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Abstract: Although there are several access control systems in the literature for flexible policy man- 1
agement in multi-authority and multi-domain environments, achieving interoperability & scalability, -
without relying on strong trust assumptions, is still an open challenge. We present HMBAC, a dis- s
tributed fine-grained access control model for shared and dynamic multi-authority and multi-domain 4
environments, along with Janus, a practical system for HMBAC policy enforcement. The proposed 5
HMBAC model supports: (a) dynamic trust management between different authorities; (b) flexible
access control policy enforcement, defined at domain and cross-domain level; (c) a global source 7
of truth for all entities, supported by an immutable, audit-friendly mechanism. Janus implements s
the HMBAC model and relies on the effective fusion of two core components. First, a Hierarchical o
Multi-Blockchain architecture that acts as a single access point that cannot be bypassed by users or 1o
authorities. Second, a Multi-Authority Attribute Based Encryption protocol that supports flexible shared 11
multi-owner encryption, where attribute keys from different authorities are combined to decrypt 12
data distributedly stored in different authorities. Our approach was implemented using Hyperledger 13
Fabric as the underlying blockchain, with the system components placed in Kubernetes Docker 14
container pods. We experimentally validated the effectiveness and efficiency of Janus, while fully  1s
reproducible artifacts of both our implementation and our measurements are provided. 16

Keywords: Access control; Blockchain; Multi-Blockchain; Multi-Authority; Multi-Domain; Attribute- 17
Based Encryption 18

1. Introduction 10

In recent years, the continuous integration of new communication and computing 2o
technologies, along with the rapid adoption of new IoT devices, has led to an enormous 2
increase in generated data. According to Statista [1], the amount of data recorded world- 22
wide is expected to reach 181 ZB (zettabytes) in 2025, from 79 ZB in 2021. This huge amount =3
of data is generated and processed by multiple authorities that belong to different, and 24
sometimes critical, domains. 25

Complex and critical ecosystems, such as healthcare, civil aviation or the energy sector, s
must integrate the operational, functional, security, and privacy requirements of many =7
types of users and at the same time reconcile the conflicting interests of stakeholders. In 2.
addition, in many cases, there is a need for users belonging to one authority to access data 2o
maintained by other authorities, within the same or in a different domain. Access to the 1o
underlying data should be granted based on the access control policy of the corresponding s
resource owner and on other restrictions that may be imposed at an inter- or cross-domain s
level. 33

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.


https://www.mdpi.com
https://orcid.org/0000-0001-9238-6796
https://orcid.org/0000-0002-8771-9020
https://orcid.org/0000-0001-5094-5668
https://orcid.org/0000-0002-0581-2265
https://doi.org/10.20944/preprints202212.0312.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2022 d0i:10.20944/preprints202212.0312.v1

2 of 25

For example, in the health sector users may be doctors, patients, medical and adminis- s«
trative personnel of healthcare providers (e.g. hospitals) or technical operators and remote 35
administrators for connected medical devices. In these ecosystems, granular access to data e
and interoperability of services, are two basic prerequisites that greatly impact the privacy 7
and security aspects of these systems. 38

Traditionally, access control systems have been implemented within enterprises. Initial 1o
methods for domain-wise access control were based on centralized cloud solutions [2]. 4o
Such solutions require centralized data centers to store and handle various types of data, 4
including user identities, cryptographic keys, and access rights, as well as a trusted cloud 4
system administration, to control the users’ access rights and authorization. Although these 43
systems offer interoperability, fundamental challenges of data security and management s
persisted. Specifically, there are three major concerns with this design approach. First, s
an attack on the centralized data center might result in a single point of failure, leading 46
to massive data compromise [3]. Second, strong trust assumptions persist for the cloud 4
infrastructure [4], e.g., cloud administrators are trusted not to abuse their position to gain  4s
unauthorized access to resources or interfere with the access privileges of legitimate users. 4o
Finally, it is not possible to maintain a globally trusted and immutable access log to allow  so
auditing for possible data access privacy violations. 51

Motivation. As a result of the preceding discussion, more emphasis is required on s
innovative, decentralized, interoperable, and adaptable trust management systems. The s
following are two motivating examples. 54

Example 1: Fine grained access to healthcare data. The medical sector includes a variety s
of domains, such as regulators, hospitals, manufacturers, and insurance providers. At se
the same time, privacy-sensitive, health-related data may be created by various medical -
IoT devices such as health monitoring devices (e.g. glucose level, blood pressure, or ss
sleep monitoring systems), or treatment devices (e.g. medical infusion pumps). Users so
of one authority may require granular access to data maintained by multiple authorities o
(stakeholders) and domains. For example, while a doctor is on duty, she may require access e
to the full medical history data maintained in multiple hospital databases, for a patient =
under emergency treatment; or, an administrator of a medical device manufacturer may s
require access to the configuration data of connected medical devices installed in different s
hospitals. In addition, regulators may require that the data be accessible from a single s
entrance platform, in order to log all data access requests and monitor privacy violations. s
At the same time, new sectors or stakeholders can dynamically join or leave the system. -
Note that users who are simultaneously members of multiple authorities may require s
special access. For example, a doctor in a hospital may also be a researcher at a university. oo
This doctor would also require access to (statistical) health data maintained in all hospitals, 7
for research purposes. 7

Example 2: Fine-grained access to data in a multi-domain supply chain. Consider a dis- 7
tributed supply chain tracking system, collectively used by supply chain stakeholders for 7
collecting, integrating and analyzing data from a variety of sources. The various stakehold-
ers have different requirements for data access. For example, a container shipping company s
requires access to data on cargo weight and quantity, while a retail end-user requires 7
access to data on product provenance, storage, and transportation conditions (especially 7~
for sensitive merchandise). These systems must be interoperable, but also provide granular 7.
access to data. In addition, authorities such as customs or other governmental agencies 7
may also require a single point of access for all queries to data, for global access verifiability, so
i.e. it must be possible for any entity, either inside or outside the system, to verify all access &
attempts to the data (either successful or not). 82

Contribution. The main contribution of this paper is to design and implement a s
secure and efficient access control model specifically targeted to dynamic, multi-domain s
and multi-authority environments. In particular: o5

*  We formally define Hierarchical Multi Blockchain based Access Control (HMBAC), anovel  es
access control model for multi-domain and multi-authority environments. HMBAC &
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supports: dynamic trust management between different authorities; granular and flexible s
domain-level access control policy enforcement; a global source of truth for all entities, o
allowing for an immutable and forensics-by-design auditing mechanism. %
e We provide Janus [5], an artifact and reproducible implementation of HMBAC for large- o
scale setup environments. Our implementation uses Hyperledger Fabric as the under- o2
lying blockchain technology. To support system orchestration, we developed APIsto e
allow controlled user interaction with the blockchain and inter-blockchain synchronization. —ea
User interaction with the API occurs through an Electron application, while global s

system orchestration is achieved through Docker containers and Kubernetes. %
* Based on our implementation, we have conducted extensive efficiency analysis to o7
actually verify the practicality and efficiency of the proposed access control system. s

*  Our system enforces a single point of entry that cannot be bypassed by users or au- o
thorities. This is achieved by modifying the well-known MA-ABE scheme of [6] ina 100
distributed two-step decryption procedure. Part of the ABE decryption is performed by 101
the multichain system itself by generating an attribute key linked to the requesting 102
user on the fly. The user will be able to fully decrypt the data, provided that he/she 10
has obtained the relevant attribute keys, which are required by the access policy. We  10s
developed a Go library as an add-on for Hashicorp Vault' and integrated it into Hy- 105
perledger Fabric. Secure attribute key storage is supported by embedding the keys in 106
different Vault instances. 107

We note that although Janus utilizes the hierarchical multichain of [7] as a build- 1oes
ing block, the proposed HMBAC model is independent of the actual underlying multi- 100
blockchain used; it is possible to implement HMBAC based on other underlying multi- 110
blockchains. 111

2. Related work 112

During the last few years, several research attempts tried to provide fine-grained s
access control in the dynamic multi-authority and multi-domain setting, while main- 114
taining interoperability [8]. Some of these works have focused on decentralization and s
privacy-preserving encryption [9], [10], [11]. Such targeted solutions enable adequate com- 11e
patibility and fine-grained access control; however, they fail to combine credentials issued 17
by independent authorities. Other solutions rely on privacy-preserving encryption, such 11
as Attribute-Based Access Control (ABAC). For example, [12] proposes a decentralized 110
MA-ABAC (DMA-ABAC) scheme for multi-domain healthcare ecosystems. Despite that au- 120
thorities are able to control independently their security settings and enforce cross-domain 12
policies, the lack of a mechanism obliging users to use the system for accessing the data, in 122
combination with the absence of global verifiability, lead to strong trust assumptions. In [13]  12s
an ABAC solution is designed for the shared multi-owner setting, assuming a distributed 124
setting with multiple authorities. The authorities own pieces of data and may issue at- 125
tribute keys that users may combine to access data belonging to different authorities. Even 126
though the proposed solution strengthens the restrictions for accessing data, it falls short on 127
addressing the challenge of inter- and cross-domain policy enforcement, i.e., dynamically 12s
defining access policies both to control access for all authorities within a domain or for all = 12e
authorities belonging in different domains. Many works try to solve this problem by using 130
Multi-Authority Ciphertext Policy Attribute Based Encryption (MA-CP-ABE) schemes. For 1z
example, the authors of [7] present a hierarchical multichain access model suitable for is:
multi-owner setting specifically for healthcare environments. With the use of MA-CP-ABE, 1s:
in encrypting the data, the proposed model achieves both inter- and cross-domain policy 13
management. However since multi-domain and multi-authority environments are inher- 135
ently large-scale, the lack of an end-to-end implementation makes it hard to actually assess 136
the efficiency and practicality of [7] in actual applications. 137

1 https:/ /www.vaultproject.io
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Table 1. Comparative assessment of the various characteristics prevalent in the relevant literature.

