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Abstract

Manipulating cloth-like deformable objects (CDOs) is a long-standing problem in the robotics
community. CDOs are flexible (non-rigid) objects that do not show a detectable level of com-
pression strength while two points on the article are pushed towards each otherand include
objects such as ropes (1D), fabrics (2D) and bags (3D). In general, CDOs’ many degrees of
freedom (DoF) introduce severe self-occlusion and complex state-action dynamics as significant
obstacles for perception and manipulation systems. These challenges exacerbate existing issues
of modern robotic control methods such as imitation learning (IL) and reinforcement learning
(RL). This review focuses on the application details of data-driven control methods on four
major task families in this domain: cloth-shaping, rope manipulation, dressing and bag manip-
ulation. Furthermore, we identify specific inductive biases in these four domains that present
challenges for more general IL and RL algorithms, and summarise the future direction for the
development of the field.

1 Fundamentals of Robotics for CDO Manipulation

In this Section, following Kroemer et al. (2021) [199], we focus on providing the formalisation of
a single centralised decision-making rigid-body agent. For specific details about existing CDO
manipulation systems, see Section 4.

The minimum requirement for defining a robot is that it has to have actuators that it can
control [200]. The objective of a robotic manipulation system (RMS) is to interact with its
environment to change it to a specified goal configuration g.

Earliest RMSs perform tasks with prescribed motion phases and analytical models to gen-
erate low-level control signals [262]. However, these types of systems are only practical under
a closed and deterministic environment. In order to perform tasks in more stochastic envi-
ronments, perception systems play a critical role in updating the robot’s understanding of the
configuration and changes in the environment [166, 134]. In classical robotics, a clear separation
between perception and control is linked with intermediate representations. Perception is often
handcrafted, as is the control procedure. The control system in robotics is often hierarchical,
where the highest-level action abstraction is often prescribed by a heuristic, and lower-level
control actions are delivered using motion planning and low-level controllers, such as PID and
compliant controllers. The conversion between high-level action abstraction and low-level con-
trol signals is also often handcrafted in these systems. Details about classical robotics in CDO
manipulation for individual domains will be discussed in Sections 4.1.3, 4.2.3, 4.3.3 and 4.4.3.

A dynamic model sometimes gets involved to provide prior estimation for the true state of the
environment. It can also provide faster future roll-outs for planning and trajectory optimisation
methods. The dynamical model often comes with the form of an approximated analytical
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model [273, 396]. Those are the early examples of optimal control methods, also known as Type
I model-based reinforcement learning (MBRL) (Section 3.3), in classical robotics [360, 321].

Robotic applications often show a hierarchical structure on the action output. A long-horizon
multi-step task can be decomposed into a sequence of subtasks. Also, some fundamental skills
(Section 1.3) are used repeatedly across the subtasks. These skills can be further divided into
multiple goal-condition phases that can be delivered by motion planning algorithms and low-
level analytical controllers [199]. The modular hierarchical structure of a task decomposes the
challenge into simpler and more tractable problems so that the agent can use the skills as the
base action abstraction to perform a complex task. Such hierarchical action structure often
requires corresponding hierarchical structure at the state representation [199].

1.1 Data-driven Control

Building analytical model for producing control signals is a difficult process, especially for CDOs
due to their complex deformation behaviours. Controllers developed under classical robotics
typically only apply to a fixed or a narrow range of configurations [166, 134]. One of the
key features of modern robotics methods is that they formulate the manipulation problem as
a Partially Observable Markov Decision Process (Section 1.2) and leverage contextual MDPs
(Section 1.2) for developing more robust and general skill controllers (Section 1.3).

With the advance of deep learning [118] and high-performance hardware, almost all parts of
an RMS can be practically replaced with neural networks (NNs) and trained on collected data.
We refer to this evolution as the beginning of modern robotics because NNs fundamentally
improved the capability of all parts of the system and revolutionised the system design process
[162]. However, there is still a clear separation between perception and control; the selection
of state representation is still an important step in the system design. NNs are also convenient
and effective at combining multi-modal sensory inputs [84], as well as integrating passive and
interactive perception [110, 223, 351]. In this era, IL using real-world demonstration data
has become one of the most popular and relatively robust control algorithms in research and
industry [278, 63]. Early examples of IL methods, such as behaviour cloning (BC) (Section
2.1) and learning from observation (LfO) (Section 2), with tabular or simple parametric policy
representation show good performance in knot-tying tasks [259].

Meanwhile, the speed and quality of simulations has improved tremendously, making it pos-
sible to collect millions of data points using simulation for training the perception and control
systems, and to train a non-linear parametric dynamic model. The high-performance simulation
also improves the precision of planning/trajectory optimisation methods (Type I model-based
reinforcement learning, Section 3.3) by replacing the analytical model with either the simulation
or the learned dynamic model. Most importantly, it makes RL practical in robotic applications
because simulation provides safe and fast online exploration and data collection. Consequently,
simulation-to-reality (Sim2Real) transfer [419] (Section 1.4) becomes a key technology in modern
robotics for bridging the gap between the simulation-trained policy and the real-world deploy-
ment.

End-to-end policy learning attempts to eliminate the selection of intermediate state represen-
tation from the design process by learning a latent representation so that a control algorithm can
be applied to several domains. However, the NN parameters must be trained from scratch for
different tasks. Hence, transfer learning is proposed to transfer the domain knowledge learned
from a certain task to other domains, where it can be applied directly (zero-shot transfer) or be
functional after a few trials (few-shot). Transfer learning is the key technology used in Sim2Real
(Section 1.4) and Multi-task RL (Section 3.4). End-to-end policy learning suffers from data effi-
ciency and mode collapse (similar but different state leads to the same action), so representation
learning (Section 3.2) becomes essential [340]. It aims to learn better latent state estimation to
overcome both issues, leading to robust and interpretable control systems (Section 1.5).

DRL and DIL often come with a set of hyper-parameters which have to be manually tuned
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separately for each domain. In order to automate this process, meta-learning attempts to
dynamically adjust the hyper-parameters regarding its experience in the target domain and
training status [291]. Another hand-designed aspect of many current robotics algorithms is the
reward function. Adversarial inverse reinforcement learning (Adversarial IRL) methods (Section
5.2) also attempt to automate reward engineering with demonstration data while preserving
similar computational complexity as their RL counterparts [150, 293].

Sections 4.1.4, 4.2.4, 4.3.4 and 4.4.3, will go into detail about current applications of data-
driven approaches in the CDO domain.

1.2 Framework

Markov decision process (MDP) is a discrete-time stochastic control process first introduced
by Bellman (1957) [30] and further developed by Howard (1960) [157]. It is a mathematical
framework that models the decision-making process in a stochastic system and produces cor-
responding rewards for the decision steps. MDPs can be used to solve optimisation problems
through dynamic programming, an instance of reinforcement learning algorithms. They have
become a strong mathematical tool in many disciplines, including robotics. An MDP M is
defined as a 5-tuple (S,A,P,R, ρ0), where

• S is a set of states,

• A is a set of actions,

• Pas,s′ = Pr(st+1 = s′|st = s,at = a) is the transition probability function,

• Ras,s′ is a primary reward function that produces a reward when transitioning from state
s to state s′ by taking action a, and

• ρ0 is the initial state distribution.

In robotics and reinforcement learning settings (Section 3), a task can be modelled by an
MDP. The defining feature of an MDP is that it has the Markov property, i.e., the transition
function and the reward function only depend on the current state and action not history
trajectories. This means that while modelling a robotic application, we do not have to consider
the effect of state-action sequences; we assume each state is unique and informative enough for
transition and decision-making. When different tasks share the same transitional property but
different reward functions, we say that they belong to the same dynamic-invariant task family.
We are also interested in action-invariant task families, where an agent can solve different MDPs
with a fixed action space.

Hidden Markov Model (HMM) [292] is a first-order Markov process whose internal
states S are not directly observable. The observable output signal X depends on probability
distributions O. Since the model can disregard noise through a stochastic framework, it allows
us to deal with the highly stochastic underlying structure of the process. HMMs can be fit
using Expectation-Maximisation (EM) algorithms [71]. HMM is a tool to formalise trajectory
behaviour cloning methods (Section 2.1.2) that has been used in dressing domain (Section 4.3.3).
HMMs can also be leveraged to detect execution states of RMSs, such as success and various
error cases, which is applied in dressing domain (Section 4.3.2). Also, they are commonly used
to model perception systems [181, 68] that can provides prior to the state estimation for a
manipulation task.

A Partially Observable MDP [177] PM combines a MDP and an HMM to model an
agent’s decision process where the agent can only partially observe the state of the domain.
Other than the elements of MDP, a POMDP also contains (X ,O) that models the observation
space X and emission probability O of the observation x from a state s. POMDPs more
accurately describe the real-world application of robotic systems [162]. They are a tool for
modern DRL and DIL algorithms that train end-to-end policy controllers.

Contextual MDP (CMDP) [132] is a tuple CM = (Ξ,M), where Ξ is the context space
and M is a function that maps a context to a specific MDP. Hence, an MDP controlled by
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this variable is M(ξ) =
(
S,A,P(ξ),R(ξ), ρ0(ξ)

)
. It is possible to reformulate a CMDP as a

big MDP by joining all possible elements and corresponding transitions. However, knowing the
context variable ξ can make the decision-making problem easier than solving the compounded
big MDP. Suppose the context does not affect the state-action space or the transition and reward
function, it might be easier to integrate the variation of the MDP caused by the context into
the initial state distribution ρ0.

In robotics, context captures the across-task variations [199], and it can help to formalise
robust and multi-task control settings. In fact, we can regard Goal-condition MDP as a
special subset of CMDP, where a goal g ∈ G only influences the reward function. Skill controllers
(Section 1.3) and multi-task/goal-condition RL (Section 3.4) are built upon this framework, and
the application of it will be discoursed in cloth-shaping tasks (Section 4.1.4.

In addition, we can also have Contextual POMDP (CPOMDP) that is defined as CPM =
(Ξ,PM), where the observation space and emission distribution also depend on the context, i.e.,(
X (ξ),O(ξ)

)
. CPOMDP is a framework for building robust end-to-end controller that can gen-

eralise across different contextual observational inputs. Sim2Real (Section 1.4) techniques such
domain randomisation and domain adaptation adopt this framework to transfer the simulation-
trained end-to-end policy to real world. The application of such methods to the cloth-shaping
domain will be detailed Section 4.1.4.

A Task Family is a distribution on CMDPs, i.e., P (CM), where each corresponds to a
specific task. Usually, they share a similar (not exactly the same) dynamic and reward functions,
but vary in context. These tasks are close enough to each other that the agent is expected to
generalise across them rather than solve them separately with individual policies [199].

1.3 Skills

Skills are a high-level action abstraction can be reapplied throughout different phases of a task
and even across task families. For example, laundry folding requires applying cloth-grasping,
cloth-flattening and cloth-flattening skills multiple times to perform the long-horizon multi-step
task successfully. Some skills require part-based representations, i.e. if the agent detects a handle
on a bag, it knows where to grasp the object [74, 200]. Other skills relate to the mode switch in
the environment, where the actuation of the environment changes in a piecewise fashion [199].

In robotics, skills are often modelled using the Option framework [354]. Each motor skill
can be represented as an option ω = (Iω, βω, πω), where Iω : S → {0, 1} is an indicator function
that allows the option to execute; βω : S → [0, 1] is a termination probability on the current
option, and πω is the policy function for the option. Apart from state representation, some
skill policies are also subject to the context of the environment. Given a skill library Ω, i.e., a
collection of skills, an agent is expected to know when to execute and terminate a certain skill
ω, meaning that the agent needs to know the pre-condition and post-condition of executing a
certain skill.

In addition to having a firm knowledge of the pre-condition and post-condition of a skill, the
skill controller πω should also be flexible and robust to a range of initial states Sω, context Ξω
and even goal conditions Gω. This requires a contextual goal-condition skill policy represented
as:

πω : Sω[×Ξω[×Gω]]→ Aω|T Aω , (1)

where the output of the skill policy can be a single action a ∈ Aω or a trajectory of actions
τ ∈ T Aω , while the input of the policy differs depending on the application.

Solving long-horizon multi-step problems usually involves (1) Decomposing a task into com-
ponent skills w.r.t. the modular structure, (2) developing skill policies independently, and (3)
using higher level policy to decide when to use which skills. A skill library offers a procedural
abstraction to the agent, meaning that it decides to execute an option based on the state ab-
straction. This supports abstract task-level planning and improves the interpretability of the
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system [200]. There are two major approaches for integrating skills: (1) segmenting demon-
stration trajectories into component skills or (2) manually including skill specification as part
of the overall problem when learning to solve a task [199], which is mainly used in laundry
folding (Section 4.1.3) and knot-tying/untying (Section 4.2.3). Autonomous skill segmentation
and discovery [90] could be an interesting direction to explore in CDO manipulation.

Furthermore, transferring the learned skill to another task domain helps the learning effi-
ciency and generalisation ability of the agent. We can initialise a new skill policy with a learned
skill policy and fine-tune it in the new task domain [281], which requires a consistent state
representation between the two task domains. Transfer learning techniques (Section 3.4) such
as domain adaptation and domain randomisation [365] are often utilised to build perception
systems that produce unified state abstraction for different domains. The same technology is
used to transfer the simulation-trained policy to the real world (Section 1.4).

1.4 Simulation to Reality

Simulation-based approaches provide cheap and safe development environment for RMSes, but
there are challenges to deploying simulation-trained systems into real-world settings [419]. The
major challenge is domain shift: the simulated MDP differs from the real-world MDP. There
is a considerable difference in the observation space and some mismatches in the transitional
functions. Also, there is always a risk that the agent will encounter novel states in the actual
trials that it does not encounter in simulation [295].

In classical robotics, the mismatch caused by the dynamic model is partially mitigated
through system identification [198] that calibrates the simulator with real-world data. The
perception mismatch is resolved with a fixed intermediate state representation between the
simulation and the reality. However, since the intermediate state representation is automatically
learned in an end-to-end manner in modern robotics, small perturbations in the observation
space can cause a significant difference in the latent state representation; consequently, they can
lead to a substantial deviation from the correct policy.

In DL, transfer learning (TL) aims at improving the performance of a learner on a target
domain by transferring the knowledge from a different but related source domain [420]. Domain
adaptation is the main TL method that maps the observations emitted by the same state from
the two domains into the same state abstraction. Domain randomisation [261] is another
technique used to fill the observation space gap. While domain adaptation attempts to unify
the two domains, domain randomisation feeds the agent with an observation from a set of the
randomised domains.

Apart from bridging the gap in the observation space, we also want to transfer the policy
from the simulation to reality. In the ideal case, with a robust perception system that gives
a consistent intermediate representation and perfectly tuned simulation dynamic, the control
system will not have trouble deploying its policy from simulation to reality. This is called zero-
shot or direct transfer. The quality of the physics engines has been improving drastically, and
more realistic robotic simulators are being developed to fill the gap between the transitional
functions in the real world and simulation [366, 332, 107].

In addition, we cannot guarantee perfect simulation in practice. As a result, a simulation-
trained agent often runs into novel states in reality. One solution is to adopt continual learning
[367] to let the agent fine-tune its policy with the new data collected in the physical trials
while preserving its knowledge in the simulation. One such technique is called policy distillation
[307], where a smaller student network is trained with the data generated by a pre-trained
teacher network. Meta RL [381] is another solution that aims to train an agent that can learn
a new policy faster in a new domain using the knowledge from past trainings. Alternatively,
Robust RL [258] attempts to resolve the policy gap by adding perturbation in the dynamic of
the simulation, which shares some commonalities with domain randomisation. Furthermore, a
real demonstration trajectory can be provided to let the agent adjust its policy using imitation
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learning methods.

1.5 Safety

Safety is another major concern in robotic applications, especially in the real world. A robot
arm needs to avoid jiggering motion and reaching toward regions outside the boundary of its
working space to prevent damaging its own body, sensors and motors. It also needs to avoid
collisions and exerting excessive forces on objects, humans and collaborators. For example, the
robot needs to avoid exerting large forces on the user in assistive dressing (Section 4.3) and
tearing CDO in bimanual manipulations.

With access to a sufficient state representation, these requirements can be met using smoothed
motion planning and low-level compliant controllers [43]. Nevertheless, exploration of RL al-
gorithms brings challenges for training the robot safely in the real world. Although one can
use simulators to train the agent in simulation and deploy it to the real world, the robot will
typically require extra exploration to adjust to the physical trials. Safe RL [113] becomes an
important topic for modern robotic applications. One solution for Safe RL is adding risk metrics
to the reward function and constraints to the action space to penalise the agent from utilising
destructive actions and reaching unsafe states [60, 155]. Another solution is initialising the pol-
icy with a demonstration trajectory and exploring around the trajectory to fine-tune its policy
[358] (Section 3.5.2). Section 4.3.3 and 4.3.4 will discuss the application of conventional safe
control strategies and Safe RL in the dressing domain.

2 Imitation Learning

Imitation learning (IL) [272] is the first type of data-drive control methods that has been used
considerably in all four families of CDO domain (Section 4). Also known as learning from
demonstration (LfD) [315], IL learns policy from demonstration as the raw input:

IL(πdemo)
.
= arg min

π∈Π
D
[
p(πdemo)||p(π)

]
, (2)

where D is the divergence metric that measures the difference between the two distributions;
the operands in the divergence can be state-action distribution, trajectory feature expectation
or trajectory feature distribution. Most of the IL algorithm is related to M-projection, i.e.,
choosing KL divergence from the demonstration distribution to the target policy distribution,
while I-projection-related algorithms have barely been investigated in the IL literature [272].
The fundamental difference between IL and RL is that no reward functions are provided in IL.
IL helps to eliminate the effort of engineering reward that can be difficult in many robotics
applications.

Behaviour cloning (BC) (Section 2.1) is a type of IL that attempts to directly learn the
policy from the demonstration in a way similar to supervised learning. Inverse reinforcement
learning (IRL) [306] (Section 5), or inverse optimal control [179], is the second type of IL,
which learns the reward function from the demonstration policy and learns the control policy
from the inferred reward function. IL can also vary in terms of the control signal given in the
demonstration data. Most common IL method applied in CDO is BC, and we are aware of no
applications of IRL in the domain.

Learning from Observation (LfO), or Imitation from Observation, refers to imitating learning
approaches while the action signals are not in the demonstration data. It learns only from
state/observation demonstration. LfO is often applied when the demonstrator’s action space
differs from the agent’s. A direct way to achieve LfO is to provide the learner with the keyframes,
a sequence of intermediate observations/states, the uses lower-level controllers to achieve these
goals. For example, Morita et al. (2003) [259] initiate Knot Planning form Observation (KPO)
that integrates control methods from LfO on the topological level of the rope, where the changes
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of the representation in the consecutive demonstrated observation produce a primitive action.
Human imitation learning attempts to infer the intent of the demonstration and probably make
a different action than the demonstration. This is analogous to doing LfO using IRL, where the
reward function only on state/observation signals [69].

Even though imitation learning sounds like an ideal approach to tackle robotic applications
and, in fact, BC is the most prevalent method in practice [272], it still suffers from several issues.
The major bottlenecks are from the demonstration data that can be (1) suboptimal, (2) contain
noise and (3) have a different domain (different MDP/POMDP) compared to the application
domain.

Demonstration data can be collected through (1) kinesthetic teaching, (2) a motion capture
system, (3) teleoperation system and (4) an expert script policy. Kinesthetic teaching is lever-
aged frequently in assistive dressing systems, where a human coordinator grabs the robot arm to
demonstrate dressing trajectories, and the data are collected trough the robot’s sensorimotors
[358]. Motion capture systems collect the demonstration data by keeping track of the move-
ment of a physical expert performing a task. However, such data often present a correspondence
problem between the demonstrator and the learner. Teleoperation, on the other hand, requires
a human to operate a controller to drive the robot to perform a task. For example, Seita et al.
(2019) [329] demonstrate pick-and-place action strategies in vision space to perform bed-making
through a click interface. Vinh et al. (2012) [373] employ a joystick to control the gripper’s
location and orientation to demonstrate single-gripper overhand knot-tying in the air. Finally,
expert-script policy are functional systems that can perform the target task relatively good in
real world, or a privileged policy that can get access to the true state of the environment in sim-
ulation. The advantage of such a data-collection system is that it frees human demonstration.
Such demonstrators have seen substantial use in cloth-shaping systems [329, 234, 155] as well
as knot-tying systems [356].

