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Abstract: Lipid mesophases are being intensively studied as potential candidates for drug-delivery 1

purposes. Extensive experimental characterization has unveiled a wide palette of release features 2

depending on the nature of the host lipids and of the guest molecule, as well as on the environmental 3

conditions. However, only few simulation works have addressed the matter, which hampers a solid 4

rationalization of the richness of outcomes observed in experiments. Particularly, to date there are no 5

theoretical works addressing the impact of hydropathy on the transport of a molecule within lipid 6

mesophases, despite the significant fraction of hydrophobic molecules among currently-available 7

drugs. Similarly, the high heterogeneity of water mobility in the nanoscopic channels within lipid 8

mesophases has also been neglected. To fill this gap, we introduce here a minimal model to account 9

for these features in a lamellar geometry, and systematically study the role played by hydropathy and 10

water-mobility heterogeneity by Brownian-dynamics simulations. We unveil a fine interplay between 11

the presence of free-energy barriers, the affinity of the drug for the lipids, and the reduced mobility of 12

water in determining the net molecular transport. More in general, our work is an instance of how 13

multiscale simulations can be fruitfully employed to assist experiments in release systems based on 14

lipid mesophases. 15

Keywords: Brownian dynamics; effective diffusion; potential of mean force; partition coefficient; 16

release setups 17

1. Introduction 18

Lipid mesophases are self-organized structures where nanoscopic solvent channels 19

emerge from the self-arrangement of lipids in the host solvent. Despite often maintaining 20

the fluidity of the membrane, these aggregates show spatial periodicity following standard 21

crystallographic space groups. In previous studies, the geometry and topology of lipid 22

mesophases have been shown to depend on various parameters, such as pH, temperature, 23

and lipid-solvent (usually water) ratio [1–8]. This has recently made these systems of 24

significant interest for biotechnological applications in material design and drug delivery, 25

as well as fundamental research on ion pumps, membrane protein crystallization and 26

cryo-enzymatic reactions [9–15]. 27

In particular, heterogeneity, reproducibility, and high biocompatibility of lipid mesophases28

have made them a potential tool for drug and nutraceutical delivery[14]. Moreover, the rich 29

structural landscape of lipid mesophases has recently been shown to be naturally explored 30

during digestion of tryglycerides, which likely impacts the delivery of drugs embedded 31

in such hosts [16]. As a consequence, a large amount of research has been devoted to 32

understanding how the chemical and structural features of lipid mesophases influence their 33

transport properties[5,17–33]. Experimental efforts in characterizing the molecular trans- 34

port through lipid mesophases have unveiled an extensive palette of delivery performance 35

depending on factors such as the geometry and symmetry of the lipid mesophase, the 36
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size of the diffusion domain, the hydropathy of the diffusing molecule, and lipid-solvent 37

composition. While opening many possibilities for devising tailored applications, this 38

rich heterogeneity of relevant features makes it lengthy and costly to fully characterize 39

the role played by each of them via experimental assays. Theoretical considerations and 40

computational simulations can provide a complementary insight into these systems, due to 41

their faster and cheaper implementation, but also because they allow to address the effect 42

of the various factors one at a time, which is not always possible in experiments. Although 43

there is a vast literature focused on the modelling of diffusion in confined environments 44

[34,35] and on the exotic water mobility at the interface with hydrophilic objects [36–39], 45

little work has studied these topics within the context of lipid mesophases [8,28,29,40]. 46

Strikingly, there is a lack of theoretical studies addressing the influence of molecular 47

affinity for the lipids on the transport of the guest particle. This is a particularly important 48

gap in view of the potential applications of lipid mesophases for drug delivery, since about 49

one third of current drugs show low solubility in water [41,42]. The importance of this 50

aspect in drug delivery is being increasingly acknowledged, for instance by investigations 51

focused on solubility aspects in biorelevant media [43]. In this work, we take a step 52

in the understanding the impact of hydropathy by studying the diffusion kinetics of a 53

particle spending a finite amount of time in both the water channels and the lipid bilayers. 54

We analyze the role played by the complex interaction free energy between the guest 55

particle and the lipid molecules, as well as the impact of the reduced mobility of water 56

in the vicinity of lipid heads. The latter is expected to strongly affect the quantitative 57

determination of transport properties, as water with lower mobility extends beyond roughly 58

1 nm starting from the lipid heads [8,40,44], which is comparable to the overall size of 59

the water nanochannels inside lipid mesophases. We focus on the case of a lamellar 60

arrangement with geometrical parameters obtained from reported experimental data. We 61

find that diffusion in the direction perpendicular to the lipid/water interface is strongly 62

regulated by the free-energy barriers obstaculating particle exchange between the lipid 63

and water phases, while parallel diffusion is determined by the hydropathy of the guest 64

molecule, as quantified by the partition coefficient. Heterogeneity of water mobility enters 65

the picture in quantitatively regulating the large-scale diffusion coefficient. 66

2. Materials and Methods 67

In a lamellar geometry, the system can be conveniently expressed by considering a 68

reference frame with the z axis oriented along the normal to the lipid/water interface. The 69

diffusion of a guest molecule can be assessed by considering a Brownian dynamics in a 70

periodic free-energy landscape and with a space-dependent diffusion coefficient. Although 71

simplistic, this framework enables accounting for the features of the system which are the 72

focus of the present study; for example, in the context of strongly-hydrophilic particles 73

in cubic phases, this approach has enabled estimation of the amount of bound water by 74

comparison of theoretical and experimental diffusion coefficients, obtaining values in 75

agreement with direct experimental observations [28]. Yet, one has always to keep in mind 76

that various microscopical features are not accounted for, including for instance the impact 77

of electrostatics in the diffusion of charged molecules, or the presence of perturbations in 78

the bilayer such as Helfrich undulations [45]. 79
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Figure 1. General features of the theoretical model. (a) Sketch of a repeating unit in a lamellar
mesophase and definition of the main parameters; molecules are not in scale. (b) Representative peri-
odic potential of mean force U(z) corresponding to the system in (a). In this case, U(z) corresponds
to a hydrophilic molecule (∆U > 0) with low affinity for the lipid heads (∆Ub > 0). The orange circles
correspond to the free energy extracted from a control simulation to determine the optimal timestep,
as described in the Methods. (c) Representative periodic, position-dependent diffusion coefficient
D(z) corresponding to the system in (a), smoothly changing from Dlip within the lipid phase to Dwat

in the water phase far from the lipid/water interface.

