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Abstract: Low-cost monitors make it possible now for the first time to collect long-term (months to 

years) measurements of potential indoor exposure to fine particles.  Indoor exposure is due to two 

sources: particles infiltrating from outdoors and those generated by indoor activities.  Calculating 

the relative contribution of each source requires identifying an infiltration factor. We develop a 

method of identifying periods when the infiltration factor is not constant, and searching for periods 

when it is relatively constant. From an initial regression of indoor on outdoor particle concentra-

tions, a Forbidden Zone can be defined with an upper boundary below which no observations 

should appear.  If many observations appear in the Forbidden Zone, they falsify the assumption of 

a single constant infiltration factor.  This is a useful quality assurance feature, since investigators 

may then search for subsets of the data in which few observations appear in the Forbidden 

Zone.  The usefulness of this approach is illustrated using examples drawn from the PurpleAir net-

work of optical particle monitors. An improved algorithm is applied with reduced bias, improved 

precision, and a lower limit of detection than either of the two proprietary algorithms offered by the 

manufacturer of the sensors used in PurpleAir monitors. 

Keywords: exposure; indoor particles; infiltration factor; PM2.5; PurpleAir; Random Component Su-

perposition (RCS); Plantower sensors; indoor-generated particles;  

 

1. Introduction 

Airborne fine particles are the single most important environmental cause of mortality.  Outdoor and indoor sources are roughly 

equally important, with annual estimated deaths in the millions [1,2]. The London smog of the 1950s, which killed thousands of 

persons over a period of a week, was instrumental in activating many countries to monitor outdoor particle concentrations [3]. 

Indoor risks were perhaps slower to be recognized and still receive only a fraction of the attention and resources devoted to moni-

toring and controlling sources of outdoor particle pollution. However, most people spend most of their lives indoors [4]. Therefore, 

multiple studies have been carried out to measure either personal or indoor exposures to particles [5-12]. However these studies 

have been limited to short-term measurements (days or weeks), since the expense of maintaining research-grade instrumentation in 

homes, together with the noise and clutter of the instruments, has made long-term (months or years) studies with actual measure-

ments of indoor concentrations nearly impossible. 

Recently, however, the advent of low-cost monitors has made it possible to measure PM2.5 continuously for months or even years 

inside and outside residences.  Multiple manufacturers have produced optical particle counters employing tiny noiseless sensors to 

estimate fine particle concentrations (manufacturers). These monitors have been tested for response to particles produced by multiple 
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common indoor sources and many have performed well [13,14]. The unobtrusive size and lack of noise has made them attractive to 

homeowners interested in their exposure to fine particles. 

An important goal in studies of human exposure to particles has been to differentiate particles produced by indoor sources from 

those that infiltrate homes from outdoors. Multiple methods have been adopted. In the pioneering Harvard 6-City Study, indoor air 

concentrations were regressed on outdoor concentrations [15.]. The slope of the regression was interpreted as an infiltration factor 

Finf that could be multiplied by the outdoor concentration to determine the contribution of outdoor particles to total indoor concen-

tration.  

Alternative methods have also been applied, such as using a tracer (typically sulfur) with few indoor sources to reduce the indoor-

generated particle concentrations [16-19]; using a “censoring” method on continuous indoor measurements to eliminate indoor 

sources [20-23]; using a recursive modeling approach based on dynamic modeling of near-continuous measurements [24,25]; meas-

uring deposition and penetration directly [26]; applying mass balance analysis to estimate resuspension [27-29]; and using LOESS 

regression to detect minima in the indoor/outdoor ratio [30].  

However, the regression method is still being widely used. A careful statistical analysis of the regression method, called the Random 

Component Superposition (RCS) method is provided in [31].  In this approach, the following model is used: 

Cin(t) = Pa/(a+k) Cout(t) + G(t)         (1) 

where Cin and Cout are the instantaneous indoor and outdoor concentrations (µg/m3), P is the penetration factor (dimensionless 

number describing the fraction of outdoor particles able to cross the building envelope), a is the air exchange rate (h-1), k is the 

deposition rate (h-1), and G is the instantaneous concentration at time t caused by indoor activities.   

The term Pa/(a+k) is the infiltration factor Finf and describes the fraction of outdoor PM that enters the home.  In the case of a 

time-averaged monitoring period, the equation may be written  

<Cin> = Finf <Cout> + <G>        (2) 

where now <Cin> and <Cout> are the averaged values, <G> is the average contribution of indoor activities to the indoor concen-

tration and Finf is considered to be constant.  This equation is in the form of a simple linear regression, where the intercept is the 

average contribution of indoor-generated particles to the total indoor concentration, and the slope is the infiltration factor Finf.  

Multiplying the observed outdoor average concentration by Finf determines the indoor average concentration of infiltrated particles, 

or Cinf: 

<Cinf >= Finf <Cout>         (3) 

Health effects depend on exposure.  Remembering that exposure is defined as the contact of a pollutant with a receptor (in this 

case fine particles in the breathing zone of a human), for a person over time T, a rough estimate of exposure would be given by 

<Cin>T = Finf <Cout>T + <G>T       (4) 

Of course, persons are not always indoors, so equation (4) is not a measure of their exposure.  It is, however, a measure of the 

potential exposure of a person indoors over time T. In particular, the first term on the right-hand side of equation (4) is described 

by epidemiologists as the exposure to particles of ambient origin.  Epidemiologists then seek a relationship between health effects 

and this exposure to particles of ambient origin. The second term is the potential exposure to indoor-generated particles. Epidemi-

ologists do not generally include this second term, since G is usually completely unknown. 