As with reinforcement learning, the dynamic model can improve the data efficiency of IL
approaches. In model-free imitation learning (MFIL), the dynamic of the environment is im-
plicitly encoded into the learned policy. However, these models often need more samples to
converge to a smooth and stable optimal solution. In many RMSs, kinematic controllers are
well-developed for control joints. Such systems are fully actuated, and MFIL methods can be
easily applied in such applications. In contrast, adopting MFIL algorithms in under-actuated
systems is challenging due to the compounding error it may encounter. Model-based imitation
learning (MBIL) attempts to learn a policy that regenerates the demonstrated trajectories by
learning/using the dynamic model of the under-actuated system [272]. MFIL is mainly used for
trajectory learning problems, while MBIL is mainly applied to object manipulation tasks.

2.1 Behaviour Cloning

Behaviour Cloning (BC) [21] achieves IL by learning the policy directly from demonstration data.
Concerning policy abstraction, BC can be classified into methods that learn state-action policy,
trajectory-level planning, and task-level planning. Regarding the involvement of a dynamic
model, BC can also be classed into model-free and model-based approaches [272]. Model-based
BC (MBBC) [22, 263] methods are mainly adopted to solve the corresponding problem
[37]. A corresponding problem often appears when the embodiment of the demonstrator differs
from the learner. Furthermore, it is hard to apply trajectory-level MFBC to underactuated
systems where the set of reachable states is limited. In contrast, it is possible to plan a feasible
trajectory close to the demonstration trajectory in such settings using a dynamic model [12].
In this subsection, we only focus on the details of MFBC algorithms.

A general algorithmic framework of MFBC is:(1) Collect demonstration data D. (2) Select
a policy representation π̂. (3) Select an objective function L. (4) Optimise L w.r.t. π̂. using
D. A simple approach for BC is to use purely supervised learning [289], but it cannot learn to
recover from failures during the test time because of the compounding error, i.e., a cascade
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of errors from the learned policy. In a supervised approach to BC, we assume that actions
in the expert trajectories are independent and identically distributed. Nevertheless, causal
relationships exist in BC applications between the action and the states, which contradicts the
assumption of the independent and identical distribution of the data while using SL. Pure SL
methods cannot capture the structure of the task domain. Additionally, SL methods cannot
capture other constraints of the robot system, such as joint limits and workspace configuration
[20]. Sections 4.1.4, 4.2.4, 4.3.4 and 4.4.3 will discuss the application of SL methods in CDO
manipulation.

2.1.1 State-action BC

Ross and Bagnell (2010) [302] propose Forward Training to mitigate the compounding error
using time-dependent policies. It iteratively collects expert policies on each time step that ends
with the sampled trajectories induced by previously learned policies and trains the current step
policy using the current-step demonstrations. However, it requires running the dynamic for sam-
pling trajectories throughout the iteration, and the task horizon can be larger, even undefined.
These make the algorithm impracticable in real-world trials. There are other stochastic mixing
methods, such as Search-based structured prediction (SEARN) [70] and Stochastic Mixing Iter-
ative Learning (SMILe) [302], that attempt to replace the expert policy gradually throughout
the optimisations. Chernova and Veloso (2009) [56] also propose a confidence-based method to
gather extra demonstration data while the confidence is lower than a threshold. In order to
tackle the suboptimality problem of demonstration data, Kim et al. (2013) [184] propose Ap-
proximate Policy Iteration with Demonstration (APID) that is a BC method regularised with
Approximate Policy Iteration.

Ross et al. (2011) [304] propose Dataset Aggregation (DAgger) to solve compounding error
of BC that can be regarded as a reduction of imitation learning to supervised learning with
interaction. Unlike the methods mentioned above, DAgger maintains one learning policy and
iteratively optimises it by collecting aggregated demonstration data. He et al. (2012) [139]
propose DAgger by Coaching to mitigate the learning difficulty of DAgger due to the gap between
the learning policy and demonstration policy. They do so by replacing the demonstration policy
with a hope action policy that is easier to learn than the demonstration policy. Venkatraman
et al. (2015) [375] propose a framework called Data as Demonstrator (DaD) to extend the idea
of DAgger to multi-step prediction. Section 4.1.4 will talk about the application of DAgger in
cloth-shaping tasks.

As an extension of DAgger, Ross and Bagnell (2014) [303] present AggreVaTe to learn a
policy that maximises the reward-to-go of the demonstration policy instead of using supervised
BC loss. This is formally defined as follows

LAggreV aTe(π, i) = − 1

T

T∑
t=1

E
st∼d

πi
t

[
E

a∼π(·|st)

[
Rπ

demo

T−t (st,a))
]]

, (3)

where reward-to-go Rπ
demo

t (s,a) is assumed to be known or can be estimated without bias after
rolling out using mixed policy πi = βiπ

demo +(1−βi)π̂i for t−1 steps and πdemo for T − t steps.
AggreVaTe can be interpreted as a regret reduction of imitation learning to no-regret online
learning. Using the reward-to-go function, this approach can overcome the suboptimality prob-
lem of the demonstration data. Sun et al. (2017) [347] propose Deep AggreVaTe (AggreVaTeD)
that uses a deep neural network to learn more expressive policies than AggreVaTe.

In robotics, Zeng et al. (2021) [411] propose Transporter Net to solve vision-based pick-
and-place BC using NNs. Transporter Net leverages two convolutional networks Qpick(x) and
Qplace(·|x,apick), where the latter is composed of key and query networks. They output state-
action value map for picking and placing position in pixel space. The architecture learns to detect
the pick action apick = arg maxx,y Qpick((x, y)|x), and uses the feature map of the region-of-
interest of the pick action x[apick] to cross-correlate to the feature map of the observation x
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for estimating its place action, i.e., aplace = arg maxx,y fquery(x[apick]) ∗ fkey(x). The whole
inference process is trained end-to-end using demonstration data. Seita et al. (2021) [327]
extend Transporter Net to goal-condition control domain and apply it on cloth-shaping and
bag-manipulation tasks in simulation. This is discussed in detail in Section 4.1.4 and Section
4.4.3.

2.1.2 Trajectory BC

The simplest form of Trajectory BC is trajectory replay, where the system detects a state-of-
interest and then replays the associated demonstrated trajectory. However, these methods are
only functional under a small state subset of the task domain, and they often require extra
control to reach and detect these states-of-interest. Vinh et al. (2012) [373] and Kudoh et al.
(2015) [202] apply such methods to achieve knot-tying tasks, which will be addressed in Section
4.2.4.

One direct way to model trajectory learning is using HMM. However, an HMM cannot
produce long smooth action sequences as it is a discrete process [272]. Calinon et al. (2010) [45]
leverage Gaussian models with HMM to represent continuous values. Yu (2010) [407] proposes
Hidden Semi-Markov Model (HSMM) to formulate state duration distribution, and Rozo et al.
(2016) [305] adopts Linear Quadratic Regulator (LQR) [31] to optimise the trajectory generated
by an HSMM. The application of such framework in assistive dressing will be presented in
Section 4.3.4.

Dynamic Movement Primitives (DMP) [163, 165, 164, 316] is a trajectory behaviour cloning
method that formalises trajectory learning problem as a damped forced harmonic oscillator
system. It produces smooth movement to reach the goal within the desired duration:

γ2s̈ = αs
(
βs(g − s)− γṡ

)
+ f , (4)

where (αs, βs) are constants that control damping and spring factors individually; γ is a constant
that control temporal behaviour; and the goal configuration g is given by the last state of a
demonstration trajectory. The force controller is represented by a weighted combination of basis
functions {ψi}Ni=1, usually Gaussian functions. These weights are learned by minimising the sum
square error between demonstrated target force and the controller force across time. Section
4.3.4 will discuss about the application of DMP in assistive dressing.

There are many variants in the literature of DMPs for different purposes. Hoffmann et al.
(2009) [152] add a term in the actuator system to achieve obstacle avoidance, while Denǐsa et
al. (2016) [72] propose Compliant Movement Primitives for compliant motions. Mulling et al.
(2013) [260] propose Mixture of motor primitives (MoMP) to combine multiple DMPs for gen-
erating a more robust trajectory controller. Moreover, due to their deterministic nature, DMPs
cannot simulate human trajectory behaviour. Paraschos et al. (2013) [279] propose Probabilis-
tic Movement Primitives (ProMPs) that bring stochasticity into the controller by representing
the controlling behaviour as a distribution over demonstrated trajectories. However, ProMPs
does not guarantee the stability of the motion trajectory. The above-mentioned trajectory BC
method is time-dependent. Khansari-Zadeh and Billard (2011) [183] propose Stable Estimator
of Dynamical Systems (SEDS) that represents time-invariant dynamical systems with Gaussian
Mixture Model (GMM). Although SEDS cannot learn time-dependent behaviour by nature, it
produces a stable trajectory to reach the target configuration.

DMP works well for learning point-to-point trajectories as it can easily generalise to dierent
start and goal positions. However, DMP generally has limited capability for generalisation
and often requires more features for different usage. Gaussian distributions are used in PoMPs
and SEDs for better generalisation behaviour. Schulman et al. (2016) [324], on the other
hand, propose to transfer the demonstration trajectory using non-rigid registration between
the observed scene and a demonstrated scene. They conduct the registration using Thin Plate
Spline Robust Point Matching (TPS-RPM) approach proposed by Chui and Rangarajan (2003)
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[57] on the scene represented as point clouds. The application of TPS-RPM has mainly been
explored in rope-manipulation tasks, which will be discussed in Section 4.2.4. Lee et al. (2015a)
[218] extend the work to force control, while Lee et al. (2015b) [216] replace TPS-RPM with
Coherent Point Drift to improve the transferring quality. These approaches eliminate the effort
of modelling the distribution over demonstrated trajectories like in PoDMP and SEDS.

The learned controllers can produce poor trajectories when encountering a new situation
if the given demonstration trajectories are suboptimal and limited. Incremental trajectory
learning methods can improve the learner’s behaviour by providing corrective actions [88, 240].
In addition, the mixing strategy of different demonstration trajectories is also a key to improving
the robust behaviour of the controller [260, 88].

2.1.3 Task-level BC

Most of the trajectory-level BC can only be applied to learn kinematic and compliant control in
robotics so that they can be used to learn primitive actions and skills. A higher-level controller
can generate a sequence of such primitive actions and skills to perform a complex task. This
is known as task-level planning. In task-level BC, it is expected to learn to perform long-
horizon multi-step tasks automatically from demonstration trajectories. This usually requires
segmenting and clustering the provided trajectories automatically.

Konidaris et al. (2012) [196] propose to learn hierarchical structure for skills from demon-
stration. The tree-like structure is formed by merging similar skill chains, produced with change
point detection [96]. Manschitz et al. (2015) [243] propose to learn the transitional function
among various action primitives using Support Vector Machine (SVM). Kroemer et al. (2014)
[201] propose Autoregressive Hidden Markov Model to represent a long-horizon task as a se-
quence of DMPs. By letting the latent variable condition the observable variable, the transition
of MDPs can be executed based on the observations. Niekum et al. (2014) [268] suggest to
segment the trajectory with Beta Process Autoregressive Hidden Markov Model (BP-AR-HMM)
[104] and training the task-level control with a finite-state machine.

3 Reinforcement Learning for CDO manipulation

Reinforcement learning is the second type of data-driven approach used in CDO manipulation
systems. The goal of reinforcement learning (RL) [352], or optimal control [35], is to optimise
the policy π by maximising the expected future accumulative reward, known as return R [36].

RL(M)
.
= arg max

π∈Π
E

τ∼dπ

[ T∑
t=1

rt
]
, or E

τ∼dπ

[ T∑
t=1

γt−1rt
]
, (5)

where τ is a trajectory from the distribution dπ of trajectories induced by the MDP and policy
π; rt represents the reward collected at step t, which is equivalent to Rat−1

st−1,st ; and γ is the
discount factor between 0 and 1 to control the importance of a reward with the increment of its
collected future step, and it is often adopted in the infinite-horizon case to bound the trajectory
return. In the case of deterministic dynamic or stochastic dynamic with low uncertainty, we
can approximate r(s,a, s′) with r(s,a).

RL can be classified into model-free reinforcement learning (MFRL) (Section 3.1) and model-
based reinforcement learning (MBRL) (Section 3.3) w.r.t. the learned/existing dynamic model.
In the following subsections, we will talk about the clear difference between these two algorithm
families. RL can also be categorised in terms of the way of using training data: (1) off-policy
RL agent trains on the data collected using different policies than the current RL policy, but the
agent is still allowed to explore the environment; (2) offline RL agent, a special case of an off-
policy agent, trains only on pre-collected data; and (3) on-policy RL agent, which is only allowed
to update its policy based on the trajectories generated by its current policy. Additionally,
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maximum entropy RL (MaxEnt-RL) (Section 3.5.1) incorporate the Maximum Causal Entropy
Principle to model human’s stochastic behaviour and, in turn, produce better exploration policy
and robust target policy. Contemporary RL algorithms, usually DRL algorithms, vary in terms
of their representation learning (Section 3.2) and exploration strategies (Section 3.5).

Exploration and reward shaping have been the two significant challenges to apply re-
inforcement learning in practice. With the introduction of deep NNs, reinforcement learning
algorithms have become practical in high-dimensional, even continuous state settings. However,
this introduces many other new challenges [162]: (1) theoretically, we have no guarantee of
convergence of the DRL algorithms; (2) data-efficiency (both sampling and learning effi-
ciency) is a major concern for such complex settings; (3) DRL algorithms often come with a set
of hyper-parameters, and the algorithms are often sensitive to these hyper-parameters and
application domain. (4) High-dimensional/continuous state settings also exacerbate the chal-
lenge of exploration and, in turn, worsen the data-efficiency issue. Complex dynamic of high
dimensional/continuous state-action settings further aggravate the above-mentioned challenges.

The application of DRL in robotics also helps to overcome the challenge of state estimation
in POMDP settings [352]. Similarly, it automatise the perception in robotics through end-to-end
training and combining multi-modal sensory inputs in the perception network [199]. However, it
also further introduces new challenges and amplifies the existing challenges in DRL. First, DRL
is data-hungry and trained through trial-and-error which requires the human involvement
for constantly resetting the environment and preventing the robot from unsafe actions [162].
Second, reward function needs to be engineered from perception, and this defeats the idea of
tackling the perception in an unsupervised manner. Also, even with an oracle (where the agent
has access to the true state), the reward design is a hard problem for robotics. Third, robotics
is usually formulated in a partially observable setting, where estimating the true state of
the environment is a hard problem. Fourth, RL always deals with unknown dynamics of the
environment. Last but not least, asynchronous control, i.e., the delay between action and
the sensory input, violates the formulation of MDP, especially for dynamic control settings.

Use of DRL also opens up more possibilities in robotics, like creating multi-task robots (Sec-
tion 3.4). Conventionally, robots are only designed to perform a single task with slight variations
in context. The generalisability of NNs holds promise of an agent that can perform different
types of tasks across different MDPs. However, the specification of goals and inference of
the reward function for such an agent remains a hard challenge.

There are many available benchmark environments for the development of DRL. Atari 2600
computer games are the most popular benchmark environments for testing discrete action RL
agents in POMDP settings. The Arcade Learning Environment (ALE) [29] implemented 55
Atari games for the usage of testing intelligent agents. DeepMind-Lab [26] is a first-person
benchmark environment that is often used to test the exploration ability of an RL algorithm in
long-horizon complex tasks. This benchmark is framed in POMDP setting with low-dimension
discrete action space. Open-AI Gym [40] contains a wide range of MDP/POMDP environments
with both continuous and discrete actions, including Atari games, board games and robotic
control environments. This benchmark also offers the classic and toy environments for tabular
RL settings. Built up on Mujoco, benchmark environment dm control suits is proposed for
developing and evaluating RL agents on continuous MDP/POMDP settings [359]. This bench-
mark includes a collection of environments with several settings that aim to learn different skill
types, and some even have the option to learn with sparse rewards.

3.1 Model-free RL

Model-free Reinforcement Learning (MFRL) aims to solve the sequential decision making prob-
lem without the knowledge of dynamics. It is mainly classified into value-based methods and
policy-gradient methods — the final control policy is either choosing the action that leads to
the best state-action value (Section 3.1.1) or directly optimising policy against the RL objective
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(Section 3.1.2). To scale these two classes of methods into continuous action settings, actor-critic
(AC) methods are derived to assist the learning in practice. AC methods learn parameterised
value and policy functions at the same time. Note that some AC methods derive from value-
based methods, and some from policy-gradient methods, so we will not discuss AC algorithms
separately.

3.1.1 Value-based Methods

Discrete action value-based DRL Q-learning has been applied in cloth-shaping (Section 4.1.4)
and knot-untying (Section 4.2.4). Continuous action methods, such as DDPG and SAC, have
mainly been adopted in cloth-shaping tasks (Section 4.1.4). For understanding these methods,
this section will introduce the evolution of value-base methods from Q-learning to DDPG.

Value-based methods choose the action that maximises the expected future return at each
environment step. Here, we define state V π(s) and state-action Qπ(s,a) value functions of
an MDP (Section 1.2) and their self-consistent Bellman equations [352]:

V π(s) = E
τ∼dπ

[
R(τ) | s1 = s

]
= E
a∼π(·|s),s′∼P(·|s,a)

[
Ras,s′ + γ V π(s′)] (6)

Qπ(s,a) = E
τ∼dπ

[
R(τ) | s1 = s,a1 = a

]
= E
s′∼P(·|s,a)

[
Ras,s′ + γ E

a′∼π(·|s′)

[
Qπ(s′,a′)]

]
(7)

In tabular cases, dynamic programming algorithms, such as policy iteration, can be used to
obtain the optimal solution for the problem [352]. Policy iteration is developed based on the
policy improvement theorem and the principle of optimality theorem [352]. It is an algorithm
that alternates between two phases policy evaluation and policy improvement until it converges
to the optimal policy. The value iteration algorithm combines the two phases of policy iteration
into one.

Q-learning [385] uses ε-greedy behaviour policy that generates actions to collect online data
and deterministic greedy for final policy. The action-state value function is updated using the
temporal difference (TD) error:

Q′(st,at) = Q(st,at) + α(yt −Q(st,at)) , (8)

where the target value yt = rt+1 + γ(1− d) maxat+1 Q(st+1,at+1) is estimated using the value
of the target policy, and α is the learning rate.

Mnih et al. (2015) [255] propose Deep Q-learning (DQN) that extends Q-learning to solve
high-dimensional/continuous state problems in practice, but where actions are still discrete.
DQN leverages a deep neural network to approximate the state-action value function — the
network takes true state vectors or observations as input and produces a vector of Q-values for
each action. The Q-network is updated using the gradient of the temporal difference error as
shown in Equation 8. Apart from the off-policy strategy used in Q-learning, it also utilises a
replay buffer to learn from all the historical transitions to improve learning efficiency. Using
such off-policy training can produce biased estimation of the Q-value on the current network.
To mitigate the bias, it uses a target network, updated periodically from the current network
with polyak averaging (soft update) [118] to estimate the target value. Double Deep Q-learning
(DDQN) [371] further reduces the bias by choosing the next action using the current Q function
and evaluating using the target one.

In order to apply Q-learning in continuous action space, Normalised Advantage Functions
[121] choose a quadratic function to represent the advantage function for easier optimisation.
Also, we can get the maximum Q-value using policy-network and optimise it with gradient ascent
on expected Q-values. This starts to blur the boundary between value-based and actor-critic
methods. Such algorithms include DDPG [231], TD3 [106] and SAC [128]. These methods use
mean square Bellman error (MSBE) to optimise the critic function:

L(D) = E
(s,a,r,s′,d)∼D

[(
Q̂(s,a)− ŷ(s, s′,a, d)

)2]
, (9)
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where the target value is y(s, s′,a, d) = Ras,s′ + γ(1− d) maxa′ Q̂(s′,a′).
Deep Deterministic Policy Gradient (DDPG) [231] is an online off-policy MFRL value-based

AC algorithm that learns a Q-function and a deterministic action network. It is trained off-
policy by sampling experience from the replay buffer. DDPG optimises (1) MSBE for training
the critic and (2) the expected Q-value of the policy for training the actor. In DDPG, the
target value y is calculated from the target Q-network with the action generated by the current
policy. As a Polyak-average copy of the training network(where the new target network is
the interpolation between old target network and current training network), target networks
stabilise the learning by avoiding the Q-value chasing its own tail. DDPG uses Gaussian action
noise to explored the environment. The application of DDPG in cloth-shaping tasks will be
discussed in Section 4.1.4.