2.1. Model 80

The hydropathy of the guest molecule is described by considering a periodic potential
of mean force U(z) such as the one depicted in Fig.1b (we show only one periodicity),
which corresponds to the equation

U(z) =



∆U if |z| ≤ l − h
∆U + 8 ∆Ub−∆U

h2 (l − h − |z|)2 if l − h < |z| ≤ l − 3
4 h

∆Ub − 8 ∆Ub−∆U
h2

(
l − 1

2 h − |z|
)2

if l − 3
4 h < |z| ≤ l − 1

2 h

∆Ub − 8 ∆Ub
h2

(
l − 1

2 h − |z|
)2

if l − 1
2 h < |z| ≤ l − 1

4 h

8 ∆Ub
h2 (l − |z|)2 if l − 1

4 h < |z| ≤ l
0 if l < |z| ≤ a

2

. (1)

In the previous formula, a is the lattice parameter, l is the total length of a lipid within the 81

bilayer and h is the size of the lipid head (see Fig.1). In order to set reasonable values for 82

these parameters, we considered a = 6.65 nm, which corresponds to fully-hydrated Lα 83

lamellar mesophases obtained by water/dipalmitoylphosphatidylcholine mixtures at 43◦ 84

C [46]. Moreover, we also set l = 2.365 nm and h = 1 nm based on the electron-density 85

profile computed in Ref.[47] for the same mixture. As for the energy parameters, ∆U is the 86

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 December 2022                   doi:10.20944/preprints202212.0291.v1

https://doi.org/10.20944/preprints202212.0291.v1


4 of 19

free-energy difference between the plateaus corresponding to the lipid tails and the water 87

region. Therefore, ∆U > 0 for hydrophilic molecules (such as in Fig.1b), while ∆U < 0 88

in the case of hydrophobicity. The parameter ∆Ub introduces a barrier in correspondence 89

of the lipid heads, which can mimic the kinetic barriers associated to the permeability 90

of the membrane; moreover, ∆Ub can be employed to introduce depletion of molecules 91

from the lipid heads (∆Ub > 0) or the tendency to sit at the water/lipid interface typical 92

of amphiphilic molecules, which is the case for many proteins (∆Ub < 0) [48]. The use of 93

parabolic fragments in Eq.(1) allows to tune the potential between 0, ∆U and ∆Ub, while 94

ensuring that both U(z) and its derivative are continuous throughout space (see Fig.1b), 95

which avoids undesirable numerical instabilities in the simulations. 96

A similar approach was used to account for heterogeneity in molecular transport. To
this aim, we introduced a space-dependent diffusion coefficient D(z) (Fig.1c):

D(z) =


Dlip if |z| ≤ l

Dlip + 2
Dwat−Dlip

w2 (l − |z|)2 if l < |z| ≤ l + 1
2 w

Dwat − 2
Dwat−Dlip

w2 (l + w − |z|)2 if l + 1
2 w < |z| ≤ l + w

Dwat if l + w < |z| ≤ 1
2 a

. (2)

In the previous formula, Dwat and Dlip correspond to the diffusion coefficients of the guest 97

molecule when considered in pure water and in the lipid bilayer, respectively, while w is the 98

thickness of the water layer in which the continuous change between Dlip and Dwat takes 99

place; therefore, w accounts for the reduced mobility of water molecules in the vicinity of 100

the lipid heads [44]. 101

Typical values of Dwat for nanoscopic objects are found in the range 10−10 − 10−9m2/s. 102

For instance, at 25◦C one has Dwat = 0.7 − 0.9 · 10−9 m2/s for amino acids [49–53], and 103

Dwat = 0.5, 0.7, 0.8 · 10−9 m2/s for ibuprofen [54], aspirin [55] and paracetamol [56], re- 104

spectively. The value of Dwat is expected to be dependent on temperature, T. When small 105

temperature differences are considered (such as estimation of Dwat at physiological tem- 106

perature starting from room-temperature measurements), a simple yet effective approach 107

to estimate the effect of T is to assume a Stokes-Einstein relation Dwat = kBT/(6πη(T)R), 108

where kB is Boltzmann’s constant, R is the size of the particle and η(T) is the temperature- 109

dependent viscosity of water. This approach has enabled accurate predictions of transport 110

of glucose molecules in monolinolein-based cubic phases [57]. Unless stated otherwise, in 111

our simulations we consider Dwat = 0.7 · 10−9 m2/s. 112

As for the diffusion coefficient in the lipid phase, Dlip, one expects its value to be 113

significantly smaller than Dwat due to the lower fluidity of the lipid membrane as compared 114

to water. For instance, the three-dimensional self-diffusion of lipids for various monoacyl- 115

glycerols with cubic symmetry has been reported to be 1.1 − 1.3 · 10−11m2/s [26], which 116

gives values in the range 1.7 − 2 · 10−11 m2/s for the lateral diffusion coefficient when 117

accounting for the geometric constraint imposed by the minimal surface at the mid-plane 118

of the lipid bilayer [58]. Amino acids and drugs such as the ones mentioned above are 119

smaller than lipid molecules, so that Dlip is expected to be somewhat larger for them. Here, 120

we fix Dlip = 0.09Dwat, based on molecular dynamics simulations of paracetamol in DPPC 121

[47]. 122

Finally, the parameter w was set in accordance with experimental evidence and molec- 123

ular dynamics simulations, which point to the existence of 3-4 layers of water with reduced 124

mobility in proximity of the lipid heads [8,40,44]. The specific value of this thickness 125

was selected to be w = 0.96 nm (Fig.1c), in order to ensure that Dwat is reached exactly 126

at z = a/2, thus avoiding a discontinuity in the derivative of D(z) which would have 127

occurred for larger values of w. 128

2.2. Brownian Dynamics 129

Based on the model introduced above, we run Brownian Dynamics simulations to 130

study the diffusion kinetics. Despite the one-dimensional nature of the potential U(z) and 131

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 December 2022                   doi:10.20944/preprints202212.0291.v1

https://doi.org/10.20944/preprints202212.0291.v1


5 of 19

the diffusion coefficient D(z), we integrated the motion in three dimensions, thus including 132

also the movement along planes parallel to the lipid/water interface. This was motivated 133

by the expected effect of a space-dependent diffusion coefficient also on lateral diffusion. 134

