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Abstract: In the context of the Atmospheric Observing System (AOS) international program, a 1

new generation spaceborne lidar is expected to be in polar orbit for deriving new observations 2

of aerosol and clouds. In this work, we analyze the added values of these new observations for 3

characterizing aerosol vertical distribution. For this, synthetic observations are simulated using 4

the BLISS lidar simulator in terms of backscatter coefficient at 532 nm. We consider two types of 5

lidar instruments, an elastic backscatter lidar instrument and a high spectral resolution lidar (HSRL). 6

These simulations are performed with atmospheric profiles from a Nature Run (NR) modeled by 7

the MOCAGE Chemical Transport Model. In three case studies involving large events of different 8

aerosol species, the added value of the HSRL channel for measuring aerosol backscatter profiles with 9

respect to simple backscatter measurements is shown. Observations independent from an a-priori 10

lidar Ratio assumption, as done typically for simple backscattering instruments, allows probing the 11

vertical structure of aerosol layers without divergence, even in case of intense episodes. Relative error 12

in the backscatter coefficient profiles are observed to lay between +40% and -40% for low abudancies, 13

with mean biases between +5% and -5%. A 5-day study in the case of desert dust completes the study 14

of the added value of the HSRL channel with relative mean bias from the NR of the order of 1.5%. 15

Keywords: Atmospheric-Observing-System; Aerosol; High-Spectral-Resolution-lidar 16

1. Introduction 17

The study and monitoring of atmospheric aerosols is a major issue for public health 18

[1], environment [2], and climate [3]. However, one of the major remaining challenges is 19

the good knowledge of their vertical distribution, necessary to document the direct and 20

indirect effects on the climate [4]. Distinguishing a layer of particles above clouds allows 21

the quantification of the cloud albedo impact on the atmospheric warming capacity of the 22

aerosol. This phenomenon can lead to an early evaporation of clouds, which is considered as 23

the typical semi-direct impact of particles on the climate, and a source of large uncertainties 24

on weather prediction [5]. Moreover, it has been shown that aerosol radiative feedback 25

induces maximum warming at low, medium or high altitudes, depending on whether the 26

vertical structure of the aerosols is well mixed, with concentration increasing or decrasing 27

with altitude, respectively. This phenomenon has an important impact on the stability of 28

the aerosol-Planetary Boundary Layer (PBL) [6]. 29

30

Advances on the understanding of the aerosols vertical distribution have been made 31

possible thanks to the CALIOP (Cloud-Aerosol lidar with Orthogonal Polarization) space- 32

borne lidar onboard the CALIPSO (Cloud-Aerosol lidar and Infrared Pathfinder Satellite 33

Observation) platform since 2006 [7–9]. The CALIOP instrument consists of elastic backscat- 34

ter channels at two wavelengths λ (1064 nm, 532 nm) lidar with depolarization channel 35
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which allows the observation of the vertical distribution of aerosols. This enables the 36

creation of global and inter-annual climatologies of aerosols vertical distribution, such as 37

for desert dust (DD) [10]. The unprecedented amount of lidar data on the vertical aerosol 38

characterization at global scale also allowed the development of Data Assimilation Systems 39

(DAS) for several Chemical Transport Models (CTM) such as MOCAGE (Modèle de Chimie 40

Atmosphérique à Grande Échelle) or the ECMWF/IFS (European Center for Medium-Range 41

Weather Forecast / Integrated Forecast System). However, the inversion methods of elastic 42

backscatter lidars such as CALIOP for deriving aerosol backscatter profiles are based on 43

classic algorithms (such as the work from [11] and [12]) which rely on assumptions about 44

the optical properties of the atmospheric aerosols. The main assumptions are an a-priori 45

lidar Ratio (LR), ratio of the particular extinction and backscatter coefficients, which is 46

intrinsic to each aerosol species/composition, and an aerosol free altitude for signal cali- 47

bration (or normalization). This assumption may introduce large uncertainties, especially 48

when the composition of the atmosphere varies along the vertical, whether it is composed 49

of several layers with more or less homogeneous mixtures. All these factors could lead to 50

unavoidable divergences in the inversion analysis, which limits the access to a well detailed 51

restitution of the atmospheric column. 52

53

Many satellite lidar projects with various technologies succeed CALIOP. The ADM- 54

Aeolus/ALADIN (Atmospheric Dynamics Mission/Atmospheric LAser Doppler INstru- 55

ment) is the first space Doppler lidar [13], designed to monitor the wind velocity with a 56

355 nm laser inclined at 35 ◦ from the nadir, which also offer High Spectral Resolution lidar 57

(HSRL) observations. The spectral-resolved system with a Fizeau spectrometer combined 58

with a Fabry-Perot interferometer allowed to develop an aerosol L2A (Level 2 Aerosol) 59

product to derive backscatter to extinction or scattering ratios as well as the aerosol optical 60

thickness [14]. The future EarthCARE (Earth Cloud, Aerosol and Radiation Explorer) devel- 61

oped by the European Space Agency is an aerosols and clouds lidar with HSRL capability 62

at high vertical resolution at 355 nm in orbit together with a Doppler radar [15]. The HSRL 63

is a major innovation for retrieving the optical properties of particles [16]. It consists of 64

separating the particular and the molecular backscattered signal thanks to an appropriate 65

filter centered on the Mie scattering spectrum that occurs with Doppler shift phenomena. 66

It allows the monitoring of the atmospheric geophysical parameters without any a-priori 67

information on the chemical composition or the vertical distribution and the aerosol optical 68

properties. 69

70

The AOS (Atmospheric Observing System) mission is an international program with 71

a contribution from several spaces agencies [NASA (National Aeronautics Space Admin- 72

istration), CNES (Centre National d’Etudes Spatiales), Canadian Space Agency, Japan 73

Aerospace Exploration Agency], part of the NASA’s Earth Observing System program 74

(EOS) (previously named Aerosol, Clouds, Convection and Precipitation (ACCP)). The 75

program is dedicated to the observation of aerosols, clouds and precipitations, with a 76

constellation of three satellites including a large set of complementary instruments [17]. An 77

artist’s view of the constellation is presented in Figure 10 in the appendix. The AOS-P1 78

platform aims to carry the very first HSRL lidar at 532 nm dedicated to the monitoring of 79

both aerosols and clouds. In the same way as for EarthCare, the visible HSRL channel is 80

expected to give more efficient retrieval, avoiding various sources of divergence specific to 81

classic elastic backscatter lidar inversion methods. It is also more adapted to give better 82

specification of aerosols, especially on the vertical, as well as new differentiable species, 83

such as ice particles, polluted marine or smoke with different aging properties (smoke and 84

fresh smoke) [18]. 85

86

The objective of this study is to evaluate the added value of an AOS-type observation 87