DDPG fails in some scenarios due to overestimating Q-values. Twin Delayed DDPG (TD3)
[106] mitigates this issue by introducing clipped double Q-learning, delayed policy updates and
target policy smoothing. In delayed policy updates, the policy and the target networks are
updated less often than the value network. In target policy smoothing, TD3 augments the
target action with noise to prevent the policy from exploiting the value function errors. Soft
Actor-Critic (SAC) [128] is formulated in the framework of MaxEnt-RL, so it is covered in
Section 3.5.1.

3.1.2 Policy-Gradient Methods

In CDO manipulation, motor-skill policy gradient based on VPG [358] and advanced policy-
gradient TRPO [62, 60] are applied in dressing in simulation (Section 4.3.4). This section will
introduce the policy-gradient methods from original REINFORCE [353] to PPO [326].

Policy-gradient is a direct method to achieve RL objective (see Equation 5) by optimising
the parameterised policy πθ using its gradient against the objective:

∇θJ (πθ) ∼= E
τ∼dπθ

[ T∑
t=1

∇θ log πθ(at|st)Φt
]
, (10)

where J (πθ) = E
τ∼dπθ

[∑T
t=1 rt

]
, and Φt can be (1) return of a trajectory R(τ) [353], (2)

reward-to-go Rt(τ) =
∑T
t′=t rt′ , (3) action-value function Qπθ (st,at), (4) reward-to-go minus

a baseline bt (usually the value function V πθ (st)), or (5) the advantage function Aπθ (st,at) =
Qπθ (st,at) − V πθ (st). In this section, we will talk about policy-gradient algorithms based on
these variants.

The choice of Φt and the way of estimation of the values are the keys to reducing the variances
and biases of the policy gradient. The common techniques includes causality trick, baseline
subtraction and multi-step estimation. Besides, policy gradient is an on-policy approach due
to the distribution of the expectation in the gradient, which introduce biases in the off-policy
policy-gradient formulation. Another problem in the policy-gradient methods is that small
parameter space updates can cause big policy space changes that make the training unstable.
Some of these variants of the techniques lead to policy-gradient actor-critic algorithms.

REINFORCE [353] is the original policy gradient method for solving RL problems in low
dimensional tabular cases, where the true equality holds in Equation 10, i.e., Φt = R(τ). RE-
INFORCE iteratively improves the policy using approximated policy gradient with sampled
trajectories and the return of those trajectories:

∇θJ (πθ) ≈
1

N

N∑
i=1

T∑
t=1

∇θ log πθ(at,i|st,i)R(τi) , (11)

where N represents numbers of different sampled trajectories. In practice, this algorithm does
not always work well because the optimisation suffers from high variance in the gradient.
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Vanilla Policy Gradient (VPG) [353] updates the policy function based on the advantage
function that is calculated by the difference between the reward-to-go Rt(τ) (causality trick)
on trajectories generated by the latest policy πθ and parameterised value function Vφ(st) as a
baseline bt, so Φt = Rt(τ) − Vφ(st) to reduce the variance in the gradient. The value function
is updated using the mean-squared error between the value estimation and reward-to-go on all
the states on the collected trajectories:

φ∗ = arg min
φ

1

N × T

N∑
i=1

T∑
t=1

(
Vφ(st,i)−Rt(τi)

)2
, (12)

where φ∗ represents the parameters of the optimal value function. As VPG trains a stochastic
policy, action steps for exploration are sampled from the latest stochastic policy. However, there
is a risk that the algorithm converges to local minima, as the policy becomes less random at
the end of the training and encourages the agent to exploit states previously encountered. Also,
a slight change in the parameter space can considerably modify the policy space. One can use
first-order gradient descent to control the updating step on the parameter space, but we want
to control the changes in the policy space. Natural Policy Gradient (NPG) [283, 282] resolves
the issue by adding a constraint on the policy space:

θ∗ = arg max
θ′

(θ′ − θ)>∇θJ (πθ)

s.t. D[πθ′ ||πθ] ≤ ε , (13)

where D is the divergence measure between two distributions; usually, KL-divergence is chosen:

KL[πθ′ ||πθ] ≈ (θ′ − θ)F (θ′ − θ) , (14)

where F = E
πθ

[
∇θ log πθ(at,i|st,i)∇θ log πθ(at,i|st,i)>

]
is the Fisher-information matrix [5]. Af-

ter reformulating the optimisation problem using the Lagrange multiplier α, the update of the
parameter becomes:

θ′ = θ + αF−1∇θ(Jθ(πθ)) . (15)

Trust Region Policy Optimisation (TRPO) [325] tries to take the most significant possible
improvement on policy parameters without causing performance collapse. To do so, it uses
surrogate advantage that measures how policy πθ performs compared to another policy πθ′ .
TRPO updates its policy using the surrogate advantage while keeping a constraint that indicates
how different the new and old policies are allowed to be to avoid taking a big step:

θnew = arg max
θ

E
a∼πθ,s∼P

[
πθ(a|s)
πθold(a|s)A

πθold (a, s)

]
s.t. E

s∼ρπθ

[
KL

[
πθ(·|s)||πθold(·|s)

]]
≤ ε . (16)

Solving this objective is difficult in practice, so TRPO approximates the surrogate advantage
and the mean of the KL-divergence using the Taylor series up to the first order and second order
of the corresponding functions. The objective can be solved by optimising a quadratic gradient
that resembles NPG. TRPO is applied in self-dressing and assistive dressing tasks in simulation
(Section 4.3.4).

TRPO is conceptually and computationally challenging mainly due to the constraint in
Equation 16. Proximal Policy Optimisation (PPO) [326] proposes a simpler objective:

θnew = arg max
θ

E
a∼πθ,s∼P

[
L(s,a, θold, θ)

]
L(s,a, θ′, θ) = min

(
πθ(a|s)
πθ′(a|s)

Aπθ′ (a, s), clip
( πθ(a|s)
πθ′(a|s)

, 1− ε, 1 + ε
)
Aπθ′ (a, s)

)
. (17)
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Several steps of gradient ascent can deliver the policy update, while clipping is a regulari-
sation that makes the changes in policy less drastic, but it is still possible that the update will
take a large step in the policy. There are many techniques to deal with this issue, but the up-
date can be cancelled if the original constraint goes beyond a certain threshold. PPO-Penalty,
on the other hand, subtracts the KL-divergence from the objective as a Lagrangian term. As
an on-policy algorithm, PPO updates its policy on trajectories sampled by the latest policy.
Furthermore, the value function update and sampling of the exploration steps are the same as
those of VPG and TRPO.

3.2 Representation Learning

When developing an end-to-end robust skill controller, the quality of the latent representation
directly affects the performance of the policy. The aim of representation learning in RL (RLRL)
is to learn a good latent representation z from observations x or states s so that it can closely
approximate the true state s of a POMDP/MDP. This helps to reduce the curse of dimen-
sionality in MDP policy learning and, most importantly, plays the role of state estimation in
POMDP settings. Learning good representation in a POMDP is crucial because it will help to
improve the learning and sampling efficiency of the RL algorithm; it has been shown that
learning policies from state-based input are significantly more sample-efficient than learning
from observation [359, 208].

There are many candidates for good latent representation in RL. It has been argued that
a good representation should be able to learn task-relevant information [412], preserve most
information to predict the future [269] and capture the posterior distribution of the underlying
explanatory factors for the observation [32].

Representation learning in DRL is builds heavily on work from the wider DL community.
Common methods of representation learning comprise (1) data augmentation [405, 208, 209,
135, 340] (Section 3.2.1), (2) policy/value regularisation [405] (Section 3.2.1), (3) contrastive
learning [208, 340] (Section 3.2.1), (4) input/latent mutual information [148], (5) maximising
posterior distribution with dynamic [129, 129, 131, 417, 219, 331] (Section 3.3.2) or without
dynamic learning [406] (Section 3.2.2), (6) predictive information [269, 7, 221], (7) Bisimulation
[412, 50] and (8) asymmetric training by taking advantage of simulation [286]. So far, only data
augmentation, contrastive learning and latent dynamic learning approaches have been applied
in cloth-shaping domain (Section 4.1.4).

Most of RLRL falls under the umbrella of auxiliary tasks [169] that rely on an extra loss
function on top of the RL objective. Unsupervised Reinforcement and Auxiliary Learning (UN-
REAL) [169] is one of the first such algorithms. UNREAL leverages two auxiliary tasks — pixel
control and reward prediction — and jointly trains them with A3C ’s original objective. This
algorithm also uses an Long Short Term Memory (LSTM) layer [151] to perform latent state
approximation from history observation and reward sequence.

The main challenge in POMDP settings is obtaining accurate state estimation from partial
observation. We can use a ”windowing” technique to concatenate small sequences of observations
like in DQN [255]. We can also use a latent state z with recurrent neural layers to aggregate
historical observations, such as in Never Give Up (NGU) [18] and Agent 57 [17]. If using a
dynamic model, we can further refine the state estimation by combining the prior estimation
from the model and posterior estimation from the observations, such as in PlaNet [130], Dreamer
[129, 131], SLAC [220] and Muzero [322], which works like a non-linear Kalman filter.

Shelhamer et al. (2016) suggest that DRL algorithms should spend considerable time on
representation learning [333]. This encourages pre-training of the representation before training
the exploratory RL agent. They can be trained with RL objectives simultaneously in an end-
to-end fashion or train different parts of the agent alternatively throughout the online training.
The representation learning techniques can be applied to offline data to train a good observa-
tion/state encoder E in an unsupervised and/or self-supervised way before interacting with the
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environment.

3.2.1 Data Augmentation

Data augmentation (DA), such as random flipping and cropping of images, are a type of up-
sampling and regularisation methods that have demonstrated ability to improve data efficiency
and generalisability of supervised computer vision tasks. In general, DRL’s encoders suffer from
observation overfitting [338, 277], so DA can also be used to improve data efficiency and
generalisation ability of a DRL agent [209, 135]. It has been shown that Random Shift can
overcome the overfitting problem of vision encoders [405]. We refer to Laskin et al. (2020) [209]
for available DA functions and their comparison in the DRL domain. They experimentally show
that Random Crop gives the best performance improvement.

DA improves the generalisation ability of the agent by letting it learn to extract observation
features that matter to the task performance. It can be treated as a domain randomisation
technique that adds variations to the observation space. However, optimisation of RL becomes
increasingly challenging with the increasing variation on the observation due to the limited
expressiveness of NNs [135]. It has been shown that DRL uses DA suffers from unstable training
and poor performance [209].

DA is often applied with contrastive representation learning that further improves the data
efficiency of downstream tasks by learning good latent representation [142, 55, 140]. As a sub-
discipline of self-supervised learning, contrastive learning (CL) aims to create an embedding
space where similar samples stay close while dissimilar ones are far apart. CL achieves its goal
by automatically labelling positive and negative pairs and optimising a contrastive loss function.
It has been successful in computer vision, natural language processing and reinforcement learning
[215, 208].

Contrastive Unsupervised Representations for Reinforcement Learning (Curl) [208] utilises
contrastive learning on the visual observations with data augmentation to produce a better latent
representation of the state for the reinforcement learning algorithms. Soft Data Augmentation
(SODA) [135] further improves sample efficiency and stabilises the RL optimisation by de-
coupling data augmentation from policy learning. It adds a soft constraint that maximises the
mutual information between the augmented and non-augmented data, while underlying RL uses
non-augmented data. Experimentally, they show that Random Overlay is the best data aug-
mentation technique that improves the data-efficiency of pixel-based DRL. Note that Random
Overlay [412] interpolates the observation with an unrelated image, and achieves Bisimulation
in practice. By definition, two states are bisimilar if they share the same immediate reward and
equivalent distributions over the next bisimilar states [207, 116].

Apart from using contrastive learning, we can also use augmented observation to regularise
the RL objective function. Data-regularised Q (DrQ) [405] leverages both data augmentation
and explicit regularisation term that is added to the value-based RL objective. Since DA
introduces variations in observation space, value functions become unstable to train, although
DRL ultimately benefits from it. The explicit regularisation term is used to stabilise the training.
Generally, it follows three steps: (1) Data augmentation with small random shifts. (2) Average
target Q-value over several image transformations. (3) Average Q-value estimation over several
data transformation.

Curl and DrQ have been examined in cloth-shaping tasks in simulatioan [234], which will
be discuss in Section 4.1.4.

3.2.2 Posterior Latent Distribution

Before introducing the RLRL techniques that maximise the posterior latent distribution, we
briefly cover the variational autoencoder that is the common tool used to achieve such objectives.

Variational autoencoder (VAE) is an implementation of Amortised Variational Inference that
approximates the posterior p(z|x) with a stochastic inference function qφ(z|x) [186] that learns
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the latent feature distribution of the data. VAE can also be treated as a generative model (GM)
trained with variation inference; it has a generative model pθ(x|z) that can generate new data
points from latent distribution:

GM(D,x)
.
= arg min

θ
D
[
pD(x)||pθ(x)

]
, (18)

where D represents the dataset. KL-divergence is a common choice for learning the generative
objective. Expanding the objective with KL-divergence, optimising the generative objective is
equivalent to maximising the expected marginal log-likelihood of the observable variables over
the data distribution:

GMKL(D,x)
.
= arg max

θ
E

pD(x)

[
log pθ(x)

]
. (19)

In the case of VAE, the marginal log-likelihood term can be optimised by maximising the
Evidence Lower Bound (ELBO).

log pθ(x) ≥ E
z∼qφ(z|x)

[
log pθ(x|z)

]
−KL

[
qφ(z|x)||p(z)

] .
= LV AE−ELBO(x, φ, θ) . (20)

For simplicity, normal distribution is often chosen for the prior distribution p(z), so that the
inference model qφ(z|x) infers the means µφ(x) and standard deviations σφ(x) for the latent
variational distribution. Subsequently, the objective for VAE becomes:

LV AE−ELBO(φ, θ) = E
pD(x)

[
− E
ε∼N (0,I)

[ 1

2σ2
||pθ
(
eφ(x, ε)

)
− x||22

]
− 1

2

(
||µφ(x)||22 + ||σφ(x)||22 − d− 2 < log σφ(x), 1 >

]
︸ ︷︷ ︸

KL
[
qφ(z|x)||p(z)

]
(21)

where the latent state z is sampled with Monte Carlo estimation with reparamerisation trick
eφ(x, ε) = µφ(x) + σφ � ε, ε ∼ N(0, I).

VAE is an important tool used in many RLRL approaches for learning maximum posterior
latent distribution. Yarats et al. (2019) [406] leverage β-VAE [147] on the single-step observa-
tions x to infer a latent state representation z. The objective of this process is the same as the
VAE’s, but it works as an auxiliary task on top of a base RL algorithm:

Lβ−V AE(φ, θ)
.
= E
x∼X

[
E

z∼qφ(z|x)

[
log pθ(x|z)

]
− βKL

[
qφ(z|x)||p(z)

]]
. (22)

The underlying RL algorithm is trained using the inferred latent state, and the gradients are
never shared between the β-VAE for learning the representation space and the RL objective. It
has been shown that the stochastic nature of a β-VAE and the non-stationary actor’s gradients
affect the algorithm’s performance and that compact representation is essential. Hence,
Yarats et al. (2019) use a deterministic autoencoder with L2 regularisation on the latent space
and the decoder parameters (known as RAE approach [115]) and allow the vision encoder to be
updated only by reconstruction loss and value loss:

LRAE
.
= E
x∼X

[
log pθ(z|x)

]
+ λ1||z||2 + λ2||θ||2

]
(23)

Such posterior latent distribution can be better estimated with a latent dynamic model, such
as Recurrent State Space Model [130] (Section 3.3.2) and Control as Inference in POMDP [219]
(Section 3.5.1).
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3.3 Model-based RL

Model-based reinforcement learning (MBRL) [257] can be subdivided into three main types:
those that plan using a learned model/known model (Type I), learn policy/value with
imagined trajectory induced by learned model (Type II), or implicitly learn the tran-
sitional structure of the domain (Type III). In general, MBRL is more data efficient com-
pared to MFRL algorithms, and it generalises better when using large and diverse data [162].
Type I MBRL is heavily applied in cloth-shaping (Section 4.1.4) and assistive dressing tasks
(Section 4.3.4), while we are aware of no application of Type II and III MBRL in CDO domain.

Planning, or trajectory optimisation, algorithms [35] usually generate local solutions for a
subset of state space. They often need to get access to the dynamic model of the environment,
i.e., either a known dynamic P or a learned dynamic P̂. The planning direction, including for-
ward, backward and bi-directional; and planning budget, such as searching depth and breadth,
are important factors of different planning algorithms. We can classify these algorithms into
black-box planning and gradient-based planning. Shooting methods are only optimised on ac-
tions, while collocation methods optimise both actions and states. Mostly utilised planning
algorithms in DRL domains are Model Predictive Control (MPC) [46], Linear Quadratic Reg-
ulator (LQR) [31] and Monte-Carlo Tree Search (MCTS) [41]. We refer readers to Moerland
et al. (2020)’s review [256] for a more detailed survey about planning algorithms, i.e., Type I
MBRL.

Type II MBRL algorithms are an order of magnitude more data-efficient than their model-
free counterparts. However, they suffer from suboptimal asymptotic performance mainly due
to the epistemic error [99]. This type of MBRL trains RL objectives by training on imagined
trajectories induced by the policy and the dynamic model. In POMDP settings, such dynamic
learning provides a good latent representation for value/policy learning. Type III MBRL algo-
rithms, also known as implicit MBRL, do not train a dynamic model explicitly, but implicitly
learn the transitional structure instead. Such algorithms often learn value equivalent models
and/or learn to plan [257].

In the case of an unknown or expensive dynamic, the simplest way to learn an approximated
dynamic model P̂ is to train it using supervised learning [174]. Transitional samples can be
induced by a base policy πbase, such as a random policy. This approach generally does not
work well in practice, especially in high-dimensional settings [154, 155]. This is mainly due to
the distributional shift problem, i.e., ρπP̂ (st) 6= ρπbase(st) [272]. This problem is exacerbated
when an expressive model is adopted. However, it can be partially mitigated by iteratively
gathering samples from the policy πP̂ and training a new model P̂ ′ using the aggregated
dataset. In training, it is better to collect transitions that lead to expected high rewards under
the uncertainty of the dynamic [162]. We can also utilise demonstration data to reduce the
distribution shift even further, as it makes the model learn the important part of the state space
[162].

To avoid risky and erroneous actions caused by the compounding error in the model, we
can choose the first action generated from the trajectory from the policy πP̂ . Then, we replan
for other future actions. The most direct way to reduce the compounding error in planning is
to (1) use multi-step prediction in model training [99, 404] and (2) have a short planning
horizon.

In a high dimensional setting, it is possible to use Variational Inference with an NN-
parameterised dynamic model to account for the aleatoric uncertainty in the system [130].
Apart from the distributional shift, epistemic uncertainty is partially caused by overfitting the
model to the training data. MBRL algorithm that plans through learned models can exploit
the epistemic uncertainty in training and testing time. This is known as model exploita-
tion [162]. Other than the techniques we have discussed above, another way to mitigate model
exploitation is to incorporate the model uncertainty estimation for policy generation. An
alternative approach to tackle model exploitation is to fit local models and distil the knowl-
edge of local policy to a global policy [417]. Partial observability is another factor that

18

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 December 2022                   doi:10.20944/preprints202212.0305.v1

https://doi.org/10.20944/preprints202212.0305.v1


accounts for epistemic uncertainty. There are many attempts, such as RSSM -based algorithms
[130, 130] and Visual MPC algorithms [81], to leverage recurrent state-action transitions for
better representation learning and state estimation (Section 3.3.1).

3.3.1 Observational Dynamic Models

The ability to predict future outcomes of actions for a given event is a key component of human
decision-making. The human brain incorporates a complex embedded representation of the
physical and causal rules of the world [125]. With such a predictive ability, an RL agent can
plan either based on observations or the latent space. Furthermore, such a model can provide a
good latent representation for policy learning, which helps improve data efficiency. Agents can
further benefit from the observational dynamic model by learning from imaginative trajectories.
However, learning such a dynamic observational model is difficult for an RL agent due to the
aleatoric uncertainty and partial observability of the environment.