Relevant Access Application Multi-owner Dynamic Trust  Inter-Domain&Cross-Domain  Enforces Single  Global source  Implementation
literature Model environment setting! policy point of access® of truth? (artifact)

71 Hierarchical Multichains Healthcare Yes (MA-CP-ABE) Yes Inter & Cross-Domain Yes Yes No
191 Token-based IoT No Yes Inter-Domain Yes Yes WAVE [14]
[10] Token & Crypto-based IoT No Yes No (user-based) No Yes Droplet[15]
[12] DMA-ABAC Healthcare Yes (ABGS) Yes Cross-Domain No No No
[13] CP-ABKS M-A Yes (ABKS-SM) Yes No No No No
[16] Hierarchical M-A Yes (MA-CP-ABE) No Inter-Domain No No No
[17] Hybrid encryption WBAN Yes (MA-CP-ABE) Yes Inter-Domain Yes No No
[18] Attribute-based Mobile Things ~ Yes (MA-CP-ABE) Yes Inter-Domain Yes No No
[19] Hierarchical M-A Yes (MD-AC) Yes No No No No
[20] Tree structure Smart City Yes (CP-ABE) Yes Inter & Cross-Domain No No No
[21] SEMAAC IoT & Healthcare Yes (CP-ABE) Yes o Yes No No
[22] Attribute-based ToT Yes (MA-CP-ABE) Yes No (user-based) No No No
[23] Token-based M-A Yes (MA-CP-ABE) Yes Inter-Domain No Yes No
[24] ECC IoT &Healthcare  Yes (MA-CP-ABE) No Inter-Domain Yes No No
[25] Attribute-based Supply Chain ~ Yes (MA-CP-ABE) Yes No (user-based) Yes Yes No
[26] Attribute-based TioT Yes (CP-ABE) Yes No (user-based) Yes No No
[27] ABSC M-A Yes (MA-CP-ABSC) No No (user-based) Yes No No
[28] FADB Transportation Yes (CP-ABE) No No Yes Yes No
[29] Credential-based IoMT No Yes No (user-based) Yes Yes No
(1] EACMS Healthcare No Yes No (user-based) No Yes No
Our approach | HMBAC M-A &M-D Yes (MA-CP-ABE) Yes Inter & Cross-Domain Yes Yes Janus [5]

1 Combines ials issued by independent authorities. 2 Dynamicjoin and leave of authorities in an efficient way. 3 Data can be accessed only through the system.
# All data access attempts are immutably recorded and globally verified.

In [16] a MA-CP-ABE scheme is proposed that supports range policy, which however 1ss
maintains the need for a trusted central authority. In [17], authors adopt the idea of hybrid 130
encryption to reduce the computational overhead of data encryption, using a symmetric key 140
to encrypt data and a MA-CP-ABE mechanism to encrypt the symmetric key. The authors  1a
in [18], also propose a MA-CP-ABE scheme combined with an outsourced decryption 1
and zero knowledge proof for the Internet of mobile things. In [22], another MA-CP-ABE 143
scheme is proposed suitable for IoT applications and devices with low computational 14
capabilities. Decryption operations are outsourced to fog for efficiency reasons, but no 1
policy management is supported. The authors of [23] introduce a token-based access 146
control scheme which uses smart contract and blockchain to generate decryption keys 1
according to verified user attributes. In [24] Elliptic Curve Cryptography (ECC) and 14
MA-CP-ABE are combined to create an access control system that supports the setting 14
of multiple authorities, but the addition or removal of authorities remains inefficient. In  1s0
[25] the authors propose a privacy-preserving MA-CP-ABE scheme for blockchain-based  1s:
applications in the supply chain. This model achieves fine-grained access control and sz
versatile authorization and also protects user’s private key from leakage even when some 153
attributes authorities fail. However, in most of the above solutions, trust expectations about 1ss
global transaction verifiability persist. Strong trust assumptions are required to ensure that 1ss
all access transactions to the encrypted data are immutably logged and may be globally 1se
verified by all entities. In [21] the authors also suggest an access model based on CP- 17
ABE for IoT in healthcare and even though they achieve the collaboration of independent  1se
authorities they do not solve the need for inter and cross domain policy management. In  1se
[27] an Attribute-based Signcryption (ABSC) scheme is proposed that relies on a central 160
certificate authority to verify the attribute authorities and thus maintains strong trust e
assumptions. 162

Other works use hierarchical attribute-based access models, e.g. [19,20,30-32]. For 1es
example, [19] presents a hierarchical Multi-Dimensional Access Control (MD-AC) model 1es
for the authorization of multiple participants in the cloud. Also [20] relies on a trusted 1es
third party (TTP) and an attribute mapping center (MC) incorporating CP-ABE to provide 1es
granular access to users. Both works use the cloud for efficiency reasons assuming strong e
trust. In general, although hierarchical attribute-based access models are flexible and  1es
scalable, they are not suitable for multi-authority, multi-domain environments, where roles ieo
may not have a global and strict hierarchy. 170

The current state-of-the-art leverages blockchain technology to provide a variety in
of fully autonomous and hybrid solutions [33,34]. Although blockchain technology is 72
more difficult to administer may introduce efficiency issues, it provides, by design, global 17
verifiability of data access transactions. An immutable ledger can ensure the integrity of 17
transactions and data while also enforcing trust among multiple untrustworthy parties 17
[35]. For example in [28] the authors propose a fine-grained access control scheme for 17
transportation ecosystems based on blockchain, that embraces the multi-owner setting 177
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with the use of CP-ABE. The system provides global verifiability and data integrity, but 17e
cannot support dynamic joins and leaves of nodes, or a dynamic policy management. 17
Hybrid solutions move some of the services previously supported by cloud providers s
to the blockchain. While this approach resolves some of the issues (e.g. data integrity), e
others problems, such as strong trust assumptions for the cloud operator, still remain ez
[36-38]. Although autonomous solutions are entirely based on blockchain, they are still = 1es
limited by the level of efficiency that can be supported [11,26,28,29]. In addition, practical 1es
implementations for schemes such as the ones discussed above hardly exist in the literature. 1ss

In conclusion as depicted in Table 1, the proposed HMBAC model is capable of sup- 1ss
porting fine-grained access control for any multi-authority and multi-domain (M-A&M-D) 1
environment, and it also supports flexible inter- and cross-domain policy management and  1ss
enforcement. At the same time, our HMBAC implementation, Janus, is one of the few fine- 1s0
gained M-A&M-D access control models that are supported by an artifact implementation. s

3. Background 101

This section briefly describes the two fundamental components of our model: the 102
MA-CP-ABE scheme and the Hierarchical Multi-Blockchain architecture. 103
3.1. MA-CP-ABE 104

Multi-Authority Ciphertext-Policy Attribute Based Encryption (MA-CP-ABE) was  1ss
initially proposed by [39] as an application of Attribute Based Encryption in which any 1e6
party can become an authority with no global coordination requirements. However, the 107
scheme required a trusted central authority to collect all master private keys from all AAs 198
to compute the collective secret terms for system initialization. The MA-CP-ABE was 190
later extended by [6] introducing fully decentralized CP-ABE systems for both composite- 200
order and prime-order groups by utilizing the user’s Global Identifier (GID) in the key 20
to resist collusion attempts. Several other works have extended the characteristics of the  zo2
scheme to allow fine-grained data access with attribute revocation for cloud data storage 20
[40], improved efficiency [41] and storage space saving by using hierarchical attributes to  zoa
compress redundant ciphertext information ([42], [43]). 208

With an MA-CP-ABE scheme, multiple authorities agree on a set of global parameters
GP and, based on these parameters, each authority X generates a public/secret key pair
PKx, SKx. Data m can then be encrypted based on a mutually agreed access policy IP (in the
form of a matrix), using the public keys of all the authorities, i.e.: ct = Enc(m, P, GP, { PK}).
With MA-CP-ABE schemes, any party can become an authority, and there is no requirement
for a global root authority. More importantly, users can combine attributes issued by
different authorities, provided that each user has a unique global identity GID. Any
authority X may issue to any user U, attribute keys for an attribute attr, using its private
key, the global parameters and the user identifier:

K1 attr = KeyGen(GIDy, GP, attr, SKx).