There are three sources of error in this formulation. First, indoor-generated concentrations are seldom known. These can sometimes 

be substantial, as in smoking tobacco or marijuana, cooking on gas or electric stoves, burning candles, or simply moving about and 

resuspending particles [32-38]. Secondly, little is known about the times the residents are not at home. Thirdly, the equation assumes 

a constant infiltration factor, despite a number of influences such as the indoor-outdoor temperature difference, wind speed or 

direction, and, in particular, occupant behaviors such as opening a window or running a kitchen fan [39-42].  

The first source of error can be rectified by measuring indoor and outdoor concentrations. This is now being done for an ever-

growing number of homes using low-cost particle sensors. The second source of error can only be dealt with statistically at present, 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 December 2022                   doi:10.20944/preprints202212.0301.v1

https://doi.org/10.20944/preprints202212.0301.v1


 

 

due to the lack of low-cost personal monitors. The third source of error can be reduced by using the RCS model to identify periods 

when different infiltration factors may occur for a given location. This is the focus of our investigation. 

2. Materials and Methods 

2.1 RCS model 

The RCS model assumes a constant infiltration factor over the time the house is monitored.  The concentration due to particles of 

ambient origin is given by equation (3) above. Suppose there is a set of average indoor concentrations and corresponding average 

outdoor concentrations. A regression of the indoor on the outdoor concentrations results in a regression line with slope Finf.  Now 

a second line is drawn showing the contribution of outdoor particles to indoor PM2.5. That line is the solution to equation (3) above 

for the outdoor-infiltrated particles only.  The line is parallel to the slope of the regression and passes through the origin.   Con-

sidering that the indoor contribution <G> cannot be negative, the line through the origin defines a “Forbidden Zone” where few 

observations are expected (Figure 1). For any given observation, the total indoor air concentration consists of two components: the 

outdoor-penetrated and indoor-generated particles.  The outdoor-penetrated particles (vertical red line in Figure 1) are determined 

by the upper boundary of the Forbidden Zone. The indoor-generated particles (vertical blue line in Figure 1) are calculated by 

subtracting this value from the observed total indoor concentration. 

 

Figure 1.  Regression of indoor on outdoor PM2.5 measured over 343 days for a home.  The slope of the regression line (blue) is 

the infiltration factor Finf. The parallel line (red) is the product of the infiltration factor Finf and the outdoor concentration. This line 

forms the upper boundary of a “Forbidden Zone”. No observed point should appear in this zone if Finf is constant and applies to all 

data, because it would indicate a negative indoor-generated concentration.  

 

A major weakness of the regression approach (including the RCS method) is the assumption of a constant infiltration factor, despite 

the influences mentioned above that alter the infiltration factor. For example, a major EPA study measured 37 homes in the Research 

Triangle Park of North Carolina for personal, indoor, and outdoor concentrations of sulfur and fine particles [11, 17-19]. Each home 
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was monitored for 7 days in each of the four seasons.  The infiltration factor was considerably lower (0.49) in summer compared 

to the fall, winter, and spring values of 0.64, 0.62, and 0.59, respectively. The authors attributed this effect to increased use of air 

conditioning during the summer.  

The existence of the Forbidden Zone is a feature that allows a check on the assumption of a constant infiltration factor. If many 

observations appear in the Forbidden Zone, the infiltration factor was not constant.  However, it may then be possible to divide the 

dataset into two or more datasets, each with its own constant infiltration factor.  

This study deals with the problem of a variable infiltration factor.  First, the RCS approach is applied to an entire dataset of matched 

indoor and outdoor daily average PM2.5 measurements.  If there are multiple violations of the Forbidden Zone, subsets of the data 

are then sought that will have few or no violations.  A rough estimate of the variability of the infiltration factor is the daily in-

door/outdoor (I/O) ratio as a function of time. If there is a marked variation, it may suggest subsets of the data likely to have more 

stable ratios.  For example, a seasonal variation (due to open windows in spring or use of air conditioning in summer) might appear. 

If the resulting RCS regressions on each subset (or at least one of the subsets) show no or few violations of the Forbidden Zone, the 

result can be accepted as a robust estimate of the infiltration factor for that subset and thus a good estimate of the relative contribu-

tions of indoor-generated and outdoor-penetrated particles to the total indoor PM2.5. 

The RCS approach is illustrated using matched indoor and outdoor long-term measurements (hundreds of days) at six California 

locations.  The indoor sites are in Menlo Park, Santa Rosa, Redwood City, and San Francisco.  The outdoor sites are in those four 

locations and also at Bennett Valley, near Santa Rosa, and Alexander Avenue, in Redwood City. 