Following standard Euler integration, and including a drift term to correctly implement the 135

spatial dependence of the diffusion coefficient [59,60], the updating rule for the position 136

r ≡ (x, y, z) of a particle is: 137
x(t + dt) = x(t) +

√
2Ddt ξx,

y(t + dt) = y(t) +
√

2Ddt ξy,
z(t + dt) = z(t)− D

kBT
dU
dz dt + dD

dz dt +
√

2Ddt ξz.
(3)

In the previous formula, t is time and dt is the integration timestep, while ξx, ξy and ξz 138

are random variables distributed according to a Gaussian function with zero average and 139

unit variance. Although molecular dynamics simulations indicate that diffusion in parallel 140

and perpendicular directions to the lipid/water interface are distinct [8,39], for simplicity 141

in Eq.(3) we consider, for a given position, the same diffusion coefficient for the random 142

movement in any direction. More accurate quantitative estimations will require a proper 143

account of this feature for the system under study. 144

The choice of length units (σ = 1 nm) together with the value chosen for Dwat de- 145

termines a “natural” simulation timescale τ = σ2/Dwat for the time t. For instance, if 146

Dwat = 0.7 · 10−9 m2/s= 0.7 nm2/ns, one has τ ≃ 1.4 ns. The value of τ is important in 147

the determination of the integration of the timestep dt. Our rationale in its choice was to 148

consider the largest possible value of dt which correctly recovers the equilibrium distribu- 149

tion of a collection of particles. In this regard, for the system corresponding to U(z) and 150

D(z) as in Fig.1, we performed simulations of 104 particles initially located at z = 0 for 151

a total time 2 · 104τ, by considering several values of dt; the optimal choice turned out to 152

be dt = 3 · 10−4τ, which at the end of the simulation led to the correct sampling of the 153

implemented U(z) (orange points Fig.1b). 154

For each study reported in the Results section, we performed simulations for ensembles 155

of 103 particles up to times ranging between 5 · 103τ and 5 · 105τ. Particles were pre- 156

equilibrated by randomly extracting their initial position from their Boltzmann distribution 157

by using the Ziggurat algorithm [61]. The value of the total simulation time was adapted 158

according to the system under study, to ensure that the mean-square displacement in the 159

perpendicular direction reached at least 100 nm2. We found that this threshold value was 160

sufficient to ensure a good estimation of the long-time diffusion coefficient. 161

The diffusion kinetics of the system was monitored by computing the mean-square
displacement: MSD∥(t) =

〈
(x(t)− x0)

2
〉
+

〈
(y(t)− y0)

2
〉

,

MSD⊥(t) =
〈
(z(t)− z0)

2
〉

.
(4)

In the previous formula, r0 ≡ {x0, y0, z0} is the initial position of each particle, while 162

⟨· · · ⟩ denotes averaging over the whole ensemble. MSD∥(t) and MSD⊥(t) describe the 163

diffusion kinetics in the directions parallel and perpendicular to the lipid/water interface, 164

respectively. At long times, in both cases the MSD is expected to be purely diffusive [28]: 165

MSD∥(t) = 4D∥t and MSD⊥(t) = 2D⊥t, where D∥ and D⊥ are the effective diffusion 166

coefficients. The different prefactors account for the different dimensionalities of the two 167

diffusion kinetics (two and one dimensions, respectively). 168
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2.3. Relationship between log P and ⟨D⟩ 169

The logarithm of the partition coefficient log P is defined as log P = log10(clip/cwat),
where clip and cwat are the concentrations of particles in the lipid and water phases [62].
Denoting as l the length of the lipids and as a the lattice parameter, one has in general

10log P =
clip

cwat
=

∫ l
0 e−

U(z)
kBT dz/l∫ a

2
l e−

U(z)
kBT dz/

( a
2 − l

) , (5)

where we consider only half repeating unit due to the symmetry of the system. Note that
this formula is not restricted to our choice of U(z) operated above; instead, it holds in
general, under the approximation that one can sharply distinguish the lipid and water
phases. As a further approximation, we assume that within the water phase U(z) = 0. This
neglects desolvation effects on the the guest molecule withinin the water layer in contact
with the lipid heads, as well as electrostatic interactions. Nevertheless, actual computation
of U(z) from atomistic simulations suggests that this assumption is pretty reasonable (see
e.g. Fig.7a). Within this approximation, the denominator in the previous formula is 1, thus
yielding ∫ l

0
e−

U(z)
kBT dz = l 10log P . (6)

The average diffusion coefficient ⟨D⟩ is obtained by thermal averaging of D(z):

⟨D⟩ =
∫ a

2
0 D(z)e−

U(z)
kBT dz∫ a

2
0 e−

U(z)
kBT dz

. (7)

The denominator in the previous formula can be rearranged by means of Eq.(6) as

∫ a
2

0
e−

U(z)
kBT dz =

∫ l

0
e−

U(z)
kBT dz +

∫ a
2

l
e−

U(z)
kBT dz = l 10log P +

( a
2
− l

)
. (8)

Similarly, the numerator in Eq.(7) can be rearranged as

∫ a
2

0
D(z)e−

U(z)
kBT dz =

∫ l

0
D(z)e−

U(z)
kBT dz +

∫ l+w

l
D(z)e−

U(z)
kBT dz +

∫ a
2

l+w
D(z)e−

U(z)
kBT dz . (9)

In the first and third term in the right-hand side of the previous formula, one can assume
constant values for the diffusion coefficient equal to Dlip and Dwat, respectively. The second
term can be rewritten as w D̄, where D̄ is the average value of D(z) in the layer of water
molecules with non-trivial mobility (compare Fig.1c). We assume that D̄ = (Dwat + Dlip)/2,
which considers a symmetric profile of D(z) within this region, as is the case for the toy
model introduced in Eq.(2). This allows to rewrite the numerator as

∫ a
2

0
D(z)e−

U(z)
kBT dz = Dlip

∫ l

0
e−

U(z)
kBT dz + w

Dwat + Dlip

2
+

( a
2
− l − w

)
Dwat , (10)

that is, by rearranging and making use of Eq.(6),

∫ a
2

0
D(z)e−

U(z)
kBT dz = Dlip

(
l 10log P +

w
2

)
+ Dwat

( a
2
− l − w

2

)
. (11)

Plugging Eq.(8) and Eq.(11) in Eq.(7) finally yields the formula reported in Eq.(14) in the 170

main text. 171
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2.4. Amino acids simulations 172

