side attribute key Vault storage and another for storing 433

domain attribute keys, which is accessible only by the KSSC of each Domain blockchain. 434

Finally, the Frontend and the Inter-BC APIs use an instance of RabbitMQ6 software, 435

executed also in a separate Pod, for temporarily storing requests that remain pending in 436

queues. The implementation design of Janus is depicted in Fig. 5 and described in detail in 437

the following subsections. 438

4.3.1. Frontend application 439

This is a client-side Electron application, running locally by each user. The User 440

Interface (UI) implements the presentation layer through a web-based interface developed 441

in React.js. It enables users to login to the system using their appropriate credentials and, 442

upon successful validation, to submit their requests. 443

In addition, the Electron app implements various support frontend services, devel- 444

oped in Node.js and running in the background at the client side. The Blockchain-Related 445

Mechanisms, encompass all the functionality required for a user to communicate with the 446

middleware. These mechanisms enable a user to create and sign a query and commit it for 447

the purpose of generating a new transaction. 448

The Authentication Mechanisms supports user authentication to the system. To authen- 449

ticate the credentials (attribute certificates) of a user, the Certificate Authority (CA) of the 450

2 https://www.electronjs.org/
3 https://raft.github.io/
4 https://kubernetes.io/
5 https://www.vaultproject.io/
6 https://www.rabbitmq.com/
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Figure 5. Janus implementation design based on the HMBAC architecture

relevant stakeholder must be involved. The frontend authentication mechanisms pass the 451

credentials along with a signed challenge to the Frontend API, which communicates with 452

the relevant CA in order to issue a token for the user and establish communication. The 453

authentication mechanisms also support communication with the user’s Vault instance, 454

securely storing the user-side attribute keys. 455

Finally, the Endpoints represent the communication points between the UI and the 456

Frontend API. Any traffic towards the API will be handled by Kubernetes and the Ingress 457

web server. 458

4.3.2. Frontend API 459

This serves as a secure authenticated channel, allowing users to communicate with the 460

PBC via the Frontend application. For each stakeholder, an instance is created including 461

information about the node (Peer Information), the corresponding stakeholder’s gateway (HF 462

BC Gateway) and the instance of the CA (HF Certificate Authority) where the stakeholder’s 463

certificates are stored. Furthermore, Client-related Authorization Mechanisms, generate the 464

authentication token issued by the CA to which the user belongs. This token is used to 465

establish connections between the user and the PBC. 466

When a user submits a request, it is received by the Routes module and then queued 467

in the Main Queue until served. The Queue Handler is responsible for data storage and 468

retrieval to and from the Main Queue. When the Queue Handler authorizes the request to 469

be forwarded, the request is retrieved from the Main Queue, and Ticket Manager generates 470

a ticket for the user. Note that the Ticket Manager constantly checks for expired tickets. 471

The Frontend API is a RESTful API developed in Node.js using the Express framework. 472

Since the Frontend API is running on a distinct Kubernetes Pod, its services are accessible 473

to other Pods via the Kubernetes-exposed ports. In order to expose services on the web, an 474

Ingress controller is used and the communication is TLS encrypted. For increased security, 475

the TLS session is encrypted end-to-end between the Frontend application and the Frontend 476

API. Thus, TLS is terminated on the Frontend Pod itself instead of the Ingress controller of 477

the API. 478

4.3.3. Inter-Blockchain API 479

The Inter-Blockchain API is also developed in Node.js. Each stakeholder runs a 480

different instance, executed on a distinct Kubernetes Pod, while its services are accessible 481

to other Pods via the Kubernetes-exposed ports. 482

The main role of the Inter-Blockchain API is to enable the interaction between the 483

Proxy and the Domain Blockchains. Handling and prioritizing requests between different 484

blockchains is critical, as it can result in a significant performance decrease or even system 485
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Figure 6. Inter Blockchain API Flow

failure. In addition, it supports stakeholders in making management decisions that may 486

require agreement between stakeholders. Our solution addresses the aforementioned issues 487

by integrating two critical processes into the Inter-Blockchain API: (a) Request Handling 488

and Prioritization; and (b) Voting Management. 489

(a) Request Handling and Prioritization 490

For managing requests, the Inter-BC API, utilizes 2 general types of queue. The Proxy 491

Queue, for every request that needs to be forwarded to the PBC and Domain Queues, for 492

requests that need to be forwarded to one or more DBCs. Every DBC has its own Domain 493