2.2 Algorithm for calculating PM2.5 

Although two algorithms (CF1 and CF_ATM)) for calculating PM2.5 are offered by the Plantower ( https://www.plantower.com/en/ ) 

manufacturer of the sensors used in the PurpleAir monitors, we reject both.  There are several reasons for rejection:  

1. Both algorithms are biased high, from 40-90% [43-45].  

2. Both algorithms assign values of zero to some results below an arbitrary value.  Yet there are no cases in which the 

reported number of particles is zero. This problem is particularly prevalent for indoor PM2.5 measurements, typically 

below outdoor levels.  In one study with >900,000 indoor measurements, more than 200,000 values were reported 

as zero by the Plantower algorithms (unpublished data, available from LW).  

3. No information is provided by Plantower regarding the calibration aerosol properties, such as the chemical makeup 

and its density. 

4. The precision of measurements is poor, in part because one or both sensors within the PA-II monitor often return 

zero values. 

5. The limit of detection (LOD) is elevated, again in part because of poor precision caused by zero values. 

The ALT-CF3 algorithm was developed to provide a transparent and reproducible alternative to the “black box” algorithms provided 

by Plantower.  It is described fully in [46]. The algorithm uses the particle numbers reported for the three size fractions 0.3-0.5 µm, 

0.5-1 µm, and 1-2.5 µm. By assigning an average diameter to each size fraction, the total particle volume is calculated. The total 

PM2.5 mass is then determined in two steps: first a density is assigned (in this case the density of water) and then a calibration factor 

is determined by comparison to nearby regulatory monitors employing Federal Reference or Federal Equivalent Methods 

(FRM/FEM).  The original calibration factor for 33 PurpleAir PA-II monitors within 0.5 km of 27 regulatory monitors was 3.0, 

leading to naming this alternative algorithm ALT-CF3 (48).  The equation giving the ALT-CF3 estimate of PM2.5 is  

PM2.5 = 3(0.00030418 N1 + 0.0018512 N2 + 0.2069706 N3)     (5) 

where N1, N2, and N3 are the number of particles per deciliter in the three smallest size categories.   

The ALT-CF3 method has been found to provide less bias, better precision, and a lower limit of detection than either the CF1 or 

CF_ATM algorithms [47-48].   This method is presently available on the PurpleAir mapping page at the PurpleAir Website 

(https://www2.purpleair.com/) as an alternative to the proprietary algorithms offered by Plantower. The method is also available on 
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the PurpleAir API page (https://api.purpleair.com/) under a different name: “PM2.5_alt”. All PM2.5 data in this paper were determined 

using the ALT-CF3 algorithm.  

2.3 Calculation of the limit of detection (LOD) 

A method for calculating the limit of detection for continuous monitors has been developed [49].  By analogy with integrated 

methods such as weighing particle masses on filters, it is required that the mean of multiple collocated instruments of one type all 

measuring the same environment at some low concentration exceeds 3 times the standard deviation to be considered as evidence at 

the 95% confidence level of a non-zero concentration. This approach can be applied to a single PurpleAir monitor with two sensors 

A and B. Every data point has an associated standard deviation based on the two sensors.  The data can be ordered by the mean of 

the two sensors.  At very low mean values, it is likely that the ratio of the mean to the standard deviation (µ/σ) will be <3 for many 

of the observations.  For higher mean concentrations, the fraction of cases with  µ/σ <3 will decline.  When this fraction falls 

below 5%, the associated mean concentration will be the LOD.  Operationally, this approach can be implemented by considering 

successive batches of, say, 100 measurements of the ordered data. When the number of ratios <3 falls to fewer than 5 of the 100 

values in the batch, the associated mean of that batch may be considered a provisional LOD.  However, a batch at a higher con-

centration may have 5 or more ratios <3, in which case the LOD will be greater than the provisional LOD and the search for the 

LOD must continue to higher concentrations. This problem can be solved by analyzing all possible batches of 100 (often in datasets 

of more than 100,000 entries) and picking the highest concentration with only 4 out of 100 values having µ/σ <3. 

 

 

3. Results 

3.1 Menlo Park 

This site has one outdoor PA-II monitor (with two Plantower PMS 5003 sensors) and one indoor PA-I monitor (with one Plantower 

PMS 1003 sensor). The monitors operated from 11/13/2019 to 12/4/2021. The site is a private residence occupied by a renter.  

Between July 2, 2020 and Feb 14, 2021, the renter was out of the country and the residence was unoccupied.  Daily means were 

calculated for all days using the ALT-CF3 algorithm.  At least 540 of the 720 possible measurements per day were required (18 

h/day). For every two-minute measurement made by the outdoor monitors with two identical sensors A and B, a measure of precision 

(abs(A-B)/(A+B)) was calculated.  Precision was required to be less than 0.2 to be included in the analysis.  This resulted in the 

loss of about 8% of the data. 