(AOS_HSRL) compared to an Elastic Backscatter-type observation (AOS_Backscatter), for a 88

spaceborne lidar operating at 532 nm. This study is done within the framework of the AOS 89
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mission, using the tools and instrumental parameters developed and determined for this 90

purpose. In the first section of the current study, the method and the Synthetic Observations 91

(SO) setup is described. It includes the simulation of a realistic atmosphere with the CTM 92

MOCAGE that plays the role of Nature Run (NR) from which inputs are extracted for the 93

observation simulator. Main lidar equations and a brief presentation of the lidar signal 94

simulator software are also included. For the second section, we focus on the quantification 95

of the added value f the HSRL technology for three events: (1) a Saharan dust event over 96

the Mediterranean Sea that occurred in March 2018 and reached Greece, (2) a biomass 97

burning episode due to intense wildfire in August 2018 in over Southern Canada and (3) 98

an anthropogenic pollution event in the Beijing-Tianjin-Hebei region of China on February 99

2018. SO are performed and compared in terms of particular backscatter coefficient to focus 100

on the capability to retrieve the vertical structures of aerosols. The comparison of the two 101

sets of simulations with each other and with the NR allows to evaluate the added value of 102

the HSRL technology in the context of a spaceborne lidar for the study of aerosols vertical 103

distribution. Section 3 consider a larger period focused on the desert dust event (5 days) to 104

perform a statistic comparison of aerosol different retrievals. 105

2. Retrieval of aerosol lidar synthetic observations 106

2.1. Method 107

The first step of this experiment consist of modeling and validating the NR. This 108

atmosphere is expected to be sufficiently realistic for describing the events selected for 109

this study in terms of aerosol abundance and chemical composition, and the respective 110

aerosol optical properties (backscattering and extinction). In particular, the NR must have a 111

good correspondence in terms of LR with the represented species to justify the hypotheses 112

during the simulation of the AOS_Backscatter instrument. 113

114

The particle extinction and backscatter profiles are then extracted following a typical 115

trajectory of a spaceborne lidar (we use CALIOP trajectories). These extracted aerosol 116

profiles, meteorological fields and surface properties are integrated as input into an obser- 117

vation simulator for performing the simulations. In this study, the Backscatter lidar Signal 118

Simulator (BLISS) software developed by the CNES is used. Note than this software is 119

developed in the framework of the AOS mission in order to build the SO of several config- 120

urations. The simulator and the simulation setup will be presented later in the dedicated 121

article. 122

123

For each event, two sets of simulations are performed: one with the standard Klett in- 124

version method with AOS architecture (altitude, emitted power etc...) called AOS_Backscatter 125

and a second one with the HSRL method called AOS_HSRL. The SO are then compared to 126

each other and to the NR to access the added value of the HSRL channel for a spaceborne 127

lidar. In the first time, the evaluations are made for each event on a single transect in order 128

to visualize the temporal evolution of the observations along the trajectory. In a second 129

step, a statistical analysis over 5 days from March, 20, 2018 to March, 25, 2018 (∼ 20 orbits, 130

∼ 1700 profiles at 0.5 ◦ × 0.5 ◦ resolution) is then performed for the specific case of the 131

desert event. The experiment is schematized in Figure 1. 132
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Figure 1. Schematic representation of the experience principle

2.2. The Nature Run 133

The NR is constructed by assimilating the MODIS (Moderate Resolution Imaging 134

Spectroradiometer, [19]) Aerosol Optical Depth (AOD) data at 550 nm with a variational 135

method in the MOCAGE CTM [20]. The period of simulation extends from January to 136

September 2018 where the month of January is considered as the spin-up. Meteorological 137

forecast is performed with ARPEGE (Action de Recherche Petite Echelle Grande Echelle) at 6 138

hour temporal resolution [21]. 139

2.2.1. The MOCAGE chemistry transport model 140

MOCAGE is an off-line 3D CTM developed by Météo-France that provides the chemi- 141

cal state of the atmosphere at a time t+∆t based on its initial state (atmospheric composition 142

at the time t), meteorological inputs, and emission data. 143

144

• Meteorological inputs: MOCAGE being an off-line model, it receives its meteorologi- 145

cal fields from an independent weather model, every 3 or 6 hours. The fields generally 146

come from the IFS model, from the ARPEGE model or from ERA-INTERIM [22] and 147

more recently ERA5 [23] reanalyses. 148

• Atmospheric composition : MOCAGE describes the chemical composition of the 149

atmosphere on 47 vertical levels from the surface up to 5 hPa, with a resolution of 40 m 150

to 800 m at the top of the stratosphere. The horizontal resolution can vary from local 151

scale (0.1 ◦ × 0.1 ◦) to regional (0.5 ◦ × 0.5 ◦) up to global domain with 1 or 2◦. The 152

model was initially developed for gaseous species (112 species implemented), whose 153

processes and interactions are described in [24]. The Primary Aerosols (PA) were 154

implemented by [25] for 4 species : the Desert Dust, the Sea Salts (SS) and the Black and 155

Organic Carbons (BC, OC). Their description was improved by [26], in particular in the 156

description of deposits, and with the development of the aerosols DAS. The inorganic 157

aerosols were implemented by [27], namely nitrates, sulfates and ammonium. The 158

large-scale transport, which corresponds to the atmospheric circulation (advection) 159

is calculated thanks to the meteorolical fields. Then, the finer resolution processes 160

(convection, turbulent diffusion) are solved from sub-mesh parameterizations (more 161

details in [28]). 162
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• Emissions : Emissions are the sources of pollutants in the atmosphere. They can 163

be determined by emission inventories (anthropogenic, biogenic sources...), or by 164

dynamic emission for some particles pulled from the surface following a natural fore- 165

cast (DD, SS). The main emissions inventories are MACC-City [29] for anthropogenic 166

pollutants, MEGAN-MACC [30] for biogenic emissions and methane, or GEIA for 167

the NOx [31]. The dynamic emissions are calculated with a parametrizations via the 168

meteorological parameters listed above. These parametrizations take into account the 169

surface properties (composition, roughness...) and determine the necessary conditions 170

(in general wind force and direction) to pull out a calculated quantity of particles. 171

172

In addition to these 3 elementary inputs, the model equations can be constrained from 173

observations via the MOCAGE-Valentina DAS [32,33] validated for the assimilation of 174

aerosol observations from imager such as MODIS [34] and lidar instruments [35]. This 175

technique aims to combine the high spatial and temporal resolution of the model with the 176

good accuracy and the specific coverage of the observations. 177

2.2.2. Validation of the NR with AERONET in-situ observations 178

To ensure that the NR is a good representation of reality, we perform a comparative 179

analysis in terms of AOD from the global AErosol RObotic NERwork (AERONET) in-situ 180

observations. AERONET represents hundreds of groundbased sun photometers network, 181

monitoring optical properties of aerosols from 340 up to 1020 nm. With a large spatial 182

coverage and an accuraçy of ±0.01 for AOD at 550nm, it aims to validate CTM and satellite 183

products for aerosol study [36]. We use level 1.5 datas on version 3 (https://aeronet.gsfc. 184

nasa.gov, last check : Novembre 2022), with automatic cloud screening. Over the globe and for 185

the simulated period of the NR, AERONET provides more than two million measurements 186

with hourly resolution. 187

188

Such validation has already been performed in the work on the validation of the 189