The most popular approach in such settings is anticipating vision outcomes, since vision
captures rich information about spatio-temporal interactions between objects. Ebert et al.
(2018) [81] discuss the important roles of the visual dynamic model, i.e., action-condition video
prediction model, in POMDP settings of robot control and propose a framework called Visual
MPC that does planning on the predicted pixels of the future states.Note that Visual MPC using
SV2P [16] and SVG [73] has been investigated in the cloth-shaping domain (Section 4.1.4). Apart
from the two challenges mentioned above in dynamic learning in general, visual dynamic learning
becomes more challenging when there are occlusions occurring among objects. Memory-based
approaches, such as recurrent networks, must be adopted in such settings. Furthermore, good
encoding representation from videos is also challenging due to the high dimensionality and
variability of the visual space.

A great amount of research has gone into action-free and action-conditional video prediction.
The goal of video prediction (VP) [270] is to predict future frames of a video x1:T from a given
history context frames ξ = xt−m:t. It requires understanding causal events in the video [220].
The most direct objective of VP is to maximise the marginal likelihood of the future frames
while conditioning on the context frames.

The time dimension of a video can be exploited because the consecutive frames are seman-
tically coherent. This leads to many transformation-based architectures. Occlusions, light-
ning and camera perturbation mainly cause the variability between images. A wide range of
techniques, including regularisations, complex loss functions, adversarial training, usage of flow
maps, explicit transformations, separation of motion from the context and semantic and instance
segmentation, have been proposed to improve prediction quality in deterministic VP. Refer to
Oprea et al.’s (2020) [270] review for more details about deterministic VP. However, the aleatoric
uncertainty of the system requires us to develop stochastic models, where Variational Inference
[413] plays a critical role. In chronological order, popular and successful stochastic architectures
include SV2P [16], SAVP [220], SVG [73], VRNN [58] and Hier-VRNN [49].

The common problem of variational architectures is that they produce blurry images due to
trying to average possible future predictions while using simple MSE loss. Adversarial genera-
tion has been proposed to reduce this problem [220] by rejecting low-quality generated frames.
Castrejon et al. (2019) [49] argue that naive variational encoding suffers from underfitting
issue, especially on large datasets [391]. They suggest using a more flexible expression of vari-
ational distribution to improve the fitting ability. Opera et al. (2020) [270] claim that the
blurry imagery is due to the loss function of the reconstruction that leads regression-to-the-
mean problem [245]. Hence, they suggest investigating more powerful loss functions. Another
way to resolve this problem is to use pixel-autoregressive models, which are considered slow
[372, 178, 300].
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Figure 1: PGM of RSSM [219]

3.3.2 Latent Dynamic Models

There have been numerous latent dynamic models that use vision prediction for representation
learning developed in the RL community. Hafner et al. (2019) [130] propose the Recurrent
State Space Model (RSSM), which is a probabilistic model that predicts latent states of an
environment with a latent dynamic model and refines its prediction based on a sequence of
observations. Figure 1 shows the Probabilistic Graphical Model (PGM) for the RSSM model.
As the actual state of the environment s is often inaccessible, RSSM is defined in the POMDP
setting with the following latent state dynamic:

Recurrent dynamic model ht = f(ht−1,zt−1,at−1),

Representation model ẑt ∼ q(ẑ|ht,xt),
Transition predictor z̃t ∼ p(z̃|ht), (24)

where h represents the deterministic latent representation of state s, z̃ represents the prior of
the stochastic latent state, and ẑ is the posterior induced by the deterministic latent state h
and the current observation x.

Built upon RSSM, PlaNet [130] aims to learn the latent dynamic that can generate accurate
vision and rewards from a prior latent distribution for MPC planning. This is achieved by
maximising the ELBO between prior and posterior latent states and the maximum likelihood
of reconstruction of the observation and reward. Thus, it also includes the following network
models:

Observation predictor x̂t ∼ p(x|ht,zt) ,

Reward predictor r̂t ∼ p(r|ht,zt) . (25)

Thus, while conditioning on the action, the objective becomes:

LPlaNet−ELBO =

T∑
t=1

(
− E
q(zt|x1:t,a1:t)

[
log p(xt|zt)

]
+ E
q(zt−1|x1:t−1,a1:t−1)

[
KL

[
q(zt|x1:t,a1:t)||p(zt|zt−1,at−1

]])
. (26)

PlaNet employs Gated Recurrent Units (GRU) [59] as the backbone of the latent dynamic
model. MPC with Cross Entropy Method produces the policy at run time by unrolling and
maximising the accumulative future rewards from the latent dynamic distribution. PlaNet uses
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MSE as the loss function to learn observation reconstruction and reward prediction. It uses
diagonal Gaussian distribution to model the variational variable. In order to reduce the pre-
diction error, it also utilises multi-step loss, called overshooting in the paper, on the variational
distribution and the reward prediction.

Dreamer [129] is a AC Type II MBRL method that uses latent dynamic model RSSM [130]
for representation learning. The architecture and objective of the latent dynamic model are
directly inherited from PlaNet ’s [130]. Besides learning representation through maximising the
marginal likelihood of the observation from the inferred latent state, they [131] also introduces
another objective — maximising the mutual information between the latent state and observa-
tion [123] using contrastive learning. DreamerV2 [131] leverages categorical latent state space
representation and KL-balance to learn the latent dynamic model. Also, instead of minimis-
ing MSE, it tries to maximise the log-likelihood of the observation reconstruction and reward
prediction.

Combining the latent dynamic learning and MaxEnt-RL (Section 3.5.1), Lee et al. (2020)
propose Stochastic Latent Actor-Critic (SLAC) [219] that manages to train policy and dynamic
network jointly in an end-to-end manner. The latent model objective of SLAC is:

LSLAC−Model−ELBO = E
z1:T∼q

[
T∑
t=1

− log p(xt|zt) +KL
[
q(zt|xt,zt−1,at)||p(zt|zt−1,at)

]]
.

(27)
This corresponds to the model part of the ELBO of Control as Inference on POMDP. The
difference between SLAC ’s latent model and RSSM is that SLAC does not require deterministic
latent variables and recurrent neural networks (RNNs).

Seo et al. (2022) [331] propose Action-Free Pre-Training from Videos (APV) that utilises
the pre-training and fine-tuning paradigm in RL. They pre-train an action-free latent video
prediction model from diverse domains and then leverage the pre-trained representation to learn
a domain-specific latent dynamic model. They achieve this by stacking the action layer on top
of the action-free model.

PlaNet has been applied in cloth-shaping literature (Section 4.1.4), but it has so far shown
poor performance, likely due to the blurry observation prediction [233, 155]. We are not aware
of any applications of Dreamer, SLAC and APV in any of the CDO domains.

3.4 Multi-task RL

Caruana et al. (1997) [48] states that “multi-task learning is an approach to inductive transfer
that improves generalisation by using the domain information contained in the training signals
of related tasks as an inductive bias. It does this by learning tasks in parallel while using a
shared representation; what is learned for each task can help other tasks be learned better”.
Broadly speaking, multi-task reinforcement learning (MTRL) [377, 44] refers to a general RL
agent that can perform tasks in different domains. In more narrow terms, MTRL is equivalent
to goal-conditioned reinforcement learning (GCRL), where the agent can perform a given
objective across tasks within a dynamic-invariant task family. GCRL, especially HER [9], is
investigated heavily in cloth-shaping (Section 4.1.4).

The major challenge in multi-task learning is the distraction dilemma, where the neces-
sary capability for performing individual tasks competes for limited resources within a single
learning system. Often, such competition leads to winner-take-all problems where the perfor-
mance of one task dominates the learning resources. Multi-task learning using gradient descent
methods suffer from the gradient interference [409] problem while optimising shared param-
eters against multiple loss objectives. Scalability is closely related to the two major weaknesses
of RL algorithms. First, training RL algorithms usually takes a considerable amount of time
and needs more data samples to converge to an acceptable result. Second, an RL agent that is
trained on a specific task can only be used on that same task [377].
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Parallel multi-task learning and continual learning are the two main types of multi-
tasks learning. Parallel multi-task learning trains on all tasks at once, while the tasks are trained
sequentially in continual learning. Continual learning also suffers from gradient interference
and the competition for resources, and it also suffers from catastrophic forgetting. Some
methods, such as Progressive Neural Network [308], are proposed to mitigate this problem.
Adding side connections to learned features in the previous tasks, Progressive Neural Network
allows the agents to not only learn a series of tasks experienced in sequence without catastrophic
forgetting, but simultaneously possess the ability to transfer knowledge from previous tasks to
improve convergence speed in a new task. In both types of setting, transfer learning is the
central idea to make the system perform across different domains by sharing common knowledge
[418], with the aim to achieve faster learning and better performance in a new domain.

Transfer learning techniques usually work well if the source and target domain features
are similar. In the RL, transfer learning techniques, such as fine-tuning [127, 8, 103, 204],
domain randomisation [294, 309, 365, 170] and domain adaptation [370, 109, 369, 89] shows
good performance while the underlying dynamic and states of MDPs are similar. Apart from
transferring the dynamic, sharing a certain level of representation abstraction is especially crucial
in POMDP MTRL [124]. Value functions can also contain useful knowledge to transfer because
they implicitly model the structural relation between the state space and goal states. Similarly,
successor features of the domain [24] can also be leveraged to achieve transfer learning in RL.
One of the key aspects of MTRL is that the agent should develop a library of general skills that
can be reused across various related tasks [377, 280, 307], which is also known as skill transfer
in robotics (Section 1.3).

Parallel MTRL is one of the most common learning approaches [144]. This approach regards
multiple MDPs as a single joint MDP. It leverages a single critic combined with different actors
that resemble A3C algorithms [254], but the actors solve the different tasks in parallel. SOTA
algorithms which leverage such techniques are IMPALA [87] and PopArt [144]. Instead of
learning a central actor, Policy Distillation [307], Actor-Mimic [280], DnC [114] and Distral
[361] leverages a central policy network.

In GCRL, the goal works like a contextual parameter that only alters the reward function
for each MDPs (Section 1.2). Goal-condition reward functions are often negatively related to
the distance between the current state and the goal for training the agent in a self-supervised
manner [9, 53, 75, 176, 232, 344, 91]. Such formulation leads to universal value functions [318],
also known as goal-condition value functions. In Robotics, GCRL is the tool to solve robust
skills policy. More interestingly, it can be used to improve the sampling efficiency of an RL
agent [275] by associating with the idea of deep exploration [242], which is covered in Section
3.5.

Andrychowicz et al. (2017) [9] propose Hindsight Experience Replay (HER) that trains goal-
condition Q-function based on DQN and goal-condition policy function based on DDPG. This
algorithm can be applied to off-policy RL algorithms on multi-goal/single-goal sparse-reward
task settings. In HER, the replay buffer stores the transitional data with the original goal of
an episode but also with some modified goals. It was shown experimentally that HER has vast
improvement compared to its base algorithm in many hard environments. The challenging part
of this algorithm is recalculating the sparse-reward function for the newly sampled goals. It
means that the true state of the steps in the latest episode has to be stored temporarily unless
the reward can be calculated based on the observations.

Eysenbach et al. (2021, 2022) [91, 92] propose Contrastive RL that solves GCRL using
contrastive learning (Section 3.2.1). The inner product of the feature of the current state-action
pair with that of the goal configuration can be regarded as the universal value function. They
train the agent with InfoMax [148] on the universal value function by sampling positive state
samples for a state-action anchor from the future trajectory and negative state samples from
the other trajectories. Compared to HER, Contrastive RL is easy to implement and has fewer
components.
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3.5 Exploration

One of the most important components of a RL agent is its exploration strategy of the be-
haviour policy, i.e., the policy the agent used to collect transitional data during training.
If the agent explores insufficiently, it may not find highly rewarded states, and its policy will
be suboptimal. If it finds highly rewarded trajectories but keeps exploiting them, it may also
converge to a suboptimal solution because it may miss other highly rewarded trajectories [4].
The balance between exploration and exploitation directly influences the sampling efficiency of
an algorithm that, in turn, affects the learning efficiency, the upper bound of its performance,
and the training stability. A better exploration strategy also leads to robust behaviour, as it has
been through various states throughout the training. For detailed surveys on this topic, please
refer to [248, 6, 206].

Without considering the future outcome in a long horizon task, a good exploration strategy
is one that (1) explores states that might lead to better reward gains, known as optimistic in
the face of uncertainty and/or (2) explore states that are novel and give more information of
the environment, known as intrinsic motivation. These two may be dual problems, but with
the latter, the agent can explore the environment independently without an extrinsic reward
signal. Some fundamental myopic exploration strategies are derived from Multi-armed Bandit
(MAB) formulation [212], then scaled to more complex MDP/POMDP settings. MAB-derived
strategies focus more on the information about the action, and they can be classified into greedy
soft policy, Upper Confidence Bound (UCB) [14] and Thompson Sampling (TS) [364] approaches.

In more complex settings (high-dimensional or continuous MDP/POMDPs), simple explo-
ration approaches suffer from large state-action space, as well as sparse, delayed and deceptive
rewards [403], where the latter case is known as the hard-exploration problem [82]. Apart from
being unable to explore every possible state-action pair, such long-horizon MDPs have causal
structures that some states will not appear unless the agent takes specific trajectories. In a
continuous action setting, the simple strategy that only explores the surrounding of the policy
output with adding noise will often leads to local optima. POMDPs introduce another layer of
challenges related to accurate estimation of the environment state. Higher quality representa-
tions can lead to better exploration [173, 238].

Exploration is a huge field in reinforcement learning literature. DRL community focuses
on optimistic methods, including intrinsic motivation [13, 320], MaxEnt-RL (Section 3.5.1)
and sampling-based methods [275, 276, 15] based on TS for tackling exploration in complex
MDP/POMDP settings. In addition, demonstration learning, i.e., fine-tuning the RL policy
combined with behaviour cloning, is another way to reach asymptotic performance with a small
amount of data. Other attempts include injecting parameter noise [288], adversarial self-play
[343] and state marginal matching [222, 138].

Ecoffet et al. (2019) [82] point out that the two direct consequences of myopic approaches,
such as intrinsic motivation, are (1) the agent always forgets the highly rewarded region in the
state space (detachment) and (2) the agent cannot robustly return to such states if remembered
(derailment). Solving these problems requires a good global exploration strategy [42] that can
better balance long-term and short-term environment information [206]. In the literature, such
global exploration is also known as deep exploration [275]. The deep exploration method
considers both myopic information gain and the long-term causal outcome of an action for
future learning. Ecoffet et al. (2019) [82] propose a SOTA algorithm called Go-explorer that
incorporates a memory buffer to store highly rewarded states and uses imitation learning to
strengthen its ability to go to these regions to do further exploration.

Another approach to achieve deep exploration is to use goal-based strategies [265, 290], where
the important states are proposed to guide the exploration of the agent. These approaches need
a heuristic goal generator and a lower-level exploration strategy for exploring to achieve the goals
and conduct further exploration once a goal is achieved [235]. This approach is related to skill
discovery and robust skill policy learning in robotics, and Eysenbach et al. (2018) [90] present
a self-supervised goal-based exploration algorithm by discovering diverse skill sets without any

23

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 December 2022                   doi:10.20944/preprints202212.0305.v1

https://doi.org/10.20944/preprints202212.0305.v1


external reward signals [90].
In the continuous-time dynamic control domain, the exploration problems become even more

challenging because the agent needs to decide how to discretise the time-space for applying a
policy for a given state [249, 267]. Short time intervals allow learning a better policy, but it
compromises the sample efficiency. Longer time intervals improve the sample efficiency, but
the policy is more likely to become trapped in a local optimum. A good exploration strategy
in continuous-time settings needs to dynamically decide the time intervals for balancing the
trade-off between the sample efficiency and the learning performance [267].

Assessment of exploration strategy in a complex MDP/POMDP can also be tricky. It is
usually assessed in terms of sampling efficiency, i.e. how many environmental steps an agent
needs to reach asymptotic performance. Additionally, the robustness of the agent is a second
metric to assess the exploration performance, by testing whether the agent can react optimally
to a wide variety of states. Montezuma’s Revenge in Atari games [29], Deepmind Lab and
Vizdomm [182] are common environments to test these qualities.

3.5.1 Maximum Entropy RL

A type of optimistic exploration is the entropy-regularised RL agent derived from the MaxEnt-
RL framework, where the entropy of a stochastic policy provides the intrinsic reward. Human
behaviour is not optimal most of the time. The trajectory from the starting and end states can
vary around the optimal trajectory. Instead of learning deterministic policy, maximum entropy
reinforcement learning (MaxEnt-RL) [422] incorporates Maximum Entropy Principle to learn a
distribution of policies whose mean is close to the optimal policy. This idea is critical to the
exploration strategy of RL algorithms, as well as to the development of inverse reinforcement
learning.

The concept of using maximum entropy in control theory was first introduced by Ziebart et al.
(2008) [422] and reformulated by Levine (2018) [225]. Built upon MDP, both frameworks model
the controlling problem as an inference problem. This provides the opportunity for modelling
sub-optimal policies with stochasticity that often occurs in human and animal behaviour that
encourage exploration and robust manipulation in a single RL task and facilitate faster training
in transfer learning settings. It also provides an interesting interpretation of the reward function
and possibly sheds light on the pathway to reward design. The objective is defined as

MaxEnt-RL(M, α)
.
= π∗soft,α = arg max

π∈Π

T∑
t=1

E
(st,at)∼ρπ

[
r(st,at) + αH(π(· | st))

]
, (28)

where α is the temperature scalar to interpolate between the original RL objective and MaxEnt-
RL Objective.This objective can be understood as optimising RL objective the under the aug-
mented reward function:

r+
soft,α(s,a;π) = r(s,a)− α×KL[π(s)||U ] . (29)

Hence, it is a type of intrinsic motivation exploration strategy where the intrinsic bonus is
derived from the uncertainty of the policy.

By introducing binary optimality variables in high dimensional continuous MDP settings,
Levine shows that MaxEnt-RL can be derived with control as probabilistic inference with known
deterministic dynamics in tabular cases and variation inference without the knowledge of dy-
namics. This led to the MFRL method soft Q-learning [127] and the actor-critic method Soft
Actor-Critic (SAC) [128]. Following from MaxEnt-RL, or Control as Inference framework, on
POMDP, Stochastic Latent Actor-Critic (SLAC) [219] improve upon SAC ’s objective by incor-
porating latent dynamic learning for learning good representation to learn soft value and policy
functions efficiently. This algorithms achieve asymptotic performance using end-to-end learning.
SAC has been investigated in cloth-shaping domain (as described in Section 4.1.4), but we are
not aware of application of SLAC in the CDO domain.
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Figure 2: PGM of Control as Inference in POMDP [219]

3.5.2 Demonstration Learning

The most practical way to bypass sample efficiency problems in complex MPD/POMDP is to
use demonstration trajectories. These approaches usually use BC methods (Section 2.1) to
initialise the policy with demonstration data and leverage online collected trajectories to fine-
tune its policy with the reinforcement learning objective. Demonstration learning (DemoL) is
often used in robotics applications. SOTA DemoL algorithms are DQfD [145], DDPGfD [374]
and Q-filtered BC [264]. In trajectory-level DemoL, a trajectory generated by trajectory BC
controllers (Section 2.1.2), such as DMP, is usually refined by trajectory optimisation algorithms
like LQR and Policy Improvement with Path Integrals (PI2) [54]. In CDO manipulation, DemoL
algorithms are mainly used in cloth-shaping (Section 4.1.1) to reduce the exploration complexity
and assistive dressing for safe trajectory control (Section 4.3.4) tasks.

Building upon Prioritised Duelling Double DQN [143], Deep Q-Learning from Demonstra-
tions (DQfD) [145] is pre-trained only on the demonstration data using temporal difference and
supervised losses. The losses include a one-step double Q-learning loss, a multi-step double Q-
learning loss (similar to A3C ), a supervised large margin classification loss and L2 regularisation
on the network’s parameters. Note that these losses are also applied in the second phase of the
training on the demonstration data. Inspired by [287], the supervised loss function is defined
as:

LDQfD−SL(Q̂,ademo) = max
a∈A

Q̂(s,a) + l(ademo,a)− Q̂(s,ademo) , (30)

where l(ademo,a) is a margin function; it is 0, when ademo = a, otherwise it is a positive constant
ε; it makes the Q-value of the other actions at least a margin inferior to that of the demonstrated
one. Then, the agent starts online learning with its pre-trained policy, which updates its value
function with a mixture of demonstration and collected data. Demonstration data is preserved
throughout the training, and a bonus is added to the weights of the demonstration data to
increase the possibility that the replay buffer will sample them.