The data for the time of occupancy (270 days) consist of 372,621 two-minute average PM2.5 concentrations (Table 1). Note the loss 

of about 70,000 data points for the Plantower CF1 algorithm (bottom three rows) compared to the ALT-CF3 algorithm (top five 

rows).  This is partly due to the Plantower decision to assign values of zero to concentrations below an arbitrary cutoff.  No values 

of zero ever occur in the ALT-CF3 algorithm, since there are never occasions when the number of particles between 0.3 and 0.5 µm 

are zero.  The CF1 algorithm overestimates the outdoor PM2.5 concentration by about 85% (8.3 vs. 4.4 ug/m3) and the indoor 

concentration by 50% (3.3 vs. 2.2 ug/m3). The mean PM2.5 concentration due to indoor activities (1.78 µg/m3) is larger than the 

mean concentration (0.78 µg/m3) attributable to penetration of ambient PM2.5. The Spearman correlation coefficient was reasonably 

high at 0.67. 

Table 1.  PM2.5 (µg/m3) and associated precision at the Menlo Park site using the ALT-CF3 and Plantower CF1 algorithms. 

 N obs Mean Std.Err. 

 Lower  

quartile Median 

Upper  

quartile Max 

ALT-CF3  

Mean outdoor PM2.5  372621 4.4 9.2E-03 1.4 2.7 5.1 311 

Indoor PM2.5  369610 2.2 0.015 0.65 1.3 2.4 1050 

Outdoor-infiltrated  372621 0.78 1.6E-03 0.25 0.5 0.9 55 
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Indoor-generated  369610 1.78 0.015 0.21 0.6 1.5 1049 

Precision outdoor  372621 0.06 7.3E-05 0.02 0.1 0.1 0.2 

Plantower CF1  

Mean outdoor PM2.5 304345 8.3 0.019 2.5 5.1 9.6 552 

Indoor PM2.5 301625 3.3 0.031 0.61 1.8 3.8 1874 

Precision outdoor  304345 0.07 9.1E-05 0.03 0.1 0.1 0.2 

 

For the 270-day period when the residence was occupied, the RCS estimate of the infiltration factor is 0.0849 (Figure 2).  The 

RCS-predicted Forbidden Zone created by the product of Finf and the outdoor concentration is not violated by a single daily meas-

urement.  This suggests that the estimate of a single constant value for the infiltration factor throughout the entire period is robust.  

 

Figure 2.  Regression of daily outdoor PM2.5 on indoor PM2.5 during the time the Menlo Park residence was occupied (11/13/2019 

to 7/2/2020 and 2/14/21 to 12/4/2021). 

 

3.1.1 Limit of detection (LOD) at Menlo Park 

Using the approach to calculate the LOD described in [49], the ALT-CF3 algorithm resulted in an estimated LOD of 1.10 µg/m3, 

with 73,458 (16.6%) PM2.5 ALT-CF3 values below the LOD.  For the Plantower CF1 algorithm, the LOD was almost 4 times 

higher at 4.15 µg/m3 and nearly half (48.6%) of all values fell below the LOD.  

 
3.2 Oakmont, Santa Rosa, CA 

Oakmont is a community within Santa Rosa, CA.  Two indoor PA-II monitors 1 & 2 were set up on 7/23/19 and operated until 

6/18/20; at that point, two additional PA-II monitors (3 & 4) were deployed. Monitors 1 & 4 were operated exclusively indoors, and 

monitor 3 (except for one month) outdoors for the next 19 months to September 28, 2022.  Daily means were calculated for all 

days using the ALT-CF3 algorithm.  At least 360 of the 720 possible measurements per day were required. A table of results for 
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the Plantower algorithms CF1 and CF_ATM for comparison with the ALT-CF3 algorithm is provided (Table 2). The Plantower 

algorithms overestimated PM2.5 values by 50% (CF1) and 30% (CF_ATM) compared to the ALT-CF3 algorithm, which has been 

calibrated against multiple regulatory monitors [30].  The Plantower algorithms resulted in a major loss of data (18%) due to the 

Plantower practice of assigning values of zero to results below an arbitrary cutoff.  (The ALT-CF3 algorithm resulted in no zero 

values.) The mean precision of 22% for both Plantower algorithms is nearly 3 times the mean of 8% shown by the ALT-CF3 

algorithm. 

 

Table 2. All PM2.5 data from Monitor 1 at the Oakmont site between 7/23/19 and 9/28/22  

 Valid N Mean Std. Err. Min Lower quartile Median Upper quartile Max 

MEAN 1 CF1 593793 4.41 0.03 0 0.105 1.1 3.28 1678 

MEAN 1 CF ATM 593793 3.9 0.02 0 0.105 1.1 3.28 1118 

MEAN 1 ALT-CF3 593793 2.97 0.02 0.0063 0.543 1.167 2.39 865 

precision 1 CF1 488117* 0.22 0.0004 0 0.04 0.098 0.25 1 

precision 1 CF ATM 488117* 0.22 0.0004 0 0.039 0.098 0.25 1 

precision 1 ALT-CF3 593695 0.08 0.0001 3.02E-07 0.029 0.062 0.11 0.87 

* Missing 105,676  observations assigned a value of zero by the Plantower CF1 or CF_ATM algorithms 

 

Quality assurance of the data was performed by setting a limit of 0.2 (20%) on the precision of both the indoor and outdoor meas-

urements. This resulted in ~9% of the data being deleted. Also, several experiments resulting in elevated PM2.5 for periods of several 

hours in one room of the house (which included at least one of the indoor monitors) were removed from consideration. This resulted 

in a further removal of ~0.6% of the data. The final database consisted of 804 days with matched indoor and outdoor daily means. 