Finally, users can combine their attribute keys, issued by multiple authorities, to 06
decrypt an ABE-encrypted ciphertext ct, provided that their set of attributes satisfies an 2o
access rule within P, i.e: m = Dec(ct, GP, {Kyjattr }). Although the scheme enables a o8
combination of attributes issued by different authorities, it remains collision resistant, 2o
meaning that different users cannot combine their attributes, since each attribute key is 210
assigned to a different GID. 211

An example of MA-CP-ABE is illustrated in Fig. 1. Several organizations belonging to 212
different domains may agree on inter-domain or cross-domain access policies. A domain- 213
wise policy for hospitals may be, for example, to allow access to patient health for doctors 21
at any hospital, if the patient is under emergency treatment. A cross-domain policy for the 2is
hospital domain may be to allow access to anonymized data to researchers; or, access to 216
configuration data of medical devices to authorized manufacturer admins. Users may be 217
given attribute keys from different organizations (authorities) and combine them, since 2is
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Figure 1. MA-ABE attribute binding and key generation

each attribute key is linked to the global identifier of a user. However, keys issued to 21
different users cannot be combined. The challenge, from an implementation perspective, is 220
to create an architecture that supports efficient MA-ABE decentralization and distribution 222
of the decryption functionality, without compromising security. 222

In our system, we will utilize and properly modify the MA-CP-ABE scheme of [6] 22
since: (i) It is a well recognized multi-authority ABE scheme which supports collision 224
resistance, i.e. although the users may acquire attribute keys from different authorities, itis 225
not possible to combine attribute keys that were issued to different users. (ii) It is supported 2z
by actual implementations. (iii) Its decryption process can be executed sequentially, where 227
some attribute keys are applied first, for partial decryption. The partially decrypted data  2zs
can then be fully decrypted in a second phase, possibly by another entity. In our system, we 220
will exploit this to cryptographically enforce a single point of access for all users. Note that 230
although Janus applies the MA-CP-ABE scheme of [6], other MA-ABE schemes which satisfy = za:
the above requirements could be applied to support additional functionality. For example =232
in scenarios where data deletion is required, it is possible to extend Janus implementation  2s:
by applying the MA-CP-ABE scheme of [44] which supports data deletion assurance. 230

3.2. Hierarchical Multi Blockchain 235

A Hierarchical Multi-Blockchain was proposed in [7] as a solution for fine-grained =3
access to data in medical environments, with multiple participants (e.g. hospitals, medical 237
device manufacturers, insurance companies, etc.), and multiple types of users (e.g. doctors, 23s
technical staff, etc.). This architecture was intended to enable autonomous administration 2se
of trusted medical data and transactions between mutually untrustworthy stakeholders, 240
while at the same time providing a built-in forensic mechanism optimized for granular za:
auditing. End users from a variety of health care domains can access and securely exchange  ze2
medical data, provided that a domain-specific access policy is adhered to. 243

Fig. 2 illustrates the architecture of a Hierarchical Multi-Blockchain. At the firstlevel,a 2as
Proxy Blockchain is the single access point for participating users. This provides interoperabil- zas
ity between independently managed trust authorities and also acts as an immutable single 246
source of truth for all transactions. At the second level, one or more Domain Blockchains 247
enable each domain (e.g., hospitals, device manufacturers, insurance providers) to enforce z4s
their policies and provide fine-grained access control via Attribute Based Encryption (ABE). 240
Databases are handled locally by each entity, and data are encrypted with the attribute =2s0
keys based on the access policy of the corresponding domain. Services at all levels are  zs:
implemented by smart contracts published on the relevant blockchain. 252

Other studies have also adapted hierarchical multi block-chain for secure data storage 2ss
and sharing in various environments. For example, in [45] the authors propose such a  2s4
model as a solution for massive data traffic in IoT environments, while in [46] and [47] =ss
a similar multi-domain blockchain architecture is presented as an answer to scalability 2se
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Figure 2. Hierarchical Multi Blockchain architecture [7]

issues. In [48], the authors propose an architecture to minimize IoT information loss 2sz
by using multiple blockchain groupings, linking them in hierarchical chains. A similar =zss
scheme is used in [49] for fine-grained audit capability using sensor values to strengthen  2so
confidence. The authors in [50] use sidechains to ensure hierarchical fine-grained data =zeo
access, but the proposed architecture lacks domain isolation and cannot be used for flexible, 26
manageable domain-wise and cross-domain access policy enforcement. Other applications 262
of hierarchical multi-blockchains involve domain level supervision systems [51]. 263

Despite the growing evolution of Hierarchical Multi Block-chain applications, nu- 2es
merous open challenges remain, especially from the aspect of security (e.g. strong trust zes
assumptions) and implementation (e.g., synchronization between multiple blockchains  zes
and inter-blockchain communication). 267

4. HMBAC Design & Implementation 268

First, we formally define the HMBAC model (Section 4.1) and, on the basis of it, we de- 260
scribe an HMBAC architecture design (Section 4.2), based on the underlying building blocks. 27
The architecture is eventually translated into Janus, an actual HMBAC implementation 27
(Section 4.3). 272

4.1. HMBAC access model 273

Atahigh level, the goal of HMBAC is to allow users belonging to different stakeholders 27«
(authorities) from different domains to have controlled access to data owned by multiple 2rs
stakeholders. Moreover, the model must support interoperable use of credentials issued 276
by different authorities, while the inter- and cross-domain policy management must be 27
controlled at a domain level. 278

Hierarchical multiblockchains (Sect.3.2) play a central role in the HMBAC model. =
The Proxy Blockchain layer answers the first goal by allowing the interoperable use and  zs0
verification of credentials issued and managed independently by different authorities and ~ ze:
domains. Then, the various Domain Blockchains answer the second goal by allowing ze
authorities belonging in different domains to define inter- and cross-domain policies for zes
their data and to manage the authority membership in their domain, without affecting zss
other domains. 205

Following the approach of [52], we define the HMBAC mo-del by representing the zs6
logical relations among the access control components, as shown in Fig. 3. A user (U) =ze7
belonging to one or more authorities (Au) (for example, a hospital) is assigned attributes 2ss
from a pool of attributes (UA). One or more authorities may issue attributes to users, which  2ss
is depicted as the attribute authority (AA) relation in Fig. 3. Each authority is associated  ze0
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Figure 3. HMBAC access model: element sets and relations

with a single domain (D), and each domain contains multiple Au. A key element in the 2o
HMBAC model is the hierarchical multi-blockchain presented in Section 3.2. All domains, 202
and thus all authorities, constitute the proxy blockchain (PBc), i.e. are the stakeholders for o3
the first layer of the multi-blockchain. Then, at the second layer, various domain block- 204
chains (DBc) may be constructed. Each group of authorities with similar characteristics 2e5
form a different DBc (e.g one DBc is constructed by the hospital stakeholders, while another  2e6
DBc is constructed by the manufacturers). Objects (OB), representing data or services 2o
accessible by users and operated by subjects (S), are encrypted with attribute keys (AK) 208
created by the pool of UA. With the terms user attribute authorities (UAA) and subject 200
attributes (SA) we represent the logical connection between users and subjects with the UA 300
pOOl. 301

For a user to gain access to encrypted data, three checkpoints must be met. First, o
an attribute verification function (AVF) executed on the PBc will verify the validity of user = sos
attributes. Then the authorization function (AF), placed on the DBc, will verify whether the = os
presented user’s attributes are sufficient, based on the relevant inter-domain (IDP) and  sos
cross-domain (CDP) policies, to authorize the access request. Finally. the decryption function  soe
(DF) also executed in the relevant DBc of the data owner, will partially decrypt the data, o
which will be fully decrypted by the user, with the proper user attribute keys. 308

Table 2, summarizes the basic sets and functions of the proposed HMBAC model, as  s00
well as a formal analysis of the three functions specified for data access and decryption. sio
Users, objects, and keys can be assigned attribute values directly from an attribute func- s
tion att from a set of values in the range, denoted Range(att,), Range(attop), Range(atty) =12
respectively. Users are assigned to multiple authorities (defined by many to many func- s
tions direct;;4,) and also authorities are assigned to one domain (defined by one to many i
functions directp 4,). 315
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Table 2. Basic sets and functions of HMBAC model

Basic Sets and Functions

-U, Au, S, K, D: finite sets of users, authorities, subjects, keys, domains
-UA, OA, AK: finite sets of user, object and keys attribute functions
- PBc, DBc: fine sets of Proxy and Domain blockchain services
-IDP, CDP: fine sets of inter and cross domain policies
-OB, OP, DAS: fine sets of objects, operations and data services
-attType : UA = {set}, defines user attributes to be set valued only.
-attType : AK = {set}, defines keys attributes to be set valued only

Each attribute att;; in UA maps users or authorities to a set of attribute
values in Range(atty;). Formally, att, : U U Au — 2Rnge(attu)

Each attribute attop in OA maps objects in OB to attributes values.
Formally, attop : OB — 2Range(attos)

Each attribute attg in AK maps keys in K to attribute values.
Formally, attg : K — oRange(atty)

Direct UAu : U — 24" , mapping each user to a set of authorities.
Direct DAu : D — 2" , mapping each domain to a set of authorities.