DQfN has outperformed its pure RL and pure IL counterparts on most of the Atari games.
As with DQN (Section 3.1.1), this algorithm can only be applied to the discrete-action domain.
DDPG from Demonstrations (DDPGfD) [374] is proposed for continuous cases and can also deal
with sparse rewards. In DDPGfD, demonstration data is preserved throughout the training in
a prioritised replay buffer. The priority of a transition comprises its latest TD error, actor loss
and bonus factor for demonstration data. The sparse reward setting uses a mixture of one-step
and multi-step loss to train the critic. L2 regularisation is applied to both actor and critic
networks. Prioritised replay is used, which is essential for sparse reward settings. Multi-step
return loss assists the propagation of the sparse reward along the trajectory.
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Built upon DDPG [231] and HER [9], Nair et al. (2018) [264] propose a method called Q-
filtered Behaviour Cloning (QfBC) that also applies behaviour cloning loss on the demonstration
data to solve long-horizon, sparse-reward and goal-condition tasks. Nevertheless, this method
keeps two different replay buffers instead: one is for the demonstration data and another for the
trial data. Notably, it does not utilise priority replay buffers. At each update step, the algorithm
samples a certain amount of data from both replay buffers. The update losses are similar to
DDPGfD except that it also uses Q-filtered behaviour cloning loss on the demonstration samples
for updating the actor, which is defined as follows:

LQfBC =
∑
i

||πθ(si)− ai||2
[
Q(si,ai) > Q(si, πθ(si))

]
, (31)

where [·] is a Boolean expression function, which evaluates to 1 when its operand is true, and
0 otherwise. They also reset some trial episodes using the intermediate states and goals from
demonstration episodes. The initial states of the resets are sampled from any intermediate states
in a demonstration episode. As HER is also utilised, the goal state for these reset episodes is
chosen to be the goal state of the same demonstration episode.

4 CDO-Manipulation Systems

Manipulating CDOs with robotic systems can be traced back to 47 years ago when Murray
(1975) [262] design the first ply-picking end-effector for improving the productivity of garment
factories.

Humans perform different CDO tasks in different ways. For a cloth-shaping task, we tend to
focus on effective points, such as the contour and corners, on the article to grasp. If an effective
point is hidden, we have good intuition to unravel the cloth to find these points. At the end
of the task, we can smooth the wrinkles on the cloth by spreading our hands and stretching
the corners in the opposite direction. For rope manipulation, such as insertion, knot tying and
untying, we have foreknowledge to know where to grasp along the rope regarding the strains
of the rope. We depend on our vision system for insertion tasks, and we can only depend on
haptic sensors and motor skills to finish rope tying and untying tasks. As for bag manipulation,
we can detect the hem of the bag for grasping effective points to open it. While lifting it, we
can estimate the amount of force we need to hold the bag in our hands without tearing it. In
dressing tasks, we usually ignore the deformation of the garment and mainly focus on whether
our limbs go into the correct openings of the garments. We mainly rely on our haptic system
to sense if we perform the task correctly and safely.

The most fundamental challenge in manipulating CDOs is that they have many degrees of
freedom, which leads to complex dynamics and severe self-occlusion. The complex dynamic of
a CDO introduces a major obstacle for manipulation because different parts of the cloth move
differently with respect to their individual internal forces. There are aleatoric uncertainties
about the cloth’s deformation, meaning that the cloth doesn’t always deform the same way
under the same action in the real world. The complex dynamic of CDOs makes it hard for
analytical model building, dynamic learning and exploration for RL algorithms. On the other
hand, self-occlusion can hide effective key points for manipulation. This makes it hard to extract
the state of the cloth and presents challenges for engineering reward functions and automating
the goal evaluation for complex CDO manipulation tasks. Another major challenge is grasping.
A two-fingered gripper is sufficient for most of the tasks in this domain. Nevertheless, roller
end-effectors are also utilised for effective and safe grasping, and multi-fingered grippers are
adopted for more dexterous manipulation such as tying a bowline knot [357].

In this section, we will talk about four prevailing task families in the CDO domain: cloth-
shaping, rope manipulation, bag manipulation and dressing. We will discuss the individual
challenges of these tasks and how the perception and control systems in the literature manage
to tackle these challenges.
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4.1 Cloth-shaping

Cloth-shaping is a crucial skill set for doing laundry in daily life [133]. We broadly define
cloth-shaping as manipulating a single CDO, such as a rope, a towel, or a T-shirts, to a goal
configuration. Narrowly, we define cloth as a square fabric made of any cloth-like material. The
very canonical tasks of cloth-shaping is cloth flattening, where one or more end-effectors apply
actions on a piece of square fabric to unfold it completely on a table. Humans tend to identify
key points, such as corners and edges, on the article to perform cloth-shaping tasks. Sometimes,
we take advantage of gravity, air dynamic and the inertia of the cloth to flatten it.

A more complex and important task in cloth-shaping is cloth-folding, which includes single-
step folding (SSCF) and multi-step folding tasks (MSCF). SSCF includes diagonal folding,
rectangular folding, side folding, one-corner inward folding, and other types of folding that can
be achieved with one pick-and-place (P&P) action by a human. MSCF, on the other hand,
includes cross folding, diagonal cross-folding, double-corner inward folding, all-corner inward
folding, double side-folding and all other folding tasks requiring more than one P&P actions
[386, 155]. Concerning the initial state, folding tasks can also be classified into folding from the
flattened shape and folding from the crumpled form (FCF), where the latter is a more complex
problem [234].

Flattening, folding, or other types of complex shaping can also be applied to other CDOs [251,
386], such as towels (rectangular fabric instead of square), T-shirts, trousers, shorts, dresses,
coats and bags. The more complex the shape of the CDO, the harder the task will be. Many
tasks in the cloth-shaping domain comprise several subtasks. For example, the system must
flatten the object before actual folding to perform FCF. Similarly, Weng et al. (2022) [386]
assign intermediate goals to perform MSCF tasks successfully. Furthermore, the nature of the
task depends on the number of end-effectors. Usually, more end-effectors lead to more efficient
manipulation. However, we need to consider extra constraints to avoid collisions among the
arms. Because of this, comparison across a different number of end-effectors can be unfair.

4.1.1 Challenges in Cloth-shaping

Many real-world failures in cloth-shaping are caused by grasping deficiencies of the system.
These deficiencies include (1) inaccurate grasp-point estimation, (2) misgrasping the target point
on the cloth, (3) grasping multiple layers of the fabric if there is a fold and (4) rigid damage on
the end-effector caused by hard surface while grasping the fabric. It is hard to develop such a
system in simulation because almost none of the robotic and deformable object simulator can
accurately simulate the interaction between the gripper and the CDO [327, 234, 155].

Secondly, it is hard to define the reward function and goal evaluation automatically for MSCF
tasks because the final state of the cloth in these tasks is characterised by a high degree of self-
occlusion. It also requires reasoning about complex spatial relationship between the current and
goal observation in pixel space.

Thirdly, there are many applications of DRL in this domain, but they often suffer sampling
efficiency due to the complex and enormous state-action space of cloth-shaping. Robust velocity
control is still an unsolved challenge in this domain [244, 234, 171].

4.1.2 Perception in Cloth-shaping

Finding the most effective grasping point on a hanging article is important for successfully
stretching the cloth in the air. Hamajima and Kakikura (2000) [134] propose a handcrafted hem-
line detection system from captured shadows and outlines of an article. Kaneko and Kakikura
(2001) [180] propose Aspect Models to keep track of the grasping points in an article. Kita et al.
(2009) [188] match the mesh representation of a hanging T-shirt with a pre-simulated candidate
template. Maitin-Shepard et al. (2010) [241] leverage depth discontinuities induced from the
optical flow between frames for border classification. They apply the RANSAC algorithm [102]
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for image-to-3D localisation of the grasping points. Bersch et al. (2011) [34] create an estimated
mesh representation of the target article using fiducial markers and depth sensor, from which
it generates grasping candidates based on the partitions segmented by fold-lines. The fold-lines
can be extracted using the shadows on the article. Cusumano-Towner et al. (2011) [68] model
the grasping states of the article with HMM that provides prior to aligning the contour of the
simulated article with the actual one. Doumanoglou et al. (2014) [77] leverage Hough Forests
[108] for point estimation to grasp the key points in the article, and they refine the estimation
using interactive perception by formalising the process with POMDP. All these methods try to
find a pair of key points on the contour of the article that can be grasped to stretch without
any misgrasping and twisting.

Finding effective key points based on existing wrinkles and folds is crucial for flattening an
article on the table. Willimon et al. (2011) [389] use the Harris Corner Detector [137] on
the cloth mask (a binary feature map for segmenting cloth in a scene) and filter the candidate
grasping corners that connect directly towards the peak of the cloth without encountering a
fold. To detect wrinkles, Yamazaki and Inaba (2009) [398] propose to apply Gabor filtering.
Ramisa et al. (2012) [296] leverage χ2-kernel Support Vector Machine to generate a heatmap
for graspability based on wrinkles on the cloth. Sun et al. (2013) [345] detect the wrinkles on
the cloth by clustering points using K-means and Hierarchical Clusterings algorithm using inout
from a depth sensor. Sun et al. (2015) [346] further develop the description of a wrinkle and
improve the precision of the detection by fitting piece-wise B-Spline surface to the depth map.

The contour of the cloth is often extracted for cloth folding. Miller et al. (2011, 2012)
[250, 251] propose a set of parameterised polygon models as a geometrical representation that
includes skeleton and folding lines for different types of garments. Their perception system
tries to fit these template models on a flattened garment on the table. Stria et al. (2014)
[342] and Doumanoglou et al. (2016) [79] match the contour of an article to its corresponding
polygonal model [341] that includes important landmarks, such as corners, shoulders, armpits
and crotches.

For tasks involving multiple garment types, the system needs to classify among different
articles. Kaneko and Kakikura (2001) [180] propose a handcrafted classifier with a set of hand-
designed features based on the geometrical shape of the garments. Osawa et al. (2006) [273] use
a set of the hanging-length of garments as features to classify different garments. The features
are extracted from binary cloth masks using edge-detection techniques. Willimon et al. (2011b)
[388] conduct a similar classification with hand-engineered features using the nearest neighbour
algorithm by comparing against a database of known items. Doumanoglou et al. (2014) [77]
use Random Decision Forest [39] to recognise the garments from depth sensors.

Almost all the RMSs that operate the cloth on the table apply top-view cameras, with most
using depth sensors. Such setting captures most of the feature information of a fabric while it
is resting on the table. Another benefit of using a depth camera is that it is colour invariant
[345, 386]. Hoque et al. (2022a) [155] also shows that RGB-Depth (RGB-D) produces the best
prediction quality on the dynamic visual model compared to using just RGB or depth.

Optical flow is usually adopted to estimate motion in videos. In cloth-shaping, it provides
a good representation of the relationship between the current and the goal image. Weng et al.
(2022) [386] leverage optical flow to achieve flattening and various types of folding on both fabrics
and T-shirts. Mesh representation of cloth can bring topological information into planning for
grasping and flattening.

Mesh plays a significant role for keeping track of the state of the article, especially when
there are occlusions in the visual input. It also provides an opportunity to automatically check
the performance of multi-step folding tasks. Arnold et al. (2021) [10] leverage a neural network
to infer probabilistic mesh representation from depth sensors. Lin et al. (2022) [233] and Huang
et al. (2022) [161] propose a learning-based mesh reconstruction methods based on GNN from
top-down observation.
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4.1.3 Classical Control in Cloth-shaping

Hamajima (1998) [133] propose a manipulation flowchart for laundry folding on various gar-
ments. It includes steps from picking pieces up from a pile, garment classification, flattening
and folding to putting them into the corresponding drawer. Maintain-Shepard et al. (2010)
[241] provide the first autonomous system to execute the pipeline on a pile of towels. Together,
Doumanoglou et al. (2014a, 2014b, 2016) [77, 78, 79] and Stria et al. (2014a, 2014b) [341, 342]
also accomplish the whole pipeline [79] on a pile of different garments.

Before 2018, there were two main streams of research in cloth flattening: gravity-based and
pick-and-place/drag (P&P) approaches. For removing the final wrinkles on the article, the
system can still use P&P [345], but spreading is a more effective action primitive [79], where
one arm fix the cloth from sliding and the other sweeps to an effective direction.

Gravity-based cloth-flattening action primitives stretch the article in the air and place it on
the table [134]. This requires dual arms to complete the task. Hamajima and Kakikura (2000)
[134] suggest grasping the hemline induced by the shadow on the hanged article using a roller
end-effector and grasping the lowest point of the article when there are no such shadows. Osawa
et al. (2007) [274] propose a handcrafted system that iteratively grasps the lowest point of a
cloth until the convergence of the hanging length, then the bilateral arms stretch the cloth in the
air. Salleh et al. (2007) [312] propose an analytical method to grasp the second point by sliding
on the edge of cloth from the first grasped point using an inchworm gripper. Kita et al. (2009)
[189] propose an analytical method for grasping an optimal point on a mesh representation [188]
of a T-shirt from a hanging position. Maitin-Shepard et al. (2010) [241] improve the pipeline
of laundry folding task [180] by including error recovery from misgrasping and twisting of the
towel. Cusumano-Towner et al. (2011) [68] generate the grasping strategy using a shortest-path
planning algorithm where intermediate mesh states are induced by simulation. Ramisa et al.
(2012) [296] propose to grasp the article based on a graspability heatmap for initial grasping
by hanging the article in the air, while Doumanoglou et al. (2014) [77] choose to grasp the
estimated key points in the article.

Pick-and-place/drag action primitive achieves cloth-shaping on the table, which can be con-
ducted only by one gripper. The difference between pick-and-place and pick-and-drag is that
the second set of parameters for pick-and-place is place position, while for the latter it is the
displacement vector. Willimon et al. (2011) [389] propose a heuristic approach to flatten a cloth
on the table after applying a prescribed motion phase. If all the detected corners are connected
to the peak region of the cloth, then a corner will be dragged away from the cloth’s centre.
Otherwise, the system assumes the cloth has a fold, and a corner will be dragged toward the
centre for the convenience of later steps. Sun et al. (2013) [345] propose a heuristic approach
to remove wrinkles on the fabric. The system grasps a cloth corner and drags it orthogonally to
the orientation of the biggest wrinkle on the cloth. Sun et al. (2015) [346] continue to leverage
the same strategy on fabric and T-shirts but use dual arms.

In terms of cloth-folding tasks, Osawa et al. (2006) [273] accomplish various types of garment
folding with a prescribed motion by controlling a flip board using bilateral arms. The action
primitives, flipping and rotating the board, are delivered by analytical models. Bell (2010) [27]
demonstrate folding a t-shirt using the Japanese method without regrasping. Berg et al. (2010)
[33] propose a gravity-based folding method g-fold that works on the geometrical representation
of garments and achieves successful bilateral folding on various garments with prescribed mo-
tions. Miller et al. (2012) [251] also complete garment folding using g-fold motion planning on
a parameterised polygon model [250]. Bersch et al. (2011) [34] propose an open-loop planning
dual-arm system that can fold a T-shirt from a crumpled position after it stretches the article
in the air. Doumanoglou et al. (2016) [79] utilise g-fold in motion planning on the polygonal
model of the garments. Li et al. (2015) optimise a Bezier curve [94] folding trajectory using the
Levenberg-Marquardt algorithm with deformable simulation against a quadratic cost function.

P&P cannot erase wrinkles efficiently when the system has nearly reached the goal. In
contrast, dynamic manipulation leads to a much quicker feedback cycle and self-correction on
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failures. Moreover, it can exploit the physical property of CDO to reduce the total operation
time [171, 234, 126, 146], especially for the cloth-flattening task. Apart from velocity control,
one can also use inertia and air-dynamics to control the cloth. Ha and Song (2022) [126] propose
pick-and-fling action primitives and a learning system FlingBot to achieve cloth flattening using
dual arms. On the other hand, Xu et al. (2022) [395] propose a learning-based system DextAirity
based on pick-and-blow action primitives that blow air under the article while a dual-arm
grasping its corners.

4.1.4 Data-driven Control in Cloth-shaping

Applications of DRL and DIL methods on cloth-shaping have been explored since 2018. The
adopted methods are BC (Section 2.1) [328, 327, 386, 362], MFRL (Section 3.1) [244, 392, 171,
126, 146, 234, 146, 224] and MBRL (Section 3.3) [402, 155, 237, 10, 234, 233]. So far, MBRL
and BC have achieved better performance than MFRL methods [327, 155, 386, 233].

Most of the methods mentioned above adopt classical P&P actions defined on the pixel space.
Few attempt more low-level velocity control to conduct dynamic manipulation [244, 234, 171,
146, 126]. One advantage of using such abstract action is that it shortens the necessary prediction
window in planning and leads to much lower search complexity in the MFRL algorithms. It
helps interpret the agent’s policy at each action step. However, as the agent only perceives the
environment before and after the long action step, this strategy has a long control feedback
cycle. This makes manipulation more time-consuming and less robust to unexpected scenarios.
In other words, agents cannot react immediately to interruptions, miss-grasping the fabric and
miss-controlling from the underlying planning algorithms.

Discretising P&P action space is a common technique in CDO literature. For example, Lee
et al. (2021) [224] discretise the drag strategy by putting different orientations and pulling
distances into bins. Even though such action space simplifies the problem and leads to better
training, it is less flexible during run time and harder to generalise to other tasks. Another
technique that leads to better P&P policy learning is the separation of the inference of pick and
place positions. Wu et al. (2019) [392] suggest using Maximum Value of Placing that selects
the best picking position after choosing the best placing position. Weng et al. (2022) propose
Fabric Flow Net that infer the pick-condition place policy [386].

Cloth-flattening and cloth-folding can be trained jointly using a uniform goal-condition data-
driven approaches [224, 155, 171] thanks to their identical underlying dynamics as well as the
similar state, action, goal and policy representations. Some approaches [224, 146, 171, 327]
trained MFRL agents with HER [9], a self-supervised technique to train agents in sparse re-
ward environment and generalise across the task family, to improve the data efficiency. Some
approaches [155, 402] leverage the difference between current and goal observation to gener-
ate reward signals for MBRL methods. Although Yan et al. (2020) [402] only focus on the
cloth-flattening task, the objective of minimising the distance between the current and the goal
latent state can apply to all cloth-shaping tasks. Arnold et al. (2021) [10] and Hoque et al.
(2022a) [155] attempt to apply this goal-condition policy representation at the mesh level with
the attempt to solve more complex cloth-shaping tasks. In addition, some of the mentioned BC
methods train a goal-condition Transporter Network [327, 411, 237] or flow network [386, 76]
individually to improve data efficiency yet with P&P action primitives.

The complex and enormous state-action dynamic of the cloth makes it hard to train a policy
representation in BC, a dynamic model in MBRL and a value function in MFRL algorithms.
Thus, demonstration data [244, 328, 171, 155, 327], corner-biased data [155, 386] (which biases
the picking action towards corners and edges of the fabric) and other engineered data collection
strategies [10, 233] are utilised to speed-up the training. Whilst only Lee et al. (2021) [224]
collect real-world data, most learning-based methods operate in simulated environments, where
some apply domain randomisation [365] to achieve Sim2Real [386, 126, 155, 402]. The simulators
used for cloth-shaping tasks include Nvidia Flex [234, 126, 386], Pybullet [327], Mujoco [392, 402],
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SOFA [95, 171] and Unity with Obi [387]. Note that Blender is only used for rendering [328, 155].
To tackle the exploration problem, some data-driven methods set key points of the fabric

as the observation space [244, 171, 237]. In contrast, others attempt to reconstruct the corre-
sponding mesh to guide the manipulation [10, 155, 233]. Policy noise [130], demonstration data
[244, 311], specially engineered data [156, 386], HER [9], MaxEnt-RL objective [392, 146, 234]
and advantage-weighted loss exploration term [311] are leverage to overcome the exploration
problem for DRL applications.