MODIS pre-operational AOD assimilation system in MOCAGE by [? ] which will serve 190

as a reference for this study. In this reference study, the comparison with AERONET 191

showed for the year 2018 (year of the NR) relatively low biases and root mean square 192

error (RMSE) with the exception of Central Africa and South East Asia. These regions are 193

frequently affected by biomass fires and anthropogenic pollution episodes respectively, 194

phenomena sometimes difficult to represent in the model. However, even in these regions 195

the correlation is satisfactory with values above 0.7. For the years of 2018 (2019), average 196

scores of reference for correlation, bias and Root Mean Square Error (RMSE) are about 0.781 197

(0.812), -0.01 (-0.007) and 0.128 (0.138) respectively. 198

199

For the current study, Figure 2 presents the spatial validation of the NR in terms of 200

correlation, bias and RMSE at the global scale over the whole simulation period of the 201

NR. The first thing we observe is the good quality of the model on all the statistics in the 202

Europe/Mediterranean and USA/Canada regions where two of the three events analyzed 203

in this study are located. Concerning the anthropogenic pollution event, this one is located 204

over China and it is not well covered by the AERONET network. The lower scores in 205

terms of bias and RMSE in this region (greater than 0.1, and 0.3, respectively) are however 206

accompanied by a good correlation. 207

Figure 3 completes it with a scatter plot representing the set of AERONET observations 208

in comparison with the NR. The average scores of correlation, bias and RMSE are about 209

(differences with the 2018 reference) 0.781 (=), 0.026 (+0.036) and 0.138 (+0.01). These 210

differences are of the same order of magnitude as the differences between the reference 211

for 2018 and 2019, demonstrating the validity of the NR. We see a positive bias between 212

MODIS assimilation and AERONET stations, strongly driven by the lower (more frequent) 213

AOD values (lower than 0.2). The overestimation of MODIS observations compared to 214

AERONET in terms of AOD has already been documented over continental surfaces (e.g.: 215
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a.

b.

c.

Figure 2. Maps of comparison between the NR and the AERONET in-situ Observations in terms of
AOD over the globe and from 01, February, 2018 to 31, Septembre, 2018. Statistics are performed in
terms of (a): Correlation, (b): Bias and (c): RMSE.
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Figure 3. Scatter plot of AERONET vs NR in terms of AOD from 01, February, 2018 to 31, Septembre,
2018.

[37]) for both the Aqua and Terra platforms. The main differences in terms of statistics 216

between the NR and the reference can be attributed to the duration of the simulation, which 217

is shorter in the case of the NR, as well as to the initial state. 218

2.3. Inversion of the aerosol extinction and backscatter coefficients 219

2.3.1. The lidar equation 220

The backscatter coefficient β (m−1 · sr−1) of scatterers (such as particles and molecules), 221

indicates the proportion of light scattered in the opposite direction of the incident photons. 222

In the other hand, the extinction coefficient α (m−1) represents the proportion of light 223

absorbed or scattered in all other directions of the volume. These coefficients are key 224

variables in the lidar equation, which connects the backscattered light power Ptot at the 225

range r (directly linked with altitude z as r = zsat − z for nadir pointing) for a fixed 226

wavelength λ to the optical properties of the atmosphere. In its semi-complete version, this 227

equation can be written as follows: 228

Ptot(r) =
1
r2 K · G(r) ·

[
βm(r) + βp(r)

]
· exp

[
−2

∫ r

0

(
αm(r) + ηαp(r)

)
dr

]
(1)

K and G(r) are related respectively to the instrument calibration and to its geometry 229

and the overlap function between the laser beam and the telescope field of view, which 230

do not involve intrinsic properties of the atmosphere. The extinction and backscattering 231

coefficients are decomposed according to their molecular (m) and particulate (p) fraction. 232

η, ranging from 0 to 1, is a term which corresponds to the multiple scattering coefficient. 233

This coefficient modulates the phenomenon of light extinction by taking into account the 234

ability of photons to reflect several times on neighboring aerosols when the density is 235
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sifficiently high. We consider hereafter only simple scattering (η = 1). If the molecular 236

parameters can be directly derived from meteorological profiles (pressure and temperature), 237

the lidar equation still has two unknowns, which makes it unsolvable. On the other hand, 238

the vertical structure of the atmosphere can directly be studied in qualitative terms using 239

Attenuated Total Backscatter (ATB) profiles (see the equation below). However, this Level 240

1 (L1) product do not provide quantitative information nor indicator of the chemical 241

composition of the atmosphere, which is necessary for a deep understanding about the 242

interactions between aerosols and the environment. 243

ATB(r) =
S(r)

K · G(r)
=

[
βm(r) + βp(r)

]
· exp

[
−2

∫ r

0

(
αm(r) + αp(r)

)
dr

]
(2)

With S(r) = r2 · Ptot(r) called the range-corrected lidar signal. For the following steps, 244

the overlap function is assumed to be complete (G(r) = 1). The aims of this section is to 245

present the two aerosol inversion methods to retrieve the optical properties of the particles 246

compared in this study. The first method is based on the classic inversion algorithm used 247

for elastic backscatter lidars such as CALIOP, called hereafter Klett inversion algorithm. It 248

has the instrumental advantage of requiring a single and simple detection system. However, 249

this method requires an a-priori assumptions about the state of the atmosphere that can 250

lead to large uncertainties. The second method with high spectral resolution avoids 251

such assumptions by exploiting the Doppler shift phenomenon to separate the molecular 252

component from the total signal. The challenge for both methods is to derive to the most 253

accurate distance-dependent particle backscatter, extinction and lidar ratio profiles LRp(r). 254

This last one is defines as: 255

LRp(r) = αp(r)/βp(r) (3)

2.3.2. Elastic backscatter lidar 256

The Rayleigh theory assumes a proportional relationship between the extinction and 257

molecular backscatter coefficients of 8π/3, which is not the case for particle coefficients, 258

highly dependent on the shape, size and chemical composition of the elements. A first guess 259

of LRp can however be estimated by making an assumption on the observed particulate 260

species, and from empirical measurements of aerosol properties [qq citations]. In a parallel 261

way, LRm = 8π/3 is defined and independent of the range. From the ATB formula, and by 262

replacing the extinction coefficients according to the different lidar ratio and backscatter 263

coefficients, we obtain the following equation : 264

LRp(r) · ATB(r) · exp
[
−2

∫ r

0

(
LRp(r)− LRm

)
βm(r) dr

]
= Y(r) · exp

[
−2

∫ r

0
Y(r) dr

] (4)

Where Y(r) is an introduced term of the form : 265

Y(r) = LRp(r) · [βp(r) + βm(r)] (5)

