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Abstract: The characteristics of the eddy mass transport are estimated depending on the values of the 1

parameters of a large-scale flow that forms under the conditions of the shelf seas in the Arctic. For 2

this, the results of numerical simulation of the Kara Sea with a horizontal resolution permitting the 3

development of mesoscale eddies are used. The parameters resulting from numerical experiment 4

are considered as a statistical sample and are analyzed using methods of sensitivity study and 5

clustering of sample elements. Functional dependencies are obtained that are closest to the simulated 6

distributions of quantities. These expressions make it possible, within the framework of large-scale 7

models, to evaluate the characteristics of the cross-isobatic eddy mass transport in the diffusion 8

approximation with a counter-gradient flux. Numerical experiments using the SibCIOM model 9

showed that areas along the Fram branch of the Atlantic waters trajectory in the Arctic as well as 10

the shelf of the East Siberian and Laptev seas with adjacent deep water areas are most sensitive to 11

proposed parameterization of eddy exchanges. Accounting for counter-gradient eddy fluxes turned 12

out to be less important. 13

Keywords: eddy mass transport; subgrid-scale processes; parametrization; sensitivity study; cluster- 14

ing 15

1. Introduction 16

One of the most important tasks in large-scale modeling of the oceans in the framework 17

of climate models is an adequate description of subgrid-scale processes, that is, processes 18

that, within the framework of the accepted horizontal and vertical resolution of the model, 19

as well as due to a number of simplifying assumptions, cannot be explicitly described by 20

numerical solution of the relevant set of differential equations. In such cases, one resorts to 21

a parametric description of the large-scale consequences of such mesoscale processes. 22

Among these processes is the eddy transport of scalar quantities. The scales of eddy 23

formations in the ocean are varying in a fairly wide range, and not all of them can be 24

properly described. However, the result of the action of such mesoscale (and submesoscale) 25

eddies, namely the exchange of properties of the waters involved in the movement, requires 26

the search for additional possibilities for parameterization of these processes. 27

The most common method is the parametrization of eddy fluxes using the diffusion 28

approximation, when large-scale diffusion fluxes are enhanced by a specially chosen 29

diffusion coefficient. A uniform increase in the diffusion coefficient leads to a smoothing 30

of the thermodynamic characteristics of the ocean, including cases of the absence or weak 31

eddy motion. A more differentiated approach is associated with the introduction of the 32

diffusion coefficient being variable in space and time. However, the question arises of 33

how to recognize the presence or absence of an eddy activity with only large-scale flow 34

characteristics in hands. For example, in his approach, Smagorinsky [1] uses the presence 35

of sheer and divergence in the velocity field to calculate the viscosity coefficient associated 36

with mesoscale eddies. 37
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Eddy diffusion and viscosity models are introduced into the coarse models to simulate 38

unresolved eddy-driven motions. This mechanism is often represented by some functional 39

statements [3,4] that depend on the resolved flow properties. 40

The most used parametrization of the mesoscale effect is based on the eddy advection 41

scheme [5–7], which consists in simulating the effect of baroclinic instability by flattening 42

the isopycnal surfaces, which transfers an available potential energy toward the eddy 43

kinetic energy of subgrid-scale motions. However, such a scheme reduces the total energy, 44

since it does not take into account the reverse transfer of kinetic energy to large scales 45

[8]. Usually, the development of parameterization schemes and the evaluation of their 46

parameters occur regardless of the climate models in which they are eventually to be 47

included. They are tested in field experiments and the test area is relatively small compared 48

to the area covered by large-scale climate models. In addition, parametrizations usually 49

contain parameters that are uncertain, that is, there is parametric and structural uncertainty 50

[9]. 51

After parameterization schemes are developed and included into a climate model, 52

modelers tune the parameters to make model adequately simulate the known physical 53

processes and/or the observations of them [10]. Recently, to tune parameters modelers use 54

data-driven algorithms. This is due to big data accumulation and the rapid development of 55

methods for processing them, including data assimilation methods [11,12], as well as ma- 56

chine learning methods [13]. A whole class of data-driven parameterizations has emerged 57

[14,15], rather than using idealized theories. Statistical methods are also traditionally used 58

to manage and analyze data. They can be used to integrate high-resolution targeted local 59

modeling into a large-scale climate model, systematically learning from the results of the 60

local model and quantifying uncertain parameters of large-scale modelling. 61

This article proposes to use the results of regional modeling based on a model that 62

resolves mesoscale eddies and well-known statistical approaches to analyze the sensitivity 63

of eddy fluxes in relation to the characteristics of large-scale motion. Using this approach, an 64

attempt will be made to obtain a functional dependence of the eddy transport characteristics 65

on large-scale ocean thermodynamical characteristics using the Kara Sea shelf model in the 66