The application of MBRL in cloth-shaping tasks suffers significantly from model exploitation
and compounding error. It often requires training the model with a large amount of data
(more than 100k observation-action pairs) [155, 402, 237]. Ma et al. (2021) [237] propose G-
DOOM that is a graph-based dynamic model based on key points to reduce compounding error,
while Yan et al. (2021)’s Contrastive forward modelling (CFM) [402] trains latent dynamics
for planning. Hoque et al. (2022a) [155] propose Visual Foresight Modelling that leverages
variational video prediction models SV2P and SVG within the framework of Visual MPC [81]
for mitigating model exploitation. Hafner et al. (2019)’s latent dynamic model Deep Planing
Network (PlaNet) [130] has been examined in detail in the literature [402, 237, 234], but it
does not show good results as it does in other rigid-object continuous control domains. The
reconstructed observation from the visual model is fuzzy [402, 155], which makes planning based
on reconstructed vision hard because the edges and corners of the clothes are not clear. Lin et
al. (2022) [233] also claims that learning a latent representation loses the detailed information
of the target cloth, such as folds and wrinkles. Moreover, particle-wise learning-based dynamic
models, such as MeshGraphNets [284] and GNS [314], achieved incredible results using GNN.
Visible Connectivity Dynamics (VCD) [233] applies such mesh models on the visible part of the
cloth to achieve more precise planning.

Data augmentation functions, such as scaling and rotation, on the observation are used
to improve data efficiency for end-to-end cloth-shaping control systems [224]. Action noise
can also be applied to the policy output for improve the data-effeciency, but only with small
perturbations, as the next state of the cloth is susceptible to the applied action [224]. Domain
randomisation, such as randomising the background colour of the table [154, 402], is used for
transferring the simulation-trained end-to-end policies to the real world (Section 1.4).

In robotic applications using RL, the reward and the goal signal of cloth-flattening are usu-
ally assigned based on the coverage area of the fabric in its vision input [155]. Rewards of
cloth-folding are usually given by the difference between the current and the goal vision inputs
[155]. For simple cloth-shaping tasks, the difference between the current and goal observation at
the pixel space helps both MFRL and MBRL algorithms train successfully [155]. CFM [402] and
G-DOOM [237] leverage the distance between the current and goal latent representation. Also,
particle-wise distance estimation from the observations between the current state and the goal
state shows improved performance on two-step folding tasks [155]. Hoque et al. (2022a) [155]
propose an effective dense reward function based on the coverage difference between two consec-
utive states for the cloth-flattening task. The reward function also rewards performance when
reaching 92% coverage and penalises the misgrasping failures and out-of-boundary scenarios.
The reward and goal signals of some MSCF tasks, such as triangle-folding and square-folding,
cannot be directly extracted from vision input. It makes those tasks more challenging compared
to other MSCF tasks, although a system can divide them into smaller subtasks to adapt to
vision signals [386].

There are several benchmark environments in the cloth-shaping domain. Lin et al.’s (2021)
[234] SoftGym, based on Nvidia Flex [239], includes rope stretching, cloth flattening, cloth
folding and cloth placing tasks. The same authors also provide the learning performance of
Oracle MPC, SAC-DrQ, PlaNet and SAC-Curl using velocity control signals as action space.
Seita et al. (2021) [327] propose DeformableRaven based on PyBullet, and provide execution
performance of a goal-conditioned Transporter Network. Hoque et al. (2022b) [156] propose a
real-world cloth-flattening and cloth-folding benchmark based on GoogleReach [390], which is a
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cloud physical workcell equipped with a robot arm and a table that can be accessed remotely
through internet.

Currently, there is no standard automatic way to evaluate the performance of a cloth-shaping
system. Human perception is mainly used to assess if a physical trial is successful. Mean and
standard deviation of particle-wise distance towards its goal have been used in many cases [386].
The difference between current and goal observation also has been utilised to evaluate a method
[402, 156]. This metric is beneficial for automating the evaluation in physical trials, but it cannot
capture all information in more complex problems than one-step folding tasks. The return value
of an episode [234] and the reward of the last episode steps can also measure the performance
of a method. As the reward functions of those methods differ, it is not easy to compare various
methods. For cloth-flattening tasks, normalised improvement [233] and normalised coverage
[233, 155] are the most reliable metrics that can be automatised both in simulation and reality.
However, this metric does not explicitly include information on wrinkles on the cloth, which is
crucial for evaluation when a trial is nearly successful. As secondary metrics, the number of
steps and inference time are used to measure a system’s effectiveness.

4.2 Rope Manipulation

In this review, we define the rope-manipulation task family as tasks executed on cloth-like linear
deformable objects (CLDOs), such as ropes, wires and threads. Manipulation tasks on CLDOs
include grasping, shaping, knot-tying, knot-untying and wrapping objects. The task family
also encompasses insertion and suturing, which have applications such as in surgical robotics
and assembly-lines in factories [313]. Rope manipulation also has important applications in
climbing, dressing and decoration. Rope manipulation is a set of harder problems than cloth-
shaping. Rope-shaping tasks, where a robot puts a target rope into a certain shape without
any crossing, have similar properties as cloth-shaping. We will not go into the details about
rope-shaping, as they are often covered in data-driven cloth-shaping literature which we have
discussed in the last section. This subsection will mainly discuss knot-tying and knot-untying
applications in the literature.

Knot tying (KT) encompasses (1) tying a particular knot on a single rope (knots), (2) ty-
ing to connect two or more ropes (bends) and (3) tying the rope to an object (hitches). The
simplest and most common knot one can tie is an overhand knot. Knots for performing single-
rope tying (SRT) also include double overhand, figure-of-eight, masthead, reef and sheepshank
knots, as well as bowline, bowknot and Ume-knot [67]. The ones used for multiple ropes con-
necting (MRC) include square and sheet-end knots, as well as strop, harness and carrick bends.
Moreover, the standard knots for typing a rope on an object (TRO) are half and clove hitches.
Finally, some knots are used for decoration, such as sounding lines, cloverleaf knot and Ruyi
knot.

KT depends on whether the rope is tied on the table or in the air. The number of end-
effectors, their capabilities and the usage of extra tools can drastically change the nature of
the task. The inverse process, knot untying (KU) is also a difficult problem for robotics that
correspondingly covers (1) untying a particular knot on a single rope, (2) untying a knot that
connects multiple ropes and (3) untying the rope from an attached object.

Humans mainly use three fingers (index, middle and thumb) to tie knots. The skills we use
comprises of bending, twisting, holding and binding the rope [379]. We can even make knots
without vision input after we hold them in our hands, and we check if the knot is tightened
using interactive perception.

4.2.1 Challenges in Rope Manipulation

In addition to CDO’s complex dynamic and self-occlusion issues, manipulation of CLDOs also
suffers from another problem called self-symmetry. It means that a rope looks exactly the same
from the start to end points and vice versa. RMSs in the literature usually use a topological
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representation that specifies the target rope’s start and endpoints. It is hard for a perception
system to consistently keep track of the two points due to the self-symmetrical property of a
CLDO. Note that self-symmetry is not a problem for cloth-shaping, because the system does
not have to keep track of the topological structure of the cloth to solve flattening and folding
tasks.

KT becomes much harder if the target ropes are tangled at the beginning. In such cases, the
agent must unravel the rope before tying the target knot. The direct challenge to untying a knot
is to recognise its knot structure [236]. The robotic system may introduce more crossings to
untie a knot. The crossing structure of a tangled rope can be more complicated than a knotted
rope [380], which makes the search space of motion planning algorithms much larger.

Furthermore, MRC introduces more crossings while trying to tie/untie multiple ropes [376]
than dealing with a single rope. It also presents more endpoints of ropes in the scene, which
amplifies the self-symmetry problem and makes it difficult to keep track of the status of every
specific rope.

4.2.2 Perception in Rope Manipulation

Most approaches in KT/KU literature choose to operate at the topological level, so the percep-
tion system needs to extract a topological representation (TR) from its sensory data. There are
many types of TR used in the robotic literature. Morita et al. (2003) [259] leverage P-data [97],
a collection of segments and intersections, as the intermediate representation to generate K-data
[97], an ordered vector of intersections and segments from start to end points. Wakamatsu et
al. (2004, 2006a) [379, 378] propose a sequential representation that combines the K-data and
crossing information of the 3D-to-2D projected rope with (u, l) representing crossing over or
under. This representation also includes (+,−) [80] to denote two types of crossings related to
the direction of the two segments at the crossing. This representation has become common in
later KT/KU systems. Additionally, Matsuno et al. (2006) [247] further reduce detection error
caused by the deformation of real-world rope using invariant knot properties. The common
strategy for producing TR is to use the extracted intersection and segments of the rope from
thinned binary images [153, 379, 378, 259, 397, 202].

For approaches that leverage imitation learning, the perception systems produce rope de-
scriptor that annotates the corresponding locations on the rope among different inputs. Sundare-
san et al. (2020) [350] use a supervised learning approach with NNs to learn such descriptors.
Some systems use the behaviour cloning approach Thin Plate Splines Trajectory Transfer (TPS-
TT) [323, 324, 217]. The perception system of these methods takes the current and goal image
and produces a warp function that maps the corresponding points on the rope. Lee et al. (2014)
create such a function with registration from point cloud data [217]. Huang et al. (2015) [160]
improve the perception by adding RGB imagery as input and key-point segmentation as an
intermediate representation. On the other hand, Suzuki et al. (2021) [355] train an autoencoder
to learn the latent representation from RGB input and tactile sensors.

4.2.3 Classical Control in Rope Manipulation

Both KT and KU start from structural representation in a computer simulation using the
knowledge of knot theory. The early KU approaches in topological simulation include random
perturbation [336, 317], annealing schedule [230], energy minimisation with gradient descent
[159] and motion planning [205, 380]. These are all energy-minimising methods. Ladd et al.
(2004) [205] adopt RRT-inspired motion planning [213] to untie various topological knots by
minimising an energy function. These energy functions encompasses geometric energy, Möbius
energy, spring energy, electrostatic energy and minimum distance energy [336, 205]. Nonetheless,
these functions are not suitable for KT. Wakamatsu et al. (2004, 2006a, 2006b) [379, 380, 378]
introduce a general motion planning framework for both topological KT and KU using four
Reidemeister moves [301, 379] without any energy function.
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Inaba and Inoue (1985, 1987) [166, 167] leverage a stereo vision system for planning to tie a
knot. Hopecraft et al. (1991) [153] suggest a graph representation that captures the topological
structure of the rope. They also develop a high-level action grammar that can be decomposed
into P&P action primitives with orientation changes of a two-fingered gripper to tie several
different knots on the table. Wakamatus et al. (2004, 2006a, 2006b) [379, 378, 380] propose
a sequential representation of the rope and replace the a motion planning algorithm to search
for a sequence of primitive actions to achieve a goal configuration. The primitive actions based
on knot theory are three Reidemeister Moves (RM) [301]. They are designed to manipulate a
mathematical knot that is a loop with no ends. RM I achieves loop production/removing by
adding/removing one crossing; RM II simultaneously adds/removes two crossings; and RM III
moves a segment to the other side of a crossing.

Most KT systems act either on the table [153, 379, 378, 217, 160, 348] or in the air, [247, 397,
396, 373, 202, 355]. Similar to cloth-shaping, P&P action primitives are leveraged for the tasks
performed on the table [153]. In KT, the agent usually requires more coordination between the
two end-effectors to achieve the task. Exceptionally, Yamakawa et al. (2010) [396] achieve the
overhand-knot in the air using a one-arm high-speed dynamic control system with the assistance
of the gravity and rope’s inertia.

For tackling physical ropes, Wakamatsu et al. (2004) [379] posit the fourth type of RM,
while Matsuno et al. (2006) [247] propose continuous transformations, including expansion and
contractions. Yamakawa et al. (2008) [397] suggest rope pulling and moving operations, which
are similar action primitives to the RM IV. Furthermore, they also introduce a rope permutation
primitive that can cancel rope deformation. On the table, a target knot can be tied and untied
by these four types of RMs and rope permutation that can be delivered with P&P action
primitives, but this process cannot guarantee the tightness of the knot. The grasping strategies
of the rope directly influence the efficiency and success of the tasks. Wakamatsu et al. (2004)
[379] recommend a set of grasping strategies for its primitive action w.r.t. the local crossing
patterns.

Inaba and Inoue (1985) [166], Hopcraft et al. (1991) [153], [259] and Wakamatus et al. (2004,
2006a, 2006b) [379, 378, 380] have paved the fundamental methodology for classical KT/KU
literature. The conventional way to develop a KT/KU system comprises of (1) defining action
primitive based on knot theory and end-effector capability, (2) employing a visual perception
system to extract a topological representation of the rope and (3) adopting motion planning with
knowledge of knot-theory to finish a task. The appropriate choice of perception, where to grasp
the rope and how to deliver the target primitive have remained long-standing problems for both
lines of control methods. Subsequently, Saha and Isto (2006) [310] leverage a topological motion
planar to achieve tying bowline, neck-tie, bow and stun-sail knots in simulation using bilateral
robot arm with leading needles. Lui and Saxena (2013) [236] leverage a motion planning method
to achieve a 77% real-world dual-arm untying success rate on a collection of different types of
ropes and knots.

Pulling both ends of a rope is enough for tightening simple knots such as an overhand knot.
This can be delivered by either fixing one end of the rope and pulling the other or grasping
both ends and pulling them towards opposite directions. However, many complex knots used
for connecting and decorations must be tightened at specific locations along the rope [382] by
leveraging friction locks, i.e., locations where friction resits the rope against external forces. Bell
et al. (2014) [28] and Wang and Balkcom (2016) [382] employ needle fixtures to achieve friction
locks on knots for decoration. Checking if a knot is tight in robotics is still an open research
area, even though answers have been proposed in analytical literature [23, 298, 11, 47].

4.2.4 Data-driven Control in Rope Manipulation

Apart from motion planning, LfO is another line of research in KT/KU literature. Morita et al.
(2003) [259] introduce Knot Planning form Observation (KPO) that integrates control methods
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from LfO on the topological level of the rope, where the changes of the representation in the
consecutive demonstrated observation produce a primitive action. Sundaresan et al. (2020)
[350] achieve 66% real-world success on tying the overhand-knot by improving the descriptor
perception system within the LfO framework.

Apart from LfO, Vinh et al. (2012) [373] use trajectory replay to achieve single-arm
overhand-knot tying in the air. Kudoh et al. (2015) [202] also adopt a similar method to
type a square knot on a cylinder using a three-fingered dual arms. Lee et al. (2014) [217]
and Huang et al. (2015) [160] employ trajectory behaviour cloning method TPS-RPM [57] to
transfer the demonstration policy after registering current observation to a keyframe, followed
by trajectory optimisation to refine the suggested trajectory. They achieve overhand knot using
dual arms on the table. Takizawa et al. (2019) [357] apply the same method to achieve over-
hand knot and figure-eight knot using a pair of three-fingered arms. Suzuki et al. (2021) [355]
leverage the multi-modal deep behaviour cloning method to achieve a 95% success rate on in-air
dual-arm bow knot and overhand knot in real-world trials.

Granne et al. (2020) [120] create a Hierarchical Untangling from Learned (HULK) system
that suggests grasping points for untying action primitives. Sundaresan et al. (2021b) [349]
propose a robust rope grasping system called Local Oriented Knot Inspection (LOKI) that is
trained with behaviour cloning method using the synthetic data generated from Blender [65].
Sundaresan et al. (2021b) [349] present Sensing Progress in Dense Entanglements (SPiDER-
Man) to recover from the error caused by HULK. Viswanath et al. (2021) [376] managed to
untie multiple cables with their Iterative Reduction Of Non-planar Multiple cAble kNots (IRON-
MAN) system that generates primitive actions to remove crossing on the cables. Combining
LoKi, HULK and SPiDERMan, the system achieves an 80% success rate in real-world trials on
untangling three cables.

There are many applications of IL in rope manipulation literature, but it is still not clear
how to frame KT/KU in MDP to develop an RL controller. One of the challenges is reward
shaping. Using P&P action primitives. Fan et al. (2022) [93] use discrete-action DRL algorithm
Deep Q-learning (DQN) [255] that takes the embedded states as input and discretised grasping
points and moving directions as action. They achieve a 54% success rate using single-arm for
untying knots on the table. Their reward credits the crossings’ removal while penalising the
crossing’s increment and ineffective operations.

4.3 Dressing

Worldwide demographic trends indicate that the portion of the elderly will increase considerably
in the future. This implies we will experience a nursing shortage for elderly and disabled people.
One of the robotics community’s long-term goals is to develop such care-taking autonomous
robots that improve the living quality and independence of people in need. A significant chal-
lenge of such a system is assisting humans with reduced mobility to dress.

Dressing tasks are the second most investigated topic in CDO manipulation literature. Apart
from assistive dressing, self-dressing is another challenging domain that belongs to the dressing
task family. A virtual self-dressing agent can provide autonomous dressing animation for film
production. Although there are no significant real-life applications of self-dressing agents, they
share many properties with assistive dressing systems in terms of representation and motor
skills.

Assistive dressing stands for helping an immobile or partially immobile person to put on
or take off various garments while ensuring the person is mentally and physically comfortable.
I-Dress [1] is an ongoing project that aims to achieve assistive dressing. The garments include
hospital gowns, jackets (with sleeves), vests (without sleeves), T-shirts, scarves, hats, trousers
and other clothes. Assistive dressing is a long-horizon multi-step task that requires safe and
reliable human-robot interaction. For instance, while helping a person put on a jumper, the
agent needs to tuck the person’s head into the jumper’s hem, put the two individual arms into
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the corresponding sleeves, and then pull down and adjust the jumper. These subtasks, though
they need to be executed sequentially, are usually investigated individually for various types of
garments in the literature. Moreover, the assisted person can cooperate with the agent to finish
the dressing. Many older adults have limited limb movement, and some patients may even shake
unpredictably during the task. When a human helps another person to dress, they can use life
experience to estimate the force exerted on the assisted person [84]. Similarly, we expect the
system to provide smooth, predictable and small force-exerting action trajectories and to react
accordingly to human posture and motion, as well as to avoid damaging the cloth.

Self-dressing refers to putting on and taking off various garments on a humanoid robot
without damaging the robot’s body and the garments. When humans put on a T-shirt they
mainly rely on their body’s haptic system. First, they put their head into the bottom of the
T-shirt, then find and put the corresponding sleeves over their arms, put the head through the
hem, and finally pull down and adjust the garment. While stretching our arms through the
sleeves, we don’t think about the complex interaction between the article and our limbs [61, 62].
Meanwhile, we are careful not to get snagged in or tear the cloth.

4.3.1 Challenges in Dressing

The ability to distinguish the inner surface of an article from the outer helps to avoid getting
tangled in the article [61]. In self-dressing, it is specifically challenging for an agent with a
tactile sensor to formalise and integrate such perception ability into the control procedure [62]. In
general, self-dressing is easier than assistive dressing, but the two share some common challenges.
First, topological and functional properties of garments are highly correlated [368]. Reliably
finding the topological correspondence between the different parts of the body and the garment
is a challenge for perception [191, 246]. The problem mainly lies in the occlusion of the garment
by the torso and thedeformation of the article itself [192], where such deformation can be quite
different when compared to cloth-shaping tasks [192].

Second, finding the effective grasping point and grasping strategy for dressing the corre-
sponding parts is still an underexplored problem. Almost all of the literature experiment with
the presumption of grasping a correct part of the article, while only Clegg et al. (2018) [62] in-
tegrate grasping as part of the skill learning using DRL. Third, dressing tasks generally deviate
from common manipulation tasks. They heavily depend on tactile and haptic sensors to infer
the progress of the task [62]: (1) force estimation of the cloth on the body is crucial for safe
and comfortable dressing; (2) estimation of cloth-stretching degree helps to avoid damaging the
cloth. It is not obvious how humans leverage such perception to perform a similar task, and
this remains a difficult open problem in this domain [61].

In addition to the challenges mentioned above, the agent should also react accordingly to
cooperation and the unpredictable motion of the user in assistive dressing. Unexpected user
movements may lead to dressing failures or even pose risks to the user. The complex deformation
of the cloth and its occlusion on the body makes human-posture tracking difficult [415, 60]. For
example, occlusions can occur when the robot’s arms, the garment and the human body are
in close contact [112]. Such occlusion makes it complicated for the vision system to accurately
observe the task state and predict the results of planned interactions. Furthermore, it is hard
to test assistive dressing in the real world during the development stage, as mannequins cannot
be easily actuated [175].