We simulated the diffusion of 16 amino acids by considering for U(z) the potential of 173

mean force derived in Ref.[63], where these residues were considered in the presence of 174

DOPC. The U(z) profiles are reported in Fig.7a. As for the diffusion profile, we considered 175

Eq.(2) with parameters adapted to the present system. We kept the value a = 6.65 nm for the 176

lattice parameter. Following Ref.[63], we assigned to the lipid length the value l = 2.5 nm. 177

Accordingly, we set t = 0.825 nm in order to attain Dwat exactly at z = a/2. The diffusion 178

coefficients in water, Dwat, were obtained by considering for each residue the values 179

obtained experimentally [49–53,64,65] and subsequently estimating the corresponding 180

values at 37 ◦C according to the Stokes-Einstein equation, as discussed above [57]. The 181

obtained values range between 0.9 nm2/ns (obtained for Trp) and 1.3 nm2/ns (obtained for 182

Cys), with an average equal to 1.04 nm2/ns. As in the toy model, the value of Dlip was set 183

to Dlip = 0.09Dwat for each residue. 184

Brownian dynamics simulations were performed with the same parameters as dis- 185

cussed above. Due to the large values of the free-energy barriers, the diffusion coefficients 186

for Arg, Asn, Lys, Asp, Gln, Ile could not be assessed by brute-force simulations. Instead, 187

for each of these systems we considered various sets of simulations in which U(z) was 188

renormalized by a factor α < 1. The value of D⊥(α) was computed for each simulation 189

set and its dependence on α was fitted via an exponential decay. The sought value for the 190

original system was then obtained by extrapolating to α = 1. For Asn, Lys, Asp, Gln and 191

Ile, we considered α = 0.3, 0.4, 0.5, 0.6. In the case of Arg, the strong barrier imposed lower 192

values α = 0.15, 0.20, 0.25, 0.30. As for D∥, for each value of α we checked the quantita- 193

tive agreement between the value obtained from the simulations and the result found by 194

applying Eq.(13); then, we considered the predicted value computed for α = 1. 195

3. Results 196

Periodic lipidic mesophases exist in a wide variety of arrangements, including lamellar, 197

hexagonal and cubic symmetries [14]. Moreover, for each symmetry an extended range of 198

geometrical features can be obtained, e.g. channel swelling by addition of co-surfactants 199

[5]. For the lamellar symmetry, the lipids in the bilayer can be arranged in different ways, 200

such as crystals (Lc phase), gels (Lβ) or fluid membranes (Lα) [1,46]. As the main goal of 201

this work is to understand the combined effect of heterogeneous diffusion and hydropathy 202

on molecular transport, we focused on the simple case of a lamellar symmetry with fixed 203

geometrical features (Fig.1), leaving the important topic of the impact of topology and 204

geometry to future work. We fixed the lattice parameter a = 6.65 nm, the lipid length 205

l = 2.365 nm and the size of lipid heads h = 1 nm by following data reported in the 206

literature [46,47] (see Methods for further details). It is expected that quantitative results 207

depend on the choice of these parameters, but the qualitative impact of hydrophobicity and 208

spatial dependence of diffusion on molecular transport does not change once the values of 209

a, l and h have been fixed. 210

In order to establish a connection between the microscopic insights gathered by 211

molecular dynamics simulations and the macroscopic transport properties relevant for 212

experiments and practical applications, it is necessary to introduce a mesoscopic description 213

of lipid mesophases, which takes as input the microscopic details of the system and provides 214

predictions on the macroscopic diffusion. We can describe the heterogeneous environment 215

offered by lipid mesophases at the nanoscopic scale by introducing a periodic potential of 216

mean force U(z) and a space-dependent diffusion coefficient D(z), both depending on the 217

position z of the particle with respect to the the lipid-water interface (Fig.1). These features 218

can be extracted from molecular dynamics simulations or, although only partially, from 219

experimental data. To assess the impact of hydropathy, we first consider a minimalistic 220

model of U(z), for which we report a representative plot for a single periodicity in Fig.1b. 221

The parameter ∆U gives the overall change in free energy upon inclusion of the guest 222

molecule in the lipid membrane as compared to water, while ∆Ub represents the free-energy 223

barrier (or well, for negative values) which regulates the timescale of particle exchange 224
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Figure 2. Representative evolution of mean-square displacement as a function of time for |∆Ub| = 4
(a) and |∆Ub| = 8 (b), while ∆U = 0 and Dlip = Dwat. In both panels, filled and empty symbols cor-
respond to MSD⊥ and MSD∥, respectively, as reported in the legends. The dashed lines correspond
to the formula 4Dwatt. In the insets, the potential of mean force for each case is reported.

between the lipid and water regions. Heterogeneous transport is captured by a position- 225

dependent diffusion coefficient D(z) (Fig.1c), which continuosly changes from Dlip in the 226

lipid membrane to Dwat in water, with the change happening within a distance range of 227

about w = 1 nm, as reported in the literature [8,40,44] (see Methods for further discussion 228

on the matter). U(z) and D(z) were then employed to run Brownian Dynamics simulations 229

aimed at assessing the diffusion kinetics of the system at large scales. Full details of the 230

model and of the simulation setup are described in the Methods. In a later section, we also 231

consider a practical case study focused on amino acids, for which more realistic potentials 232

were extracted from molecular dynamics simulations reported in the literature. 233

3.1. Assessing the importance of each physical ingredient 234

3.1.1. Impact of ∆Ub 235

The simulation setup enables devising systems which, albeit unrealistic, provide 236

clear insights on the impact of each feature taken separately. In this section, we focus on 237

how the barrier ∆Ub affects large-scale diffusion. To this aim, we thus fix ∆U = 0 and 238

Dlip = Dwat = 0.7 nm2/ns, so as to isolate the effect of ∆Ub alone. Examples of potentials 239

U(z) are reported in the insets of Fig.2. In the figure, the main plots show the mean-square 240

displacement (MSD) for selected values of ∆Ub, in order to highlight the role played by 241

the magnitude and sign of this parameter. Particularly, in Fig.2a we show the MSD for 242

∆Ub = −4kBT (green squares) and ∆Ub = 4kBT (orange circles). The empty symbols 243

correspond to the MSD computed along planes parallel to the lipid/water interface, MSD∥. 244

Since in the considered systems the diffusion coefficient is constant throughout space, 245

lateral diffusion is unaffected by the value of U(z). Therefore, MSD∥ shows a standard 246

diffusive behavior characterized by a diffusion coefficient D∥ = Dwat, i.e. MSD∥ = 4Dwatt 247