Effective Attributes of Users, Subjects and Keys
For each attribute att; in UA, ef fective Au gy, - At — pRange(atty)
For each attribute att; in UA, ef fectivel gy, : U — pRange(atty)
Us : S — U, mapping each subject to a user

For each attribute att;; in UA, ef fectiveS 441, 1 S — oRange(attu)
mapping each subject to a set of values for its ef fectivell g,

For each attribute attg in AK, ef fectiveK g, : K — pRange(att)
Attribute verification function (AVF)

A subject s € S is allowed to perform op € OP 4y on a service
sr € PBc if the ef fectiveS 4+, € UA. Formally,
OPayp(s: S, sr: PBc) = True

Authorization function (AF)

A subject s € S is allowed to perform op € OP4f on a service
sr € DBc if the ef fectiveS 44, satisfy policies stated in
Authpp(s : S, sr : IDP U CDP). Formally,
Authppe(s: S, sr: IDPUCDP) = True

Decryption function (DF)

A subject s € S is allowed to perform an operation op € OPpr
on an object ob € OB in data access services ds € DAS, if
{OP4yE(s : S,sr: PBc) N Authppe(s : S,sr : IDPUCDP)} = True
and has keys k € K such as OPpr(ob € OB|oby € K|s € K) = True.

4.2. HMBAC architecture design 316

The system architecture is designed with real-world requirements in mind, notably s
those of the medical sector. Note however that other digital environments can easily be s
supported. 319
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Figure 4. The proposed HMBAC architecture with the HMBAC model of Fig.3

In our implementation we consider two domains: hospitals and medical device man- sz
ufacturers. Hospitals may involve users with various roles such as doctors, emergency sz
doctors or researchers. Similarly, manufacturers may support various roles such as device sz
technicians. According to the access control policies that may be defined within a domain, s2s

or cross-domain, granular access may be allowed. For example: 324
®  Access Rule 1: A doctor on duty may access all the medical records at all hospitals, of a patient 325
under emergency treatment (hospital-domain access rule). 326
®  Access Rule 2: A manufacturer’s support technician may read or update the firmware of 27
supported medical devices installed at any hospital (cross-domain access rule). 326

Fig. 4 describes the proposed HMBAC architecture, as well as its mapping to the sz
generic HMBAC model (presented in Fig.3). The architecture is comprised of three building 330
blocks. The Frontend Layer, is a web application which allows authorized users to interact s
with the system and post data access queries. It consists of a web user interface (UI) and  ss:
frontend services that support the communication between the frontend and the rest of the 33
system. 334

The Blockchain Infrastructure is a middleware that implements all system services and s
provides controlled access to data, which are maintained off-chain individually by each s
stakeholder. It implements the hierarchical multi-blockchain, which consists of one Proxy ss-
Blockchain (PBC) and one or more Domain Blockchains (DBCs). As described in Section 3.2,  33s
the PBC acts as a single access point for users, while the DBCs enable the management, s
implementation and enforcement of flexible and granular access policies at the domain a0
level. The integration of the blockchain components is supported by special-purpose APIs  3a
both for inter- blockchain synchronization (Inter-BC API), user interaction (Frontend API) s
and data (Database API). 343

Finally, the Data Layer contains the individually managed databases that store all data sas
off-chain and ABE encrypted. As data are encrypted with ABE and the decryption process sss
requires partial decryption through the corresponding DBC, the system enforces data s
access through the HMBAC system. Note that CA management at the stakeholder level is 347
managed outside our system and our main goal is to offer credential interoperability, i.e. 34
credentials issued from independent authorities are mutually trusted, without assuming  sae
a globally trusted root authority. In the following subsection, we describe in detail the ss0
services provided by each building block. 351
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4.2.1. Frontend layer 352

A web Ul enables users to login to the system and post data access queries. To sss
access the system, two-factor authentication is enforced: the user must provide valid login  sa
credentials (e.g. a password) and a valid attribute certificate issued by a stakeholder. We  sss
assume that the user credentials are managed individually and stored securely by each user. sse
The communication between the Frontend Layer and the Blockchain Infrastructure services sz
is realized by endpoints implemented as Frontend Services and Frontend API. Finally, sss
when the user eventually receives the partially decrypted response data via the Frontend s
AP], the Frontend Services will grant access to the user of the attribute keys needed to fully = seo
decrypt the data. 361

4.2.2. Data layer 362

Stakeholders manage their data off-chain. Recall that data are MA-ABE encrypted = ses
based on predefined domain or cross-domain policies. To enforce accessing data only ses
via HMBAC, for each domain a distinct domain attribute key pair is assigned. During the e
ABE data encryption, all policies are modified by applying an additional ‘AND’ rule with  ses
the corresponding domain attribute key. For example, data encrypted based on access e
Rule 1 defined in Section 4.2, for decryption would require the following attribute keys: s¢s
Kioctors KonDuty, and Kpospitals- The key Kgocror corresponds to a long-term attribute and  see
KonDuty to a temporal attribute. Finally Kjospitals is the hospital domain’s attribute key, sz
generated using the hospital domain’s attribute key pair PKp, SKy. a1

4.2.3. Hierarchical Blockchain infrastructure 372

The Proxy Blockchain (PBC) receives the user requests via the Frontend API and imple- 37
ments three main services through smart contracts. User requests along with the provided sz
attribute certificate(s) are handled by the Proxy Smart Contract (PSC). The PSC will first trig- s7s
ger a certificate validation process, executed by Trust Management Smart Contract (TMSC). 76
The TMSC will validate the long-term (and possible temporal) attributes assigned to users sz
via a typical challenge-response signature verification process. Note that users can access s7e
the HMBAC services only via an authenticated channel (the Frontend API) and after success- s7s
ful attribute authentication (by the PBC). If user attributes are verified, the PSC will then s
forward the request to the relevant Domain Blockchain for further processing and wait s
to receive the response via Inter-BC API. The response will eventually be sent back to the ez
user via the Frontend API. The transaction history is recorded on the PBC. The Logging s
Smart Contract (LSC) creates a log for each incoming user request, until the transaction is  sss
completed. 3ss

The Domain Blockchains (DBC) may receive user requests only from the PBC via the e
Inter-BC API and implement the following services. Each DBC contains an Access Control  ser
Smart Contract (ACSC) which enforces the access control policy of the particular domain. es
This includes both intra-domain and cross-domain access policies that control access to data  sse
maintained by the domain’s stakeholders. The ACSC checks if the user attributes (already 300
validated at the PBC) are sufficient for the specific request, according to the predefined se:
access policy. In this case, the request is forwarded to the relevant database(s) via Database o2
API. Note that depending on the request, the API can retrieve ABE-encrypted data from  ses
multiple sources, for example, when a user is requesting data from multiple stakeholder’s e
databases. 395

When the encrypted data return from the Data Layer, the Database API passes them 306
to Key Store Smart Contract (KSSC), which has access to the relevant domain’s attribute s
public/private key pair (e.g., PKy, SKpy in the case of the Hospital DBC). The KSSC will 306
first use the private key SKpy to generate the hospital domain attribute key (Kjospitas) based 3o
on the GID of the requesting user, to partially decrypt the data. The partially decrypted 400
data will be forwarded to the PBC (via the Inter-BC API) and eventually to the user (via the 40
Frontend API). The user must finally apply his attribute keys to fully decrypt and access 4oz
the data (i.e., the attribute keys Kjoctor and Koppyry in our example). 403
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4.3. Janus implementation a0a

The implementation of the system relies on the integration of various technologies. 40s
For implementing the Frontend component, an Electron” application was developed, while a0
blockchains (PBC and DBCs) were developed on the Hyperledger Fabric platform, with 407
Raft® as the underlying consensus mechanism. Functionality is implemented through Smart 40
Contracts developed in Javascript (the full open-source implementation can be found in [5] 400
as a reproducible artifact). 410

Janus orchestration relies on Kubernetes®. For security and design modularity, all the a1
components of the multi-blockchain infrastructure were developed in distinct Kubernetes 412
Pods, thus providing software isolation and containerization. In particular, each smart s
contract, as well as the Frontend, the Inter-BC and the Database APIs are executed as 44
separate Pods. To secure the interaction between Pods, an Ingress API supports TLS  as
termination between the Pods. a16