At the Oakmont site, monitors 1 & 4 were always indoors, monitor 2 was mostly indoors, and monitor 3 was outdoors except for 

one month.  The total number of zeros reported by the Plantower CF1 (and CF_ATM) algorithm for PM2.5 were >100,000 (17-

22%) for the two indoor monitors and less than about 40,000 (6-7%) for monitor 3, which was mostly outdoors (Table 3).  This 

indicates how the lower concentrations found indoors lead to increased numbers of zeros reported by the Plantower algorithms 

compared to outdoors. 

 

Table 3.  Number of zeros reported by CF1 (and CF_ATM) and percentage of total measurements 

Monitor/sensor Location Zeros Total % 

1a Indoors 127195 593804 21 

1b Indoors 129114 593804 22 

4a Indoors 114186 593688 19 

4b Indoors 102616 593688 17 

2a Some outdoors 52000 587309 9 

2b Some outdoors 121399 587309 21 

3a Mostly outdoors 40682 593813 7 

3b Mostly outdoors 33836 593813 6 

 

3.2.1 Limit of detection (LOD) for Oakmont 

The LOD was calculated for each monitor-location for both the Alt-CF3 and Plantower CF1 algorithms (Table 4). For the ALT-

CF3 algorithm, the LOD ranged from 0.60 to 1.32 µg/m3, and was always exceeded by a majority of the observations.  For the 
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Plantower CF1 algorithm, the LOD ranged from 2.9 to 9.9 µg/m3, and fewer than half the observations exceeded the LOD except 

for a one-month period when monitor 3 was moved indoors. 

 

Table 4.  LODs and percent of observations exceeding the LOD for Oakmont comparing the ALT-CF3 algorithm to the Plantower 

CF1 algorithm 

Moni-

tor  Location Valid N 

ALT-CF3 

LOD (µg/m3) 

ALT-CF3 

N>LOD 

ALT-CF3 

(%>LOD) 

CF1 LOD 

(µg/m3) 

CF1 

N>LOD 

CF1 

(%>LOD) 

1 Indoors 406108 0.99 233900 58 2.9 177908 44 

2 Outdoors 253454 0.92 203384 80 9.9 39487 16 

2 Indoors 146229 0.72 110674 76 3.2 44289 30 

3 Outdoors 363797 0.6 334973 92 4.4 156850 43 

3 Indoors 42304 0.52 42114 99.6 2.9 32150 76 

4 Indoors 406092 1.32 215872 53 5.3 79371 20 

 

The regression of the indoor on outdoor PM2.5 using the ALT-CF3 algorithm is provided (Figure 3). However, there are a large 

number of values in the Forbidden Zone, suggesting that the estimate of the infiltration factor is not robust.   

 

  

 

Figure 3. Random Component Superposition (RCS) regression for Oakmont.   
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Analysis of the monthly regressions showed a clear pattern of low infiltration factors (mean 0.11, SE 0.02) for the cool wet months 

of December through May (227 days), and high infiltration factors (mean 0.37, SE 0.04) for the warm dry months of June through 

November (285 days) (Figure 4). The 6 months (June-November) with high infiltration factors and 6 months (December through 

May) with low infiltration factors matches up very well both with temperature and rainfall.  The 6 months with highest average 

temperatures in Santa Rosa (59-66 oF) are May-October, while the 6 months with lowest temperatures (46-55 oF) occur in Novem-

ber-April. Rainfall is also limited to the November-April time frame, with the six months from May to October seldom experiencing 

rain. Doors and windows are more likely to be open when the weather is warm and dry, resulting in a higher infiltration factor in 

the warm months.  The I/O values appear to be a sine wave with a period of one year, and the peaks in the summer months and 

troughs in the winter months. 

 

Figure 4. Indoor-outdoor (I/O) ratio of daily means at the Santa Rosa site. 

 

 

Therefore the data are split into two 6-month periods.  The 6-month period from December to May had few points falling into the 

Forbidden Zone (Figure 5). Therefore the estimated infiltration factor of 0.1355 is accepted, resulting in an average contribution of 

1.54 µg/m3 made by indoor-generated particles during this period. 
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Figure 5. RCS regression of indoor on outdoor air for the December through May data in Oakmont.   
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During the remaining 6 months of June-November, once again few points fall into the Forbidden Zone (Figure 6).  The estimated 

infiltration factor was 0.3115, more than twice as high as the winter value of 0.1255, and the estimated contribution of indoor-

generated particles is 1.90 µg/m3. 

 

Figure 6.  RCS regression of indoor on outdoor air for the June through November data in Oakmont.  
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3.3 Redwood City, CA 

A site in Redwood City, CA operated two PurpleAir PA-II monitors indoors and one PurpleAir PA-II monitor outdoors from May 

1, 2021 until October 16, 2022. The 2-minute average indoor data for the full 19-month period are provided for both the Plantower 

CF1 and ALT-CF3 algorithms in Table 5. The Plantower CF1 algorithm overestimated PM2.5 by about 50% (6.2 vs. 4.1 ug/m3). 

