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Abstract: The validity of our universe as a three-dimensional space (3+1 in relativity) is considered 
a fundamental fact in physics. In this study, we show that our observed world is thus the output of a 
prior fundamental operator referred to as an organizer. The organizer is an expansion of projecting 
operators. It is been shown that identical weighted projecting operators, which are associated with 
identical particles, generate subspaces of entangled states, whereas groups of unequal weighted 
coefficients are responsible for finite-size subspaces that are associated with unidentical particles. 
Considering 3D-subspaces as evidence of the coefficients’ arrangement in our universe, we implement 
our formalism to describe the implacable vectors, location, momentum, and force within each 3D 
subspace. By implementing the Heisenberg relation, we drive both the classical and quantum 
expressions for the laws of motion.
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The novel theories of the 20th century introduced the brilliant concept of the corre- 12

spondence principle. Underneath lies the assumption of a fundamental theory that, by 13

converging one of its parameters into an extreme value, a somewhat limited theory (mostly 14

an old theory) can be restored. This has been well implemented in relativity theories. For 15

example, in the special theory converging the speed of light to infinity, the theory is reduced 16

to non-relativistic mechanics. In the early days of quantum mechanics, attempts were made 17

to implement the correspondence principle to derive classical mechanics from the principles 18

of quantum mechanics. For example, it was suggested that classical mechanics becomes 19

valid in the limit when h̄→ 0 or when some quantum numbers such as the principle numbers 20

in the hydrogen atom reach high values [1]. Over the years, the coherence concept has 21

been recognized as a crucial component in quantum mechanics. In 1970, the concept of 22

de-coherence was introduced [2,3] with the purpose of solving the collapse problem but 23

also as a solution to the question of ‘’whether and how the ‘classical world’ may emerge 24

from quantum mechanics” [4]. Quantum coherence yields the concept of entanglement [5–7]. 25

Initially, it seemed as if entanglement was a unique feature of quantum mechanics. However, 26

lately, a classical analogy of entanglement of type II was suggested using classical light beams 27

[8–10]. Still, no analogy for the entanglement of many particles was found. In the end, we are 28

left with three quantum phenomena that seem to have no analogies in classical mechanics: 29

collapse in quantum measurements, entanglement of many particles, and quantum jumps. 30

The last issue was examined in detail in ref. [12], where the quantum-classical mechanics 31

theorem was suggested as an alternative for dealing with quantum mechanics in molecular 32

and chemical physics. Regarding the quantum collapse, we published two studies [13,14] 33

suggesting that by labeling classical particles, a classical observer collapses the entangled 34

state of particles. Accordingly, the collapse phenomenon belongs to both quantum and 35

classical theories. 36

This study suggests that both quantum and classical phenomena originate from a 37

common feature, described mathematically by what we refer to as the organizer. We show 38

that for identical particles (as in quantum mechanics), the organizer allows entangled states 39

of many particles, whereas for unidentical particles, mass terms enforce particles to stay 40

in a three-dimensional space. We implement our formalism to derive both classical and 41

quantum dynamics. 42
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I. First Type: Equal Weighted Organizer Operator as a Space Spanner 43

Herein, we define a fundamental operator, namely, the organizer, which translates any
fundamental state into what we refer to as ‘’degrees of freedom.” We begin with an N

degrees of freedom space spanned by a complete orthogonal basis of states |i〉, where i is
the degree of freedom index. We allow N →∞.
The ‘’organizer” is defined by

Oµ =
N∑
i=1

µi|i〉〈i|

where µi describes the impact factor for each degree of freedom. In this section, we consider
the equal weighted coefficients

O=
N∑
i=1
|i〉〈i| (1)

Operating O in the state |d〉=
d∏
i=1
|i〉 with d≤N , we obtain

O|d〉= d|d〉, (2)

Consequently, although O is predefined for a product of N states, it also detects the
dimension of a lower product of states. In addition, because all projecting operators are
equally weighted, we can define entangled states, thereby enabling us to define subspaces
. For example, consider a 4D-dimensional subspace spanned by the single-item states
|i〉, i= 1,2,3,4 and consider an arbitrary superposition |ψ〉= A|1〉|2〉+B|3〉|4〉. Operating
O on |ψ〉, we obtain

O|ψ〉= 4|ψ〉. (3)

In other words, O detects the space dimension for all representations, thereby defining a 4D
subspace. In general, if we have entangled states composed of a state’s product of length d,
we can implement O to define an embedded subspace in the N space. For that scenario, we
define a state in an d-dimensional subspace as

|Ψd〉=
d/2∑
i=1

Ai

di∏
j=d(i−1)+1

|xj〉, (4)

with the result
O= |Ψd〉= d|Ψd〉. (5)