At this point, it is reported that all the terms in the left-hand side of the equation 4 266

are known or assumed (i.e. LRp). In the right-hand side βp remains unknown. By putting 267

each member to the logarithm, and applying a derivative with respect to r, we obtain the 268

following equation: 269
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d
dr

[
ln
(

S(r) · LRp(r) · exp
[
−2

∫ r

0

(
LRp(r)− LRm

)
βm(r) dr

])]
=

1
Y(r)

· dY(r)
dr

− 2Y(r)2
(6)

Equation 6 is of the type of Bernoulli’s differential equation expressed in [38]. The 270

solution is given from the initial condition Y(r0) = LRp[βp(r0) + βm(r0)], with r0 = rre f , 271

for the retrieval application, where we can consider βp(r0) ≪ βm(r0) (i.e. an aerosol free 272

atmosphere). The altitude of reference is often chosen at the top of the troposphere for 273

wavelength inferior to 700 nm. The total backscatter coefficient profile βtot(r) (particular + 274

molecular) is then: 275

βtot(r) =
S(r) · Q(r)

ATB(rre f )

β(rre f )
− 2

(∫ r
rre f

LRp(r′) · ATB(r′) · Q(r′) dr′
) (7)

With: 276

Q(x) = exp

[
−2

∫ x

rre f

(
LRp(x)− LR

)
β(x) dx

]
(8)

Finally, we can retrieve first order solutions of optical coefficients, with an assumption 277

of the lidar Ratio fixed independent of the range: 278

• βp(r) = βtot(r)− β(r) 279

• αp(r) = LRp(r)βp(r) 280

From this first-oder solution, a range-dependant Lidar Ratio profile can then be 281

determined, and implemented in equation 4 to 8 in a second iteration (or more) to better 282

retrieve estimated aerosol properties [11,39]. 283

284

The difficulty of the Klett inversion method is the definition of the correct LR first 285

guess. As mentioned above, the LR variations depend on the microphysical properties of 286

aerosols, their size, shape, but also the humidity profile. For the same family of aerosols, 287

the LR can vary greatly depending on the area of emission. This is the case for example for 288

desert dust with regional variability ranging from 35 to 60 sr [40]. Finally, the LR variability 289

can also be observed along the vertical, either with distinct layers of different particulate 290

species, or in-homogeneous mixtures. For the same species or for a well-mixed layer, the 291

LR can also vary along the vertical via the humidity profile [41]. CALIOP’s LR selection 292

algorithm relies on an aerosol speciation technique based on surface type, layer height, and 293

column-wide integrated ATB [40]. The algorithm allows for the specification of 11 aerosol 294

species, including 7 in the troposphere. The different LR values for each tropospheric 295

aerosol family are summarized in Table 1. 296

Table 1. Empirical LR for different aerosol species used in the CALIOP inversion algorithm in its
version 4 at 532 nm and 1064 nm.

LR (sr) CM1 DD PC2/S3 CC4 PD5 DM6 ES7

532 nm 23 ± 5 44 ± 9 70 ± 25 53 ± 11 55 ± 22 37 ± 15 70 ± 16
1064 nm 23 ± 5 44 ± 13 30 ± 14 30 ± 17 48 ± 24 37 ± 15 30 ± 18

1 Clean Marine, 2 Polluted Continental, 3 Smoke, 4 Clean Continental, 5 Polluted Dust, 6 Dusty Marine, 7 Elevated
Smoke

2.3.3. High Spectral Resolution Lidar 297

In the atmosphere, the scatterers move by random agitation, responsible for a shift 298

between the incident wavelength and the scattered wavelength (Doppler shift). The signal 299
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captured by the detector presents therefore a spectral length larger than the emitted one. 300

The molecules are animated by Brownian motion characterized by speeds of the order 301

of around 300 m · s−1, when the agitation of aerosols is mainly driven by wind (around 302

10 m · s−1) and turbulence (around 1 m · s−1). The resulting spectrum clearly shows two 303

distinct diffusion regimes [42]. The first one from particular scattering is very intense 304

and narrow. It is characterized by a frequency shift between 3 and 30 MHz and is most 305

likely similar to the initial spectral length. The second one, more Gaussian, has a width at 306

mid-height of the order of GHz, typical of Rayleigh regime. By applying a suitable filter, 307

it is possible to discriminate the molecular or particulate fraction of the signal into two 308

different detectors. lidar equation of each channel can be formulated as follows relating to 309

Attenuated Molecular Backscatter (AMB) or Attenuated Particular Backscatter (APB): 310

AMB(r) = βm(r) · exp
[
−2

(∫ r

0

(
αm(r) + αp(r)

)
dr

)]
(9)

APB(r) = βp(r) · exp
[
−2

(∫ r

0

(
αm(r) + αp(r)

)
dr

)]
(10)

In theory, the determination of the AMB signal and the APB relies on only one laser for 311

deriving the lidar backscatter ratio Rβ (Equation ??) and then for estimating the backscatter 312

coefficient without any a-priori information (Equation ??). In practice, the determination 313

of the variables is highly dependent on many factors such as the nature of the filter, its 314

bandwidth, an accurate estimation of the cross talk bewteen channels and a good match 315

between the laser frequency and the filter center frequency. 316

Rβ(r) =
AMB(r) + APB(r)

AMB(r)
(11)

βp(r) = (Rβ(r)− 1)× βm(r) (12)

On the other hand, the extinction coefficient is determined from the derivative over 317

distance of the logarithm of the ratio between the molecular density of the atmosphere 318

Natm (estimated) and the molecular signal AMB (filtered/measured) (Equation 13. This 319

estimation is therefore more sensitive than the inversion of the backscatter coefficient [43]. 320

Such sensitivity is unfortunate because the extinction determines how much light enters the 321

atmosphere and is absorbed by the atmosphere that is the central key to study the impact 322

of aerosols on the climate. 323

αp(r) =
1
2

d
dr

(
ln
[

Natm(r)
AMB(r)

])
− αm(r) (13)

Again, these first-order solutions provide a distance-dependent lidar Ratio profile but 324

with much better accuracy. This LRp(r) profile can be injected in turn into equation 7 to 325

solve the lidar system, as with the previous method. It is worth nothing that in the present 326

study, we focus in the estimation of aerosol backscatter profiles which have a straight 327

forward formulation (Equations 11, 12). It does not need the calculation of derivatives of 328

noisy signal, as it is the case for the aerosol extinction profile determination, which is not 329

straight-foreward and will be tackled in future work. 330

2.3.4. SO Simulation setup 331

BLISS is an end-to-end Backscattering lidar simulator developed by the CNES in the 332

framework of the MESCAL (Monitoring the Evolving State of Clouds and Aerosol Layers) 333

phase 0 (pre-studies for AOS lidar definition). From all the inputs mentioned, it provides as 334

outputs the signal received by a backscattering spaceborne lidar (level 0 and level 1 signals, 335

including instrumental noise) and level 2 aerosol and cloud products (particle extinction 336

and backscatter profiles). It simulates lidar instruments with a given filter properties file 337

using HSRL, or Klett configuration with a particular LR profile. BLISS is based on the lidar 338
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equations as presented in [44]. BLISS is a modular software. In a simplified way, a first 339

module (Scene Module) allows the calculation of the optical coefficients from the definition 340

of the scene. A Signal Module computes then the calculation of the optical power from 341

scene coefficients through lidar equation and conversion in electric signal. A third module 342