To support the deployment of independent certificate infrastructures, each partici- a7
pating stakeholder establishes and maintains a Certificate Authority (CA), responsible for s
issuing and revoking certificates for their users who interact with the system. To sim- a1
plify the deployment, one CA is considered to be a mutually trusted authority and is sz
responsible for issuing certificates used by the system components (e.g. for Pods” TLS 42
connections). Although this is not a strong requirement (e.g. it can be removed by applying  42:
cross-certification between the stakeholders), it simplifies the deployment process and itis 423
a reasonable assumption for multi-domain environments. For example, in the healthcare 24
sector, the ministry of health might have the role of the mutually trusted authority. In 25
our system, we use Hyperledger Fabric Certificate Authority (provided by the Hyperledger 26
platform) to implement the CAs of the stakeholders. Each CA runs as an instance for each 427
entity in a separate Kubernetes Pod. a28

Hashicorp Vault® is used as an external application to issue, manage and store user and a2
authority credentials and keys. Although it is an off-the-shelf solution, we designed an 430
ABE plugin for Vault, written in Golang, to implement a two-step ABE decryption and 4
support the partial decryption process via the KSSC. Additionally, we run different Vault a2
instances, one for simulating user-side attribute key Vault storage and another for storing  ass
domain attribute keys, which is accessible only by the KSSC of each Domain blockchain. 434

Finally, the Frontend and the Inter-BC APIs use an instance of RabbitMQ° software, ass
executed also in a separate Pod, for temporarily storing requests that remain pending in 436
queues. The implementation design of Janus is depicted in Fig. 5 and described in detail in 437
the following subsections. 438

4.3.1. Frontend application a30

This is a client-side Electron application, running locally by each user. The User a4
Interface (UI) implements the presentation layer through a web-based interface developed 4
in React.js. It enables users to login to the system using their appropriate credentials and, 4s2
upon successful validation, to submit their requests. aa3

In addition, the Electron app implements various support frontend services, devel- 44
oped in Node.js and running in the background at the client side. The Blockchain-Related  ass
Mechanisms, encompass all the functionality required for a user to communicate with the a4
middleware. These mechanisms enable a user to create and sign a query and commit it for ss7
the purpose of generating a new transaction. 448

The Authentication Mechanisms supports user authentication to the system. To authen- 440
ticate the credentials (attribute certificates) of a user, the Certificate Authority (CA) of the 4so

https:/ /www.electronjs.org/
https:/ /raft.github.io/

https:/ /kubernetes.io/
https://www.vaultproject.io/
https://www.rabbitmq.com/
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Figure 5. Janus implementation design based on the HMBAC architecture

relevant stakeholder must be involved. The frontend authentication mechanisms pass the 4s:
credentials along with a signed challenge to the Frontend API, which communicates with s
the relevant CA in order to issue a token for the user and establish communication. The 4s:
authentication mechanisms also support communication with the user’s Vault instance, 4sa
securely storing the user-side attribute keys. as5

Finally, the Endpoints represent the communication points between the Ul and the ase
Frontend API. Any traffic towards the API will be handled by Kubernetes and the Ingress  4s7
web server. as8

4.3.2. Frontend API 450

This serves as a secure authenticated channel, allowing users to communicate with the  4so
PBC via the Frontend application. For each stakeholder, an instance is created including 4s:
information about the node (Peer Information), the corresponding stakeholder’s gateway (HF 42
BC Gateway) and the instance of the CA (HF Certificate Authority) where the stakeholder’s 4
certificates are stored. Furthermore, Client-related Authorization Mechanisms, generate the aes
authentication token issued by the CA to which the user belongs. This token is used to aes
establish connections between the user and the PBC. a66

When a user submits a request, it is received by the Routes module and then queued 67
in the Main Queue until served. The Queue Handler is responsible for data storage and  4se
retrieval to and from the Main Queue. When the Queue Handler authorizes the request to  ase
be forwarded, the request is retrieved from the Main Queue, and Ticket Manager generates azo
a ticket for the user. Note that the Ticket Manager constantly checks for expired tickets. an1

The Frontend APl is a RESTful API developed in Node.js using the Express framework. a7
Since the Frontend API is running on a distinct Kubernetes Pod, its services are accessible 473
to other Pods via the Kubernetes-exposed ports. In order to expose services on the web, an 474
Ingress controller is used and the communication is TLS encrypted. For increased security, 47s
the TLS session is encrypted end-to-end between the Frontend application and the Frontend 476
APIL Thus, TLS is terminated on the Frontend Pod itself instead of the Ingress controller of 47
the API 478

4.3.3. Inter-Blockchain API 470

The Inter-Blockchain API is also developed in Node.js. Each stakeholder runs a aeo
different instance, executed on a distinct Kubernetes Pod, while its services are accessible  4s1
to other Pods via the Kubernetes-exposed ports. a82

The main role of the Inter-Blockchain API is to enable the interaction between the aes
Proxy and the Domain Blockchains. Handling and prioritizing requests between different sss
blockchains is critical, as it can result in a significant performance decrease or even system  4ss
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Figure 6. Inter Blockchain API Flow

failure. In addition, it supports stakeholders in making management decisions that may s
require agreement between stakeholders. Our solution addresses the aforementioned issues  4s7
by integrating two critical processes into the Inter-Blockchain API: (a) Request Handling  4ss
and Prioritization; and (b) Voting Management. aso

(a) Request Handling and Prioritization 490

For managing requests, the Inter-BC API, utilizes 2 general types of queue. The Proxy s
Queue, for every request that needs to be forwarded to the PBC and Domain Queues, for ae2
requests that need to be forwarded to one or more DBCs. Every DBC has its own Domain  4es
Queue, thus their number depends on the number of DBCs. The request handling flow is  4sa
illustrated in Fig. 6 and is described below. a95

Stepl: Listen and acquire. When an organization (Stakeholder instance in the Inter- aos
Blockchain API) receives an event, it first verifies if it is the intended recipient. Next, it 4o7
forwards the user query, say Q;, to the Queue Manager in order to temporarily save the s
message and process it later when it is ready for consumption. e

Step2: Get the request Q; and forward it to the relevant DBC. When it is time fora soo
request Q; to be consumed by the appropriate DBC, the Queue Manager receives it (from  so2
the relevant Domain Queue of the Inter-BC API) and forwards it to the instance of the so:
organization to which the requesting user belongs. The organization instance then forwards  sos
Q; to the DBC of which the organization is a member. Upon completing the request, the sos
response that was received from the DBC is then, again, sent to the Queue Manager in  sos
order to queue the new message and consume it, i.e. forward the response to the PBC when  sos
ready. The Queue Manager also sends an Acknowledgment message (ACK) to RabbitMQ  sor
to inform it that the message was successfully consumed. RabbitMQ receives the ACK and  ses
removes the message from the Domain Queue. 509

Step3: Get the response R; and forward it to the PBC. When the response R; of the sio
query Q; is received from the relevant DBC, it is ready to be consumed. The Queue Manager s
receives it through Proxy Queue and forwards it to the appropriate organization instance. s
Then, the organization receives the response and forwards it to the PBC to continue s
processing the response. When forwarding R; back to the PBC, the Queue Manager sends  sie
an ACK to RabbitMQ to inform it that the message was successfully consumed. RabbitMQ  sis
receives the ACK and removes the message from the Proxy Queue. To maintain the flow s
healthy and avoid Denial-of-Service errors or attacks on the Proxy BC, a Queue Supervisor is sz
utilized. The Queue Supervisor constantly monitors the Proxy Queue for spikes/congestion = sis


https://doi.org/10.20944/preprints202212.0312.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 December 2022 d0i:10.20944/preprints202212.0312.v1

15 of 25

in the network. As shown in Table 3, we define five types of congestion where each oneis s
chosen based on the current level of congestion (CL). 520

Table 3. Congestion types

Congestion Types
Scale Congestion | Monitor | Throttle
Level (CL) Interval | Multiplier

Normal 2<CL 5s 1

Low 1<CL<2 4s 0.7
Medium | 05<CL<1 3s 0.4

High 03<CL<05 2s 0.1
Extreme CL <03 1s 0.01

Depending on the congestion type, the system adjusts, in order to handle the requests, s2:
avoiding DoS, and assuring that all requests will be served. The Congestion Level CL is s22
calculated using the formula: 523

max #Concurrent Requests

L =
¢ #Queued Requests

This means that, for example, if the PBC receives 1500 requests and accepts 400 sza
concurrent requests, then 1100 of them will be pending in queue. The congestion level is  szs
then: CL = 400/1100 = 0.36, which is High according to Table 3. The system will lower the sz
monitor interval from 5sec to 2sec, and throttle requests sent from IBC-API to PBC will be  s27
recalculated with the multiplier 0.1. If the default value is 400 then 40 concurrent requests  szs
will be sent until the PBC is dis-congested. 520