(grey dashed line in Fig.2a). In a log-log plot suchs as the ones considered in the figure, this 248

corresponds to a linear function with slope one shifted according to the value of D∥. 249

In contrast, the kinetics along z (filled symbols in Fig.2a) is characterized by a richer 250

dynamics, where three regimes can be indentified. At short times (e.g. t ≲ 0.1 ns for 251

the orange circles in Fig.2a), the particles diffuse with a diffusion coefficient D⊥ = Dwat. 252

In constrast, a subdiffusive behavior is detected at intermediate times (0.1 ns ≲ t ≲ 10 253

ns), as evidenced by a local slope lower than one. At longer times (t ≳ 10 ns), standard 254

diffusion is retrieved, but with an effective diffusion coefficient D⊥ < Dwat. Notably, the 255

two sets of data collapse onto the same curve in this diffusive regime, suggesting that the 256

long-time behavior of the system is independent of the sign of ∆Ub, although the onset of 257

this regime is shifted towards larger values of t for positive values of the barrier. In Fig.2b, 258
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Figure 3. (a) Dependence of long-time diffusion coefficients on the size of the barriers |∆Ub|, for
∆U = 0 and Dlip = Dwat. The horizontal dashed line corresponds to Dwat = 0.7 nm2/ns. The red
continuous line is obtained by fitting the values for |∆Ub| > 5kBT via an exponential function. In
the inset, we report a representative potential of mean force U(z) for this study, corresponding to
∆Ub = 4kBT. (b) Same as (a), but focusing on varying |∆U| in systems with ∆Ub = 0 and Dlip = Dwat.
In the inset, we report U(z) for ∆U = 4kBT.

we show that similar considerations apply for ∆Ub = ±8kBT, but the larger magnitude 259

of the barriers results in lower values of the effective diffusion coefficient D⊥ along the 260

direction perpendicular to the lipid/water interface. 261

In Fig.3a, we report the long-time diffusion coefficients obtained by varying the mag- 262

nitude of |∆Ub| in the range 1 − 10kBT, for both positive (purple hexagons) and negative 263

(golden stars) values of the barrier. Coherently with Fig.2, the lateral diffusion coefficients 264

D∥ (empty symbols) are independent of the height of the barrier, and correspond to the 265

value of Dwat (grey dashed line). On the other hand, the perpendicular diffusion coefficients 266

(filled symbols) are strongly affected by ∆Ub, displaying an exponential decay starting from 267

5kBT, for which a two-parameters best fit yields D⊥(nm2/ns) = 8.0 e−0.93|∆Ub |/kBT (red 268

continuous line). This can be rationalized by observing that, for large values of |∆Ub|, jump- 269

ing events from one side of the barrier to the other are rare. The rate k at which these events 270

take place is approximately captured by the Arrhenius equation, k ≃ Ae−|∆Ub |/kBT . At time 271

t (assumed to be large enough for the system to be found in the long-time diffusing regime), 272

the cumulate number of expected events is kt. Each jump corresponds to a certain length λ 273

within the same order of magnitude of the lattice parameter a. The total distance L travelled 274

by the random set of jumps satisfies thus the relation L2 = ktλ2 = Ae−|∆Ub |/kBTλ2t. Since 275

one has also L2 = 2D⊥t, one thus obtains D⊥ = (A/2)e−|∆Ub |/kBTλ2 ∝ e−|∆Ub |/kBT . Note 276

that the Arrhenius formula predicts a prefactor equal to −1 in the exponent, which is in 277

good agreement with the best-fitting value. Finally, the results obtained for ∆Ub > 0 and 278

∆Ub < 0 fall on the same master curve, confirming the trend observed in the long-time 279

regime of MSD⊥ in Fig.2. 280

3.1.2. Impact of ∆U 281

We performed a similar study focused on the hydropathy parameter ∆U, for which a 282

representative profile of U(z) is reported as an inset in Fig.3b. Qualitatively, the trend is 283

very similar to the previous study. This is expected, since the system is being described by a 284

set of periodically-placed barriers with equal heights, which is similar to the case reported 285

in Fig.3a. The same reasoning as in the previous section applies, although the quantitative 286

details of the exponential fit change. In this case, the fitting formula for the perpendicular 287

diffusion coefficient is D⊥(nm2/ns) = 2.6 e−0.97|∆U|/kBT (red continuous line in Fig.3b). 288

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 December 2022                   doi:10.20944/preprints202212.0291.v1

https://doi.org/10.20944/preprints202212.0291.v1


10 of 19

Figure 4. Effective diffusion coefficients in a system with position-dependent D(z) and no external
potential. The red continuous line is the prediction from Eq.(12). The blue dashed line corresponds to
a fit of the simulation data by a power law.

3.1.3. Impact of Dlip/Dwat 289

Finally, we also considered systems with a position dependent diffusion coefficient
D(z) as in Fig.1c, but in which no potential was present, i.e. U(z) = 0, which corresponds
to ∆Ub = ∆U = 0. We report the long-time diffusion coefficients D∥ (empty symbols) and
D⊥ (filled symbols) in Fig.4. In contrast with the previous cases, here the z dependence
of the local diffusion coefficient affects D∥, which is found to increase linearly with the
ratio Dlip/Dwat. Considering that in the Brownian motion (Eq. (3)) the drift term does not
involve directly the parallel direction, it is expected that the long-term value of D∥ is the
average value of D(z). From Eq.(2), one thus finds

D∥ =
1
a

∫ a
2

− a
2

D(z)dz = Dwat − (Dwat − Dlip)
2l + w

a
, (12)

which is reported in Fig.4 as a red continuous line, and quantitatively reproduces the 290

simulation data. 291

As for the perpendicular direction, from Fig.4 one finds that D⊥ is systematically 292

lower than D∥. The simulations results can be rationalized by considering the two extreme 293

cases. When Dlip ≃ Dwat, one retrieves the diffusion coefficient obtained in the trivial case 294

D(z) = Dwat, i.e. D⊥ = Dwat due to the absence of an external potential. In contrast, for 295