(L1 Processing) is designed for the determination of the attenuated lidar signal (ATB, AMB, 343

APB...). Finally, a last module (L2 Processing) inverses the optical properties of the scene. 344

345

To create the SO, the NR is sampled along a typical trajectory of a satellite lidar 346

instrument such as CALIOP. The satellite follows a sun-synchronous orbit characterized by 347

an average of two daytime (ascending) and two nighttime (descending) orbits. The solar 348

zenith angle of each scene is computed from the the space-time coordinates. The surface 349

properties (roughness and albedo) are determined from the ECOCLIMAP database at a 350

resolution of 1 ◦ × 1 ◦ (NR resolution). All simulations are made under the assumption 351

of a clear sky without cloud cover (this aspect will be analyzed in future work). The NR 352

atmospheric profiles are extracted in terms of extinction and particle backscatter at 532 nm 353

at a from the surface up to ∼ 14 km altitude. Observations are averaged with a resolution 354

of 0.5 ◦ in latitude and longitude and thus horizontal resolution (distance along which the 355

profiles are averaged) of SO are fixed to 50 km having a significant impact on the Signal-to- 356

Noise-Ratio (SNR). Since the MOCAGE model does not estimate particle depolarization, we 357

assume that all particles are spherical as a first approximation for estimating their optical 358

properties. Although this is an approximation, the lidar ratios estimated by MOCAGE for 359

non-spherical particles as desert dust is coughly consistent with literature (see section 3.1). 360

At the simulator output, the total backscattered lidar power is considered equivalent to 361

the ottal poxer detected on the parallel track. The corresponding meteorological profiles 362

(pressure, temperature and humidity) and the ground altitude are directly taken from 363

the CALIOP Level 2 (L2) products data in version 4.2 (https://www.icare.univ-lille.fr/, 364

last check November 2022). All these inputs are then provided to the the BLISS lidar signal 365

simulator together with instrumental parameters from Table 2 for both lidar configuration. 366

As an example, the characteristics of the CALIOP lidar at 532nm are also noted. The 367

parameters corresponding to the properties of the detectors (e.g. quantum efficiency) are 368

provided with the software and correspond to the characteristics of a Photomultiplier Tube 369

(PMT) for CALIOP and a Phototnis MicroChanel Plate (MCP-PMT-Photonis, [45]) for the 370

two AOS configurations (indicated for 532 nm and 355 nm). In addition, the transmission 371

coefficients of the HSRL matrix specific to the interferometer filter correspond to classical 372

properties as envisaged in the AOS project. 373

Table 2. Instrumental characteristics of the CALIOP, AOS_Backscatter and AOS_HSRL lidars.

Parameter CALIOP_Like AOS_Backscatter AOS_HSRL

Altitude (km) 705 450 450
Wavelenght (nm) 532 532 532

Emitted power (W) 2.2 8 8
Pulse duration (ns) 20 15 15

Repetition Frequency (Hz) 20 70 70
Telescope diameter 1 1 1

lidar LOS zenith angle (◦) 3 3 3
Filter bandwith (nm) 0.63 0.1 0.1

HSRL filtrer No No Yes

2.3.5. Overview of BLISS simulation in comparison with CALIOP observations 374

In order to analyze the performance of the BLISS software, this section presents 375

comparisons between the NR, observations from CALIOP (L1, L2) and their equivalent 376

simulation of CALIOP_like synthetic measurements using BLISS with instrumental pa- 377

rameters presented in the Table 2 (CALIOP_Like). For this example, we consider a region 378
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centered on the Mediterranean Sea, Southern Europe and Northern Africa (medit). This 379

region is bounded by latitudes [50 ; 20] ◦N and longitudes [-20 ; 40] ◦E. It corresponds to 380

a desert dust event that occured on 22 March 2018. The area of analysis is limited to that 381

affected by this event so as to assume a LRp = 44.4 sr as first guess, which is used as input 382

of the simulator for desert dust L2 Klett inversion (Table 1). 383

384

Firstly, Figure 4 focuses on the observations (real and synthetic) of ATB at 532 nm. 385

The figure is divided into three ATB transects that follow the CALIOP trajectory. The 386

transect 4-a represents the ATB profiles calculated by MOCAGE (implemented by [46]). 387

Blancks (no value) near the surface correspond to the orography. Several aerosol layers can 388

be seen here, some of which can reach 8000 m in altitude and cover large distances. Each 389

of these aerosol layers is present in the transect 4-b, representing the ATB observations of 390

CALIOP. While the intensities in terms of attenuated backscatter may moderately differ, 391

the vertical and horizontal extents of the aerosol layers depicted in the MOCAGE NR are 392

similar to those shown by CALIOP real observations. In the CALIOP real transect, missing 393

data above 1000 m mainly correspond to the presence of opaque clouds, which are not 394

simulated by the MOCAGE setup used here. The Figure 4-c represents the same transect 395

but for the SO from BLISS. 396

397

In both real and synthetic observation transects, we observe a transition from relatively 398

low noise conditions to noisy signals (marked with the red line) and with similar variability 399

associated to noise in both cases. This phenomenon corresponds to the transition between 400

night and daytime measurements, where background sunlight is a source of instrumental 401

noise. This shows that the noise simulated in CALIOP_Like is rather realistic both during 402

day and night. This difference in noise intensity suggests that we expect a difference in 403

terms of errors and possible divergence in the inverted particle backscatter profiles in the 404

two cases. 405

406

Figure 5 is constructed in the same way as Figure 4 but represents the particle 407

backscatter coefficient at 532 nm (obtained from Klett inversion in the case of CALIOP 408

and CALIOP_Like transects in panels b anc c). Note that the resolution of the L1 and 409

L2 products are not identical (respectively 70 m and 5 km), as well as the estimation of 410

the ground height. The transects 5-a, 5-b and 5-c of βp thus correspond to the NR, the 411

CALIOP observation and the SO, respectively. As discussed in the previous sections, the 412

inversion of the lidar signal by the Klett method relies on strong assumptions that can 413

lead to large uncertainties. In agreement with the figure representing the ATB transects 414

and with literature, Figure 5-b shows a significant number of missing or diverging values. 415

The comparison of Figures 5-b and 5-c must be done with great care. First, the choice of 416

CALIOP LR is based on a selection algorithm, which relies on the integrated measurement 417

of ATB, surface properties, and depolarization (among others). In the case of Transect 5-c, 418

the first guess is set to 44.4 sr. In addition to that, the reference altitude is also fixed in the 419

case of the SO transect, at 10 km. At this altitude, we can see that the particle signal is 420

clearly not zero and may correspond to particles of another species than desert dust. 421

422

The retrieved particular backscatter structures shown by CALIOP and CALIOP_Like 423

differ more than in the case of ATB. However, the main structures of desert dust layers are 424

similary depicted both in real and synthetic measurements, especially in terms of horizontal 425

extent and maximum altitude. 426

427

In conclusion of this section, the comparison of ATB transects between NR, CALIOP 428

and a simulation of CALIOP show good consistency of BLISS simulated signals. Simulated 429

noise has the same order of magnitude of that in real measurements, both during day and 430

night. A systematic overestimation of the simulated signal compared to the NR is calculated 431

to be of the order of [0.5 to 0.2] 10−6 m−1 · sr−1. The amount of simulated signal compared 432
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a.

b.

c.