(b) Voting Management 530

To reach management decisions that require agreement between stakeholders, an s
asynchronous voting mechanism is implemented through smart contracts (described in a2
Section 4.3.4 below). The Inter-Blockchain API enables the execution of this asynchronous  sss
model through the following components. As each stakeholder runs an instance of the s
Inter-Blockchain API, it deploys an instance of an Event Manager and a Voting Manager. sss
The Event Manager continuously checks for new events related to active voting processes  sss
and expired elections. The Voting Manager fetches all the active elections related with sz
the relevant stakeholder running the Inter-Blockchain instance, and it constantly awaits to  sss
receive relevant data (e.g. new votes). It also keeps a log of the submitted votes for each s3o
Election ID, and communicates with the PSC chaincode when majority is reached or time s
expiration occurs for a particular election. sa1

4.3.4. Smart Contracts 542

As described in Section 4.2.3, the blockchain services are implemented through smart sss
contracts. The PSC, TMSC, and LSC are stored at the Proxy Blockchain and shared among  sas
all stakeholders, while the ACSC and KSSC are stored at each Domain Blockchain and  sas
provide domain-specific functionality (see the relevant artifacts provided in [5] for details). sas

Proxy Smart Contract (PSC). This integrates the functions for user validation, stakehold- sz
ers’ voting and request forwarding. For user validation, the validateUser() function takes as in- sas
put an array of userCerts provided by the user at login, and triggers the getUserValidation() s
function stored on the TMSC, in order to validate the provided certificate(s). Based on sso
the outcome of the validation, the PSC returns the validated user’s roles (short- and ss:
long-term). The voting mechanism is a crucial component of the system. Through this ss:
mechanism, stakeholders can reach management decisions including: a) adding/removing sss
domains (and the relevant DBCs); b) adding/removing stakeholders to an existing DBC;  sss
¢) modifying a (cross-) domain access policy; and d) giving access to logs for external sss
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auditors. Other processes that require broader consent can also be supported. For each sse
stakeholder, the stakeholder administrator or a delegated external auditor may invoke the ssz
majorityConsentInit() function to propose a new election. It first checks if another election  sse
with the same payload is active and then calculates the ElectionID based on the provided sso
payload. A new Election instance is created and added to the ledger, and also a ballot for seo
each stakeholder. With majorityClientVote(), the administrator of each stakeholder votesin  se:
an Election by signing with the organizations’ private key. The updateElection() function sez
checks if the Election has been finalized based either on the predefined majority rules or ses
the timeout set. The request Access() function handles two processes. First, it constructs the ses
requestDetails, which is sent to the LSC for logging. Then it sends a requestForward event to  ses
the Inter-BC API to complete the request. s66

Trust Management Smart Contract (TMSC). This contains the functions that support ser
trust management services. The initLedger() function is responsible for handling certificates see
and revocation lists of each stakeholder. It takes an initPayload argument and appends the seo
corresponding data to the PBC. Additionally, it creates empty Access Control List (ACL) sz
files for each organization. The getUserValidation() function takes as input either an ACL &7
file (to verify temporal roles assigned to users) or a certificate (to verify long-term user sz
roles). Note that users may have obtained certificates issued by different stakeholders, s
provided that all certificates of a user include the same unique global identifier (GID). In sz
addition, it allows for the efficient revocation of user access through attribute certificate sz
revocation lists issued by the relevant authorities, instead of applying costly attribute sz
key revocation techniques. Finally, it communicates with the LSC in order to record the s
transaction on the blockchain. To allow for interoperability of credentials issued by different szs
stakeholders, all root certificates of all stakeholders are stored in the PBC. For the addition sze
or removal of CAs, the functions addCA() and removeCA() are triggered accordingly. Note  seo
that both functions require agreement between current stakeholders through the voting  se
mechanism. Only after agreement has been achieved through the voting mechanism, the ss:
function updateTrust Anchors() will update the stakeholders’ certificates in the PBC. The ses
majorityUpdate(), invoked by the PSC, is called when an election ends (either by majority = ses
agreement or by timeout) for informing the TMSC. ses

Access Control Smart Contract (ACSC). Its main function is to enforce the predefined sss
access policy, when users request access to data stored within the domain. The Inter-BC ez
API forwards the request and triggers the policyEnf() function. Using the data_ID and the ses
roles provided in the payload, it determines whether or not to grant access and forward the sso
request to the KSSC. 590

Logging Smart Contract (LSC). This component enforces a single source of truth in  se
our system. For each data access request, the requestLog() function is automatically trig- se=
gered by the request Access() function of the PSC. Two main processes are supported by ses
the LSC, registration and retrieval of logs. Log registration is utilized with the functions: ses
updateLog(), for updating the details of uploaded stakeholders’ Certificates and temporal ses
ACLs; updateRequestLog() for updating existing request records; and majorityUpdate() for ses
updating Election records. The getUserRequestLog() function implements log retrieval sor
for users who want to access their request record. The retrieveLogInit() and retrieveLogs() ses
functions are utilized for starting an access-granting Election, when an auditor requests  soo
access to the logs stored on PBC and the log retrieval accordingly. 600

Key Store Smart Contract (KSSCO). 601

This component enforces the single point of access property in our system, in the ooz
following way. As described in Section 4.2.3, data are MA-CP-ABE encrypted, based on 03
predefined access policies, which are modified to additionally require the decryption with  soa
the domain attribute key. The KSSC is the only component that may access the domain’s  eos
attribute private key. The requestData() function is invoked by the ACSC to initiate the eos
process, only after the user’s roles have been verified and connects to the Database API to oz
forward the data_ID of requested data. 608
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4.3.5. Distributed ABE decryption implementation 609

As described in Section 4.2.2, our goal is to cryptographically enforce a single point of 10
entry for the system users; which means that even if a user has all the roles required for e
accessing some data, an extra layer of encryption will prevent access to the data outside 62
the Janus system. To achieve this, we modified the implementation of the MA-CP-ABE &
scheme of [6], by distributing the decryption functionality between the user and the domain e
blockchain. We used as a basis the Python implementation of the original scheme in the &5
Charm encryption library. 616

Since directly applying ABE encryption and decryption is not efficient, we have 7
applied a hybrid encryption approach, where the data are symmetrically encrypted, while s
the symmetric keys are ABE encrypted. At each stakeholder’s database, each data item, 10
say d;, is initially encrypted with a distinct symmetric (AES) key k; as: ¢; = AES(d;, k;). 20
Then, each data encryption key k; is ABE encrypted, based on all access policies that allow 621
access to the particular item, which are extended to include the domain attribute key of the 22
relevant domain. For example, assume that personal information d; of a patient should be  e2s
available to the patient’s family doctor or any doctor in the case of emergency treatment of eza
the patient. In that case, the key k; would be ABE encrypted as follows: 625

1= El’lC(kl’, P,GP, {PKdoctorr PKfDoctorr PKH})
ex=Enc (ki/ P, GP, {PKdoctor/ PKonDuty/ PKH})

Each symmetrically encrypted data item c; is sent to the DBC through the Database 26
API, along with all ABE encryptions of k;, in this example ey, eo. The KSSC has access to the  e2r
domain’s vault, where the hospital domain’s attribute key pair PKy, SKp is stored. Using  e2s
SKp it will generate on-the-fly, the hospital domain attribute key for the requesting user, 2o
i.e Ky nospitats = KeyGen(GIDy, GP, attr:hospitals, SKy) and use it to partially decrypt s
the data. The user will be able to actually decrypt the data, only if: (i) the KSSC has s
partially decrypted the data with the domain attribute key and (ii) the user has the relevant s2
attribute keys for (at least) one of the above access policies, i.e. {Ky goctor, Kij fDoctor} Or 633
{KLI, doctors KU, onDuty}' 634

We implemented the MA-ABE decryption scheme of [6] in Go as a Hashicorp Vault e
plug-in, and we integrated this into KSSC. The KSSC may trigger sysDecrypt(), executed e36
in the domain’s Vault instance, which generates the domain attribute key for a given GID 637
and uses it to perform partial ABE decryption. In this way, the domain attribute key is 38
accessible only for those requests that have already been authorized by ACSC. At the same 639
time, it is never given to the users, to prevent off-system data access. 640

5. Efficiency analysis 641

Since HMBAC is targeted to fine-grained access for multi-auhoritiy, multi-domain s
environments, a practical implementation must be scalable to the number of authorities and  ess
domains. First, we analyze the scalability of the system in terms of system management. ess
Then we benchmark the performance of Janus for different configurations and access ess
request rates. All measurements can be reproduced through the Janus github repository 7. ess

5.1. System Scalability and Management 047

The modular design of the HMBAC architecture allows for scalable and efficient ess
system management. Adding or removing users in Janus is handled independently by s
each organization (stakeholder). Each organization is able to issue attribute certificates and  eso
give access to the corresponding attribute keys to allow its users to: (i) post queries that s
will be accepted by the ACSC, based on the user’s roles; and (ii) fully decrypt a response  s:

7 Benchmarks are fully reproducable via an automated script — see the ‘System Benchmark’ section of the
‘readme’ document on Janus repository [5]
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that has been partially decrypted by the KSSC. Adding/removing stakeholders within an  ess
organization, or changing the access policy of the domain, is handled at the domain level. ess
Due to the use of independent DBCs per domain, managing functions within a domain will  ess
not cascade to affect the other domains. The use of the voting mechanism enables setting ess
up elections at a domain level and in addition to define a majority threshold at domain s
level for decisions affecting a particular DBC. Finally, adding new DBCs will require a ess
majority voting by all the stakeholders and will affect all the domains, as this will require eso
updating the smart contracts in the PBC. 660

5.2. Benchmarks 661

We conducted our evaluation on two different hardware configurations with varying ez
resources, using the Linode cloud infrastructure. As depicted in Table 4, in the first H/W  ess
setup (S1), an AMD EPYC 7501 32-core processor @2GHz with 64 GB RAM is used. The ees
second H/W setup (52) is an environment with higher resources, based on an AMD EPYC  ces
7702 64-core processor running at @2GHz with 512 GB RAM. As our implementation ess
Janus utilizes eight (8) Kubernetes pods, where each Pod corresponds to an independently  oe-
managed server, setup S1 (resp. S2) corresponds to 4 cores/8GB RAM (resp. 8 cores/64GB  ess
RAM) per server. 669

Table 4. H/W specs for testing

CPU (# cores) RAM (GB)
Total | Per Pod | Total | Per Pod
Setup S1 | 32 4 64 8
Setup S2 64 8 512 64

Both sets of configurations run Ubuntu 20.04.1 LTS OS and Kubernetes 1.20.11 was 70
used for container orchestration. The multi block-chain components were developed in  e7
Hyperledger Fabric 2.4 beta with Raft as the underlying consensus algorithm and also fabric- 672
ca-client 2.2.6, fabric-network 2.2.9 and fabric-gateway 0.1.0 were used for establishing e7s
communications. 674

Following the two access rule examples mentioned in Section 4, we created both s
inter-domain queries (e.g. “Retrieve the medical record for patient P from all hospital databases”  e7e
and cross-domain queries (e.g. “Update the firmware for medical device D of manufacturer M at o7z
all hospitals”). Each database was running on a separate Pod and data were ABE encrypted. e7s
The initial ABE decryption was performed by the KSSC running on the relevant domain e
BC of the requesting user, as described in Section 4.3.5. 680

We measured the average end-to-end query response time for various sizes of queries, s
ranging from 2 up to 300 concurrent queries (req/sec), with an approximately even portion s
of inter-domain and cross-domain queries. Table 5 shows the average execution time for all  ees
scenarios tested. In addition, the table presents the time needed for the main subprocesses ess
of the query-response process. 085

Table 5. Detailed performance evaluation for various scenarios of concurrent requests and h/w
setups (time in sec)

# of concur. requests 2 10 20 40 60 80 100 200 300
HWsetups | S1 S2 | S1 S| ST S |8 S |8 S| |8 80 % |8 K

Ticketing 0004 0002 | 0.003 0.002 | 0.002 0.002 | 0.002 0.003|0.003 0005|0025 0008 [ 0018 0015 | 0.015 0.024 | 0.032 002
Endorse 008 007|023 01204 017016 0202 015|048 05|04 018)0% 03|08 14
Commit 0006 0.007 | 0.006 0.004 | 0.005 0.005| 0.006 0.005 | 0.005 0005 | 0008 0.008 | 0008 0.025 | 0.010 0.010 | 0.014 0.020
BC_RTT 2922 | 240 222|247 207 29% 249|319 276 (33 24|42 376 | 6 463|809 56
Average 21 227|267 2% |27 205|312 273|343 292 | 3% 332 | 469 398 | 638 497 | 8% 712
Min 200 227|258 228|188 21 | 202 292|162 Lol | 188 198|204 245 | 174 154|165 23
Max 209 207|272 239|291 258 | 388 405 | 48 366 [ 514 531|571 52| 92 784|127 1039
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Ticketing, refers to the time required by the system to issue a ticket for a user. Endorse, sss
is the time it takes for peers to receive a request and sign the result. Commit, is the time ez
required by the orderer nodes to create a new block. Finally, BC_RTT is the time needed ess
to execute all the required BC functions (smart contracts) and inter-BC communication. ese
In addition, the minimum and maximum time required for a query is presented in each  es0
scenario, to exhibit the deviation from the average time. As expected, the most resource- o1
intensive process is BC_RTT, which encompasses all subsystems, from Proxy BC up to ee:
the retrieval of encrypted data from the independently managed databases, as well as the  eos

partial decryption process using the domain keys. 094

However, the overall time increase is linear (see Fig. 7), which indicates the scalability ees

of the HMBAC design. 096
10 T T

—a—Setup 1
—=— Setup2

Avg execution time (sec)

0 I

| | | |
0 50 100 150 200 250 300
Concurrent requests

Figure 7. System Efficiency

Adding new authorities will increase the number of users and, consequently, the eor
number of requests. At the same time, it will also increase the overall system resources, ess
as the new authorities will devote resources to become stakeholders of the Proxy and of  ese
their Domain blockchain. The system’s performance is linearly dependent on the available 700
resources, which means that as resources increase, the overall time decreases. Note that 7o
in both system setups the system presents zero errors per requests, due to the queuing 7o
module integration. 703

6. Security analysis 704

Threat model. We consider both internal and external attackers. Internal attackers 7os
may be compromised nodes of the HMBAC system or compromised users. Compromised 706
nodes may attempt to illegally modify the access policies or the domain’s stakeholders’ set. 7o
Compromised users may attempt to bypass access control policies and gain unauthorized 7os
access. External attackers may attempt to gain unauthorized access to the system. 700

Assumptions. We shall assume in our analysis that the underlying software compo- 710
nents such as the orchestration engine (Kubernetes) and the isolation mechanisms (Pods 711
and Hashicorp Vault) are trusted. Instead of requiring a fully trusted authority, we relax 72
our trust assumptions to a majority of trusted stakeholders for each domain. We assume 7
that the majority of the participants in the consensus and voting protocols behave in a 7.4
trusted way. We assume that the encryption and authentication mechanisms used (AESand 7
MA-ABE) are secure (cannot be compromised by a probabilistic polynomial-time Turing 7
machine). Finally, we assume that the user credentials are securely managed at the user 77
side. As the main goal of HMBAC is to provide access control, we will first examine security s
against unauthorized access attacks and then other security characteristics of the proposed 719
system. 720

6.1. Secure data access 721

The security of HMBAC controlled data access is based on several security building 722
blocks (as detailed in Section 4.2). First, data is ABE encrypted with the keys assigned to  72s
users based on their roles, by applying the MA-ABE scheme in [6]. Then, an extra layer 7z
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of ABE encryption is performed, with an attribute key assigned to the Key Store Smart 725
Contract (KSSC). This is implemented by applying an additional “AND’ rule, on top of 726
the predefined encryption policy. This forces all requests to be performed via the HMBAC 7
system; otherwise, the data retrieved by users will still be partially encrypted. The BC-side 72s
attribute keys are securely stored in a Vault and are accessible only by the KSSC. 720

Besides the encryption layer, the user must get authenticated by the system in order to 730
send queries, and also by the user-side Vault to access the attribute keys, in order to decrypt 7s:
the received partially encrypted data. System authentication is performed through the 73
proxy blockchain using the Trust Management Smart Contract (TMSC). An authenticated 72
user may then send a data access request, which in turn will be validated at the domain 73
blockchain layer, via the Access Control Smart Contract (ACSC), in order to verify that the 7ss
user has the required roles based on the access policy. The KMSC performs the required 736
partial decryption. Finally, users need access to their attribute certificates, issued by the 7
relevant stakeholders / authorities, to verify their roles with the ACSCS. 738

To formalize our analysis of unauthorized access attacks, we use attack trees asin [53]. 730
Attack trees [54] are a conceptual design used to describe attacks on system assets. We 740
distinguish two types of attack nodes, and-nodes and or-nodes: the children of an and-node  7a
should all be executed to reach the goal of their parent, while any one of the children of an 742
or-node needs to be executed to reach the goal of its parent. An attack on the system is then a3
modeled by a multi-set of compromised nodes. 744

Definition [53]. Let C be a set of attack components of a system. An attack is a finite 7as
non-empty multi-set of C and an attack suite is a finite set of attacks. Denote the universe of 7as
attacks by A = M™(C) and the universe of attack suites by S = P(A). 747

The attack tree for unauthorized data access attacks on HMBAC is shown in Figure 8. 748
Our goal is to analyze all possible attack paths for an adversary, external and/or internal, to  7as
compromise the access control mechanism and gain unauthorized data access. As defined 7so
in our threat model, accessing the data in ways that are outside the HMBAC system are out 7s:
of scope, e.g. accessing the data before they are ABE encrypted or before their entry into  7s2
the system. 753