Arctic as an example. In recent studies a similar approach was used in [16] and [17,18] but 67

the eddy-diffusivity/mass-flux approach (EDMF) was used to parameterize convection 68

and planetary boundary layer in atmospheric models. 69

Finally, the obtained expressions for the parametrization dependences were used in 70

the framework of large-scale modeling of processes in the Arctic and the North Atlantic 71

using the coupled ice-ocean SibCIOM model. With its help, it was possible to evaluate 72

the effectiveness of the developed parametrization and identify the main trends in the 73

simulated state of the ocean, associated with the inclusion of cross-adiabatic eddy flows in 74

such large-scale models of the Arctic region. 75

2. Materials and Methods 76

2.1. The model of the Kara Sea 77

SibPOM sigma coordinate shelf model [19,20], which is a modification of the Princeton 78

Ocean Model (POM) [2], was used as such model. It includes the parameterization of 79

vertical turbulent processes and the correction of the horizontal pressure gradient error 80

due to sigma coordinate [21]. The simulation area is shown in Figure 1. The quasi-regular 81

grid of the region is constructed on the basis of a rotated spherical coordinate system with 82

the poles selected so that the new equator is the central axis of the Kara Sea, while the 83

horizontal resolution, which, according to [22], allows reproducing large mesoscale eddies. 84

The Kara Sea model is nested in Arctic and North Atlantic coupled ice-ocean model 85

SibCIOM [23]. The model embedding scheme is given earlier in [19]. The main idea is that 86

the Laplace operator, which describes the thermal conductivity and diffusion of the salt 87

in fine resolution model, was applied only to deviations of temperature and salinity from 88

their large-scale distributions. Feedback in this case was not taken into account. 89

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 December 2022                   doi:10.20944/preprints202212.0226.v1

https://doi.org/10.20944/preprints202212.0226.v1


3 of 27

Figure 1. Model domain and its topography

The results discussed below refer to a numerical experiment covering the period from 90

September 2006 to September 2008, the results of which were presented in our previous 91

paper [20]. From this experiment, only 2007 was taken into account in our analysis below. 92

Thus, we expected to incorporate the extremal features of this year when considering 93

cross-isobatic transport. 94

2.2. Parametrization of cross-isobatic transport 95

The horizontal transport of density fluctuations by velocity fluctuations is described
by the terms in the mass conservation equation of the form

− ∂

∂x
ρ′u′ − ∂

∂y
ρ′v′ = −−→∇ · ρ′u⃗′, (1)

where u⃗′ is the horizontal velocity fluctuation vector with components (u′, v′) = (u, v)−
(ū, v̄), and ū, v̄ are the regular components of the horizontal current velocity, that is, the
averaged velocity components over a certain characteristic period of time T. Accordingly,
the operator (·) is the result of averaging the value over this time-period. Thus, the mass

flux ρ′u⃗′ in the direction of some vector n⃗ is defined as follows

−ρ′u′
n = −ρ′

(
u⃗′ · n⃗

)
= −

((
ρu⃗ − ρ̄u⃗

)
· n⃗

)
. (2)

In numerical experiment with a detailed resolution the time-averaged values of both
components ū and v̄ along with the value of the density ρ̄ at each point of the grid area,
as well as the time-averaged values of the flux componens ρu and ρv, were stored for
each 12 hour periods. Thus, any averaging period can be chosen with a resolution of 12
hours, that is, from 12 hours to several days. The time scale T characterizing the time of
the influence of the mesoscale eddy on the state of the ocean at a certain point is about 10
days [24]. Therefore, hereafter we will consider T =10 days (averaging from the 1st to the
10th day of the month from 11 to 20 and from 21 to the end of the month), that is, about 20
12-hour records will be used for the averaging operation (·). The most interesting direction
of mass transport carried out by mesoscale eddies is the direction perpendicular to the
geostrophic flow, that is, locally this direction coincides with the direction of ocean depth
growth n⃗ = ∇⃗H/

∣∣∣∇⃗H
∣∣∣. Within the framework of the diffusion approximation, such an

eddy flux is parameterized using large-scale characteristics in the form [25–27]

−
(

ρ′u⃗′ · n⃗
)
= K

(
∂ρ̄

∂⃗n
+ γ

)
= K

∂ρ̄

∂⃗n
+ q (3)

using the eddy diffusion coefficient K and the counter-gradient γ due to which the counter-
gradient flux q = Kγ is formed. Such a flux is formed in the absence of a change in
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density in the direction of the vector n⃗ due to an ordered vortex structure. To calculate the
large-scale horizontal averaging, we will use a scale of ∆ =50 km, since this approximately
corresponds to the grid spacing of the large-scale model. The horizontal averaging of a
certain value ϕ will be denoted by angle brackets ⟨ϕ⟩ and mean the value at the point
(x0, y0, z0), which is obtained by averaging ϕ over all points of the model with a detailed
resolution located in the square {−∆ < x − x0 < ∆,−∆ < y − y0 < ∆, z = z0}. Thus, the
values K and q can be found using the least squares method as linear regression coefficients