Figure 4. Comparison of ATB transects at 532 nm along the trajectory of CALIOP for the day of
March, 22, 2018 over the medit region. (a): Transect from the NR, (b): CALIOP observations and
(c): the corresponding CALIOP_Like SO. The vertical red line corresponds to the start of the daytime
orbit (12:29 UTC).
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a.

b.

c. LR = 44.4 sr
Zref = 10 km

Figure 5. Same legend as figure 4 but for particular backscatter at 532 nm.
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to the amount of measured signal affects the comparison of the level 2 products. The 433

latter show more deviations from the NR for both Klett inversions. However, the inverted 434

profiles from measured and simulated signals agree well in the average, especially in terms 435

of variability. Therefore, the synthetic observations from BLISS show sufficient consistency 436

so as to apply the same approach to different study cases and lidar configurations. 437

3. Results 438

The objective of this section is to illustrate the differences between AOS_Backscatter 439

and AOS_HSRL SO for 3 case studies corresponding to different events (desert dust, 440

wildfires and anthropogenic pollution). To account for the dependence of the Klett inversion 441

method on an a-priori LR assumption, each scene focuses on a different aerosol species, 442

which can be associated with one of the tropospheric aerosol families in the CALIOP 443

classification algorithm (see Table 1). 444

3.1. The desert Dust event 445

Figure 6 shows an example of the added value of an AOS lidar configuration with 446

HSRL compared to a standard (backscatter) configuration for a desert dust event. The 447

panel (a) shows the horizontal distribution of the AOD from the NR corresponding to a 448

desert dust transport event. The thick black line indicates the AOS lidar trajectory from 449

north to south. 450

Figure 6-b represents the transect of backscatter profiles extracted from the NR follow- 451

ing the trajectory of the instrument (in the X-axis are shown latitudes and longitudes) as 452

shown in Figure 6-a. This Figure 6-b highlights clearly the plume of desert dust sampled by 453

the instrument, with high values of the backscatter coefficient and a vertical extent reaching 454

8000 m at the northernmost point of the plume (latitudes between ∼40 ◦N and ∼30 ◦N). 455

This plume extends over a fairly large area (latitudes between ∼50 ◦N and ∼20 ◦N) 456

with backscatter coefficients exceeding 10−5 m−1 · sr−1 and a vertical range of about 4000 m 457

over this region. Figure 6-c shows the transect of lidar ratio profiles as astimated in the NR. 458

The variability of the LR is rather limited especially within the desert dust plume (between 459

40 sr and 60 sr). These values of LR are consistend with the assumption of a LR of 44 sr 460

used for the Klett inversion for this case study. It is also consistent with LR of desert dust 461

considered in other studies ([47,48]). 462

Figure 6-d shows the transect of particle backscatter coefficient profiles derived from 463

Klett inversion (using elastic backscatter lidar measurements, noted AOS_backscatter). The 464

desert dust plume depicted by these inverted profiles are consistent with the NR in terms 465

of the overall structure of plumes and the location of maximum and minimum values of 466

particle backscatter coefficients. Nevertheless, the inverted particle backscatter profiles 467

are relatively noisy and shown significant negative biases. These errors are highlighted in 468

Figure 6-f where clear differences between the NR and AOS_backscatter are shown. The 469

large bias (of the order of -80 %) is mostly negative for all backscatter profiles. This shows 470

an underestimation of AOS_backscatter compared to the NR, mainly associated with the 471

assumption of a aerosol free altitude at 10 km for normalization and differences between 472

the assumed and actual LR. 473

On the other hand, clearly better performance is found for particle backscatter profiles 474

derived from the inversion of lidar measurements using HSRL technology (Figure 6-e 475

(AOS_HSRL)). This figure shows that the inverted profiles are in very good agreement with 476

the NR profiles, with a good localization of the desert dust plume and with almost the same 477

vertical range and particles backscattering values. The difference between AOS_HSRL and 478

NR (Figure 6-g) shows that errors in the AOS_HSRL retrieval are random, and very little 479

mean biases. The point-to-point differences between the two datasets is oscillate generally 480

between -10 and 15 %. The results from this figure clearly illustrate the added-value of 481

HSRL measurements for a better characterization of the vertical distribution of desert dust 482

aerosol. 483
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b.

d.

f.

c.

e.

g.

a.

LR = 44.4 sr
Zref = 10 km

22-03-2018
0100 UTC

Figure 6. Case of the 22 of March 2018 at 0100 UTC. (a): AOD of DD from the NR together with the
studied satellite trajectory (black line). (b): Particular backscatter profiles transect of a desert dust
outbreak along the satellite trajectory in the NR. (c): Corresponding particular lidar Ratio transect
calculated from the NR. (d, e): Simulation of the backscatter coefficient SO for the AOS_Backscatter
and the AOS_HSRL configurations. (f, g): Relative mean bias (SO-NR)/NR of both instruments.
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3.2. The Wildfire event 484

The second case shown in Figure 7 describes a wildfire event located on the west coast 485

of Canada. The satellite follows a southward trajectory, sampling the thick dense smoke 486

plume at the latitude of ∼47 ◦N at 1200 UTC as can be seen in Figure 7-a (in this case, the 487