The mean precision of 17-21% in the CF1 algorithm was about twice the 9-10% observed for the ALT-CF3 algorithm. Applying an 

upper bound of 20% to the precision resulted in about 15% of the PM2.5 CF3 data being removed from the analysis, compared to 

40% of the Plantower CF1 data.  

 

Table 5.  All indoor PM2.5 data (µg/m3) and associated precision for monitors 1 & 2 compared for the ALT-CF3 and Plantower 

CF1 algorithms for the 19-month period 7/3/19 to 2/6/22.   

 N obs. Mean Std.Err. Lower quartile Median Upper quartile Max 

ALT-CF3         

Mean 1  662773 4.2 0.020 0.93 1.8 3.3 735 

Mean 2 662635 4.0 0.017 0.92 1.8 3.4 539 

precision 1 662719 0.09 9.2E-05 0.032 0.069 0.12 0.98 

precision 2 662561 0.10 1.2E-04 0.043 0.080 0.13 0.99 

Plantower CF1         

Mean 1  662773 6.3 0.033 0.74 2.3 5.1 1149 

Mean 2  662633 6.1 0.029 0.70 2.3 5.1 883 

precision 1 626667 0.17 3.1E-04 0.036 0.083 0.18 1 

precision 2 617016 0.21 3.2E-04 0.066 0.12 0.22 1 

 

The extreme loss of data from use of the Plantower CF1 algorithm is largely due to the practice of setting all PM2.5 values falling 

below a cutoff to zero. The number of zeros reported by the Plantower CF1 algorithm ranged from 49,013 to 72,442 (7-11% of all 

data). No zeros are ever reported by the ALT-CF3 algorithm, since particles are always present in the 0.3-0.5 µm size category. 

Daily means were calculated for all days with the requirement that at least half of the 720 possible measurements per day were 

available at an acceptable precision (abs (A-B)/(A+B)) of better than 20%. Out of 411 days meeting these requirements, 3 days had 

I/O values>1, indicating strong indoor sources, and were dropped from the database.  One outlier on 8/8/21 of >35 ug/m3, probably 

due to a wildfire, was dropped, since the ALT-CF3 algorithm calibration factor (CF) of 3 may be inadequate to describe the response 

to wildfire smoke.  The final database consisted of 407 days with matched indoor and outdoor daily means. 

The RCS approach for the entire database results in a large number of values in the Forbidden Zone, indicating that the infiltration 

factor varies too much to be estimated using the entire database (Figure 7). 
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Figure 7. Random Component Superposition (RCS) regression for the Redwood City site.  The slope (Finf) of 0.3625 results in 

many datapoints falling into the Forbidden Zone (below the estimated outdoor-penetrated particles given by the red line). 
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The I/O ratio is shown for the entire period (Figure 8).  It suggests a sine wave with a period of one year, peaks occurring in the 

summer months and troughs in the winter months. A period of low infiltration factors appears between about November and March.  

 

 

 

Figure 8. Indoor-outdoor (I/O) ratio of daily means at the Redwood City site. 
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The RCS regression on the November-March period results in only 15 points falling into the Forbidden Zone, and 12 of these seem 

to “hug” the line (Figure 9). Therefore the estimated infiltration factor of 0.2329 and mean contribution of 0.556 µg/m3 made by 

indoor-generated particles during this period appears robust. 

 

 

Figure 9. Random Component Superposition (RCS) regression for the November through March data at Redwood City.   

 

An effort was made to estimate the infiltration factor for the summer months (June-July-August).  However, the effort failed, 

suggesting too much variability of the infiltration factor. Two of these months were strongly affected by wildfires, which have been 

shown to affect the PurpleAir calibration by a factor of ~2 [50]. This may explain the failure of the RCS approach to establish a 

reasonable estimate of outdoor-penetrated and indoor-generated particles for these months. 

3.3.1 Limit of detection (LOD) 

For monitor 1 indoors, the LOD for the ALT-CF3 algorithm was about 1.4 µg/m3, corresponding to about 97% 

of all observations exceeding the LOD. For the same monitor, the Plantower CF1 algorithm resulted in an estimated LOD of 4.75 

µg/m3, with only 42% of observations exceeding the LOD. 
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3.4 Alexander Avenue 

Indoor and outdoor PurpleAir PM2.5 measurements at a residence on Alexander Avenue in Redwood City were collected between 

12/5/17 and 9/7/22 using the ALT-CF3 algorithm.  Daily means were calculated for all days with the requirement that at least half 

of the 720 possible measurements per day were available at an acceptable precision (abs (A-B)/(A+B)) of better than 20%. The final 

database consisted of 1645 days with matched indoor and outdoor daily means. 

The I/O ratio is shown for the entire period (Figure 10).  Unlike our previous findings with homes in Santa Rosa and Redwood 

City, the I/O ratio shows little or no seasonal variation.  There is however, an apparent sudden switch to less variable values 

occurring near January 2020.  

 

  

Figure 10. Indoor-outdoor (I/O) ratio of daily means at the Alexander Avenue site. 
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The RCS approach to estimate the infiltration factor for the entire database resulted in a large number of values in the Forbidden 

Zone (Figure 11).  

