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Abstract 

In the present study, a simple approximation expression is given for the relationship between the period 

and amplitude of a simple pendulum under magnetic action. The analytical solution presented for the 

given problem. Two numerical quadrature methods Simpson's and Boole's method were utilized to 

demonstrate a new approximation of the problem. The results of the numerical quadrature have been 

compared to the exact solution. Absolute and relative mistakes of the problem have been presented. The 

Matlab program 2013R has created a numerical method that is used to analyze the outcome, It has been 

determined that the comparison's outcomes attest to the method's suitability and correctness. Moreover, 

the results show that numerical solution is suitable for the problem. 
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Introduction  

In last decades, differential equations have been applied for many problems in engineering, finance, 

physics and seismology [1-5]. They have several approximation methods which are different from each 

other [6-10]. Many numerical methods have been applied for solving linear and non-linear differential 

equations [11-13]. One of the most popular physical models encountered in undergraduate courses is the 

simple pendulum and the differential equation describing its motion [12-20]. Historically, the equation 

arises when studying the oscillations of a pendulum clock, but also appears in various other areas of 

physics, since problems often can be reduced to a differential equation similar to that describing the 

pendulum [18, 19]. The exact solution to the equation of motion of the undamped pendulum is well 

known in the literature and involves the Jacobi elliptic functions [13, 18, 19].  
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Simple pendulum is a simple mechanical system in terms of setup, but it is difficult to calculate the 

factors that act on its motion, such as time period, amplitude, angle of oscillation, acting forces, and 

energy [20]. This simple mechanical system oscillates with a symmetric force due to gravity acting on it 

as a restoring force, as illustrated in (Fig. 1)[16]. Its equation of motion is given by:  

𝑑2𝜃

𝑑𝑡2
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The present paper numerically describes the solution of the time period of a simple pendulum under 

magnetic field. 

 

The method 

Ma and Zhang in [19], presented a periodic solution for the pendulum under magnetic action[21]. They 

have modelled pendulum under magnetic action as follow: 
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Where 𝑘 =
𝐴2

2(1−𝐴2)
 

In this study, we will examine two different numerical quadrature methods for (2), after that we will 

compare numerical results with exact solution that have been presented in [19] A numerical solution can 

be found and compared with the results in [19]. 

There are many numerical integration methods to evaluate composite integrals; in this paper, we use two 

numerical quadrature methods, Simpsons 3/8 method, and Boole’s method [22-26]. 

If we set, 𝑐 =
4

√1−𝐴2 
, 𝑓(𝑡) = (1 + 𝑘 sin2 𝑡 )−

1

2 for the integral in Eq. (2), and applying Simpson’s 3/8 

method, we obtain: 
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where 𝑂(ℎ4) = −
𝜃𝑀

80
ℎ4𝑓4(ζ), where 0 ≤ ζ ≤ θM. 

Similarly, by applying Boole’s method, we get: 
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where 𝑂(ℎ6) = −
2𝜃𝑀

945
ℎ6𝑓6(ζ), where 0 ≤ ζ ≤ θM. 
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The present work focused on the time period of simple pendulum under magnetic action as a function of 

its starting amplitude at a large angle numerically., for both integral equations (3) and (4), the results of 

Simpson’s 3/8 and Boole’s method will be compared with the exact results in [19] which is an analytical 

solution of the problem, and absolute errors (𝐸𝐴) and relative errors (𝑅𝐴) are calculated by the 

following,: 

𝐸𝐴 = |𝐸𝑥𝑎𝑐𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑣𝑎𝑙𝑢𝑒|      𝑎𝑛𝑑             𝑅𝐴 =
𝐸𝐴

𝐸𝑥𝑎𝑐𝑡 𝑉𝑎𝑙𝑢𝑒
 

The Matlab program have been implemented for comparison between exact and approximation solutions 

[18, 19, 27, 28],absolute error and relative error have been calculated, the Table 1. Shows the 

comparison between present study and the results in [19]. 

Table 1. The table presents absolute errors and relative errors of comparison between numerical results 

and results in paper [19] 

 A=0.1 A=0.5 A=0.9 

Numerical Result 6.30690135098058  6.97876252252756 10.6233569517113 

Results in [19] 6.3069 6.9783 10.6192 

Absolute error 1.35098057985061e-06  0.00006252252756 0.00415695171132135 

Relative error 2.14206754483282e-07 6.62801151512013e-05 0.000391456203039905 

 

Conclusion 

In this paper, approximation solution of Simple Pendulum under magnetic action has been presented. 

Two different numerical quadrature methods, namely Simpson’s and Boole’s method have been 

examined. The analytical solution has been compared with the numerical solution and the agreement is 

found to be very good. Matlab software have been implemented for calculation. Absolute error and 

Relative error have been calculated. The results guarantee the accurate and stability of both methods.  
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