AOD of Organic Carbons (OC) is represented). The transect shown the vertical distribution 488

of the smoke layers is seen in Figure 7-b, with the densest plume reaching 4000 m. Figure 7-c 489

shows the corresponding transect of lidar ratio, displaying values between 50 sr to 60 sr 490

over the northern part of the plume (up to latitude ∼41 ◦N) and between 60 sr to 70 sr at 491

its center. These values are consistent with observations of other biomass burning events, 492

such as a LR of 70 ± 25 reported in [40]. We also consider 70 sr as assumption for the Klett 493

algorithm for this event, and the reference altitude is set to 10 km. 494

Around ∼40 ◦N, the satellite is above the sea surface and no longer observes the 495

smoke plume. This is shown both on the map, and on the LR transect where the ratio drops 496

down to 30 sr, far from the uncertainty allowed for the choice of the Klett assumption in 497

the case of biomass burning. In this area, the most intense layer, close to the surface, is 498

therefore relatively far from the reference altitude. 499

The result of the AOS_Backscatter lidar inversion shows a good retrieval of the vertical 500

structure of the densest part of the smoke plume (errors in AOS_Backscatter of ∼ 10 %, 501

bounded by latitudes [∼55 ◦N; ∼41 ◦N]. The maximum altitude of this part of the plume is 502

about 4000 m. Secondary smoke plumes are also identified, although their particle backscat- 503

ter coefficients are underestimated and significant errors are apparent. A characteristic 504

artifact of the Klett inversion can be seen in the center of the plume. The inverted backscat- 505

ter profiles diverges for large values near the surface, leading to large overestimations, or 506

invalid retrievals. This occurs when the denominator of equation ?? is near zero. 507

This dense smoke plume around 40 ◦ N, also shows the lowest errors for AOS_HSRL 508

lidar (between -5% and 5%). The stable and assumption free HSRL inversion method was 509

not penalized by the high values of particle backscatter coefficients. In contrast with respect 510

to the Klett derived profiles, the HSRL approach is capable of observing the whole scene. 511

All secondary smoke plumes are well observed by AOS_HSRL, as well as the thin aerosol 512

plume near the surface over the ocean (with errors between -15 % to 15 %). 513

Still in the case of AOS_HSRL, the retrieval of aerosol backscatter profiles show 514

larger errors over the notrhern part of the smoke plume (exceeding 40%), and globally 515

everywhere oscillating between -30% and 30% when the backscatter falls below 10−7 m−1 · 516

sr−1. This phenomenon may be apparent for low particle backscatter conditions and larger 517

instrumental noise [49]. 518

3.3. Urban pollution event 519

The last case concerns a large anthropogenic pollution event over western China. (see 520

Figure 8). This region is concerned by frequent anthropogenic pollution episodes in winter 521

in terms of particulate matter of diameter less than 2.5 µm (PM2.5) as well as PM10, SO2 522

and NO2 as reported by [50]. They report a 24-hour average concentrations of 100 µg.m−3
523

(PM2.5), 160 µg.m−3 (PM10), 40 µg.m−3 (SO2) and 60 µg.m−3 (NO2) averaged over the 524

months of February from 2017 to 2019. Figure 8-a effectively highlights a significant nitrate 525

aerosol event (maximum AOS of 1.81) sampled by the satellite at 0600 UTC (ascending 526

orbit). The particle backscatter transect shows a very dense structure at low altitude 527

(between 0 and ∼ 2 km), up to ∼ 6000 m towards ∼40 ◦N. Up to an average of 5000 m, 528

Figure 8-c indicates that the LR is located between 50 sr and 60 sr with 70 sr for the densest 529

part of the plume. We assume a LR first guess of 70 sr for this Polluted Continental type 530

aerosols [40]. 531

Figure 8-d clearly depicts saturated Klett inverted profiles at the lowest part of the 532

dense aerosol layers (around 36 ◦ N). This transect is similar to the case study of [51] (in 533

terms of aerosol extinction coefficients) which shows the difficulty of CALIOP to depict the 534

full vertical extent of dense aerosol layers as compared to an airborne HSRL lidar following 535

the same trajectory. Positive saturation at the lowest edge of the aerosol plume can exceed 536
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b.

d.

f.

c.

e.

g.

a.

LR = 70 sr
Zref = 10 km

20-08-2018
1200 UTC

Figure 7. Same legend as figure 6 but for an wildfire event over Canada the 20 of August 2018 at 1200
UTC. The AOD of Organic Carbon from the NR is represented in (a).
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± 150 % of relative bias (Figure 8-f). This panel also shows the limitations of the inversion 537

method south of ∼36 ◦N latitude from 2000 to 10000 m up, where the LR of the NR is rather 538

between 30 sr to 50 sr. The poor Klett estimation of the backscatter profile of this region can 539

also be explained by the choice of zref at an altitude where the particle backscatter is clearly 540

not zero (∼ 5.107 m−1 · sr−1) as compared to the northern latitudes where the inversion is 541

more efficient. 542

Figure 8-e and 8-g show the good ability of the HSRL method to invert all the aerosol 543

layers as in the two previous cases. In the whole region where the particle backscatter is 544

greater than ∼ 107 m−1 · sr−1, the error is around ±5 %. The relative deviation from the 545

NR exceeds 40 % for the points with maximum plume altitude near the surface, and in the 546

region with low particle content for the same reason given in the previous case. 547

This case summarizes the critical aspect of the good choice of first guess for the Klett 548

inversion and the altitude at which the molecular signal is considered to be very large 549

before the particle signal. 550

3.4. Overall performance of AOS_Backscatter and AOS_HSRL lidars 551

To draw conclusions with a larger temporal representativity than single transects, the 552

experiment of the desert dust event is performed over a longer period. The SO are made 553

from 20 to 25 March 2018, a period that covers most of the dust event. This represents 554

∼ 20 orbits and ∼ 1700 profiles at 0.5 ◦ × 0.5 ◦ resolution spread over the 5 days of 555

analysis. This episode is selected because atmospheric conditions remains rather stable. 556

Over this region, the variability of the LR profiles is rather stable over the whole period, 557

both during the day and at night. This feature limits the contribution of bias during the 558

inversion of elastic backscatter observations. The backscatter profiles are averaged and 559

presented in Figure 9-a, as is the NR. The respective standard deviations are presented in 560

Figure 9-b. In agreement with the three case studies presented previously, the deviations 561

between NR and AOS_HSRL are very small in comparison with AOS_Backscatter. Figure 9- 562

c represents the Relative Mean Bias (RMB) profiles. Ground echo simulated by BLISS for 563

each profile are removed by not considering first levels above the surface. The mean bias 564

is estimated to 1.10 · 10−10 (m−1 · sr−1) (that represents 1.19 % of RMB) from ∼ 500 m up 565

to the maximum altitude of simulation. In contrast, the AOS_Backscatter is characterized 566

by an underestimation of around −3.53 · 10−9 (m−1 · sr−1) (that represents ∼ −36.13 % 567

of RMB), with a decreasing with altitude. The shape of the RMSE profiles in Figure 9-d 568

highlights the vertical distribution of errors of the HSRL method, especially at low altitude 569

(under 4000 m) through more intense plumes. The AOS_HSRL average RMSE is equal to 570

3.15 · 10−7 (m−1 · sr−1) under 4000 m and equal to 1.83 · 10−7 (m−1 · sr−1) for the whole 571

profile against 2.21 · 10−6 (m−1 · sr−1) and 1.38 · 10−6 (m−1 · sr−1) for the AOS_Backscatter 572

SO respectively. 573
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b.

d.

f.

c.

e.

g.

a.