Unauthorized
data access

(A) Post query to PBC (B) Decrypt response
<
(C) Get user blochchain (D) Compromise (E) Access . (F) ACFeSS
service credentials PBC (TMSC) user attrribute keys BC-side attribute keys

(G) Get credentials  (H) Compromise  (I) Access keys  (J) Compromise
for user-side Vault  user-side Vault via DBC BC-side Vault

(K) Get user (L) Compromise
Attribute certificates DBC (ACSC & KSSC)

Figure 8. Unauthorized data access attack tree for the HMBAC architecture

To construct the attack tree, first we observe that unauthorized data access requires 7ss
an adversary to concurrently bypass the security mechanisms that: validate a data access 7zss
query posted to the PBC (denoted by node A), and access all the attribute keys used to  7ss
encrypt the data (denoted by node B). Note that despite the actual attack that may be s
applied to achieve the above conditions, simultaneously achieving the attack components zss
A and B are necessary and sufficient conditions for any successful attack on unauthorized 7so
data access against an HMBAC system. Then for each level-1 node we continue our analysis  zeo
of identifying all possible sets of system components that must be successfully attacked ze

8 Note that the attribute certificates may also be stored in a user-side Vault for protection.
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to achieve each the goal of the relevant parent node. The same holds for all nodes of the 7
attack trees, including the leaf nodes. 763

Note that for all nodes, including leaf nodes, we did not examine the actual attack 7es
techniques that may be used to achieve the relevant goal. For example, for node C there exist 7es
various implementations of attacks to obtain user credentials for the HMBC service, such e
as phishing, spoofing, or brute force. The goal of the attack tree analysis is to exhaustively e
list all possible sets of necessary attack steps (i.e., concurrently compromised security zes

components) to succeed in the attack. 760
For this tree, the set of identified attack components (nodes) is: 770
C=1{A,B,C,D,EF,G, HIJ K, L}, with seven leaf nodes (for clarity, leaf nodes are 7

underlined). - 772
Leaf nodes are vulnerable components that the attacker may exploit to initiate an 7z

attack. Any attack suite must contain such nodes, as well as the target node T. 778

We examine the attack suites of the unauthorized data access attack tree of the HM- 775
BAC, with respect to the successful attack steps required by an adversary. We consider the 776
following cases: 777

Case 1. Fully compromised user: all user credentials (BC credentials or PBC access (C or D), 7

user-side Vault credentials (G or H) and attribute certificates (K)) are compromised. We get 77
the attacks: {C, A}, {D, A}, {G,E,B}, {H,E,B} and {K, I, F, B}, that when combined give s

us the attack suites: 781
Stegk = {C, A GEKIF,B,T},
Siagk = {D,A,GEKIF,B,T}
Siex = {CAHENKIF,B,T}, e
Sk = {D,AHEKIF,B,T}
The attacker will then be able to post to the system all queries available to the target user. 7sa
However, this attack does not leak the data from other users. 785

Case 2. Partially compromised user: at least one of the required user credentials C,D, G, H s
and K is secure. In this case, from the attacks: {C,A,G,E}, {D,A,G, E}, {C,A ,H E}, e

{D,A,H,E},and {K,I,F}, {L,L,F}, {],
F}, we get the attack suites: B 780
790
Sogk = {CAGEKILF,B,T},
Schl = {Q, A,Q, E,L,LF,B, T}/
SZng = {Q/ ArQr E/L F,B, T},
Saigk = {D,A,GEKILF,B,T},
Saig = {D,AGELILFB,T},
Saigi = 1{D,A,GE]F,BT},
Soenk = {CAHEKILF,BT}, i
Soew = {CAHELLFBT},
Sonj = {CAHE]F,BT}
Soank = {D,AHEKILF,B,T}.
Soam = {D,AHELILF,BT},
Soanj = {D,AHE,] F BT}
Again, these attacks only affect the data of the compromised users. 702

Case 3. Fully compromised PBC (D) and DBC (L). Here unauthorized queries get posted  7es
due to a compromised Proxy BC (bypassing the TMSC), while access to the BC-side keys 704
assumes a compromised domain BC (bypassing the ACSC control and utilizing the BC-side  7e5
attribute keys via the KSSC). However, a successful attack suite requires additionally access 706
to the user attribute keys, either by compromising the user-side Vault (H) or by getting the 7o7
user credentials (G). We get the attack suites: 708

799
Ssam = {D,AHELIFBT},
Ssgq = {D,AGELILFBT}.

800
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Case 4. Fully compromised Vault. Here both the user- side and BC-side Vaults (H and ]) are o2
compromised. Again, a successful attack requires additionally a partially compromised  sos

user (C) or Proxy BC (D). We get the attack suites: 8oa
805

Ssnj = {CAHE]FBT}
Sunj = {D,AHE]FB,T}

Case 5. All entities partially compromised. Here the user credentials/certificates (C,K), sos
blockchains (D, L) and Vault storage (G, H, |), are all partially compromised. We get the  s00

attack suites: 810
Ssen = {Q,A,ﬂ, E,L,IF, B,T},

Ssii = 1{D,A,G,EJF,B,T},
Ssank = {Q,A,E,E,K,I,F,B, T}.

813

We now have: e

Proposition 1. Compromised user credentials (either fully or partially) cannot affect the data access e
of other users. o17

Proof. This follows directly from Cases 1 and 2. [ a1

Proposition 2. The system can resist unauthorized data access even if both the proxy and the e

domain blockchains are compromised, provided that the user attribute keys are secure. 820
Proof. This follows directly from Case 3. [ 821
Proposition 3. The system can resist unauthorized data access if at least one of the system entities 22
(users, blockchains, key Vaults) are secure. 823
Proof. This follows directly from Cases 4 and 5. [ s24
6.2. Secure blockchain management 826

The security of critical management decisions that could compromise the system’s sz
security relies on: (i) the voting mechanism implemented at the Proxy blockchain, (ii) e2r
the blockchain consensus mechanism, (iii) the transaction replication implemented by all  s2s
the blockchains, and (iv) the execution isolation supported by the use of Kubernetes and  s2e
independently managed Pods. 830

As explained in Section 5.1 the voting mechanism, implemented by the PSC, enables 31
the stakeholders to reach management decisions. Any stakeholder may start an election. a3
Voters’ eligibilty and vote integrity is ensured, since the private key of a stakeholder is s
required to sign a vote for an election. Different thresholds and eligible voters can be e3a
defined for different elections. 835

The blockchain consensus mechanism is also related to secure system management. sss
Since smart contracts in both blockchain layers implement critical functionality of the s
system, modifying those smart contracts either at the PBC or at the DBCs could compromise  s3s
the security of policy enforcement. However, as the smart contracts are implemented in the 3o
initial blocks of each blockchain, their integrity is strongly protected. 840

Since the underlying consensus mechanism of Fabric (Raft) does not support Byzantine s
tolerance, a malicious leader might attempt to forge the blockchain(s) logic by adding  ss=
modified smart contracts, e.g. to compromise the access policy. However, such an attack e
would be easily detected by the other stakeholders because of the blockchain replication sas
mechanism and the lack of integrity (valid signatures by the stakeholders” majority) of sss
the modified smart contracts. Finally, the encapsulation of all the distributed components s
in replicated independent Pods, executed by different stakeholders and orchestrated by e
Kubernetes, also protects system integrity. sas
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6.3. Secure key storage/management 84

The use of Hashicorp Vault provides secure key storage. For each DBC, an independent  eso
vault instance is used to store and securely access the domain’s attribute key. In addition, es:
users may also deploy vault instances to protect their attribute keys and attribute certificates. es2
Finally, certificate management at the stakeholder level is implemented by independent es:
instances of Hyperledger Fabric CA running on different Pods. These are accessible by the esa
TMSC through encrypted and authenticated Kubernetes ports. ass

7. Discussion and Conclusions 856

Hierarchical multichains, when coupled with Attribute Based Encryption, provide a esz
flexible and secure distributed access controls mechanism for multi-domain, multi-authority ese
environments. Its modular architecture supports various properties of blockchains, such  sse
as interoperabilty, by providing a single point of access for multiple domains and single  seo
source of truth, via block-chain replication and integrity. The use of a hierarchical struc- es
ture supports fine-grained access control and flexible management. At the same time, se:
the integration of distributed MA-ABE enables the combined use of credentials issued by  ses
multiple authorities without introducing a high management overhead. In this paper, we sss
have defined HMBAC, a novel access control model along with Janus, an actual imple- s
mentation of an HMBAC system, and we have analyzed the security and efficiency of our  ses
implementation. 867

In the future, we intend to explore the integration of different consensus mechanisms ess
to extend the applicability in environments that require strong Byzantine tolerance. In seo
addition, since user credential management is at the stakeholder level and is managed sz
outside our system, it is possible that inefficient user credential management can affect the en
overall efficiency of the system. Possible ways to minimize this risk can also be examined 7
in the future. 873
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