 

 

Figure 11. Regression of Alexander Avenue indoor PM2.5 on Alexander Avenue outdoor PM2.5. 
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Based on the apparently smaller variability of the I/O ratios in the latter part of the period from about January 1, 2020 to September 

7, 2022 (938 days), the RCS approach is applied to that period (Figure 12). In this period, 75 (<8%) of the observations fall into the 

Forbidden Zone. This is somewhat marginal.  However, if applicable, it would suggest an infiltration factor of 0.08 and an average 

contribution of about 0.51 µg/m3 from indoor-generated particles. The contribution of particles of ambient origin was 0.44 µg/m3, 

so the indoor-generated fraction of the total indoor potential exposure was about 54%. 

 

 

 

Figure 12. RCS regression for the period from 2020-2022.   

 

An effort was made to estimate the infiltration factor for the period from 2017 through 2019.  However, this effort was unsuccessful.    

For this location, there appears to have been a period before 2020 with a higher infiltration factor and a period from 2020 to the 

present with a lower infiltration factor.  Only the latter period allowed a finding of a likely stable infiltration factor and therefore 

an estimate of the relative importance of indoor-generated and outdoor-penetrated particles.   

3.5 Bennett Valley  

Outdoor PurpleAir PM2.5 measurements at the Bennett Valley PurpleAir site in Sonoma County. CA were collected using the ALT-

CF3 algorithm and compared to the Oakmont site in Santa Rosa (about 4 km distant) covering the period from 6/19/2020 to 

9/27/2022. Daily means were calculated for all days with the requirement that at least half of the 720 possible measurements per 

day were available at an acceptable precision (abs (A-B)/(A+B)) of better than 20%. 821 days met these requirements. However, an 

unusually high number (280) of the Bennett Valley measurements showed precision poorer than 20%.  Only 21 of the 821 corre-

sponding Oakmont measurements had precision poorer than 20%. The final database consisted of 522 days with matched indoor 

and outdoor daily means and precisions better than 20%. 
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The I/O ratio is shown for the entire period (Figure 13).  There are two strong troughs in winter 2021 and 2022, with peaks in the 

summer of 2020 and 2021.   

 

Figure 13. Indoor-outdoor (I/O) ratio of daily means at the Bennett Valley (outdoor) and Oakmont Santa Rosa (indoor) sites. 
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The RCS approach to estimate the infiltration factor for the entire database results in a large number of values in the Forbidden 

Zone, indicating that the infiltration factor varies too much to be estimated using the entire database (Figure 14). 

 

 
Figure 14. RCS regression of indoor values at Oakmont on outdoor values at Bennett Valley, about 4 km from Oakmont.   
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The variation of the I/O ratio suggests that a period of low infiltration factors might occur in the winter and perhaps the spring. 

Indeed, when the RCS regression is performed on the winter months (December through February) and the spring months (April-

June), few points fall into the Forbidden Zone (Figure 15). Therefore the estimated infiltration factor of 0.2195 appears robust. An 

average contribution of 1.1 µg/m3 is made by indoor-generated particles. 

 

 

Figure 15. Regression of Oakmont indoor concentrations on Bennett Valley outdoor concentrations for the Winter and Spring 

months (December-June (March omitted)). 
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The corresponding regression on the Summer-Fall months (August-November) again produced few observations violating the For-

bidden Zone, with an estimated infiltration factor of 0.3637 and an estimated contribution of indoor-generated particles of 2.10 

µg/m3 (Figure 16). 

 

   

 

Figure 16.  Regression of Oakmont indoor concentrations on Bennett Valley outdoor concentrations for the Summer and Fall 

months (August-November).  

Plotting the indoor-outdoor ratio (I/O) vs. time was useful in showing the seasonal change in the infiltration factor.  Two periods 

(Winter-Spring and Summer-Fall) were found to have a stable infiltration factor, allowing good estimates of both the infiltration 

factor and the relative contribution of indoor-generated and outdoor-penetrated particles to total indoor potential exposure. The good 

results for sites 4 km apart is notable, suggesting that outdoor sites may often have little spatial variation.  This opens up the 

possibility of using distant outdoor sites (e.g., those with high-quality Federal Reference Method (FRM) PM2.5 measurements) to 

calculate infiltration factors at many indoor sites.   

 

 

 

 

 

 

3.6 Outer Sunset (San Francisco) 
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1. An outdoor and corresponding indoor site is located in the Outer Sunset area in northwest San Francisco.  Data from 

10/20/19 to 8/13/21 (409 days) were examined (Figure 17).  This site in San Francisco had very few points falling in the 

Forbidden Zone. The intercept of 10.3 µg/m3 is an unusually strong estimate of the dominance of the (unknown) indoor 

source(s). 

 

 

Figure 17.  RCS regression of indoor on outdoor data at two nearby sites in the Outer Sunset area of San Francisco. 