4.3.2 Perception in Dressing

Keeping track of the body-cloth relationship is essential for successful and safe assistive dressing.
Tamei et al. (2011) [358] were the first to leverage topological coordinates [149] for modelling
the body-cloth relationship, where the skeleton represents the torso and circles represent the
opening part of the article. Chance et al. (2016) [51] and Yamazaki et al. (2014, 2016) [400, 401]
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propose handcrafted perception systems to extract the skeleton of the body. For robust real-
time estimation of such topological relationships in the real-world trial, Koganti et al. (2013,
2014, 2015, 2017) have proposed a sequence of improvements in terms of perception [193, 194].
They adopt a data-driven latent model, Gaussian Process Latent Variable Model (GP-LVM)
[214], to provide a prior for state estimation only from depth camera during testing [191, 192].
On the other hand, Twardon and Ritter (2016) [368] produce such priors using an analytical
model on the boundary component of the cloth.

Force sensors can also help mitigate occlusion problems in visual perception. Gao et al.
(2015) [111] combine vision and force sensors to estimate human pose and leverage GMM to
model movement to overcome the occlusion problem. Kapusta et al. (2016) [181] employ haptic
perception to infer the cloth-body relationship by fitting an HMM. Erickson et al. (2018) [85]
track the body pose in real-time using capacitive proximity sensors. Zhang et al. (2017) [414]
achieve latent posture tracking trained with GP-LVM on RGB-D and human arm posture data.
Zhang et al. (2019) [415] improve the real-time posture tracking system using a probabilistic
filtering method where the GP-LVM has only been trained on forces and the position of the
end-effector. The initialisation of the posture is given by a depth sensor.

Such skeleton extractions and posture tracking can provide trajectories that avoid collisions
between the end-effector and the body. Still, we also need reliable force estimation for safe and
comfortable reactive manipulation. Erickson et al. (2017) [84] use recurrent neural layer LSTM
[151] to estimate a force map injected on the human body from the force, torque and velocity
of the robot’s end-effector. Clegg et al. (2018) [62] use a haptic sensor as an observation space
for DRL application to learn a reactive policy.

In addition to avoiding a large amount of force, the system also needs to detect success and
different error states. Yu et al. (2017) [410] tuned the simulator to collect haptic data to train
an HMM for predicting dressing outcomes. Chance et al. (2016, 2017) [51, 52] combined force
sensors with inertial measurement unit (IMU) sensors to detect dressing errors using machine
learning methods. Yamazaki et al. (2013, 2014, 2016) [399, 400, 401] propose a complex
framework that uses optical flow from two consecutive images for detecting dressing outcomes.
Yamazaki et al. (2014, 2016) [400, 401] utilise both visual and force inputs to improve the
quality of such dressing state detection.

4.3.3 Classical Control in Dressing

In the realm of HRI, a conservative policy uses collision avoidance and compliant control [43] for
reducing the force applied on the human body [228]. In assistive dressing, the common approach
is to combine these two classes of algorithms by leveraging a motion planner to generate a
collision-free predictive action sequence, then adopt compliant control with force sensors to
move relative to body posture [319]. Yamazaki et al. (2014) [400] adopt an analytical trajectory
planner considering collision avoidance for helping to put on trousers using dual arms. Klee et
al. (2015) [190] leverage a sample-based motion planner to help a person put on a hat. Chance
et al. (2016) [51] propose analytical trajectory planning for helping to put a target’s arm into a
jacket’s sleeve based on a mannequin’s skeleton. They use velocity control [211] and mitigated
potential collisions [203] for safe human-robot manipulation. Gao et al. (2015) [112] add an
iterative path optimisation algorithm using gradient descent to minimise the analytical force
resistance estimation on a prescribed path.

Subsequently, Erikson et al. (2018) [86] employ capacitive proximity sensors to impose
distance control between the end-effector and the human body on a prescribed trajectory. Zhang
et al. (2017, 2019) [414, 415] present a latent posture tracking method for generating dressing
trajectory. They utilised a hierarchical analytical controller to perform assistive dressing while
reducing the force applied to the human. Li et al. (2021) [228] apply Model Predictive Control
on a human dynamic model for safe motion planning [195] under the context of Human-Aware
Motion Planning [210], i.e., collision avoidance or safe impact in the event of a collision. The
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systems proposed by Klee et al. (2015) [190] and Chance et al. (2016) [51] ask the target to
repose if a trial fails and re-planned for a new trajectory. However, this can only work for people
with a specific motion capacity. Yamazaki et al. (2014, 2016) introduce the ability to recover
from failures automatically without repositioning the target human [400, 401].

4.3.4 Data-driven Control in Dressing

In the data-driven control domain, assistive dressing literature tends to use trajectory BC (Sec-
tion 2.1.2) methods to generate initial trajectories then utilise Type I MBRL (Section 3.3)
methods for safe and smooth execution of trajectory. Tamei et al. (2011) [358] adopt a RL
framework [335] to tuck a mannequin head into a T-shirt’s hem and its arm into T-shirt sleeves
using dual arms. It initialises the ”via-points” with demonstration trajectory and refines the
trajectory using the policy gradient method [252]. Matsubara et al. (2013) [246] use the same
RL framework for learning self-dressing T-shirts on a dual-arm robot, specifically putting both
arms into the sleeves of the T-shirt. Based on a similar framework, Colome et al. (2015) [64]
use imitation learning method Dynamic Movement Primitive (DMP) [165, 164] to initialise the
robot trajectory to wrap a scarf around a human’s neck using a single arm. Then, they use PI2
[363] to refine its policy. Pignat et al. (2017) [285] formulate the task where a robot assists a hu-
man to put their arm into a jacket with Hidden Semi Markov Model (HSMM) [408] for encoding
the demonstration trajectory using EM algorithm. Then, they leverage a LQR [31] to drive the
robot to follow the generated trajectory from the forward messages of the HSMM [83]. Joshi
et al. (2019) [175] broke the task down into three consecutive subtasks and appied DMP for
dressing the arm and a Bayesian Gaussian Process Latent Variable Model (BGPLVM) for dress-
ing the body. In this domain, the real-world demonstration trajectory is usually collected by
directly controlling the robot arms with hand, known as kinesthetic teaching [358, 246, 285, 285].

Clegg et al. (2017) [61] use the DRL policy gradient method Trust Region Policy Opti-
misation (TRPO) [325] (Section 3.1.2) with curriculum learning [384] in simulation to learn a
modular haptic feedback controller of self-dressing. Clegg et al. (2018) [62] then managed to
learn a complete self-dressing task in simulation using DRL with a specially engineered reward
function. The observation space includes the human’s joint angles, garment feature locations,
haptics, surface information and a task vector. Clegg et al. (2020) [60] use DRL and curriculum
learning for training a simulated dual-arm robot and a human with various motor capabilities
for wearing a hospital gown and T-shirt collaboratively. The observation includes sensorimotor
information of both robot and human, force signal from the end-effector and target pose from
the previous time step. The action space in both approaches is based on the positional signals
of the joints [62, 60]. In a real-world trial, this system requires the human to wear sensory
equipment on their body. They achieve Sim2Real transfer by calibrating the simulator with
real-world data and scaling down the policy output.

Reward engineering is a hard problem in the dressing domain. Tamei et al. (2011) [358] and
Matsubara et al. (2013) [246] design their reward function around the topological coordinate
(comprised with writhe, centre and density) distance between the configuration of the region
of interests of the torso and the garment. Colome et al. (2015) [64] suggest a reward based
on penalising high acceleration and high estimated force. They also included another term
indicating how well the scarf is placed in images. Clegg et al. (2017) [61] penalise the distance
to the goal and the failure of the task. Clegg et al. (2018) [62] posit a self-dressing reward
function that comprises progress reward, deformation penalty (for avoiding tearing the garment),
geodesic reward and per-joint ”rest pos” reward (where the user body is in the default setting)
[62]. However, this reward is not safe for the human body in assistant dressing tasks, so Clegg
et al. (2020) [60] added another term to reduce the force received by the human.

Conventionally, evaluation of assistive dressing is conducted on a mannequin during devel-
opment time and on real humans for final evaluation [51]. Self-dressing can be developed and
tested on the robot itself in the real world. [246]. However, such physical testing cannot provide
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a large volume of data for a confident conclusion of robust manipulation. Hence, simulation
becomes an ideal place for developing and testing dressing approaches [410, 60, 84]. The most
common simulator adopted in this domain is Nvidia PhysX [2]. Furthermore, the mannequin
cannot provide unexpected or collaborative actions in development and final testing. Clegg et
al. (2020) [60] suggest using simulation to create scenarios where humans have different lev-
els of disability: dyskinesia, limited range of motion and muscle weakness. In the real-world
trial, they employ another humanoid robot to replace a mannequin for creating unexpected and
collaborative motions.

4.4 Bag Manipulation

Bag manipulation is a relatively new and least investigated domain among the four task families
in the literature, so we will cover conventional and data-driven control methods together in
Section 4.4.3. We characterise bags as 3D cloth-deformable objects that can contain items.
More specifically, bags refers to 3D CDOs that have handles, while sack represents bags without
handles. RMSs with bag-manipulation skills can help a human with grocery shopping and
transporting heavy items.

The canonical task of bag manipulation is item loading (ILD) [362] that involves opening
the bag (OB), inserting items (II) [327] and lifting the bag (LB). Lifting a bag with an item
in it is also known as an item containing (IC) [330]. The general grasping ability of various
items and the effective grasping strategy of the bags are crucial for the success of ILD. II can
be more complex if there are other bags for distraction [327]. The next common task is bag
moving (BM) [362], which includes lifting the bag, creating displacement and placing the bag
at the target position. The third standard task is item unloading (IU), which requires opening
the bag and picking the items out. There is another prevalent task called bag unloading (BU)
[117] where the agent is asked to unload a collection of bags from a basket.

4.4.1 Challenges in Bag Manipulation

Compared to ropes and cloth, the deformation of bags is more complex, and the self-occlusion is
much more severe for a RMS [330]. The complex dynamic between the rigid/deformable items
with the bag [387] gives another layer of challenge for the accomplishment of ILD. During II, the
perception needs to reason whether the objects are within the region of open contour [330, 362]
of the bag. While conducting IC, the system also needs to reason if items will remain inside
the bag under their interaction with the bag and gravity [330]. Effective grasping strategy on
a sack, which takes advantage of the gravity and other factors, is still an open problem in this
domain [330].

Lifting a bag with items inside it demands an accurate weight estimation so that the bag
will not slip from the gripper, as is common when grasping a thin layer [330]. Sacks introduce
further difficulties compared to bags as they don’t present handles. They usually require special
end-effectors, such as rollers [117], so the agent can effectively grasp and hold the sack without
damaging the sack. Moreover, bags can have different shapes and sizes, and the centre of
gravity changes while transporting the bag. The agent also needs to consider these factors for
safe performance [117].

4.4.2 Perception in Bag Manipulation

For developing a system that can conduct IC, Seita et al. (2021b) [330] produce a sack mask
from a top-down depth camera for generating grasping candidates for a dual-arm robot. They
also leverage interactive perception for checking if the target bag/sack is grasped robustly – the
robot applies a shaking motion to test if the bag will slip or not [330].

Seita et al. (2021a) [327] and Teng et al. (2022) [362] leverage supervised learning to fit a
pixel-based goal-condition value heatmap for P&P action primitives to perform a set of skills for
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bag manipulations. Weng et al. (2021) [387] investigate graph-based key point dynamic learning
for predicting the interaction between rigid items and a bag. They adopt two-stage prediction
to reduce prediction error. This dynamic model can provide a prior for the perception system
to keep track of the important key points on the bag.

In BU, Kirchheim et al. (2008) [187] and Gonnochenko et al. (2021) [117] infer the depth of
individual sacks from a depth sensor using detection and segmentation techniques.

4.4.3 Classical and Data-driven Control in Bag Manipulation

Two end-effectors are required to firmly grasp the appropriate point on the opening of the
sack [330] or find the handle of the bag to perform IL. Seita et al. (2021b) [327] adopt a
combination of heuristics and imitation learning to learn the grasping position on a sack. The
heuristic strategy is to grasp the endpoints of the maximum width of the sack mask. They
also leverage data augmentation (rotation and translation) on the current and goal images to
improve the representation capability of the system. Xu et al. (2022) [395] propose a system
called DextAirity that uses air-blowing to open a sack while grasping the hem of the sack with
bilateral grippers.

Seita et al. (2021a) [327] adopt a Transporter Network [411] (Section 2.1.1), a SOTA pixel-
based behaviour cloning algorithm that focuses on pick-and-place action primitives, to learn
goal-condition policy for sack opening and item insertion tasks in simulation. Teng et al. (2022)
[362] add a dense network layer [158] and residual connections [141] in the transporter to enhance
feature extraction, and they further examined the system on ILD and BM. Both approaches train
the policy network only with successful trials in simulation induced by a scripted demonstration
policy.

Kierchheim et al. (2018) [187] and Gonnochenko et al. (2021) [117] employ a roller end-
effector to perform sack unloading. Kierchheim et al. (2018) apply a handcrafted policy for
effective grasping, while Gonnochenko et al. (2022) adopted DRL to learn the grasping position
and orientation in the Mujoco simulator.

Seita et al. (2021a) [327] created a benchmark environment DeformableRaven built on PyBul-
let [66] that includes modular sack manipulation environments. Nonetheless, there are opportu-
nities to improve the modelling of the sack, and the benchmark does not contain environments
involving bags. Seita et al. (2021b) [330] propose using human teleoperation to set a soft upper
bound for manipulation tasks in real-world trials. In simulation, Seita et al. (2021a) [327] achieve
a 63.3% success rate out of 60 trials for sack opening and a 51.7% success rate for inserting one
item in simulation. Teng et al. (2022) [362] achieved a 48.3% success rate out of 60 trials for
item-loading and sack-moving in simulation.

5 Inverse Reinforcement Learning for CDO manipu-
lation

As type of data-driven IL algorithms, inverse reinforcement learning is investigated compara-
tively little in any of the four CDO task families. The major reason is the need for feature
engineering in conventional IRL algorithms, and the need for an inner loop of RL optimisation
to get an optimal policy for an inferred reward function. Nevertheless, the recent advancement
of Adversarial IRL make it possible to apply these techniques to such complex domains. These
methods are examined in the standard RL benchmark environments, especially V-MAIL [293]
shows substantial improvement compared to BC in continuous control settings. Adversarial IRL
methods also eliminate the effort needed to engineer rewards for using RL in complex tasks,
which is a challenge for knot-tying, multi-step cloth-folding and dressing tasks. In this section,
we talk about the fundamentals of conventional IRL methods for better comprehension of the
SOTA adversarial IRL approaches.
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Inverse reinforcement learning (IRL), also known as inverse optimal control, aims to learn
a reward function from the given demonstration policy. This objective is preferable to the
one of behaviour cloning when we need to re-optimise a reward in a new environment [101]
or to infer the demonstrator’s intention. It is also a natural framework for LfO by learning a
state-dependent reward function [271].

The general objective of IRL is to find a reward function that makes demonstration policy
better than other policies:

IRL(πdemo,P)
.
= arg max

r∈RS×A
E

τ∼dπdemo

[ T∑
t=1

r(st,at)
]
−max

π∈Π
E

τ∼dπ

[ T∑
t=1

r(st,at)
]
. (32)

Apprenticeship learning [3] is the first IRL method that formulates the objective with feature
matching of state-action pairs, where it assumes that the reward is the linear combination
of the state-action features. However, feature-matching IRL methods cannot deal with the
cases where the reward function is essentially complex and non-linear. Apart from that, the
objective of feature matching is ill-posed, as an optimal policy may be achieved by an infinite
amount of reward [266] and an infinite number of policies have the same expected feature as the
demonstration policy. The Maximum Margin Principle [297] and Maximum Entropy Principle
[421] have been applied to mitigate those ambiguities in the FM-IRL objectives.

Under the framework of MaxEnt-IRL, methods with non-linear reward functions parame-
terised using NNs, such as GAN-GCL [100, 98] and GAIL [150], have been proposed to tackle
the high dimensional continuous setting with unknown dynamics. In addition to NNs, boosting
[19] and Gaussian process [227] have both been adopted, but these methods still require man-
ual feature engineering. NN-based IRL methods can learn a complex reward function through
automatic feature learning. Moreover, they alleviate the need to search a policy from scratch
for an updated reward function in the inner loop. Since they are closely related to adversarial
training of generative models [98, 119], we refer to these as Adversarial IRL methods. They
suffer from the same issues that occur in the GAN training. Regularising techniques, such as
gradient penalty [122], spectral norm [253], Mixup [416] and the PUGAIL loss [394], have been
adopted to stabilise convergence. Since GCL and GAIL are on-policy methods, they also suffer
from data efficiency. Off-policy methods, such as DAC [197] and SQIL [299], have been proposed
to overcome this issue.

5.1 Feature Matching IRL

In feature matching IRL (FM-IRL) [3], the reward function is parameterised as a linear combi-
nation of the features of the state-action pair:

r(s,a;w, φ) = w>φ(s,a) , (33)

where φ is the feature extraction function defined on a state-action pair. Feature expectation
of a policy is defined as:

φ̄(π) = E
τ∼dπ

[
f(τ)

]
and φ̄(π, s) = E

τ∼dπ

[
f(τ) | s1 = s

]
, (34)

where f(τ) =
∑T
t=1 γ

tφ(st,at). Hence, the value function of a policy of a certain state is:

V π(s) = w>φ̄(π, s) . (35)

The objective of IRL is to find the parameter w∗ that makes the demonstration policy
produce a higher reward than any other policies:

FM-IRL(πdemo,P)
.
= arg max

w
w>φ̄(πdemo)−max

π∈Π
w>φ̄(π) . (36)
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Abbeel and Ng (2004) [3] propose Apprenticeship Learning (AL) to find a policy π that has
the similar feature expectation as that of the demonstration policy by reformulating Equation
36. The disadvantage of this algorithm is that it is expensive to scale up to complex and high-
dimensional settings because it needs to run an underlying RL algorithm after each iteration.
Besides, there is an infinite number of reward functions with the same optimal policy, and there
is an infinite amount of stochastic policies that can satisfy feature matching property.

Ratliff et al. (2016) propose Maximum Margin Planning (MMP) [297] as an improvement
on AL that modifies the objective function to add flexibility. One can add a slack term d and
a margin function, which measures the dissimilarity between two policies, to account for the
suboptimality of the demonstration. However, maximising the margin is arbitrary [272], and
accommodating the sub-optimality using slack variables is still a form of heuristic.

Apart from the ambiguity of w, feature expectation φ̄(π) can also be ambiguous, i.e., two
different stochastic policies can map to the same feature expectation. Suppose a policy π has
the same feature expectation as the demonstration policy. We have∫

dπ(τ)f(τ)dτ =

∫
dπ

demo

(τ)f(τ)dτ , (37)

where trajectory distribution dπ and dπ
demo

can be different but still make the equality hold.
Ziebart et al. (2010) [421] propose Maximum Entropy IRL (MaxEnt-IRL) on FM-IRL that

leverages the Maximum Entropy Principle [172] to remove this distribution ambiguity by finding
a policy that matches the demonstration feature expectation but no other path preferences. The
maximum entropy objective is defined as follows:

arg max
π

∫
−dπ(τ) log dπ(τ)dτ

s.t.

∫
dπ(τ)f(τ) dτ =

∫
dπ

demo

(τ)f(τ) dτ∫
dπ(τ)dτ = 1

dπ(τ) ≥ 0 ∀τ . (38)

We can generalise the MaxEnt-IRL objective, which can be derived with Control as Inference
[225]:

MaxEnt-IRL(πdemo,P, α)
.
= arg max

r
E

τ∼dπdemo

[ T∑
t=1

r(st,at)
]
−(

max
π

T∑
t=1

E
(st,at)∼ρπ

[
r(st,at)

]
+ α E

st∼ρπ

[
H
(
π(· | st)

)])
. (39)

The solution of the maximum entropy objective in FM-IRL can be obtained by approximating
the trajectory distribution with an exponential form on the reward function regulated by a set
of hyper-parameters λ:

dπ(τ) ≈ q(τ ;λ)
.
=

1

Z(λ)
exp(λ>f(τ)) , (40)

where Z(λ) =
∫

exp(λ>f(τ))dτ is the partition function. Shiarlis et al.(2016) [334] improved
MaxEnt-FM-RL by also taking failed demonstrations into account.
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5.2 Adversarial IRL

FM-IRL methods are developed using a linearly parameterised reward function that depends on
a hand-designed feature function on state-action pairs. Also, these methods are hard to apply
to high dimensional continuous state-action settings, especially with unknown dynamics, mainly
due to the inner loop of the policy training using RL. For learning complex reward functions
with formative features, we can parameterise the reward function with a neural network:

r(s,a;w)
.
= NN(s,a;w) . (41)

There have been many algorithms proposed under the MaxEnt-IRL framework, such as
GCL [100], GAIL [150], AIRL [105], DAC [197] and V-MAIL [293]. The common trait of these
methods is that the reward function is optimised using gradient (Equation 46), and the policy is
updated using policy-gradient objectives. So far, there have been no examples of Adversarial IRL
methods in CDO domain, but this might the key technology to mitigate the reward engineering
obstacle of cloth manipulation tasks while preserving similar computational complexity as their
DRL counterparts.