Queue, thus their number depends on the number of DBCs. The request handling flow is 494

illustrated in Fig. 6 and is described below. 495

Step1: Listen and acquire. When an organization (Stakeholder instance in the Inter- 496

Blockchain API) receives an event, it first verifies if it is the intended recipient. Next, it 497

forwards the user query, say Qi, to the Queue Manager in order to temporarily save the 498

message and process it later when it is ready for consumption. 499

Step2: Get the request Qi and forward it to the relevant DBC. When it is time for a 500

request Qi to be consumed by the appropriate DBC, the Queue Manager receives it (from 501

the relevant Domain Queue of the Inter-BC API) and forwards it to the instance of the 502

organization to which the requesting user belongs. The organization instance then forwards 503

Qi to the DBC of which the organization is a member. Upon completing the request, the 504

response that was received from the DBC is then, again, sent to the Queue Manager in 505

order to queue the new message and consume it, i.e. forward the response to the PBC when 506

ready. The Queue Manager also sends an Acknowledgment message (ACK) to RabbitMQ 507

to inform it that the message was successfully consumed. RabbitMQ receives the ACK and 508

removes the message from the Domain Queue. 509

Step3: Get the response Ri and forward it to the PBC. When the response Ri of the 510

query Qi is received from the relevant DBC, it is ready to be consumed. The Queue Manager 511

receives it through Proxy Queue and forwards it to the appropriate organization instance. 512

Then, the organization receives the response and forwards it to the PBC to continue 513

processing the response. When forwarding Ri back to the PBC, the Queue Manager sends 514

an ACK to RabbitMQ to inform it that the message was successfully consumed. RabbitMQ 515

receives the ACK and removes the message from the Proxy Queue. To maintain the flow 516

healthy and avoid Denial-of-Service errors or attacks on the Proxy BC, a Queue Supervisor is 517

utilized. The Queue Supervisor constantly monitors the Proxy Queue for spikes/congestion 518
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in the network. As shown in Table 3, we define five types of congestion where each one is 519

chosen based on the current level of congestion (CL). 520

Table 3. Congestion types

Congestion Types

Scale Congestion
Level (CL)

Monitor
Interval

Throttle
Multiplier

Normal 2 ≤ CL 5s 1
Low 1 ≤ CL < 2 4s 0.7

Medium 0.5 ≤ CL < 1 3s 0.4
High 0.3 ≤ CL < 0.5 2s 0.1

Extreme CL < 0.3 1s 0.01

Depending on the congestion type, the system adjusts, in order to handle the requests, 521

avoiding DoS, and assuring that all requests will be served. The Congestion Level CL is 522

calculated using the formula: 523

CL =
max #Concurrent Requests

#Queued Requests

This means that, for example, if the PBC receives 1500 requests and accepts 400 524

concurrent requests, then 1100 of them will be pending in queue. The congestion level is 525

then: CL = 400/1100 = 0.36, which is High according to Table 3. The system will lower the 526

monitor interval from 5sec to 2sec, and throttle requests sent from IBC-API to PBC will be 527

recalculated with the multiplier 0.1. If the default value is 400 then 40 concurrent requests 528

will be sent until the PBC is dis-congested. 529

(b) Voting Management 530

To reach management decisions that require agreement between stakeholders, an 531

asynchronous voting mechanism is implemented through smart contracts (described in 532

Section 4.3.4 below). The Inter-Blockchain API enables the execution of this asynchronous 533

model through the following components. As each stakeholder runs an instance of the 534

Inter-Blockchain API, it deploys an instance of an Event Manager and a Voting Manager. 535

The Event Manager continuously checks for new events related to active voting processes 536

and expired elections. The Voting Manager fetches all the active elections related with 537

the relevant stakeholder running the Inter-Blockchain instance, and it constantly awaits to 538

receive relevant data (e.g. new votes). It also keeps a log of the submitted votes for each 539

Election ID, and communicates with the PSC chaincode when majority is reached or time 540

expiration occurs for a particular election. 541

4.3.4. Smart Contracts 542

As described in Section 4.2.3, the blockchain services are implemented through smart 543

contracts. The PSC, TMSC, and LSC are stored at the Proxy Blockchain and shared among 544

all stakeholders, while the ACSC and KSSC are stored at each Domain Blockchain and 545

provide domain-specific functionality (see the relevant artifacts provided in [5] for details). 546