K⟨ ∂ρ̄

∂⃗n
⟩+ q = −⟨ρ′u⃗′ · n⃗⟩, (4)

that is

K = −
⟨
(

ρ′u⃗′ · n⃗
) ∂ρ̄

∂⃗n
⟩ − ⟨ρ′u⃗′ · n⃗⟩⟨ ∂ρ̄

∂⃗n
⟩

⟨
(

∂ρ̄

∂⃗n

)2
⟩ − ⟨ ∂ρ̄

∂⃗n
⟩2

, (5)

q = −⟨
(

ρ′u⃗′ · n⃗
)
⟩ − K⟨ ∂ρ̄

∂⃗n
⟩. (6)

2.3. Large-scale representation of mesoscale characteristics 96

Any value ϕ can be represented as its linearization in the vicinity of a point (x0, y0, z0)
in horizontal coordinates (x′, y′) = (x − x0, y − y0) in the form

ϕ
(
x′, y′

)
≈ Ax′ + By′ + C = ⟨∂ϕ(x0, y0)

∂x
⟩x′ + ⟨∂ϕ(x0, y0)

∂y
⟩y′ + ⟨ϕ(x0, y0)⟩, (7)

where the coefficients A, B, and C can also be found by the least squares method, i.e.

A = ⟨∂ϕ(x0, y0)

∂x
⟩ = Λ(ϕ, x′)Λ(y′, y′)− Λ(ϕ, y′)Λ(x′, y′)

D
, (8)

B = ⟨∂ϕ(x0, y0)

∂y
⟩ = Λ(ϕ, y′)Λ(x′, x′)− Λ(ϕ, x′)Λ(x′, y′)

D
(9)

C = ⟨ϕ(x0, y0)⟩ = ⟨ϕ⟩ − A⟨x′⟩ − B⟨y′⟩, (10)

D = Λ(x′, x′)Λ(y′, y′)− Λ(x′, y′)2, (11)

where the following operator is introduced as a notation

Λ(φ, ψ) = ⟨φψ⟩ − ⟨φ⟩⟨ψ⟩. (12)

As before, the designation ⟨·⟩ here means such a value of the characteristic at the point 97

(x0, y0, z0), which is obtained by its averaging over all points of the model with a detailed 98

resolution located in the square {−∆ < x − x0 < ∆,−∆ < y − y0 < ∆, z = z0}. 99

2.4. Large-scale flow characteristics 100

The purpose of our analysis is to single out among the large-scale characteristics those 101

on which the eddy mass transport in the cross-isobatic direction depends to a greater extent. 102

That is, taking into account the parametrization dependence (3), we aim to find out on 103

which large-scale characteristics of the flow the values K and q depend to the greatest extent. 104

The following geographic and physical characteristics were considered: 105

1. Ocean depth H(x, y); 106

2. Local depth z, which in terms of the topography following σ-coordinate system 107

follows from the relation z(x, y, σ) = σH(x, y); 108

3. The value of the bottom slope s =
∣∣∣∇⃗H

∣∣∣ or s =
(
∇⃗H · n⃗

)
, where n⃗ = ∇⃗H/

∣∣∣∇⃗H
∣∣∣; 109
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4. Component of the density gradient in the direction of the bottom slope ∂ρ(x, y, σ)/∂⃗n = 110(
∇⃗ρ · n⃗

)
; 111

5. The density gradient component in the direction along the isobath, that is, along the 112

vector m⃗ =
(
ny,−nx

)
, where

(
nx, ny

)
= n⃗, that is ∂ρ(x, y, σ)/∂m⃗ =

(
∇⃗ρ · m⃗

)
; 113

6. Component of the bottom density gradient in the direction of the slope ∂ρ(x, y, σ = −1)/∂⃗n =114(
∇⃗ρ · n⃗

)∣∣∣
H

; 115

7. Component of the bottom density gradient in the direction along the isobath ∂ρ(x, y, σ = −1)/∂m⃗ =116(
∇⃗ρ · m⃗

)∣∣∣
H

; 117

8. The speed of the current in the direction of the slope U = (u⃗ · n⃗); 118

9. Flow velocity along the isobath V = (u⃗ · m⃗); 119

10. Divergence of the velocity component U in the direction of the slope ∂U/∂⃗n; 120

11. Shift of the velocity component U in the direction of the isobath ∂U/∂m⃗; 121

12. Shift of the velocity component V in the direction of the slope ∂V/∂⃗n; 122

13. Divergence of the velocity component V in the direction of the isobath ∂V/∂m⃗; 123

14. Vertical component of the density gradient ∂ρ(x, y, σ)/∂z = ∂ρ(x, y, σ)/(H(x, y)∂σ); 124

15. Geographic latitude θ(x, y); 125

16. Geographic longitude λ(x, y). 126

For each of these values at each grid point of the high spatial resolution model, the corre- 127

sponding large-scale value can be found by using (·) and ⟨·⟩ operators described previously. 128

Based on the results of modeling the Kara Sea using the SibPOM [20,28] model, about 78 129

million records of these values and the corresponding values of K and q were obtained. 130