I.1. Example: Identical Particle Space 44

The organizer is well implemented in quantum mechanics, where the concept of identical
particles is valid. Identical particles define equal weighted coefficients, allowing states of
different particles to be in a superposition to formulate the entanglement phenomenon. A
simple example is the two identical particles of spin 1/2. It can be seen that for all possible
superpositions ,

|ψ〉= A|↑〉1|↑〉2 +B|↓〉1|↑〉2 +C|↑〉1|↓〉2 +D|↓〉1|↓〉2

when subject to the operation of O will provide the same result as in Eq. 5. To conclude 45

this part, not only can single state products unite the separated subspaces into a united 46

single space (as in quantum mechanics), subspaces can be integrated to form a united space 47

as well. 48

In the following, we show that it is the weight coefficient in the projection operator series of 49

Eq. 1 that determines the level of superposition in a subspace. 50
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II. Second Type : Organizer with Different Weights–Birth of the 3D Space 51

In the previous part, we defined an organizer as a series of projecting operators with
equal weights. We now consider an organizer with different weights. We show that, whereas
a product of distinguishable states remains an eigenstate of the organizer, superposition
between different states is allowed only for projecting operators with equal weights. In our
three-dimensional world, we realize that only triples of degrees of freedom can share the
same weight.
The unequal weighted organizer is

Oµ =
N∑
i=1

µi|i〉〈i| (6)

where µi (described later) is a mass term representing the relative impact of each degree of
freedom.
The superposition of states is invalid unless some partial coefficients are equal. These define
a subspace that is later associated with a 3D particle. It is realized that regardless of the
relative relations between coefficients, the state’s product |ψ〉=

n∏
i=m
|i〉 always serves as an

eigenstate of the organizer, that is,

Oµ|ψ〉=
n∑

i=m

µi|ψ〉 (7)

A vector is defined by the superposition of its unit vectors. Thus, if we follow classical
mechanics that include the 3D component of a vector in the total count of the number
of degrees of freedom, we conclude that the organizer must be divided into triple equal
weighted groups:

Oµ =

Np∑
i=1

µi ≯(3)
i (8)

where Np describes the number of tripled groups referred to as the number of particles, and
≯(3)
i is a projecting operator given as

≯(3)
i =

3∑
R=1

|Ri,j〉〈Ri,j |

Ri,j = R+ 3i−3
(9)

where the superscript (3) denotes the 3D dimension of the subspace. The symbol R in 52

the index Ri,j is chosen as a reminder that R may serve as the coordinate index (e.g ., 53

(R= x,y,z)). In addition, Ri,j is defined such that it is a part of a continuous index . 54

For example, for a particle labeled as i = 1, the subspace ‘’coordinates” are counted as 55

R1,j = 1,2,3 for the next particle i= 2. The counting continues with R2,j = 4,5,6, and so 56

on. 57

III. Vectors in 3D Space 58

Thus far, we have shown that in a system with N degrees of freedom, 3D subspaces
exist that are referred to as the spaces of particles. In this section, we show how physical
concepts such as location or momentum are defined within the 3D subspace. Accordingly,
we associate each physical quantity with a projecting operator that projects all states into
the 3D corresponding vector. Our derivation here can be applied to all vectors in the 3D
subspace in which we focus on the fundamental vectors, location, momentum, and force.
Suppose that we have a vector ~A. Presenting the vector in an operator form, we assume
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that it belongs to a space with defined norm
∣∣∣ ~A∣∣∣ (such as in a Hilbert space) to define the

operator
Ai = |Ai| ≯(3)

i (10)

where ≯i is defined in Eq. 9. To obtain the vector components, we define the normalized
state (‘’unit vector” in the terminology of classical mechanics) as

|Ai〉=
1
|Ai|

3∑
Ri,j=1

ARi,j |Ri,j〉 (11)

where ARi,j are the three components of the A vector. Implementing Ai on |Ai〉, we obtain

Ai |Ai〉= |Ai| |Ai〉=
3∑

Ri,j=1
ARi,j |Ri,j〉 (12)

Observe that two steps define the process of vector generation. First, a concept is introduced 59

by the norm
∣∣∣ ~A∣∣∣, which defines both the essence of the measured quantity and the units 60

of measurement. By implementing ≯(3) on the defined state, the quantity is distributed 61

among the three components. Note that as a density matrix, ≯(3) satisfies the relation 62

(≯)2 =≯(3). Thus, ordinary operations such as multiplication are maintained, as seen by 63

the relation
(
|Ai| ≯(3)

)2
= |Ai|2 ≯(3). 64

IV. Location concept 65

Location refers to a point in space described by coordinates with length dimensions.
Following the literature, we refer this space to the term real space.
To define the location vector, we define the location operator ~Ri as

~Ri = |ri| ≯(3)
i (13)

where |ri| is a positive variable with length dimension that is later associated with the
norm of the location vector. Because both ~Ri and Oµ are diagonal under the |i〉 basis, they
commute. A normalized location vector for an i particle is

|ri〉=
1
|ri|

3∑
Ri,j=1

xRi,j |Ri,j〉 (14)