Proxy Smart Contract (PSC). This integrates the functions for user validation, stakehold- 547

ers’ voting and request forwarding. For user validation, the validateUser() function takes as in- 548

put an array of userCerts provided by the user at login, and triggers the getUserValidation() 549

function stored on the TMSC, in order to validate the provided certificate(s). Based on 550

the outcome of the validation, the PSC returns the validated user’s roles (short- and 551

long-term). The voting mechanism is a crucial component of the system. Through this 552

mechanism, stakeholders can reach management decisions including: a) adding/removing 553

domains (and the relevant DBCs); b) adding/removing stakeholders to an existing DBC; 554

c) modifying a (cross-) domain access policy; and d) giving access to logs for external 555
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auditors. Other processes that require broader consent can also be supported. For each 556

stakeholder, the stakeholder administrator or a delegated external auditor may invoke the 557

majorityConsentInit() function to propose a new election. It first checks if another election 558

with the same payload is active and then calculates the ElectionID based on the provided 559

payload. A new Election instance is created and added to the ledger, and also a ballot for 560

each stakeholder. With majorityClientVote(), the administrator of each stakeholder votes in 561

an Election by signing with the organizations’ private key. The updateElection() function 562

checks if the Election has been finalized based either on the predefined majority rules or 563

the timeout set. The requestAccess() function handles two processes. First, it constructs the 564

requestDetails, which is sent to the LSC for logging. Then it sends a requestForward event to 565

the Inter-BC API to complete the request. 566

Trust Management Smart Contract (TMSC). This contains the functions that support 567

trust management services. The initLedger() function is responsible for handling certificates 568

and revocation lists of each stakeholder. It takes an initPayload argument and appends the 569

corresponding data to the PBC. Additionally, it creates empty Access Control List (ACL) 570

files for each organization. The getUserValidation() function takes as input either an ACL 571

file (to verify temporal roles assigned to users) or a certificate (to verify long-term user 572

roles). Note that users may have obtained certificates issued by different stakeholders, 573

provided that all certificates of a user include the same unique global identifier (GID). In 574

addition, it allows for the efficient revocation of user access through attribute certificate 575

revocation lists issued by the relevant authorities, instead of applying costly attribute 576

key revocation techniques. Finally, it communicates with the LSC in order to record the 577

transaction on the blockchain. To allow for interoperability of credentials issued by different 578

stakeholders, all root certificates of all stakeholders are stored in the PBC. For the addition 579

or removal of CAs, the functions addCA() and removeCA() are triggered accordingly. Note 580

that both functions require agreement between current stakeholders through the voting 581

mechanism. Only after agreement has been achieved through the voting mechanism, the 582

function updateTrustAnchors() will update the stakeholders’ certificates in the PBC. The 583

majorityUpdate(), invoked by the PSC, is called when an election ends (either by majority 584

agreement or by timeout) for informing the TMSC. 585

Access Control Smart Contract (ACSC). Its main function is to enforce the predefined 586

access policy, when users request access to data stored within the domain. The Inter-BC 587

API forwards the request and triggers the policyEn f () function. Using the data_ID and the 588

roles provided in the payload, it determines whether or not to grant access and forward the 589

request to the KSSC. 590

Logging Smart Contract (LSC). This component enforces a single source of truth in 591

our system. For each data access request, the requestLog() function is automatically trig- 592

gered by the requestAccess() function of the PSC. Two main processes are supported by 593

the LSC, registration and retrieval of logs. Log registration is utilized with the functions: 594

updateLog(), for updating the details of uploaded stakeholders’ Certificates and temporal 595

ACLs; updateRequestLog() for updating existing request records; and majorityUpdate() for 596

updating Election records. The getUserRequestLog() function implements log retrieval 597

for users who want to access their request record. The retrieveLogInit() and retrieveLogs() 598

functions are utilized for starting an access-granting Election, when an auditor requests 599

access to the logs stored on PBC and the log retrieval accordingly. 600

Key Store Smart Contract (KSSC). 601

This component enforces the single point of access property in our system, in the 602

following way. As described in Section 4.2.3, data are MA-CP-ABE encrypted, based on 603

predefined access policies, which are modified to additionally require the decryption with 604

the domain attribute key. The KSSC is the only component that may access the domain’s 605

attribute private key. The requestData() function is invoked by the ACSC to initiate the 606

process, only after the user’s roles have been verified and connects to the Database API to 607

forward the data_ID of requested data. 608
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4.3.5. Distributed ABE decryption implementation 609