However, later on, the seven most independent values were selected from 16 values (see 131

below). 132

2.5. Independence of large-scale characteristics 133

It will be further assumed that K and q are functions of several large-scale charac- 134

teristics. The sensitivity analysis of K and q in relation to these characteristics provides 135

for their statistical independence of each other. That is, 16 selected characteristics will be 136

considered as 16 independent variables on which the value of these functions depends. An 137

analysis of the 78 million records mentioned earlier showed that, based on the Fisher test, 138

none of these variables is independent. Even latitude θ and longitude λ are not statistically 139

independent because, for example, due to the shape of the basin, latitude cannot take on 140

certain values at some fixed longitude. The same applies to local depth z. However, it was 141

possible to rule out the characteristics that are most dependent on others. 142

1. The depth of the ocean H(x, y) turned out to be strongly related to the values ∂ρ/∂⃗n, 143

∂ρ/∂z and θ. Being, in principle, an independent value, and it can hardly be assumed 144

that the depth of the ocean depends on ∂ρ/∂⃗n or ∂ρ/∂z, rather, vice versa. Never- 145

theless, it was neglected, since it is better to have a connection with physical state 146

characteristics such as ∂ρ/∂⃗n or ∂ρ/∂z, and not with geographical ones, especially 147

since the former are strongly depend on the latter. Thus, rejecting the ocean depth as 148

an independent variable, it is assumed that the dependence of the values K and q on 149

it can be replaced by the dependence on ∂ρ/∂⃗n and ∂ρ/∂z having a close relationship 150

with the ocean depth. 151

2. Local depth z, just as an ocean depth H, is in principle an independent variable. 152

However, it turned out to be strongly related to physical values ∂ρ/∂⃗n and ∂ρ/∂z, 153

therefore, it was also neglected, since instead of a geographical location it is better to 154

deal with the physical characteristics associated with it. 155

3. The component of the density gradient in the direction of the slope ∂ρ/∂⃗n turned out 156

to be strongly dependent on the value of this characteristic near the bottom ∂ρ/∂⃗n|H . 157

Bearing in mind that, according to [29], the latter is an important characteristic for the 158

formation of cascading, when the bottom density decreases with increasing depth, 159
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the first value was neglected, since it is largely explained by the second, which has a 160

clearer physical meaning. 161

4. Similarly, the near-bottom density gradient component along the isobath ∂ρ/∂m⃗|H 162

turned out to be strongly dependent on the local value of this gradient ∂ρ/∂m⃗, so this 163

value was neglected in favor of the second one. 164

5. The flow velocity in the direction of the slope U turned out to be dependent on the 165

density gradient in this direction ∂ρ/∂⃗n and on the magnitude of the velocity along 166

the isobaths V and its variability along the slope ∂V/∂⃗n. 167

6. The flow velocity in the direction of the isobaths V depends on the density gradient in 168

the direction of the slope ∂ρ/∂⃗n, on the steepness of that slope s, and is closely related 169

to the V variability along the slope ∂V/∂⃗n. 170

7. The divergence of the velocity component U in the direction of the slope ∂U/∂⃗n is 171

related to the divergence of the flow along the isobaths ∂V/∂m⃗. This relationship is 172

based on the continuity equation. 173

8. The dependence on latitude θ and longitude λ was also neglected, since the goal is to 174

be tied to physical processes, and not to a specific geographical location. 175

As a result, the following seven values in the large-scale approximation were considered 176

as variables on which the values K and q can depend: s, ∂ρ/∂⃗n|H , ∂ρ/∂m⃗, ∂U/∂m⃗, ∂V/∂⃗n, 177

∂V/∂m⃗ and ∂ρ/∂z. 178

2.6. Clustering 179

The total sample, built on the results of a fine resolution simulation, contains elements
consisting of a set of parameters characterizing the large-scale motion(

s,
∂ρ

∂⃗n

∣∣∣∣
H

,
∂ρ

∂m⃗
,

∂U
∂m⃗

,
∂V
∂⃗n

,
∂V
∂m⃗

,
∂ρ

∂z

)
and parameters describing the integral effect of mesoscale pulsations on the large-scale 180

motion (K, q). Since the nature of mesoscale movements can be completely different and 181

refer to completely unrelated physical mechanisms, it makes sense to divide in the way it 182

was done in [30,31] the entire sample into clusters, that is, into groups of the most closely 183

related sample elements. 184

There are a number of approaches related to the choice of the criterion for the tightness 185

of the connection between elements. In this study, the so-called k-means method was used 186

[32], in which belonging to a cluster is determined by the fact that the distance to its center 187

is minimal among the centers of all clusters. The clustering procedure is iterative, after 188

determining the belonging of elements to clusters, the center of each cluster is redefined 189

in accordance with which elements are included in it. The iterations stop as soon as the 190

composition of the clusters becomes unchanged. 191

An important issue in the implementation of the k-means method is the choice of the 192

number of clusters k and the initial position of their centers. The choice of the number 193

of clusters is based on the fact that the source of mesoscale motions can be barotropic 194

or baroclinic instabilities in the region of jet streams or near density fronts, as well as in 195

regions of intense convective and wind mixing. Having considered the values k from 2 to 8 196

as options, it was decided to stop at the value of k = 3, due to the fact that the resulting 197

clusters in this case are more cohesive according to the relevant criteria, and also have 198

a clear geographical localization, indicating a certain nature associated with this cluster 199

physical processes (see below). 200

The values of the parameters characterizing the large-scale movement is a vector
(x1, x2, . . . , xN) in N-dimensional space, where N is equal to the number of these parameters
(in our case, N = 7). Since the parameters are heterogeneous in nature, normalization
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is used to achieve their equivalence, that is, instead of a vector (x1, x2, . . . , xN), modified
vector (X1, X2, . . . , XN) is used, where

