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Abstract: Resolving small molecule mixtures by nuclear magnetic resonance (NMR) spectroscopy
has been of great interest for a long time for its precision, reproducibility and efficiency. However,
spectral analyses for such mixtures are often highly challenging due to overlapping resonance lines
and limited chemical shift windows. The existing experimental and theoretical methods to produce
shift NMR spectra in dealing with the problem have limited applicability owing to sensitivity issues,
inconsistency and / or requirement of prior knowledge. Recently, we have resolved the problem by
decoupling multiplet structures in NMR spectra by the wavelet packet transform (WPT) technique.
In this work, we developed a scheme for deploying the method in generating highly resolved WPT
NMR spectra and predicting the composition of the corresponding molecular mixtures from their 1H
NMR spectra in an automated fashion. The four-step spectral analysis scheme consists of calculating
WPT spectrum, peak matching with a WPT shift NMR library, followed by two optimization steps
in producing the predicted molecular composition of a mixture. The robustness of the method
was tested on an augmented dataset of 1000 molecular mixtures, each containing 3 to 7 molecules.
The method successfully predicted the constituent molecules with a median true positive rate of
1.0 against the varying compositions, while a median false positive rate of 0.04 was obtained. The
approach can be scaled easily for much larger datasets.
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1. Introduction

Identification of the components of small molecule mixtures is a crucial and challeng-
ing step in the research and developments activities in pharmaceutical drug discovery
[1–3], metabolomics [4–6], natural product synthesis [7–9], food quality control [10,11]
and environmental sciences [12,13]. Different types of nuclear magnetic resonance (NMR)
spectroscopic methods, high-performance liquid chromatography (HPLC) and mass spec-
trometry (MS) are widely used across the associated industries for the purpose. The main
advantages of NMR over the other techniques are that (1) its results are highly reproducible,
(2) it requires very little sample preparation effort and (3) it is a nondestructive method
[14–16]. However, its relatively poor resolution and sensitivity often made NMR an es-
sential but non-exhaustive analytic tool [5,9]. While recent developments for sensitivity
improvement has largely been successful [17–19], limited progress has been made towards
achieving the desired resolution. This is primarily due to the limited range of chemical shift
windows (∼ 10 ppm) and overlapping resonance lines of small molecules. It is possible to
enhance resolution in homonuclear decoupled 1H NMR spectroscopy by producing pure
shift spectra [20–24]. The technique failed to gain wide applicability owing to its experimen-
tal complexity and poor sensitivity [20,25]. In order to resolve the problem theoretically,
the maximum entropy method has been used in converting NMR to pure shift spectra by
deconvolution [26,27]. One of its major drawbacks is the requirement of prior knowledge
about the scalar coupling patterns and the coupling constants, which is reasonable for
13C NMR, but makes it unsuitable for 1H NMR spectroscopy. Apart from those, a series
of spectral analysis tools have been developed, which include peak matching strategies
[28–30], spectral editing [31,32], similarity measure [33,34] and deep learning-based tools
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[35–37], for identifying small molecule mixture constituents from the corresponding NMR
spectra. However, those applications can be seldom generalized, often suffer from low
reliability and / or require extremely large and specifically designed training datasets. As a
result, none of the methods are suitable for high-throughput analysis of small molecule
mixtures using 1H NMR as the primary tool.

In a recent work, we showed that wavelet packet transform (WPT) can work as a multi-
resolution signal processing tool in transforming an 1H NMR to a pure-shift spectrum [38].
Successive decomposition of a spectrum by WPT yields pairs of approximation and detail
components at each level, which contain some of the low- and high-frequency spectral
features from the chemical shift domain, respectively. The approximation component
produced at the final level of decomposition of an 1H NMR spectrum produces only singlet
structures, while the multiplet structures are transferred to the various detail components.
We illustrated that the former can be used to calculate a simple pure-shift spectrum and the
robustness of the WPT-based NMR spectral analysis method against significant level of
noise had been established [38].