As described in Section 4.2.2, our goal is to cryptographically enforce a single point of 610

entry for the system users; which means that even if a user has all the roles required for 611

accessing some data, an extra layer of encryption will prevent access to the data outside 612

the Janus system. To achieve this, we modified the implementation of the MA-CP-ABE 613

scheme of [6], by distributing the decryption functionality between the user and the domain 614

blockchain. We used as a basis the Python implementation of the original scheme in the 615

Charm encryption library. 616

Since directly applying ABE encryption and decryption is not efficient, we have 617

applied a hybrid encryption approach, where the data are symmetrically encrypted, while 618

the symmetric keys are ABE encrypted. At each stakeholder’s database, each data item, 619

say di, is initially encrypted with a distinct symmetric (AES) key ki as: ci = AES(di, ki). 620

Then, each data encryption key ki is ABE encrypted, based on all access policies that allow 621

access to the particular item, which are extended to include the domain attribute key of the 622

relevant domain. For example, assume that personal information di of a patient should be 623

available to the patient’s family doctor or any doctor in the case of emergency treatment of 624

the patient. In that case, the key ki would be ABE encrypted as follows: 625

e1=Enc
(
ki,P, GP, {PKdoctor, PK f Doctor, PKH}

)
e2=Enc

(
ki,P, GP, {PKdoctor, PKonDuty, PKH}

)
Each symmetrically encrypted data item ci is sent to the DBC through the Database 626

API, along with all ABE encryptions of ki, in this example e1, e2. The KSSC has access to the 627

domain’s vault, where the hospital domain’s attribute key pair PKH , SKH is stored. Using 628

SKH it will generate on-the-fly, the hospital domain attribute key for the requesting user, 629

i.e.: KU, hospitals = KeyGen(GIDU, GP, attr: hospitals, SKH) and use it to partially decrypt 630

the data. The user will be able to actually decrypt the data, only if: (i) the KSSC has 631

partially decrypted the data with the domain attribute key and (ii) the user has the relevant 632

attribute keys for (at least) one of the above access policies, i.e. {KU, doctor, KU, f Doctor} or 633

{KU, doctor, KU, onDuty}. 634

We implemented the MA-ABE decryption scheme of [6] in Go as a Hashicorp Vault 635

plug-in, and we integrated this into KSSC. The KSSC may trigger sysDecrypt(), executed 636

in the domain’s Vault instance, which generates the domain attribute key for a given GID 637

and uses it to perform partial ABE decryption. In this way, the domain attribute key is 638

accessible only for those requests that have already been authorized by ACSC. At the same 639

time, it is never given to the users, to prevent off-system data access. 640

5. Efficiency analysis 641

Since HMBAC is targeted to fine-grained access for multi-auhoritiy, multi-domain 642

environments, a practical implementation must be scalable to the number of authorities and 643

domains. First, we analyze the scalability of the system in terms of system management. 644

Then we benchmark the performance of Janus for different configurations and access 645

request rates. All measurements can be reproduced through the Janus github repository 7. 646

5.1. System Scalability and Management 647

The modular design of the HMBAC architecture allows for scalable and efficient 648

system management. Adding or removing users in Janus is handled independently by 649

each organization (stakeholder). Each organization is able to issue attribute certificates and 650

give access to the corresponding attribute keys to allow its users to: (i) post queries that 651

will be accepted by the ACSC, based on the user’s roles; and (ii) fully decrypt a response 652

7 Benchmarks are fully reproducable via an automated script – see the ‘System Benchmark’ section of the
‘readme’ document on Janus repository [5]
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that has been partially decrypted by the KSSC. Adding/removing stakeholders within an 653

organization, or changing the access policy of the domain, is handled at the domain level. 654

Due to the use of independent DBCs per domain, managing functions within a domain will 655

not cascade to affect the other domains. The use of the voting mechanism enables setting 656

up elections at a domain level and in addition to define a majority threshold at domain 657

level for decisions affecting a particular DBC. Finally, adding new DBCs will require a 658

majority voting by all the stakeholders and will affect all the domains, as this will require 659

updating the smart contracts in the PBC. 660

5.2. Benchmarks 661

We conducted our evaluation on two different hardware configurations with varying 662

resources, using the Linode cloud infrastructure. As depicted in Table 4, in the first H/W 663

setup (S1), an AMD EPYC 7501 32-core processor @2GHz with 64 GB RAM is used. The 664

second H/W setup (S2) is an environment with higher resources, based on an AMD EPYC 665