Xi =
xi − xi

σi
, i = 1, . . . , N (13)

and

xi =
1
M

M

∑
j=1

xi,j, σi =

√
∑M

j=1
(
xi,j − xi

)2

M
, (14)

M is the length of the sample, xi,j is the value of the i-th parameter in the j-th element of the
sample. After normalization, the coordinates of the center of the l-th cluster are defined as

−→
Rl = (R1,l , R2,l , . . . , RN,l), Ri,l =

1
Ml

∑
j∈Sl

Xi,j, (15)

where Sl is the set of sample elements belonging to the l-th cluster, Ml is the number of
these elements, Xi,j is the value of the normalized i-th parameter in the j-th sample element.
After finding the centers of clusters, the belonging of the sample elements to clusters is
redefined as −→

Xj =
(
X1,j, X2,j, . . . , XN,j

)
∈ Sl (16)

if

l : rj,l =
k

min
p=1

rj,p, where rj,p =

√√√√ N

∑
i=1

(
Xi,j − Ri,p

)2. (17)

The initial position of cluster centers is determined by following the k-means++ [33] 201

algorithm: 202

1. The center of the first cluster is determined randomly. 203

2. The center of the second cluster is determined randomly with a probability propor- 204

tional to the distance to the center of the first cluster. 205

3. The center of the next i-th cluster is also determined randomly with a probability 206

proportional to the minimum among the distances to the known cluster centers. 207

Conventional indices are used to determine the quality of clustering and search for the 208

most appropriate partition. 209

2.6.1. Davies-Bouldin Index 210

The index is calculated using the formula [34]:

DB =
1
k

k

∑
l=1

max
m ̸=l

σ(l) + σ(m)∣∣∣−→Rl −
−→
Rm

∣∣∣
, (18)

where k, as before, is equal to the number of clusters,
∣∣∣−→Rl −

−→
Rm

∣∣∣ is the distance between
l-th and m-th cluster centers,

σ(n) =
√

1
Mn

∑
j∈Sn

∣∣∣−→Xj −
−→
Rn

∣∣∣2, n = l, m, (19)

where the notation introduced earlier is used, and the operation |·| determines the distance
by the formula ∣∣∣−→X1 −

−→
X2

∣∣∣ =
√√√√ N

∑
i=1

(Xi,1 − Xi,2)
2. (20)
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The numerator of each term in the expression (18) for the index DB depends on the distances 211

within the clusters, and the denominator is equal to the distance between their centers. 212

Thus, the smaller the distances within a cluster compared to the distances to other clusters, 213

the better clustering is considered. Therefore, the clustering with the smallest index is the 214

most preferable. 215

2.6.2. Dunn index 216

This criterion is based on the index calculated by the formula [35]:

D =

min
1≤l<m≤k

∣∣∣−→Rl −
−→
Rm

∣∣∣
max

1≤n≤k
σ(n)

, (21)

that is, on the contrary, the numerator depends on the distance between the cluster centers, 217

and the denominator depends on the distances within the clusters. Therefore, clustering 218

with the highest index value is considered more preferable in this case. 219

2.6.3. Silhouette coefficients 220

For each sample element i, two values are calculated [36]:

a(i) =
1

Ml − 1 ∑
j∈Sl ,j ̸=i

∣∣∣−→Xi −
−→
Xj

∣∣∣, (22)

b(i) = min
m ̸=l

1
Mm

∑
j∈Sm

∣∣∣−→Xi −
−→
Xj

∣∣∣, (23)

where Sl is the set of elements of the l-th cluster to which this element belongs, a(i) is the
average distance from this element to the remaining elements of this cluster, b(i) is the
minimum of the average distances to elements of other clusters. The silhouette coefficient
of a given sample element is determined using these values as follows:

s(i) =
b(i)− a(i)

max[b(i), a(i)]
, (24)

so that the value of this coefficient is −1 ≤ s(i) ≤ 1, and if the distances within a cluster are 221

negligibly small compared to the distances between clusters, then s(i) → 1, and if vice versa, 222

then s(i) → −1. That is, in this case, the highest values of the silhouette coefficients are 223

more preferable. In our analysis, we consider the mean values of the silhouette coefficients 224

for each cluster S(l) = 1
Ml

∑i∈Sl
s(i), and the silhouette coefficient for the entire clustering 225

S̄k = 1
M ∑M

i=1 s(i) [37]. 226

To speed up the calculation of these coefficients, randomly selected M0 elements of 227

each cluster were used, that is, it was assumed that S(l) ≈ S∗(l) = 1
M0

∑
iM0
i=i1

s(i), where 228

i1, i2, . . . , iM0 ∈ Sl are randomly selected elements of the l-th cluster. Assuming that S∗(l) is 229

an estimate for S(l), the estimate for the coefficient S̄k can be obtained from the formula 230