In this work, we developed an automated method for predicting molecular composi-
tions from the corresponding 1H NMR spectra. The problem can be divided into two, (1)
predicting the number of molecules in a mixture and (2) predicting their identities. For the
purpose, we created an extensive database of 1000 augmented NMR spectra of molecular
mixtures, each containing 3 to 7 spectra of the constituent molecules. A library of WPT
shift NMR was created from 500 MHz NMR spectra of 74 molecules. The mixed NMR
spectra were analyzed in an automated fashion by implementing a four-step algorithm.
The algorithm in its first two steps, calculates a WPT shift spectrum from an NMR spectrum
and obtains a potential molecular composition by matching the peaks in the shift spectrum
with those of the spectral library. Next, the composition is optimized by employing a
gradient descent method to minimize the mean squared error in predicting the WPT shift
spectrum of the mixture. The top 15 entries from the potential composition are forwarded
to the next step, where another gradient descent-based minimization in predicting the the
WPT spectrum of the mixture produces the final list of molecules,

In analyzing the performance of the method, we used the true positive and false
positive rates, which represented the number of accurate and false predictions with respect
to the actual compositions of a molecular mixture, respectively. After the first optimization
step, we obtained an average true positive rate of 1.0, while the average false positive rate
was very high (0.3). This elimination step removed the molecules (choices) with zero or
very low probability to be present in the composition from the probable list. Among the
remaining choices, the top entries by their calculated probability of existence described
the true compositions for all the cases in the augmented dataset. In fact, we observed that
for mixtures with 3 to 4 molecules, a true positive rate of 1.0 could have been obtained
considering only the top 6 to 8 entries, respectively. Therefore, selecting the optimal
number of entries from the potential list of molecules without a priori information required
a second optimization. In this identification step, the top 15 entries obtained at the end of
the elimination step was optimized by another gradient descent method, which resulted
into a median true positive rate of 1.0, while reducing the false positive rate to 0.04 for the
analysis.

2. Materials and Methods
2.1. Spectral Library and Augmented Dataset Creation

We built a spectral library with the NMR spectra of 74 small molecules. Both exper-
imental and predicted NMR spectra were used in the library based on data availability
from a peer-reviewed publication [35] and the Human Metabolome Database [39]. The
corresponding WPT spectral library for the molecules was computed using Daubechies-9
(Db9) wavelet and a full reduction of all multiplets to singlets in a spectrum was used
as the criterion to select the optimal decomposition level. We mixed the NMR spectra of
20 molecules from the library to create an augmented dataset of 1000 spectra, shown in
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Figure 1. Only 20 molecules were chosen in creating the augmented spectra for two reasons,
(1) setting a known list of true negatives and (2) making the analysis realistic, because the
mixtures in most applications usually contain structurally related molecules. Each mixed
spectrum was calculated by mixing 3 to 7 randomly selected molecules’ NMR spectra in
varying proportions from 0.15 to 0.4. In creating a mixed spectrum, the component spectra
were added in such a way that the number of data points in the mixed spectrum equaled
the mean length of the individual spectra [38].

Figure 1. Summary of the augmented NMR spectral dataset with fraction of samples against the
number of constituent molecules in the mixtures (left) and the structure of the 20 molecules used in
creating the augmented dataset (right).

2.2. Spectral Analysis Algorithm

The algorithm used can be seen as a four-step process, (1) conversion of a NMR
spectrum to its WPT and WPT shift versions, (2) matching peaks with the WPT shift NMR
library and producing a sorted list (L-I) of potential components, (3) optimizing L-I to
L-II by applying a linear gradient descent algorithm, and (4) optimizing the top 15 entries
of L-II to produce the final prediction of the molecular composition of a mixture. The
scheme is summarized in Figure 2. Both the optimization steps used linear gradient descent
algorithms, but the targets (Y) were taken to be WPT shift spectra for step-(3) and the WPT
spectra for step-(4). WPT shift spectra are much simplified versions of the corresponding
WPT spectra, where only the peak positions and peak heights from the latter are used [38].
The density matrices (X), whose columns correspond to the potential molecules in L-I or
L-II, were constructed from the intersections of the chemical shift values from Y and the
WPT shift / WPT spectral intensities for the individual molecules. The cost function, J [40],
and the gradient descent minimization are given by

J(Θ) = ∑(Y− X ·Θ)2/n

Θi+1 = Θi − α∇Θ J(Θi)
(1)

where n is the dimension of Y and Θ contains the probabilities for a set of molecules to
be present in a mixture, ∇Θ J(Θ) represents the gradient of the cost function and α is the
learning rate. The value of α was chosen to be 0.1 in step-(3) and for each iteration in
step-(4), α was selected randomly from a uniform distribution in the range of 0.01 and 0.1.
The steps in the algorithm are summarized as follows
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1. Calculate WPT and WPT shift spectrum from an NMR spectrum
2. Match the WPT shift spectrum with the WPT shift spectral library