7702 64-core processor running at @2GHz with 512 GB RAM. As our implementation 666

Janus utilizes eight (8) Kubernetes pods, where each Pod corresponds to an independently 667

managed server, setup S1 (resp. S2) corresponds to 4 cores/8GB RAM (resp. 8 cores/64GB 668

RAM) per server. 669

Table 4. H/W specs for testing

CPU (# cores) RAM (GB)
Total Per Pod Total Per Pod

Setup S1 32 4 64 8
Setup S2 64 8 512 64

Both sets of configurations run Ubuntu 20.04.1 LTS OS and Kubernetes 1.20.11 was 670

used for container orchestration. The multi block-chain components were developed in 671

Hyperledger Fabric 2.4 beta with Raft as the underlying consensus algorithm and also fabric- 672

ca-client 2.2.6, fabric-network 2.2.9 and fabric-gateway 0.1.0 were used for establishing 673

communications. 674

Following the two access rule examples mentioned in Section 4, we created both 675

inter-domain queries (e.g. “Retrieve the medical record for patient P from all hospital databases" 676

and cross-domain queries (e.g. “Update the firmware for medical device D of manufacturer M at 677

all hospitals"). Each database was running on a separate Pod and data were ABE encrypted. 678

The initial ABE decryption was performed by the KSSC running on the relevant domain 679

BC of the requesting user, as described in Section 4.3.5. 680

We measured the average end-to-end query response time for various sizes of queries, 681

ranging from 2 up to 300 concurrent queries (req/sec), with an approximately even portion 682

of inter-domain and cross-domain queries. Table 5 shows the average execution time for all 683

scenarios tested. In addition, the table presents the time needed for the main subprocesses 684

of the query-response process. 685

Table 5. Detailed performance evaluation for various scenarios of concurrent requests and h/w
setups (time in sec)

# of concur. requests 2 10 20 40 60 80 100 200 300
H/W setups S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

Ticketing 0.004 0.002 0.003 0.002 0.002 0.002 0.002 0.003 0.003 0.005 0.025 0.008 0.018 0.015 0.015 0.024 0.032 0.02
Endorse 0.08 0.07 0.25 0.12 0.24 0.17 0.16 0.23 0.22 0.15 0.48 0.55 0.44 0.18 0.55 0.3 0.82 1.44
Commit 0.006 0.007 0.006 0.004 0.005 0.005 0.006 0.005 0.005 0.005 0.008 0.008 0.008 0.025 0.010 0.010 0.014 0.020
BC_RTT 2.19 2.2 2.41 2.22 2.47 2.07 2.95 2.49 3.19 2.76 3.33 2.74 4.22 3.76 6 4.63 8.09 5.62
Average 2.27 2.27 2.67 2.35 2.72 2.25 3.12 2.73 3.43 2.92 3.85 3.32 4.69 3.98 6.58 4.97 8.96 7.12

Min 2.26 2.27 2.58 2.28 1.88 2.1 2.02 2.92 1.62 1.61 1.88 1.98 2.04 2.45 1.74 1.54 1.65 2.33
Max 2.29 2.27 2.72 2.39 2.91 2.58 3.88 4.05 4.86 3.66 5.14 5.31 5.71 5.22 9.2 7.84 12.77 10.39
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Ticketing, refers to the time required by the system to issue a ticket for a user. Endorse, 686

is the time it takes for peers to receive a request and sign the result. Commit, is the time 687

required by the orderer nodes to create a new block. Finally, BC_RTT is the time needed 688

to execute all the required BC functions (smart contracts) and inter-BC communication. 689

In addition, the minimum and maximum time required for a query is presented in each 690

scenario, to exhibit the deviation from the average time. As expected, the most resource- 691

intensive process is BC_RTT, which encompasses all subsystems, from Proxy BC up to 692

the retrieval of encrypted data from the independently managed databases, as well as the 693

partial decryption process using the domain keys. 694

However, the overall time increase is linear (see Fig. 7), which indicates the scalability 695

of the HMBAC design. 696
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Figure 7. System Efficiency