S̄k ≈ 1
M ∑k

l=1 Ml · S∗(l). 231

2.7. Analysis of dependencies on the selected parameters 232

The values of eddy diffusion coefficient K and counter-gradient flux q resulting from 233

fine resolution simulations vary in a fairly wide range. The variability of the K value is 234

several orders of magnitude. Therefore, in order to narrow the range, the logarithm of this 235

value was considered, made dimensionless with the help of some characteristic value K0, 236

thus, instead of the eddy diffusion coefficient, the value log K
K0

was considered, while only 237

the values of K > 1 m2/s were taken into account. The variability of the counter-gradient 238

eddy flux q is also several orders of magnitude and, at the same time, has both positive 239
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and negative values in a comparable proportion. In addition, it takes most of the values 240

in a fairly narrow range. Therefore, to isolate the region of the most frequent values of 241

the characteristic, instead of the eddy flux itself, the following function was considered 242

tanh ((q − q̄)/σ(q)) where q̄ is the sample mean value of the flux, and σ(q) is its standard 243

deviation. The use of hyperbolic tangent narrows the range of values to the segment [−1, 1], 244

while the values in the central part, represented by the overwhelming number of sample 245

elements, experience only a linear normalization transformation. 246

Following the Sobol’ method [38,47], we represent the dependence of the value
Y = log K

K0
or Y = tanh ((q − q̄)/σ(q)) on the N parameters of the large-scale model

(Z1, Z2, . . . , ZN) in the form

Y = f0 + ∑
i

fi + ∑
i<j

fij + . . . + ∑
i1<...<im
2<m<N

fi1 ...im + f1...N , (25)

where

f0 = E(Y),

fi = fi(Zi) = E(Y|Zi)− f0,

fij = fij(Zi, Zj) = E(Y|Zi, Zj)− f0 − fi − f j,

. . .

fi1 ...im = E(Y|Zi1 , . . . , Zim)− f0 − ∑
i∈[i1,...,im ]

fi − ∑
j1<...<jk
1<k<m

j1,...,jk∈[i1,...,im ]

f j1 ...jk .

(26)

Here E denotes the mathematical expectation of the value obtained as a result of the 247

statistical evaluation, and Y|Z1, ... denotes the Y value at fixed values of the Z1,... values. 248

According to [38], the values Zi are assumed to be uniformly distributed over the interval 249

[0,1]. Therefore, we will divide the entire range of Xi changes into L boxes with an equal 250

number of elements in each of them. Thus, as Zi values, we can consider values that are 251

discrete on a segment [0, L]/L and obtained as a result of the distribution of Xi elements 252

over L successive intervals or boxes each containing M/L of the sample elements. 253

3. Results 254

3.1. Clustering results 255

Due to the fact that the process of selecting clusters is random at the stage of initial 256

separation, the result may not be optimal. Therefore, for each k value from 2 to 8, 25 257

clusterings were carried out, among which the variant with the optimal values of the above 258

indices was selected. Naturally, under such conditions, we are still not guaranteed that 259

the partition will be optimal, but the chance of optimality increases significantly. From the 260

analysis of the resulting partitions, it follows that the process of selecting clusters has about 261

2-3 limit states, so choosing the most optimal one is not a problem. 262

Table 1 presents the results of the performed clusterings with the number of clusters 263

identified from k = 2 to 5, and Figures 2 and 3 show the geographical location of the 264

clusters and their depth distribution. The table shows that in the case of selecting 2 clusters, 265

their size (the number of elements in them) differs by an order of magnitude. A large 266

cluster is presented, covering 91% of all elements, and a small one, including 9% of the 267

elements. Geographically, the former is distributed throughout the entire Kara Sea basin 268

over the entire range of depths. The second is localized in the coastal part in the places 269

where the waters of Siberian rivers spread, and in depth it is located in the upper layer 270

within a few tens of meters. The latter, in our opinion, indicates that the elements of this 271

cluster correspond to a set of parameters that describe the specifics of the distribution of 272

the river plume and the development of the salinity front in the upper layer of the sea. 273
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Table 1. The results of clustering the selected parameters of large-scale movement for the number of
clusters from 2 to 5.