5.2.1 GAN

The training of Adversarial IRL agents is related to the loss function of Generative Adversarial
Networks (GANs), which is a generative model (Section 3.2.2). Before getting into the details
about the Adversarial IRL algorithms, we briefly introduce this model. Goodfellow (2014)
propose Generative Adversarial Networks (GANs) [119] that generate unseen samples by training
a generator Gθ and discriminator Dφ. The generator produces samples from a latent space, and
the discriminator classifies a sample as real or fake:

GAN(D)
.
= min

θ
max
φ

E
x∼pD

[
logDφ(x)

]
+ E
x∼pθ

[
log(1−Dφ(x))

]
, (42)

where Dφ(x) = 1 represents x is sampled from the real dataset, and Dφ(x) = 0 represent x is
sampled from the generator. This objective is mathematically equivalent to the Jensen-Shannon
divergence between real data distribution and the generator distribution while assuming the
discriminator has infinite capacity. As the generator produces the sampled data from a latent
distribution, the objective can be rewritten as

GAN(D)
.
= min

θ
max
φ

E
x∼pD

[
logDφ(x)

]
+ E
z∼pz

[
log(1−Dφ(Gθ(z)))

]
. (43)

In practice, we optimise the discriminator parameter φ first by fixing θ with gradient ascent
using the objective, which is approximated by sampling, then optimises the generator parameter
θ with gradient descent on the generated samples. Note that it uses minθ − E

x∼pθ
logDφ(x)

instead of minθ − E
x∼pθ

[
log(1−Dφ(x))

]
to optimise the generator for avoiding saturation of the

original objective. With a fixed generator distribution pθ, the optimal discriminator is:

D∗(x) =
pD(x)

pD(x) + pθ(x)
. (44)

5.2.2 Adversarial IRL methods

Finn et al. (2016) propose Guided Cost Learning (GCL) [100] as the first model-free IRL algo-
rithm that learns the non-linear reward function and a stochastic policy network πθ at the same
time. It is built upon MaxEnt-IRL and designed to apply in high-dimensional complex systems.
As the partition function Z(w) is expensive to compute, GCL uses a sample-based method to
estimate the second term of the gradient in Equation 46 using mini-batch stochastic gradient
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descent. It also uses importance sampling to mitigate the estimation bias. The importance
weight for each sampled trajectory is:

a(τ ;w,θ)
.
=
p(τ ;w)

dπθ (τ)
=

exp(
∑T
t=1 r(st,at;w))∏T

t=1 π(at|st;θ)
. (45)

Hence, the gradient becomes

∇w = E
τdemo∼U

[
∇wR(τdemo;w)

]
− 1

Z(w)

∑
τ∼Dsample

a(τ ;w,θ)∇wR(τ ;w) , (46)

where Z(w) =
∑
τ∼Dsample

a(τ ;w,θ). To improve the policy under the updated reward func-

tion, GCL adopt the policy-gradient of Guided Policy Search under Unknown Dynamics [226]
that incorporates the MaxEnt-RL objective with KL-divergence constraint on the trajectory
based on local linear models. Original GCL is developed based on value-based state settings,
so it faces challenges in pixel-based POMDP settings, in particular overfitting problems when
using stronger networks.

To avoid overfitting, a convex regularisation function ψ is often applied to the reward func-
tion. Following from the MaxEnt-IRL objective (Equation 39), the objective of ψ-regularised
MaxEnt-IRL becomes:

MaxEnt-IRLψ(πdemo,P, α)
.
= arg max

r
−ψ(r) + E

τ∼dπdemo

[ T∑
t=1

r(st,at)
]
−(

max
π

T∑
t=1

E
(st,at)∼ρπ

[
r(st,at)

]
+ α E

st∼ρπ

[
H(π(· | st))

])
. (47)

Ho et al. (2016) [150] propose Generative Adversarial Imitation Learning (GAIL) 1 by
claiming that the ψ-regularised MaxEnt-IRL objective (Equation 47) is a dual problem of a
ψ-regularised maximum entropy occupancy measure matching problem:

RL ◦MaxEnt-IRLψ(πdemo,P, α) ≡

arg max
π

ψ∗
(
D
[
ρπ||ρπdemo

])
+ α× E

st∼ρπ

[
H(π(· | st; θ))

]
, (48)

whereD[·||·] represents the divergence between two distributions. GAIL chooses the ψ-regulariser
as:

ψGA(r)
.
=

 E
ρ
πdemo

[
g(−r(s,a))

]
if r > 0

∞ otherwise
and g(x) =

{
−x− log(1− ex) if x > 0

∞ otherwise
.

(49)
GAIL’s policy is optimised using entropy-regularised policy gradient with state-action value

and TRPO constraint, where the gradient is accumulated by the reward inferred from the
discriminator. The reward function used for obtaining the state-action value is defined as
follows:

r(s,a) = − log
(
1−D(s,a)

)
, (50)

where D(s,a) indicates the possibility of the state-action occurrence in the demonstration tra-
jectory. Hence, the optimal value of the regulariser is:

ψ∗GA(D[ρπ||ρπdemo ]) = max
D∈(0,1)S,A

E
ρ
πdemo

[log(D(s,a)] + E
ρπ

[log(1−D(s,a)] , (51)

1In the original paper, the algorithm is derived with cost function in the range (−∞, 0]. Here, we give the one
derived with the reward function for consistency, so the reward function in the range [0,∞). And, we always want
D(τ) or D(s, a) indicates the possibility of demonstration policy.

44

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 December 2022                   doi:10.20944/preprints202212.0305.v1

https://doi.org/10.20944/preprints202212.0305.v1


which resembles the GAN’s original objective. Essentially, GAIL minimises the Jensen-Shannon
divergence on the occupancy measure of the two policies using this regulariser:

GAIL(πdemo,M, α) = arg max
π

−JS[ρπ||ρπdemo ] + α× E
st∼ρπ

[
H(π(· | st; θ))

]
. (52)

GAIL is an on-policy algorithm, so it is not data-efficient. It often suffers from unstable
training caused by similar factors affecting training of GANs [185]. GCL and GAIL are model-
free IRL algorithms that can apply to complex environments without feature engineering. They
both learn the reward function and the policy at the same time. The difference is that in
GAIL, the reward function is indirectly optimised by optimising the discriminator with the
occupancy measure matching objective 48, while the one in GCL is optimised with the MaxEnt-
IRL objective (Equation 39).

Finn et al. (2016) [98] propose GAN-GCL that builds the bridge between GCL and GAIL.
The reward function is learned through discriminator training similar to GAIL, where we do
not have to calculate the importance weight like in GCL. At the same time, the policy πθ
can be optimised similarly to GCL. Following from GAN’s optimal discriminator representa-
tion (Equation 44) and Boltzmann distribution of optimal trajectory as the approximation of
the distribution of demonstration trajectory, GAN-GCL represent the discriminator w.r.t. the
parameterised reward function rw:

Dw(τ)
.
=

p(τ) 1
Z(w)

exp
(
Rw(τ)

)
p(τ) 1

Z(w)
exp

(
Rw(τ)

)
+ pθ(τ)

=

1
Z(w)

exp
(
Rw(τ)

)
1

Z(w)
exp

(
Rw(τ)

)
+
∏T
t=1 πθ(at|st)

, (53)

where pθ is the sampling trajectory induced by policy πθ.
Fu et al. (2018) [105] argue that policy-invariant reward [266] is not robust to changing

the dynamic, and it attempt to learn a reward function which is decoupled from the domain
dynamic. Inspired by GAN-GCL, they propose Adversarial Inverse Reinforcement Learning
(AIRL) that trains a discriminator expressed by transformed reward function on occupancy
measurement distribution like GAIL:

D(s,a, s′;w,φ) =
exp

(
r′(s,a, s′;w,φ)

)
exp

(
r′(s,a, s′;w,φ)

)
+ π(a|s; θ)

, (54)

where they use policy-invariant reward transformation [266] to define r′(s,a, s′;w,φ) = r(s,a;w)+
γh(s′;φ)−h(s;φ). In order to make reward learning independent of the dynamic, AIRL makes
rw solely dependent on the state instead of the state-action pair. The reward function that is
used to represent the discriminator becomes:

r′(s,a, s′;w,φ) = r(s;w) + γh(s′;φ)− h(s;φ), (55)

and the reward that is used to update the policy πθ in AIRL is:

r(s,a, s′;w,φ) = logD(s,a, s′;w,φ)− log
(
1−D(s,a, s′;w,φ)

)
. (56)

Kostrikov et al. (2019) introduce the Discriminator Actor Critic (DAC) [197] which extends
Adversarial IRL to off-policy learning to improve sample efficiency. Moreover, it resolves reward
biases in the reward functions defined in GAIL and AIRL using the absorbing reward function.
It shows consistently better performance than GAIL and AIRL across different domains. After
sampling trajectories using an updated policy, the transition of the absorbing states is manually
appended to the end of the samples. The discriminator is defined and optimised similarly to
AIRL, but negative samples are sampled from the replay buffer that stores all the trajectories
induced by previous policies. In DAC, they adopt TD3, instead of TRPO like other Adversarial-
IRL methods, to optimise the policy πθ because it provides a good trade-off between sample
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complexity and implementation for practical usage. Blondé and Kalousis (2019) [38] propose
another off-policy variants of GAIL called Sample-efficient Adversarial Mimic.

Rafailov et al. (2021) [293] present Variational Model-based Adversarial Imitation Learning
(V-MAIL), a model that attempts to overcome high sample complexity, non-stationary nature
of the learned reward function, and poor representation problems of above-mentioned Adver-
sarial IRL methods. V-MAIL shows significant improvement both in data efficiency and final
performance compared to model-free adversarial IRL methods by learning dynamic model P̂ϑ,
policy network πθ and discriminator Dw on latent representation. While the discriminator is
updated using the GAIL objective, it maximises the value function of the sample state by rolling
out the future states using the learned policy and latent dynamic model.

In Adversarial IRL, the formulation of reward function from the discriminator output be-
comes an essential factor for the training of a robust policy. Training with different reward
functions is associated with minimising different divergences between the marginal state-action
distribution of the demonstration and trained policy [271]. Orsini et al. (2021) [271] provide
a careful implementation and comparison of the mainstream model-free Adversarial IRL meth-
ods. They found out that regularisation techniques such as dropout [339] and weight decay [136]
have similar regularisation effect as gradient penalty [122] that is proposed to stabilise GAN
training. They also experimentally show that learning from artificial demonstrations is worse
than human demonstration. One can also learn a sparse-reward classifier to indicate if the agent
reaches its goal or not [337]. Furthermore, instead of learning the reward function, one can also
hand-design a sparse reward function based on the final state of the demonstration trajectory
[299].

6 Discussion and Future

Cloth-like deformable object manipulation is a very active research area in robotics. Other than
the four major task families we discussed in this review, there are also some other tasks in the
literature covered in this review, including cloth hanging [244], bed making [329], cloth ironing
[229], rope insertion [383] and suturing [168].

Grasping is the first challenge in all CDO manipulation domains. Robust grasping in CDO
refers to the accurate grasping of the target point without misgrasping or grasping the underlying
layer of the CDO. Besides, robust grasping demands persistent holding of the target point
without damaging the CDO while performing a certain subtask. A robust RMS should be able
to recognise the failing states and recover from these failures [241, 349]. Most of the failures
in cloth-shaping literature are due to the deficiency of robust grasping. The main reason the
simulation-trained system fails is that none of the simulators provides accurate collision and
friction modelling between the gripper and CDOs. Robust grasping has largely been unexplored
in the dressing domain.

Apart from robust grasping, the success and efficiency of CDO manipulation highly rely
on effective grasping. This means that the system should target an effective point to grasp to
accomplish a certain skill or a subtask. This usually introduces inductive biases to individual
task domains. The corners and the contour of the articles are crucial for cloth-shaping tasks.
Wakamatsu et al. (2004, 2006a, 2006b) [379, 378, 380] suggest a set of grasping strategies for
different topological scenarios for knot tying and untying tasks to accomplish a certain move. In
bag manipulation, the systems focus on the opening contour and the handles. However, dressing
literature often ignores this problem by letting the agent pregrasp an assigned key point before
executing a task. Grasping strategy for dressing tasks is an important uninvestigated research
area for achieving a fully automated dressing agent. The grasping strategy is the first type
of inductive bias in these four domains. A general agent should be able to flexibly adjust its
grasping strategy based on the article type and the goal of the task. This can be delegated to
individual motor skills.
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The application of reinforcement learning has been heavily investigated in the cloth-shaping
and dressing domains. Meanwhile, there are fewer DRL applications in dressing and none in bag
and rope manipulation. Reward shaping is one of the open problems of applying RL in CDO.
Although there have been several attempts [155, 60, 358], designing a simple and effective dense
reward function for cloth folding and dressing tasks is still challenging. A sparse reward function
can solve this, but detecting the success of a particular subtask and the full task automatically is
equally difficult. Moreover, we are aware of no literature on solving knot tying/untying using RL,
probably because of the difficulty in defining dense reward functions in this domain. A possible
solution is to take reference from energy function [336, 205] from knot theory literature, but
this can only solve untying problems using RL.

The second inductive bias is the difference in the reward functions between the 4 task families.
A promising solution to avoid reward shaping in CDO is to use imitation learning methods.
Imitation learning approaches have been investigated in detail in all four domains. However,
these applications are mostly based on behaviour cloning (BC) and learning-from-observation
(LfO) methods. We are unaware of approaches based on inverse reinforcement learning (IRL),
a type of data-driven imitation learning method, in CDO manipulation literature. The recent
advancement of Adversarial IRL shows substantial improvements compared to BC baselines
in continuous control settings [293]. This could be the key technology to bypass the complex
reward engineering in CDO domain while persevering similar data-efficiency as DRL methods.

Conventional IRL methods are inefficient mainly due to the inner loop of RL optimisation.
Adversarial IRL approaches have in the past five years improved the training efficiency by
learning the reward function and policy at the same time. It will be interesting to see the
performance of adversarial IRL methods in the CDO domain. Among the four domains, only
some of the application on rope manipulation have utilised LfO approaches with the assistance
of topological perception and motion planning approaches. LfO with IRL is probably the closest
analogy to how humans attempt to imitate the demonstrator’s intention. It will be interesting
to see the application of such approaches in the CDO domain.

The differences in the intermediate representations and perception systems among the four
domains account for the third and the fourth inductive biases. In cloth-shaping, most systems
keep track of the counter and corners of the cloth, while some attempt to reconstruct the mesh
representation. Most of the knot tying/untying systems leverage topological representation of
the rope, while some keep track of the individual points on the rope. In bag manipulation, RMSs
are mainly interested in the openings and handles as well as the size and shape of the bag. In
the dressing domain, we are mainly interested in the relationship between the article and the
body. We also want to keep track of human motion for safe and reactive manipulation. Similar
to the grasping strategy, the variation of perception systems can be delegated to individual
motor skills. Many approaches also attempt to learn a latent representation in self-supervised
and unsupervised manners for generalisation. Representation-learning community in DRL and
DIL can take inspiration from the challenges of perception in these four domains to propose
more general and effective representation learning algorithm. Moreover, applications of transfer
learning, multi-task and continual learning in the CDO domain are interesting directions to
explore.

To develop a robust RL skill controller, we cannot avoid the exploration component because
the agent needs to encounter different scenarios to learn to achieve goal states from them. SOTA
RL exploration strategies are barely applied in any of these domains. The major obstacle for
the exploration is CDO’s large state-action space and complexity of the state-action dynamic.
It will be interesting to see if the SOTA exploration strategies can improve the data efficiency
of RL in CDO domains. Skill-level environments of CDO could also be a good development
benchmark for the progression of DRL and DIL, where CDO set challenges to exploration and
state estimation for these data-driven methods due to its complex state-action dynamic and
sever self-occlusions.

Multi-modal learning in DRL has not been explored much in mainstream research. In reality,
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humans are highly reliant on haptic sensors to control the force and infer the material property
of objects in addition to vision. In the CDO domain, we can tie a knot without looking at
the rope, and we depend on the haptic sensor to dress and even help others to dress garments.
Furthermore, we can roughly estimate how much force we can exert on a certain object. Building
an observational world model that incorporates both vision and haptic signals is an interesting
research direction for robotics development.

Velocity/acceleration control is still a challenging problem in cloth-shaping, even in sim-
ulation. Theoretically, velocity/acceleration control can be more efficient than P&P action
primitives because fling action can take advantage of the inertia of the cloth [126] for flattening.
It is more fine-grained control for smoothing the surface of the cloth at the end of folding and
flattening. Methods using the analytical model can only perform velocity control in a narrow
range of fixed configurations. For more robust dynamic control, the imitation learning and rein-
forcement learning approaches suffer from data efficiency caused by the enormous state-action
space of the domain. For such fine-grained control, the delay between the perception and con-
trol can devastate the system’s performance in physical trials. We will need to develop novel
algorithms based on Action-concurrent Continuous-Time MDP [393].

There exist two simulation benchmark environments in the CDO domain; SoftGym [234]
includes a variety of cloth-shaping environments, while DeformableRaven [327] also offers bag-
manipulation configurations. However, neither environment can model the interaction between
the cloth and the gripper; they adopt anchoring to attach the cloth to the gripper. Also, the
modelling of the rope and the hem of the sack is based on a sequence of beads in DeformableR-
aven, which introduces a significant reality gap. Robotic application on bags with handles are
rare compared to sacks in bag manipulation. Most of the dressing simulation is conducted in
the Nvidia PhysX [2] simulator, but there is no benchmark environment for this task family.
There is no standard simulation and benchmark environment for rope insertion, knot tying and
knot untying tasks, although the rendering of the ropes has been done using Blender and Unity
with Obi. Furthermore, precise and tight knot-tying has not yet been studied in sufficient depth,
and we are unaware of any robotic applications in assistive undressing and self-undressing tasks.
Improving the simulation and creating more skill-related benchmark environments in the CDO
domain could accelerate the progress in this field.

6.1 Summary

This review has covered the state of the art developments in four tasks families in CDO manipu-
lation, including cloth-shaping, rope manipulation, bag manipulation and dressing. Most of the
systems focus on skill developments, where each task domain is beginning to adopt data-driven
approaches, such as deep imitation learning and deep reinforcement learning in order to achieve
more robust and general skill controllers. Attempts at solving long-horizon multi-step tasks
that involve multiple articles and other items are rare in this field. It will be beneficial to build
benchmark environments for tasks like doing laundry [133, 241] and a full set of assistive/self-
dressing/undressing tasks. We expect that this will require involvement of hierarchical control
methods based on the frameworks of options and semi-MDP [25].

This review identifies four types of inductive biases that occurs in the four task families, which
are the differences in grasping strategies, reward engineering, intermediate representations and
perception systems. We also outline the recent advancement and tools of robotics, DIL and
DRL that can be employed in CDO manipulations, along with their challenges so that readers
will be aware of these obstacles while applying them. In the end, we summarised and identified
the future work in CDO manipulation. further develop CDO manipulation.
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[24] André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van
Hasselt, and David Silver. Successor features for transfer in reinforcement learning. Ad-
vances in neural information processing systems, 30, 2017.

[25] Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement
learning. Discrete event dynamic systems, 13(1):41–77, 2003.

[26] Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich
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[367] René Traoré, Hugo Caselles-Dupré, Timothée Lesort, Te Sun, Natalia Dı́az-Rodŕıguez,
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