Adding new authorities will increase the number of users and, consequently, the 697

number of requests. At the same time, it will also increase the overall system resources, 698

as the new authorities will devote resources to become stakeholders of the Proxy and of 699

their Domain blockchain. The system’s performance is linearly dependent on the available 700

resources, which means that as resources increase, the overall time decreases. Note that 701

in both system setups the system presents zero errors per requests, due to the queuing 702

module integration. 703

6. Security analysis 704

Threat model. We consider both internal and external attackers. Internal attackers 705

may be compromised nodes of the HMBAC system or compromised users. Compromised 706

nodes may attempt to illegally modify the access policies or the domain’s stakeholders’ set. 707

Compromised users may attempt to bypass access control policies and gain unauthorized 708

access. External attackers may attempt to gain unauthorized access to the system. 709

Assumptions. We shall assume in our analysis that the underlying software compo- 710

nents such as the orchestration engine (Kubernetes) and the isolation mechanisms (Pods 711

and Hashicorp Vault) are trusted. Instead of requiring a fully trusted authority, we relax 712

our trust assumptions to a majority of trusted stakeholders for each domain. We assume 713

that the majority of the participants in the consensus and voting protocols behave in a 714

trusted way. We assume that the encryption and authentication mechanisms used (AES and 715

MA-ABE) are secure (cannot be compromised by a probabilistic polynomial-time Turing 716

machine). Finally, we assume that the user credentials are securely managed at the user 717

side. As the main goal of HMBAC is to provide access control, we will first examine security 718

against unauthorized access attacks and then other security characteristics of the proposed 719

system. 720

6.1. Secure data access 721

The security of HMBAC controlled data access is based on several security building 722

blocks (as detailed in Section 4.2). First, data is ABE encrypted with the keys assigned to 723

users based on their roles, by applying the MA-ABE scheme in [6]. Then, an extra layer 724
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of ABE encryption is performed, with an attribute key assigned to the Key Store Smart 725

Contract (KSSC). This is implemented by applying an additional ‘AND’ rule, on top of 726

the predefined encryption policy. This forces all requests to be performed via the HMBAC 727

system; otherwise, the data retrieved by users will still be partially encrypted. The BC-side 728

attribute keys are securely stored in a Vault and are accessible only by the KSSC. 729

Besides the encryption layer, the user must get authenticated by the system in order to 730

send queries, and also by the user-side Vault to access the attribute keys, in order to decrypt 731

the received partially encrypted data. System authentication is performed through the 732

proxy blockchain using the Trust Management Smart Contract (TMSC). An authenticated 733

user may then send a data access request, which in turn will be validated at the domain 734

blockchain layer, via the Access Control Smart Contract (ACSC), in order to verify that the 735

user has the required roles based on the access policy. The KMSC performs the required 736

partial decryption. Finally, users need access to their attribute certificates, issued by the 737

relevant stakeholders / authorities, to verify their roles with the ACSC8. 738

To formalize our analysis of unauthorized access attacks, we use attack trees as in [53]. 739

Attack trees [54] are a conceptual design used to describe attacks on system assets. We 740

distinguish two types of attack nodes, and-nodes and or-nodes: the children of an and-node 741

should all be executed to reach the goal of their parent, while any one of the children of an 742

or-node needs to be executed to reach the goal of its parent. An attack on the system is then 743

modeled by a multi-set of compromised nodes. 744

Definition [53]. Let C be a set of attack components of a system. An attack is a finite 745

non-empty multi-set of C and an attack suite is a finite set of attacks. Denote the universe of 746

attacks by A = M+(C) and the universe of attack suites by S = P(A). 747

The attack tree for unauthorized data access attacks on HMBAC is shown in Figure 8. 748

Our goal is to analyze all possible attack paths for an adversary, external and/or internal, to 749

compromise the access control mechanism and gain unauthorized data access. As defined 750

in our threat model, accessing the data in ways that are outside the HMBAC system are out 751

of scope, e.g. accessing the data before they are ABE encrypted or before their entry into 752

the system. 753

Unauthorized
data access
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user attrribute keys

(F) Access
BC-side attribute keys

(J) Compromise
BC-side Vault

(H) Compromise
user-side Vault

(G) Get credentials
for user-side Vault

(A) Post query to PBC

(I) Access keys
via DBC

(B) Decrypt response

(D) Compromise
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(C) Get user blochchain
service credentials

(L) Compromise
DBC (ACSC & KSSC)