Number of No. Cluster DB D S̄k S∗(l)
clusters percentage % %

2 1 91 1.62 0.953 78 95
2 9 -89

3
1 (A) 88

1.37 0.958 74
96

2 (B) 9 -90
3 (C) 3 -94

4

1 81

1.70 0.526 57

91
2 13 -84
3 3 -93
4 3 -95

5

1 51

1.73 0.376 3

46
2 35 -22
3 9 -81
4 3 -89
5 3 -93

2 clusters

1 2
3 clusters

1 2 3
4 clusters

1 2 3 4
5 clusters

1 2 3 4 5
Figure 2. Geographical localization of clusters when split into 2, 3, 4 and 5 clusters: to the right of the panels is the cluster number in
this split in descending order of the number of elements. Color represents number of elements per model grid cell.
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2 clusters

1 2
3 clusters

1 2 3
4 clusters

1 2 3 4
5 clusters

1 2 3 4 5
Figure 3. Localization of clusters in depth (vertical axis) depending on latitude (horizontal axis) when divided into 2, 3, 4 and 5 clusters:
the labels are similar to Figure 2, the solid black line shows the maximum depth for different latitudes of the Kara Sea, the dotted red
line shows the minimum depth.

With an increase in the number of clusters to three, the previously mentioned cluster 274

with river influence remains practically unchanged and makes up the same 9% of the 275

elements. For brevity, we will denote this cluster as B. An even smaller cluster is separated 276

from the large cluster, covering only 3%. We will denote it with the symbol C. Thus, the 277

share of a large cluster has decreased to 88%. This cluster will be denoted by the symbol A. 278

Cluster C turned out to be geographically localized in a narrow strip of the steepest slope 279

at the boundary between the shelf and the deep ocean. Thus, this cluster contains elements 280

with parameters that describe the specifics of mesoscale movements in the region of a steep 281

shelf slope. This partition has the smallest among the considered Davies-Bouldin index 282

and the largest Dunn index, which indicates its optimality according to these criteria. Its 283

silhouette coefficient turned out to be somewhat smaller compared to splitting into two 284

clusters (0.74 instead of 0.78), but the silhouette coefficient of the largest cluster slightly 285

increased from 0.95 to 0.96. This partition will be further considered as the main one. 286

An increase in the number of clusters to four and five leads to the formation of an 287

intermediate cluster associated with the upper layer no deeper than 100 m due to a decrease 288

in the proportion of the large cluster A and the proportion of the river cluster B, the latter 289

becomes the smallest as a result and covers the areas immediately adjacent to the river 290

mouths. Our interpretation of the intermediate cluster is to identify areas of convective and 291

wind mixing. In addition, a large cluster also splits into two, while part of the intermediate 292

cluster is captured. As a result, a reduced version is formed from its remaining part. 293

The introduced designations of clusters for reference are presented in Table 1. 294
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3.2. Parametrization dependencies. Cluster A 295

We restrict our analysis of the resulting partition to the consideration of the largest 296

obtained cluster A, leaving consideration of other clusters and other partitions for future 297

research. 298

The dependence of the eddy diffusion coefficient K on large-scale parameters was 299

estimated on the basis of dividing the variability ranges of each of the parameters into 300

L = 5 successive intervals with an equal number of sample elements in them. Dividing 301

by more intervals results in a lot of computation when evaluating sensitivity, because the 302

number of boxes in N-dimensional hyperspace is LN . In the considered case N = 7 their 303

number is 57 = 78125. 304

Cluster A covers 88% of all sample elements. The strongest dependence of the coef-
ficient of eddy diffusion K in the representation of eddy mass transport (3) was revealed
on the value of the vertical derivative of the density, which is related to the Brunt-Väisälä
frequency NB by the relation

∂ρ

∂z
= − ρ

g
N2

B. (27)

This value is involved in explaining 69% of the variability in the value log K
K0

in this cluster. 305

The second most important value is the rate of density change along the direction of 306

the bottom slope, which is responsible for 47% of the variability. The third value, which 307

explains 39% of the variability, is the rate of the bottom slope. It is from these values that the 308

individual dependence of the value log K
K0

on one-dimensional functions in representation 309

(25) is most pronounced: ∂ρ
∂z – 33.4%, ∂ρ

∂⃗n

∣∣∣
H

– 7.6%, and s – 1.7%. The distributions of the 310

cluster elements against these values are presented in Figure 4 using histograms in terms 311

of their normalized deviations from the mean. The role of other parameters in explaining 312

the dependence is not negligible and varies from 24 to 33%. Among the two-dimensional 313

functions, the most pronounced dependence on pairs of variables is
(

∂ρ
∂z , ∂ρ

∂⃗n

∣∣∣
H

)
– 3% and 314(

∂ρ
∂⃗n

∣∣∣
H

, s
)

– 1.3%. For multivariate functions, it can be noted that any combination of 315

six variables explains from 0.8 to 1.6%, totaling about 8%, and the term with a function 316

of all variables explains 2.8% of the variability. The analysis of such multidimensional 317

dependences requires extensive theoretical substantiation, and in our analysis we will 318

restrict ourselves mainly to one-dimensional dependences. 319

(a) (b) (c)

Figure 4. Histograms of the distribution of the number of cluster elements depending on the values

of parameters a) ∂ρ
∂z , b) ∂ρ

∂⃗n

∣∣∣
H

and c) s relative to their averages. The horizontal intervals show the
deviation from the mean in units of standard deviation, the vertical axes shows the number of sample
elements in thousands. The red dotted line shows the shift of the mean relative to the zero value of
the parameters. For comparison, the black solid line shows the corresponding normal distribution,
and the red solid line shows the exponential distribution.