Dlip ≪ Dwat, one expects that the particles are effectively confined along the perpendicular 296

direction, i.e. that they do not diffuse transversally to the lipid/water interface. Indeed, 297

in order to increase MSD⊥, they need to traverse the full periodic repeat of the system; 298

however, within the lipid region there is practically no diffusion, so that the particle will 299

need a large time to cross it. In other terms, one expects in this limit that the transition 300

to the long-time regime (see e.g. Fig.2) moves towards larger and larger times, thus 301

resulting in a vanishing value of D⊥. Note that this reasoning does not apply to D∥, 302

since there is no need for the system to cross the lipid phase in order to increase MSD∥. 303

Quantitatively, we found that a good description of the data is obtained by means of a 304

power law D⊥ = Dwat

(
Dlip/Dwat

)0.92
, which provides the correct limiting behavior and 305

is reported as a blue dashed line in Fig.4. 306
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Figure 5. Dependence of the perpendicular long-time diffusion coefficient D⊥ on hydropathy (∆U)
and affinity for lipid heads (∆Ub), implemented according to the corresponding potential of mean
force U(z) (Fig.1a). Panel (a) is obtained by assuming Dlip = Dwat, while panel (b) considers a more
realistic diffusion profile with Dlip = 0.09Dwat (Fig.1c). The contours correspond to the indicated
values of D⊥/Dwat.

3.2. Putting the physical ingredients together 307

Having assessed the role played by each feature of the model, we now consider 308

their interplay in more complex scenarios. In this regard, we performed simulations with 309

the full potential U(z) (Fig.1a), by varying simultaneously the values of ∆U and ∆Ub. 310

We run two sets of simulations: in Set 1, the diffusion coefficient was considered to be 311

constant (Dlip = Dwat), while in Set 2 we implemented a more realistic profile for D(z), 312

with Dlip = 0.09Dwat (see Methods for further details). The results of these simulations are 313

reported in Fig.5 and Fig.6. 314

In Fig.5, we report the results obtained for D⊥ in the simulations of Set 1 (Fig.5a) and 315

Set 2 (Fig.5b). In both cases, the largest values of D⊥ are obtained for lower values of 316

|∆Ub| and |∆U|, i.e. close to the center of each figure. This is intuitively understandable, 317

as this region corresponds to lower barriers to be overcome. Similarly to what observed 318

in Fig.3, increasing the magnitude of |∆Ub| and |∆U| has a dramatic effect on D⊥, which 319

rapidly decreases to low values (note that, in Fig.5, the scale in the bar is logarithmic). 320

When comparing the results of the two sets of simulations for given values of |∆Ub| and 321

|∆U|, it is evident that for Set 2 the value of D⊥ is systematically lower than for Set 1. This 322

is also expected, since the average diffusion coefficient ⟨D⟩ for the variable case is lower. 323

However, the overall change of D⊥ cannot trivially be ascribed to a normalization of the 324

results by ⟨D⟩, i.e. in general D⊥,Set 2 ̸= D⊥,Set 1 · ⟨D⟩. 325

As for the lateral diffusion coefficient D∥, in the simulations of Set 1 one finds trivially
that D∥ = Dwat, in analogy to what reported in Fig.3. The results obtained for Set 2 are
instead reported in Fig.6a. In this case, the largest values are obtained for ∆Ub > 0, ∆U > 0
with large magnitude, i.e. by maximizing the depletion from the lipid phase. This can be
understood by observing that, to achieve an efficient lateral diffusion, one does not need
the particles to cross a full periodicity, but rather to maximize the time spent in the water
phase, characterized by a larger mobility (Fig.1c). This is best achieved by increasing the
energy penalty for particle localization in the lipid phase, i.e. by large, positive values of
∆Ub and ∆U (Fig.1b). Quantitatively, as discussed above the absence of a direct drift term
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Figure 6. (a) Dependence of the parallel long-time diffusion coefficient D∥ on hydropathy (∆U)
and affinity for lipid heads (∆Ub), implemented according to the corresponding potential of mean
force U(z) (Fig.1a). The diffusion profile corresponds to Fig.1c with Dlip = 0.09Dwat. (b) De-
pendence of D∥/Dwat on log P for the simulation data (golden stars) and for an extended set
of systems (purple triangles), for which the lateral diffusion coefficient was computed accord-
ing to Eq.(13). The extended systems with log P < 0 were obtained by considering ∆U =

∆Ub = 20kBT, 200kBT, 2000kBT; the extended systems with log P > 0 were obtained by setting
∆U = ∆Ub = −10kBT,−9kBT,−8kBT,−7kBT,−6kBT. The red continuous line corresponds to
Eq.(14).

in the parallel direction suggests that D∥ can be identified with the average ⟨D⟩. Hence, in
the presence of a potential U(z), one can generalize Eq.(12) as

D∥ =
1
a

∫ a
2

− a
2

e−
U(z)
kBT D(z)dz . (13)

To enable a direct link with experimentally-measurable quantities, we quantify the
relative amount of time spent in the lipid phase by means of the logarithm of the partition
coefficient, log P = log10(clip/cwat) [62], where clip and cwat are the concentrations in the
lipid and water phase. Rewriting Eq.(13) by means of the partition coefficient yields (see
Methods)

D∥ =
Dlip

(
l 10log P + t

2

)
+ Dwat

( a
2 − l − t

2
)

l 10log P + a
2 − l

. (14)

Note that for strongly hydrophobic molecules, one has log P > 0 and large in mag- 326

nitude, so that in the previous formula the terms containing the factor 10log P are much 327

larger than the rest. In this case, one thus obtains D∥ ≃ Dlip, which is expected since the 328

molecule spends virtually all the time within the lipid bilayer. In contrast, for strongly 329

hydrophilic molecules log P < 0 and large in magnitude, so that 10log P ≃ 0. The value 330

obtained for D∥ in this case is the average diffusion coefficient within the water phase, 331

which does not trivially correspond to Dwat due to the position dependence of D(z) (Fig.1c). 332

In Fig.6b, we compare the numerical results from the simulations (golden stars) with Eq.(14) 333

(red continuous line). The excellent agreement confirms the quantitative correspondence 334

between D∥ and ⟨D⟩. To fully appreciate the dependence of D∥ on log P, in Fig.6b we also 335

considered an extended set of systems (purple triangles), with ∆U and ∆Ub going beyond 336

the maximum magnitude 5kBT considered in the simulations. For these systems, D∥ was 337

computed according to Eq.(13). 338
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Figure 7. (a) Potential of mean force for 16 amino acids as computed in Ref.[63]. The plots were colour-
coded according to the physico-chemical properties of the side chain: gold ↔ charged, red ↔ polar
and green ↔ apolar. (b) Perpendicular diffusion coefficient D⊥ for charged (filled gold stars), polar
(filled red circles) and apolar (filled green squares) residues as a function of the difference Umax −Umin

between maximum and minimum height of the corresponding potential of mean force. In the inset,
the full range of Umax −Umin is considered to include the case of Arg, for which Umax −Umin ≃ 32kBT.
The dashed grey line is a best fit via an exponential decay. (c) Parallel diffusion coefficient D∥ for
charged (empty gold stars), polar (empty red circles) and apolar (empty green squares) residues as a
function of the logarithm of the partition coefficient log P. The dashed grey line corresponds to the
theoretical prediction according to Eq.(14).