(a) p = Count number of match for each molecule in the library
(b) Probability for a molecule to be in the mixture = p / The number of peaks in

the WPT shift spectrum of the molecule
(c) Continue for all the molecules in the library and short-list the ones with non-

zero probabilities into the list, L-I

3. Optimize the short-listed molecules by a gradient descent method

(a) Define the WPT shift NMR spectrum of a molecular mixture as the target
variable, Y1

(b) Create a design matrix, X1, from the intersection of the chemical shift values
from Y1 and the intensities of the spectra for the molecules in L-I

(c) Minimize ∑ (Y1 − X1 ·Θ)2/n1, where n1 is the dimension of Y1 and Θ is prob-
abilities associated with the molecules in L-I, using a gradient descent method
with a learning rate, α = 0.1

(d) An optimized list of molecules, L-II, associated with non-zero probabilities is
obtained

4. Top 15 entries from L-II are used as the input to another optimization step

(a) Define the WPT NMR spectrum of a molecular mixture as the target variable,
Y2

(b) Create a design matrix, X2, from the intersection of the chemical shift values
from Y2 and the intensities of the spectra for the molecules in L-II

(c) Minimize ∑ (Y2 − X2 ·Θ)2/n2 using a gradient descent method with the learn-
ing rate chosen randomly from a uniform distribution between 0.01 and 0.1

(d) An optimized list of molecules associated with probabilities greater than 0.1 is
obtained

We used true positive and false positive rates as the metrics in evaluating the perfor-
mance of our spectral analysis method, defined as follows

True positive rate =
True assignments

Actual composition

False positive rate =
False assignments

Spectral library - True assignments
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Figure 2. Schematic representation of the spectral analysis algorithm.

3. Results and Discussion

As a benchmark, we analyzed the dataset of mixed spectra by matching them with
the NMR spectra of individual molecules, which is the most commonly used strategy at
present [28,29]. From the summary of the analysis shown in Figure 3, it can be seen that
the average true positive rate is ∼ 0.7 for the entire dataset as well as for the mixtures with
different number of constituent molecules in them. Both the subplots in the figure show
large variations in the true positive rate, which demonstrates the high uncertainty involved
in the analysis. The false positive rate for all the cases were equal to 0. It should also be
noted that this kind of direct matching may not be feasible for much larger libraries than
the one with 74 molecules used in this work.

Figure 3. Distribution of the true positive rates for the entire dataset (A) and against the size of the
mixture (B) are shown. The circles in (B) emphasizes the median for each of the distributions.

The results obtained at step-(3) of our scheme (Figure 2) are summarized in Figure 4.
At this stage of our analysis, a median true positive rate of 1.0 was obtained for the
entire spectral dataset. This observation demonstrates the robustness of the WPT shift
representation of a NMR spectrum and its ability to enhance resolution [38]. However, the
impressive true positive rate was associated with a very high false positive rate across all
the cases, with a median value of 0.3. Both the average false positive rate, and its variations
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increased with the size of the mixtures or the increasing complexity of the corresponding
spectra.

Peaking into the individual analyses and the corresponding mixture compositions, we
noticed that while ∼ 30 molecules were present in each prediction on an average, leaving
a few outliers, the top 6 to 15 entries by their probability of existence contained all the
components of the mixtures. Hence, in the final step of our spectral analysis scheme, we
employed another optimization, which used the top 15 entries from a predicted molecular
composition at step-(3). This step resulted into a massive reduction in false positive rate
from 0.3 at step-(3) to 0.04, shown in Figure 5, while the true positive rate remained mostly
unaffected except for the case with molecular mixtures comprising of 7 molecules. Even for
the latter case, we obtained a median true positive rate of 1.0 with a standard deviation of
0.08.