(K) Get user
Attribute certificates

and

and

Figure 8. Unauthorized data access attack tree for the HMBAC architecture

To construct the attack tree, first we observe that unauthorized data access requires 754

an adversary to concurrently bypass the security mechanisms that: validate a data access 755

query posted to the PBC (denoted by node A), and access all the attribute keys used to 756

encrypt the data (denoted by node B). Note that despite the actual attack that may be 757

applied to achieve the above conditions, simultaneously achieving the attack components 758

A and B are necessary and sufficient conditions for any successful attack on unauthorized 759

data access against an HMBAC system. Then for each level-1 node we continue our analysis 760

of identifying all possible sets of system components that must be successfully attacked 761

8 Note that the attribute certificates may also be stored in a user-side Vault for protection.
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to achieve each the goal of the relevant parent node. The same holds for all nodes of the 762

attack trees, including the leaf nodes. 763

Note that for all nodes, including leaf nodes, we did not examine the actual attack 764

techniques that may be used to achieve the relevant goal. For example, for node C there exist 765

various implementations of attacks to obtain user credentials for the HMBC service, such 766

as phishing, spoofing, or brute force. The goal of the attack tree analysis is to exhaustively 767

list all possible sets of necessary attack steps (i.e., concurrently compromised security 768

components) to succeed in the attack. 769

For this tree, the set of identified attack components (nodes) is: 770

C = {A, B, C, D, E, F, G, H, I, J, K, L}, with seven leaf nodes (for clarity, leaf nodes are 771

underlined). 772

Leaf nodes are vulnerable components that the attacker may exploit to initiate an 773

attack. Any attack suite must contain such nodes, as well as the target node T. 774

We examine the attack suites of the unauthorized data access attack tree of the HM- 775

BAC, with respect to the successful attack steps required by an adversary. We consider the 776

following cases: 777

Case 1. Fully compromised user: all user credentials (BC credentials or PBC access (C or D), 778

user-side Vault credentials (G or H) and attribute certificates (K)) are compromised. We get 779

the attacks: {C, A}, {D, A}, {G, E, B}, {H, E, B} and {K, I, F, B}, that when combined give 780

us the attack suites: 781
782

S1cgk = {C, A, G, E, K, I, F, B, T},
S1dgk = {D, A, G, E, K, I, F, B, T},
S1chk = {C, A, H, E, K, I, F, B, T},
S1dhk = {D, A, H, E, K, I, F, B, T}.

783

The attacker will then be able to post to the system all queries available to the target user. 784

However, this attack does not leak the data from other users. 785

Case 2. Partially compromised user: at least one of the required user credentials C, D, G, H 786

and K is secure. In this case, from the attacks: {C, A, G, E}, {D, A, G, E}, {C, A, H, E}, 787

{D, A, H, E}, and {K, I, F}, {L, I, F}, {J, 788

F}, we get the attack suites: 789
790

S2cgk = {C, A, G, E, K, I, F, B, T},
S2cgl = {C, A, G, E, L, I, F, B, T},
S2cgj = {C, A, G, E, J, F, B, T},
S2dgk = {D, A, G, E, K, I, F, B, T},
S2dgl = {D, A, G, E, L, I, F, B, T},
S2dgj = {D, A, G, E, J, F, B, T},
S2chk = {C, A, H, E, K, I, F, B, T},
S2chl = {C, A, H, E, L, I, F, B, T},
S2chj = {C, A, H, E, J, F, B, T},
S2dhk = {D, A, H, E, K, I, F, B, T}.
S2dhl = {D, A, H, E, L, I, F, B, T},
S2dhj = {D, A, H, E, J, F, B, T}.

791

Again, these attacks only affect the data of the compromised users. 792

Case 3. Fully compromised PBC (D) and DBC (L). Here unauthorized queries get posted 793

due to a compromised Proxy BC (bypassing the TMSC), while access to the BC-side keys 794

assumes a compromised domain BC (bypassing the ACSC control and utilizing the BC-side 795

attribute keys via the KSSC). However, a successful attack suite requires additionally access 796

to the user attribute keys, either by compromising the user-side Vault (H) or by getting the 797

user credentials (G). We get the attack suites: 798
799

S3dhl = {D, A, H, E, L, I, F, B, T},
S3dgl = {D, A, G, E, L, I, F, B, T}. 800

801
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Case 4. Fully compromised Vault. Here both the user- side and BC-side Vaults (H and J) are 802

compromised. Again, a successful attack requires additionally a partially compromised 803

user (C) or Proxy BC (D). We get the attack suites: 804

805

S4chj = {C, A, H, E, J, F, B, T},
S4dhj = {D, A, H, E, J, F, B, T}.