3.3. Application: large-scale transport of amino acids 339

As a practical example of the usage of the present approach, we dedicate this section 340

to the study of diffusion of amino acids through lamellar phases. The potential of mean 341

force U(z) for amino acids within phospholipidic bilayers has been the focus of previous 342

investigation work [63,66]. Rather than using the toy model proposed in Fig.1b, we 343

thus consider here U(z) for 16 amino acids as computed in Ref.[63], where the authors 344

performed enhanced-sampling molecular dynamics of various residues embedded in DOPC 345

bilayers. The resulting potentials are reported in Fig.7a. Although being more complex, 346

they resemble the toy model introduced in Fig.1b, showing a plateau in correspondence 347

of the lipid tails (z close to zero) and barriers or wells in proximity of the lipid heads (|z| 348

around 2-2.5 nm). The position dependence of the diffusion coefficient was unfortunately 349

not addressed in Ref.[63], so that we consider the toy model for D(z) presented in Fig.1c. 350

Further details of the simulations are provided in the Methods. 351

Based on our analysis in the previous sections, we expect that the presence of barriers 352

in U(z) has a dramatic effect on the perpendicular diffusion coefficient D⊥. To quantify 353

the extent of such barriers, for each amino acid we computed the minimum and maximum 354

values of the potential of mean force, which we denote as Umin and Umax, respectively. 355

For instance, for arginine we obtain Umin ≃ −8.5kBT and Umax ≃ 23.5kBT (second panel 356

from top-left corner in Fig.7a). In Fig.7b, we report D⊥ as a function of the difference 357

Umax −Umin, which we took as an indicator of the strength of the barriers. The heterogeneity 358
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of profiles for U(z) results in extremely different values for D⊥, which span as many as ten 359

orders of magnitude (compare main plot and inset in Fig.7b). Moreover, an Arrhenius-like 360

exponential dependence captures the data over all the different scales, with the best- 361

fitting formula being D⊥ ≃ 0.5 · e−0.77(Umax−Umin)/kBT (grey dashed line). The data cluster 362

according to the physico-chemical properties of the amino acids. Particularly, the ones 363

with charged or polar side chains are characterized by the lowest values of D⊥ (golden 364

stars and red circles in Fig.7b, respectively). This is not expected a priori, since free-energy 365

barriers are expected also for apolar residues. However, as stressed by the different values 366

of Umax − Umin obtained for the various sets of amino acids (see also full profiles of U(z) in 367

Fig.7a), the depletion of charged and polar residues from the lipid bilayer is significantly 368

stronger than the free energy gained by embedding apolar amino acids. A closer look to 369

the free-energy profiles indicates that, for apolar residues, localization within the whole 370

lipid region is either energetically favourable or it comes at a negligible cost. The barrier for 371

perpendicular diffusion is thus provided by the depth of the free-energy wells. In contrast, 372

for charged and polar residues, localization in the region corresponding to the lipid tails is 373

highly costly, while the lipid heads are favoured or have low associated cost. Overall, this 374

provides a significantly steeper barrier to perpendicular diffusion. 375

As for D∥, in analogy to Fig.6b, in Fig.7c we plot the results obtained from the simu- 376

lations as a function of log P. The grey dashed line is the prediction according to Eq.(14), 377

which is again found to quantitatively capture the simulation data. Importantly, D∥ is 378

always found within the same order of magnitude (10−1 nm2/ns), which indicates that 379

D∥ ≫ D⊥ for large enough barriers, hence suggesting parallel diffusion to be dominant 380

in such scenario. Similar to D⊥, also in this case we find a clustering of the points ac- 381

cording to the physico-chemical properties of the residues. Particularly, apolar residues 382

(green empty squares) have a stronger affinity for the lipid phase, as denoted by the larger 383

values of log P (taken with sign). This implies that a larger fraction of time is spent in 384

the slowly-diffusing region corresponding to the lipids, thus yielding low values of D∥. 385

Similarly, polar residues (red empty circles) have lower affinity for lipids, thus resulting 386

in faster parallel diffusion. Unintuitive results are obtained instead for charged residues 387

(golden empty stars), for which one would imagine a strong depletion from the lipid phase. 388

While Glu (E) and Asp (D) abide by the expected behavior (low affinity for lipids, large 389

value of D∥), quite surprisingly Lys (K) and Arg(R) show instead the opposite behavior. 390

An inspection of the corresponding U(z) profiles for these residues (Fig.7a) reveals the 391

presence of a deep well (≃ −10kBT) in correspondence of the lipid heads. Thus, despite 392

being strongly depleted from the lipid tails, Lys and Arg spend most of the time sitting 393

at the lipid/water interface, which is characterized by slow diffusion. In terms of the toy 394

model, one can locate these residues in Fig.6a in correspondence of ∆U > 0 and ∆Ub < 0, 395

both with large magnitudes. The cases of Lys and Arg are also an instructive example of 396

how the size of barriers (Umax − Umin) and the hydropathy of the molecule (log P) are not 397

necessarily correlated with each other. 398

4. Discussion 399

Wrapping up, the systematic study of the toy model and the simulation of diffusion of 400

amino acids lead us to the following key points: 401

1. The key determinant for perpendicular diffusion is the overall height of the free- 402

energy barriers. For barrier heights larger than roughly 5kBT, one finds that D⊥ 403

decreases exponentially with the size of the barrier (Fig.3, Fig.5 and Fig.7a). 404

2. Parallel diffusion is determined by the relative time spent in the lipid phase as com- 405

pared to water, which provides a direct relation between D∥ and the partition coeffi- 406

cient log P (Eq.(14), Fig.6 and Fig.7b). 407

3. The lower boundary of D∥ is equal to Dlip, obtained for highly-hydrophobic guest 408

molecules. Together with point 1, this indicates that for large enough barriers parallel 409

diffusion is dominant. 410

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 16 December 2022                   doi:10.20944/preprints202212.0291.v1

https://doi.org/10.20944/preprints202212.0291.v1


15 of 19

Figure 8. Approximation error on Deff when employing Eq.(15) for the toy model (a) and the amino-

acids simulations (b). The error is computed as 100 ·
∣∣∣1 − Deff,pred/Deff,sim

∣∣∣, where Deff,pred is the
predicted balue according to Eq.(15) and Deff,sim is computed directly from the simulations.