4. Discussion 

The Alt-CF3 algorithm outperformed the Plantower CF1 algorithm in every aspect considered. Precision was better, the limit of 

detection was lower, the number of values > LOD was higher, and no zero values were recorded compared to hundreds of thousands 

of zeros for the Plantower CF1 algorithm.  Although the Plantower CF_ATM algorithm was not directly considered in all analyses, 

it is identical to the Plantower CDF_1 algorithm for all values less than ~28 ug/m3, and since these constitute the majority of 

observations, and include all the zeros reported by Plantower CF_1, the findings regarding precision, LOD, and number of zeros for 

the CF_1 algorithm would be equally applicable to CF_ATM. Since all the alternative algorithms (or “conversion factors”) other 

than ALT-CF3 offered by PurpleAir depend on one or another Plantower algorithm, they are all equally vulnerable to the Plantower 

shortcomings.  

A summary of results for all six cases is offered (Table 6). 

 

Table 6. Infiltration factors (Finf) and mean PM2.5 for outdoor-infiltrated (Outinf) and indoor-generated (Ingen) particles, including the 

percent contribution to total indoor PM2.5 from the indoor-generated particles (Ingen (%)). These variables are shown for the entire 

datasets and for the subsets (1 and 2) created when the Forbidden Zone was violated by too many observations. 

 

Outdoor site  Oakmont Bennett Valley Redwood City Alexander Ave Menlo Park Outer Sunset 
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Indoor site same Oakmont same same same same 

Finf 0.34 0.38 0.36 0.17 0.085 0.33 

PM2.5 Outinf 3.2 2.28 3.0 0.99 0.31 2.6 

PM2.5 Ingen 1.7 1.3 2.6 0.43 1.8 10 

Ingen (%) 34 36 46 31 85 80 

Finf 1 0.34 0.36 0.23 0.080 NA NA 

PM2.5 Outinf 1 2.2 4.10 2.9 0.44 NA NA 

PM2.5 Ingen 1 2.1 2.2 2.3 0.51 NA NA 

Ingen 1 (%) 48 35 45 54 NA NA 

Finf 2 0.14 0.22 NA NA NA NA 

PM2.5 Outinf 2 0.38 0.75 NA NA NA NA 

PM2.5 Ingen 2 1.5 1.1 NA NA NA NA 

Ingen 2 (%) 80 59 NA NA NA NA 

*Outinf = outdoor-infiltrated; Ingen = indoor-generated; 1,2=subsets 1,2; NA = Not Applicable 

 

In Table 6, the values shown in red represent the four cases in which the Forbidden Zone was violated by numerous observations.  

These results have been discarded and replaced by the values shown in the bottom 8 rows for subsets of the data with many fewer 

violations of the Forbidden Zone. 

 

In two cases, (Menlo Park and Outer Sunset), the number of observations violating the Forbidden Zone were near zero, and thus 

provided reassurance that the entire data set (last 2 columns, top four rows) could be used to determine robust estimates for the 

infiltration factor and also for calculating the contributions to total indoor PM2.5 concentration of indoor-generated and outdoor-

penetrated particles. In these two cases, the indoor-generated particles greatly outweighed (80-85%) particles of ambient origin. In 

the remaining four cases, the regression on the full dataset failed to identify a stable infiltration factor (red typeface, first four 

columns, top four rows).   For two of these four cases (Oakmont and Bennett Valley), the use of the I/O ratio identified two 6-

month periods (subsets 1 & 2, first two columns, bottom 8 rows) that could be used to calculate robust estimates of the infiltration 

factor for each period. In the remaining two cases (Redwood City and Alexander Avenue), it was possible to identify one subset 

with a stable infiltration factor (columns 3-4, rows 5-8), although the remaining subset could not be quantitatively analyzed. 

 

The importance of determining the correct infiltration factors can be seen by considering the first column in Table 6 for Oakmont.  

Using the entire dataset (with the many violations of the Forbidden Zone), the contribution of indoor-generated particles was 34%, 

indicating that the outdoor-infiltrated particles (66%) were about twice as important.  However, using the two subsets 1 & 2 with 

good estimates of the infiltration factor shows that the actual contribution of the indoor-generated particles was 48% in one case 

and 80% in the other, an average share of 64% or about twice as important as the particles of ambient origin (36%). 

 

5. Conclusions 

Epidemiological studies without indoor measurements are unable to arrive at estimates of indoor-generated particles, yet some of 

these particles can have health effects.  The advent of low-cost particle sensors can improve our knowledge of total exposure to 

PM2.5. These sensors make it possible for the first time to estimate long-term (months to years) PM2.5 concentrations from indoor 

sources.  One recent study has calculated such long-term exposures for more than 3000 PurpleAir indoor sites in three states over 

a 4.6-year period and found that indoor-generated particles make about the same contribution to total indoor exposures as particles 
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of ambient origin [51]. The present study has shown how to use the Forbidden Zone to evaluate the quality of the estimate of the 

infiltration factor. In particular, the use of the simple I/O ratio can often suggest subsets of the data to analyze with a chance of 

identifying periods with a stable infiltration factor and thus providing a more accurate determination of both indoor-generated and 

outdoor-penetrated PM2.5.  Finally, a recent improved algorithm for calculating PM2.5 from PurpleAir measurements was found to 

be superior to the proprietary algorithms offered by the manufacturer of the sensors used in PurpleAir monitors. 
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