806

807

Case 5. All entities partially compromised. Here the user credentials/certificates (C, K), 808

blockchains (D, L) and Vault storage (G, H, J), are all partially compromised. We get the 809

attack suites: 810
811

S5chl = {C, A, H, E, L, I, F, B, T},
S5dgj = {D, A, G, E, J, F, B, T},
S5dhk = {D, A, H, E, K, I, F, B, T}.

812

813

We now have: 814
815

Proposition 1. Compromised user credentials (either fully or partially) cannot affect the data access 816

of other users. 817

Proof. This follows directly from Cases 1 and 2. 818

Proposition 2. The system can resist unauthorized data access even if both the proxy and the 819

domain blockchains are compromised, provided that the user attribute keys are secure. 820

Proof. This follows directly from Case 3. 821

Proposition 3. The system can resist unauthorized data access if at least one of the system entities 822

(users, blockchains, key Vaults) are secure. 823

Proof. This follows directly from Cases 4 and 5. 824

6.2. Secure blockchain management 825

The security of critical management decisions that could compromise the system’s 826

security relies on: (i) the voting mechanism implemented at the Proxy blockchain, (ii) 827

the blockchain consensus mechanism, (iii) the transaction replication implemented by all 828

the blockchains, and (iv) the execution isolation supported by the use of Kubernetes and 829

independently managed Pods. 830

As explained in Section 5.1 the voting mechanism, implemented by the PSC, enables 831

the stakeholders to reach management decisions. Any stakeholder may start an election. 832

Voters’ eligibilty and vote integrity is ensured, since the private key of a stakeholder is 833

required to sign a vote for an election. Different thresholds and eligible voters can be 834

defined for different elections. 835

The blockchain consensus mechanism is also related to secure system management. 836

Since smart contracts in both blockchain layers implement critical functionality of the 837

system, modifying those smart contracts either at the PBC or at the DBCs could compromise 838

the security of policy enforcement. However, as the smart contracts are implemented in the 839

initial blocks of each blockchain, their integrity is strongly protected. 840

Since the underlying consensus mechanism of Fabric (Raft) does not support Byzantine 841

tolerance, a malicious leader might attempt to forge the blockchain(s) logic by adding 842

modified smart contracts, e.g. to compromise the access policy. However, such an attack 843

would be easily detected by the other stakeholders because of the blockchain replication 844

mechanism and the lack of integrity (valid signatures by the stakeholders’ majority) of 845

the modified smart contracts. Finally, the encapsulation of all the distributed components 846

in replicated independent Pods, executed by different stakeholders and orchestrated by 847

Kubernetes, also protects system integrity. 848
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6.3. Secure key storage/management 849

The use of Hashicorp Vault provides secure key storage. For each DBC, an independent 850

vault instance is used to store and securely access the domain’s attribute key. In addition, 851

users may also deploy vault instances to protect their attribute keys and attribute certificates. 852

Finally, certificate management at the stakeholder level is implemented by independent 853

instances of Hyperledger Fabric CA running on different Pods. These are accessible by the 854

TMSC through encrypted and authenticated Kubernetes ports. 855

7. Discussion and Conclusions 856

Hierarchical multichains, when coupled with Attribute Based Encryption, provide a 857

flexible and secure distributed access controls mechanism for multi-domain, multi-authority 858

environments. Its modular architecture supports various properties of blockchains, such 859

as interoperabilty, by providing a single point of access for multiple domains and single 860

source of truth, via block-chain replication and integrity. The use of a hierarchical struc- 861

ture supports fine-grained access control and flexible management. At the same time, 862

the integration of distributed MA-ABE enables the combined use of credentials issued by 863

multiple authorities without introducing a high management overhead. In this paper, we 864

have defined HMBAC, a novel access control model along with Janus, an actual imple- 865

mentation of an HMBAC system, and we have analyzed the security and efficiency of our 866

implementation. 867

In the future, we intend to explore the integration of different consensus mechanisms 868

to extend the applicability in environments that require strong Byzantine tolerance. In 869

addition, since user credential management is at the stakeholder level and is managed 870

outside our system, it is possible that inefficient user credential management can affect the 871

overall efficiency of the system. Possible ways to minimize this risk can also be examined 872

in the future. 873
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