LR = 70 sr
Zref = 10 km

17-02-2018
0600 UTC

Figure 8. Same legend as Figure 6 but for an urban pollution event over China the 17 of March 2018
at 0600 UTC. The AOD of nitrate from the NR is represented in (a).
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a. b.

c. d.

Figure 9. (a): Average profiles of particular backscatter coefficients at 532 nm from the NR (blue),
the AOS_Backscatter SO (orange) and the AOS_HSRL SO (green) from March 20, 2018 to March 25,
2018 over the medit region. (b): Corresponding standard deviations profiles. (c): Relative Mean Bias
(SO-NR)/NR of both instruments. (d): RMSE of both instruments versus the NR.

4. Conclusions and perspectives 574

In this study, we analyze the added-values of a HSRL spaceborne lidar with respect to 575

an elastic backscatter lidar, using a lidar signal simulator. A first part of analysis shows the 576

consistency of the SO in particular in term of ATB, as the simulator represents instrumental 577

noise in a similar way as CALIOP instrument real observations (considering different 578

backsground noise conditions). 579

We then build two sets of synthetic observations, considering the typical instrumental 580

parameters of the AOS mission, with or without HSRL. We compared the AOS for three 581

study cases, each time representing an orbit in a region centered on a dense aerosol episode. 582

In this way, the uncertainties on the choice of the first guess of Lidar Ratio for the classical 583

Klett inversion of backscatter lidar measurements are reduced. Each first guess was selected 584

based on the CALIOP inversion algorithm. In the case of the desert dust plume, with a fairly 585

uniform lidar ratio profile over the observed scene, we are able to study the contribution in 586

terms of inversion, with relative biases between -5 and +5% for the AOS_HSRL instrument 587

against -80% for the AOS_Backscatter instrument. A biomass fire18 shows the strong 588

impact of the lidar ratio choice especially when the satellite samples aerosols different from 589

smoke, with lower lidar ratio. In this case, the AOS_Backscatter observation diverges and 590

fails to detect the fine structure near the surface. Only the smoke plume is well represented, 591

contrary to AOS_HSRL observations that precisely characterize the whole scene in terms 592

of aerosol backscatter profiles. Finally, the third case study describes an anthropogenic 593
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pollution episode, with a well identified lidar ratio profile over the entire event. This case 594

presents the most densest plume in terms of backscatter coefficient of the three simulated 595

scenes. The AOS_Backscatter instrument fails to invert the base of the aerosol layer. The 596

synthetic observation shows important under- and over-estimations, exceeding 100%, 597

where the AOS_HSRL observation shows good results on the whole event. In terms of 598

relative bias, the HSRL lidar shows its greatest weaknesses when the signal becomes very 599

weak, and the signal-to-noise ratio also decreases. 600

On average, the relative bias between the NR and the various synthetic observations 601

is 1.19% (AOS_HSRL) and -36.13% (AOS_Backscatter). Regarding the RMSE, AOS_HSRL 602

performs on average one order of magnitude better than AOS_Backscatter compared to 603

NR. 604

The synthetic observations from AOS_HSRL can then be used to perform an Ob- 605

serving Simulation System Experiment (OSSE) [52] to evaluate the contribution of HSRL 606

satellite lidar products to constrain a transport chemistry model. This type of aerosol OSSE 607

experiments have been mostly performed for passive instruments [53] characterized by 608

good horizontal coverage. Few have been performed for spaceborne aerosol lidars. 609

This configuration also allows to simulate the contribution of a potential UV channel 610

in addition to the visible channel with or without HSRL, to see the added value of such a 611

lidar for different aerosol species. 612

BLISS sofware availability 613

BLISS software is the property of CNES and has been registered with the Agency for 614

the Protection of Programs. If compliant with AERIS platform’s host conditions, it will soon 615

be available on [https://www.aeris-data.fr/]. It is based on SAM software. The readers 616

and reviewers interested in distribution of license, code or user manuals may contact CNES 617

at the address affiliated in the list of co-authors. 618
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26. Sič, B.; El Amraoui, L.; Marécal, V.; Josse, B.; Arteta, J.; Guth, J.; Joly, M.; Hamer, P. Modelling of 710

primary aerosols in the chemical transport model MOCAGE: development and evaluation of 711

aerosol physical parameterizations. Geosci. Model Dev. 2015, 8, 381–408. 712

27. Guth, J.; Josse, B.; Marécal, V.; Joly, M.; Hamer, P. First implementation of secondary inorganic 713

aerosols in the MOCAGE version R2.15.0 chemistry transport model. Geosci. Model Dev. 2016, 714

9, 137–160. https://doi.org/10.5194/gmd-9-137-2016. 715

28. Josse, B.; Simon, P.; Peuch, V.H. Radon global simulation with the multiscale chemistry trasnport 716

model MOCAGE. Tellus 2004, 56, 339–356. 717

29. Lamarque, J.F.; Bond, T.C.; Eyring, V.; Granier, C.; Heil, A.; Klimont, Z.; Lee, D.; Liousse, C.; 718

Mieville, A.; Owen, B.; et al. Historical (1850-2000) gridded anthropogenic and biomass burning 719

emissions of reactive gases and aerosols: Methodology and application. Atmos. Chem. Phys. 720

2010, 10, 7017–7039. https://doi.org/10.5194/acp-10-7017-2010. 721

30. Sindelarova, K.; Granier, C.; Bouarar, I.; Guenther, A.; Tilmes, S.; Stavrakou, T.; Müller, J.F.; 722

Kuhn, U.; Stefani, P.; Knorr, W. Global data set of biogenic VOC emissions calculated by the 723

MEGAN model over the last 30 years. Atmospheric Chemistry and Physics 2014, 14, 9317–9341. 724

https://doi.org/10.5194/acp-14-9317-2014. 725

31. Yienger, J.J.; Levy II, H. Empirical model of global soil-biogenic NO emissions. Journal of 726

Geophysical Research: Atmospheres 1995, 100, 11447–11464. https://doi.org/https://doi.org/10.1 727

029/95JD00370. 728

32. Emili, E.; Barret, B.; Massart, S.; Le Flochmoen, E.; Piacentini, A.; El Amraoui, L.; Pannekoucke, 729

O.; Cariolle, D. Combined assimilation of IASI and MLS observations to constrain tropospheric 730

and stratospheric ozone in a global chemical transport model. Atmos. Chem. Phys. 2014, 731

14, 177–198. https://doi.org/10.5194/acp-14-177-2014. 732

33. El Amraoui, L.; Attié, J.L.; Ricaud, P.; Lahoz, W.A.; Piacentini, A.; Peuch, V.H.; Warner, J.X.; 733

Abida, R.; Barré, J.; Zbinden, R. Tropospheric CO vertical profiles deduced from total columns 734

using data assimilation: Methodology and Validation. Atmos. Meas. Tech. 2014, 7, 3035–3057. 735

https://doi.org/10.5194/amt-7-3035-2014. 736
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