In classical terminology, the state |Ri,j〉 refers to the unit vectors denoted by Cartesian
geometry as x̂, ŷ and ẑ. In quantum terminology,

xRi,j
|ri|

are referred to as the expansion
coefficients of the state in an i-3D subspace. In that sense, the coordinates x are parameters
rather than operators.
Implementing ~Ri on |ri〉, we obtain

~Ri |ri〉= |ri||ri〉 (15)

Following Eq. 8, we can define the location organizer operator as

Or =
Np∑
i=1
|ri| ≯(3). (16)

The center of the mass coordinate is defined by the product

Ocm =OrOµ (17)
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to provide the known expression for the center of mass coordinate

Ocm
∏
i

|ri〉=
∑
i

µiri
∏
i

|ri〉 (18)

V. Functions 66

In the literature, a function (denoted by ψ) is as an expression, rule, or law that defines
a relationship between at least two variables [15]. Let us add the following preliminary
remark. In the same manner that location serves as a concept, so does the function. A
function defines a relationship between concepts. More specifically, the concept of ψ and,
for example, that of location can be associated with the states |ψ〉 and |r〉, respectively. The
overlap term ψ(r) = 〈r |ψ〉 describes the function generated by these concepts. Consider a
concept ψ defined equally for all spaces, which is represented in terms of location, that is,

ψi = 〈ri |ψ〉 (19)

This function definition allows us to consider operators such as derivatives operators in the 67

proceeding. 68

V.1. Classical Versus Quantum Dynamics 69

Now that a particle is identified with a 3D subspace generated by the organizer and its
location is defined within this subspace, we introduce the concept of motion. For this, we
implement conventional physical tools (i.e., the Hamiltonian) to generate time evolution for
conventional operator expressions. We implement the Heisenberg relation for inexplicably
time dependent operators:

dA
dt

=
i

h̄
[H,A] (20)

where A is within the Heisenberg picture and H is the system Hamiltonian.
To reconstruct the equations of motion, we reformulate the momentum vector and operator.
Following our formulation that each observable in the 3D subspace must be multiplied by

the projecting operator ≯(3)

(
≯(3) =

3∑
j=1
|Ri,j〉〈Ri,j |

)
, we define the operator as

~Oµiri = µi|ri| ≯(3) (21)

We implement the conventional form of the Hamiltonian in the coordinate representation. In
our formalism, this becomes H→Hi =

(
− h̄2

2µi
∇2
i +V (~ri)

)
≯(3). Implementing the relation(

≯(3)
) 2

=≯(3) and substituting in Eq. 20, we obtain the momentum operator

~Pi = −ih̄ ~∇ (22)

using the ‘’classical operator”

~Pi = |p|i ≯
(3), |p|i = µi

d|r|i
dt

(23)

and the ‘’quantum operator”

− ih̄ ~∇i = −ih̄
∂

∂ri
≯(3) (24)

Clearly, this relation between classical and quantum mechanics is only valid for a diagonal
representation of the operator −ih̄~∇i

(
that is a wave function of the form ei

~k·~r
)
. Note

that the classical operator obeys the rule as defined in Eq. 13.
Eq. 23 represents the classical relation ~̇ri = ∂piH. To obtain the second Hamiltonian equation
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~̇pi = −∂xiH, we find the operator’s form of force. Implementing a Heisenberg relation on
the momentum operator

d~Pi
dt

=
i

h̄

[(
− h̄2

2µi
∇2
i +V (~ri)

)
≯(3),

(
−ih̄~∇i

)
≯(3)

]
(25)

yields
d~Pi
dt

= −� Vi (26)

with the operator
� V= |∇Vi|≯(3). (27)

When the classical Hamiltonian H=
∑
i

(
p2

i
2m +V (~ri)

)
is considered, Eq. 26 becomes equiv- 70

alent to the Hamiltonian equation of motion ~̇pi = −∂xiH. 71

VI. summary 72

In this study, we showed that all spaces in the universe are originated from a fundamental 73

organizer operator. We revealed that for identical particles, that is, when all coefficients in 74

the organizer are identical, entangled states are allowed, whereas organizers with different 75

coefficients are divided into groups of partially identical coefficients to establish subspaces, 76

which are referred to as particles. We also showed that straightforward evidence indicating 77

that unidentical particles are arranged in groups of three degrees of freedom teaches us 78

about the nature of our universe. A result of our study is to consider possibilities of other 79

universes with different organizers such that an unidentical particle will exist, for example, 80

in a 5D space. 81

Consider the scenario of an earlier symmetric organizer that defines a global state 82

without the definitions of particles. In the next step in our universe evolution, this symmetry 83

breaks to define the lower symmetry of 3D identical particles. Proceeding with this symmetry 84

breaking, we obtain the unidentical particles scenario. Locating quantum and classical 85

mechanics in the same timeline of the universe evolution may provide a new path for 86

understanding the relationship between quantum and classical mechanics. 87
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