Experimental assays such as pulsed-field gradient NMR [26] or macroscopic release se- 411

tups [17] can access a macroscopic, three-dimensional diffusion coefficient Deff, probing 412

scales equal to or larger than microns. How is Deff related to the diffusion coefficients 413

considered in the simulations? It is key to observe that, although being ordered at the 414

nanoscale, lipid mesophases are formed by micrometer-sized domains separated by grain 415

boundaries, which usually lack orientational order at larger scales [67]. Hence, assuming 416

neighboring domains to be randomly oriented with respect to each other, there is no net 417

distinction between parallel and perpendicular diffusion at experimentally-relevant scales. 418

The assumed random orientation enables accounting for large-scale diffusion by averaging 419

over the various domains, hence the particles are expected to experience three-dimensional 420

diffusion with an effective diffusion coefficient Deff = 2D∥/3 + D⊥/3. The weights 2/3 421

and 1/3 associated to parallel and perpendicular diffusion are chosen so as to account 422

properly for the dimensionality of the corresponding process. For large barriers, one can 423

thus approximate Deff = 2D∥/3; by means of Eq.(14), one gets 424

Deff =
2
3

Dlip

(
l 10log P + t

2

)
+ Dwat

( a
2 − l − t

2
)

l 10log P + a
2 − l

. (15)

Remarkably, Eq.(15) enables estimating the macroscopic diffusion coefficient Deff from 425

knowledge of local geometrical (a, t, l) and transport (Dlip, Dwat) properties, as well as 426

from the overall thermodynamic equilibrium distribution (log P). In Fig.8, we test the 427

accuracy of Eq.(15) by comparing its prediction with the value obtained directly from the 428

simulations, both for the toy model (panel a) and for the amino-acids simulations (panel 429

b). For barriers larger than 5 kBT, the prediction gives values within 10% of the numerical 430

ones. Nevertheless, it should be kept in mind that the threshold value of the barrier for 431

which the approximation works reasonably is expected to depend on the numerical values 432

chosen for the parameters, particularly for the ratio Dlip/Dwat. 433

As seen from Fig.8b, in the case of amino acids the approximation works quite well 434

in virtually all cases. From the literature, typical values of the barriers for various drugs 435

are typically well beyond the threshold value of 5 kBT. For instance, molecular dynamics 436

simulations have accessed the potential of mean force for embedding paracetamol in DPPC, 437

obtaining a barrier ≃ 50 kBT [47]. Similarly, for aspirin and ibuprofen in DPPC the free- 438

energy barriers have been estimated to be ≃ 20 − 30 kBT [68]. These values suggest that in 439

practical applications parallel diffusion is often dominant, thus enabling the employment 440

of the approximation given by Eq.(15). Based on this, as a further example we collected 441
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Table 1. Estimated values of effective diffusion coefficient for release of various drugs from a lamellar
mesophase at 43◦ C with geometric parameters chosen from the literature. The values of Dwat were
obtained by renormalizing experimental values obtained at different temperatures via the Stokes-
Einstein equation, as discussed in the Methods [57]. Experimental values of Dwat and log P were
taken from Refs.[42,54,69–77].

Name log P Dwat (nm2/ns) Deff (nm2/ns)

Cephalexin -0.67 0.70 0.27
Hydrochlorothiazide -0.15 1.69 0.43

Levodopa 0.00 0.95 0.21
Piroxicam 0.29 0.85 0.14

Methyldopa 0.39 1.14 0.18
Paracetamol 0.46 1.06 0.15
Antipyrine 1.01 1.04 0.11

Carbamazepine 2.93 1.13 0.10
Ketoprofen 3.31 0.67 0.06

Desipramine 3.94 0.46 0.04
Ibuprofen 3.99 0.77 0.07

experimental values of log P and Dwat for various drugs from the literature, and plugged 442

them into Eq.(15) to estimate the effective diffusion coefficient Deff characterizing the release 443

from a Lα lamellar mesophase with a ≃ 6.7 nm, l ≃ 2.4 m, and w ≃ 1 nm. These values 444

are the geometrical parameters fixed in the toy model, and correspond to experimentally- 445

observed structures for water/DPPC mixtures at 43◦ C [46]. The estimations of Deff are 446

listed in Table 1, and can provide a reference for researchers interested in studying the 447

release of these drugs from lipidic mesophases. Following our treatment, we assume that 448

for each case Dlip = 0.09Dwat. 449

To summarize, we have presented a multiscale approach to predict the macroscopic 450

diffusion coefficient by combination of atomistic simulations, from which the profiles for 451

U(z) and D(z) (Fig.1b,c) can be extracted, and Brownian-dynamics simulations, which 452

enable access to the effective large-scale diffusion emerging from the interplay of the 453

nanoscopic features. Based on a minimalistic toy model and a case study focused on amino 454

acids, we have discerned the impact of the main dynamic and thermodynamic features of 455

the system on molecular transport at macroscopic scales. A further possibility is to use our 456

results the other way round: from experimental knowledge of Deff, Dwat and log P, and 457

under the assumption of large barriers and a diffusion profile with the shape considered 458

here (Fig.1c), one can access the value of Dlip, characterizing diffusion of the inspected 459

molecule within the lipid bilayer. Future work will consider ad hoc studies to obtain the 460

detailed shape of D(z) for selected systems. Moreover, we will also adapt the present 461

framework to more complex topologies of lipid mesophases of direct relevance for release 462

studies, including for instance hexagonal and cubic phases. From a wider perspective, the 463

great potential of multiscale simulations is already being exploited in affine fields, such as 464

the study of biological membranes [78] or the pathways of antibiotic intake from bacteria 465

[79]; it is our hope that the results presented here will spark a similar interest for multiscale 466

simulations in the field of controlled release from lipid mesophases, thus paving the way 467

for the development of an invaluable complement to experimental assays. 468
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