Figure 4. Summary of the results obtained at step-(3) of the analysis. Distributions of the true positive
(A) and the false positive rates (B) for the entire dataset along with those against the size of the
mixtures (C) are shown. The circles in (C) emphasizes the median true positive rate (blue) and false
positive rate (gray) for each of the distributions. For all the cases, a true positive rate of 1.0 was
achieved (standard deviation = 0).
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Figure 5. Summary of the results obtained after step-(4) in the analysis. Distributions of the true
positive (A) and false positive rates (B) for the entire dataset along with those against the size of the
mixtures (C) are shown. The circles in (C) emphasizes the median true positive rate (blue) and false
positive rate (gray) for each of the distributions.

For visualization purpose, we plotted the predicted NMR spectra from the component
analysis for a set of four representative cases and compared those with the corresponding
mixed NMR spectra, shown in Figure 6. The descriptions for the representative mixtures are
given in Table 1. In Figure 6 (A), a simple visual inspection could remove the false entries;
astaxanthin, indolelactive acid and L-fucose. The probable cause for their inclusion in the
final prediction was partial overlap between the molecular and mixed NMR spectra. In
contrast, the top 4 molecules of the prediction in Figure 6 (B) correspond to the composition
of the molecular mixture-23. Two of the three false positives, nicotinuric acid and linalyl
acetate, could be discarded by visual inspection and the probability of the third one,
sulcatone, is less than half of that of the 1,8-cineole. Figure 6 (C) illustrates a similar analysis
for a mixture containing 5 molecules, predicted by the top 5 molecules in the analysis.
An easy elimination of the false positives, nicotine and catechin, by visual inspection is
achievable in this case as well. In the last example, Figure 6 (D), the top 7 molecules in
the prediction capture all the 6 molecules in the corresponding mixture. The false positive,
shikimic acid, shows up in this list because of its high degree of overlap with the mixed
spectrum. However, the missing peak in the mixed spectrum between 7 and 8 ppm could
be used to remove it from the predicted composition. The rest of the false positives, nicotine
and sucrose, can be eliminated by visual comparison of the actual and the predicted spectra.
Our method’s performance summary is given in Table 2.
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Table 1. Representative set of molecular mixtures and the corresponding prediction summary.

Mixture No. Number of
Molecules

Molecules
(Proportions

%)

true positive
rate

false positive
rate

5 3

Caffeine (39),
Ribitol (33),
cis-Jasmone

(28)

1.0 0.04

23 4

Nerolidol (35),
1,8-Cineole
(22), Leaf

alcohol (22),
Furfuryl

alcohol (21)

1.0 0.04

35 5

Sorbitol (28),
Eugenol (26),
Ribitol (18),

Ascorbic acid
(15), Salicylic

acid (13)

1.0 0.03

20 6

Ribitol (20),
Eugenol (19),
cis-Jasmone

(18), 5-
Methylfurfural
(17), Ascorbic

acid (15),
1,8-Cineole

(12)

1.0 0.04
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Figure 6. Mixed NMR spectra (black) and the predicted components (color coded) for mixture
number 5 (A), 23 (B), 35 (C) and 20 (D), containing 3, 4, 5 and 6 molecules, respectively.

Table 2. Summary of the automated molecular mixture analyzer’s performance for the augmented
NMR dataset.

Parameters true positive rate false positive rate

Mean 0.97 0.05

Median 1.0 0.04

Standard Deviation 0.09 0.03

4. Conclusions

Composition analysis of small molecule mixtures is essential across a wide range of
biological and organic research activities. While 1H NMR spectroscopy is a very powerful
and effective technique in identifying small molecules, NMR spectra of molecular mixtures
are often poorly resolved due to spectral overlapping and the presence of multiplet struc-
tures. In this work, we presented an automated spectral analysis algorithm, which enhances
spectral resolution by the application of the wavelet packet transform and predicts the
associated molecular composition in a probabilistic manner. An augmented dataset of 1000
NMR spectra, corresponding to molecular mixtures containing 3 to 7 molecules, was used
to test the efficiency of our method. We obtained a median true positive rate of 1.0 for all
the mixtures with zero variation for the mixtures containing up to 6 molecules; the true
positive rate for mixtures with 7 molecules had a median and standard deviation of 1.0 and
0.08, respectively. A reasonably low false positive rate of 0.04 was achieved for the dataset.
In addition, we demonstrated that the precision of the analysis could be further improved
by visual inspection of the actual and predicted NMR spectrum of a molecular mixture,
which can be automated as well. We believe that this method can enable high-throughput
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analysis of small molecule mixture compositions using 1H NMR as the primary or only
spectroscopic tool.
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