Having obtained an estimate of the sensitivity of the eddy flux characteristics with 320

respect to the selected set of parameters, we can now refine the dependence on them by 321

increasing the number of intervals in the discretization of variables. The dependence on the 322

vertical component of the density gradient ∂ρ
∂z is shown in Figure 5 for the case of dividing 323

the range of variability into L = 50 intervals. 324
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(a) (b)

Figure 5. One-dimensional dependence of the value log K
K0

on the parameter ∂ρ
∂z in cluster A: (a)

deviation of average values for each interval from the average for the cluster when divided into 50
intervals with an equal number of cluster elements (horizontal value in kg/m4); (b) an enlarged
view of the group of dots in a rectangle shown in (a). Panels contain the closest curves for negative
and positive values of the argument (red and blue solid lines). The vertical bars show the standard
deviation for each interval.

The histogram of the distribution of sample elements depending on ∂ρ
∂z (Figure 4a)

has the form of an exponential distribution with only a small number of elements that go
into the region of positive values (unstable stratification), and the highest concentration
of elements is observed in the region of zero value. In this case, it makes sense to look
for dependence in the form of an exponent for values ∂ρ

∂z less than zero and for values
greater than zero. This gives a tendency towards some extreme value in the case of neutral
stratification, and a limiting value when ∂ρ

∂z tending to infinity. The value K0 is defined so
that log K0 is equal to the average value of the value log K in the given cluster. In the case
under consideration, log K0 = 5.98, which corresponds to K0 = 394 m2/s. Figure 5 shows
the exponential curves with the help of red and blue lines, which most closely describe the
log K

K0
behavior in the region of small absolute values of ∂ρ

∂z and somewhat worse in the
case of large values:

(
log

K
K0

)
∂ρ
∂z

=



2.614 · exp

 ∂ρ

∂z
2.093 · 10−3

− 0.611, if
∂ρ

∂z
< 0

1.195 · exp

−
∂ρ

∂z
1.302 · 10−3

+ 0.808, if
∂ρ

∂z
≥ 0

, (28)

where the assumed ∂ρ
∂z dimension is expressed in kg/m4. These dependencies have a 325

standard deviation for the range of negative values of the argument σ = 0.262, and for 326

positive values σ = 0.138. This means that the coefficient K is determined up to a factor of 327

e0.262 = 1.3 in the first case and e0.138 = 1.15 in the second. Alternatively, one can also use 328

tabular values corresponding to the depicted points in Figure 5. 329

The dependence on the parameter ∂ρ
∂⃗n

∣∣∣
H

is shown in Figure 6. It is interesting that 330

the range of this parameter also includes negative values (see also Figure 4b), that is, the 331

bottom density decreases along the sloping bottom. This is a characteristic condition for 332

the formation of cascading [29]. As we have shown earlier in [28], the movement of dense 333

waters along the sloping bottom is accompanied by the active generation of mesoscale 334

eddies due to the released potential energy. 335

We searched for the curve closest to the given arrangement of points in Figure 6 in the
form of a hyperbolic tangent by adjusting its slope, the position of the center of symmetry,
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(a) (b)

Figure 6. Same as Figure 5, but depending on the derivative of the bottom density in the direction of

the slope ∂ρ
∂⃗n

∣∣∣
H

. Panels contain the closest functional dependence curve.

and reaching a plateau for the parameter values to the right and left of the center. The
following curve turned out to be optimal in this class

(
log

K
K0

)
∂ρ
∂⃗n

∣∣∣
H

= 0.145 − 0.763 · tanh


∂ρ

∂⃗n

∣∣∣∣
H
− 2.093 · 10−6

1.306 · 10−6

 , (29)

Here, as before, the dimension of ∂ρ
∂⃗n

∣∣∣
H

is expressed in kg/m4. The value of the standard 336

deviation from the averages over the intervals is σ = 0.231, that is, taking into account the 337

logarithmic dependence, the value K is determined with an accuracy of up to a factor or 338

divisor of e0.231 = 1.26. 339

The one-dimensional dependence on the bottom slope s explains only 1.7% of the
variability in log K. The dependence on this parameter is shown in Figure 7. We looked
for the closest fitness to the location of the points in the form of a linear combination of
two exponentials: the first with a slow decay to provide a general dependence, and the
second with a fast decay to ensure growth near small slope values. In this representation,
the following curve turned out to be optimal in the sense of the smallest standard deviation(

log
K
K0

)
s
= 0.317 − 1.474 · exp

(
− s · 104

2.878

)
+ 2.666 · exp

(
− s · 104

0.285

)
, (30)

The value is dimensionless and represents the increase in depth when moving along the 340

slope per unit length (for example, m/m). The standard error in this formula is σ = 0.177, 341

which gives the value a multiplier or divisor of e0.177 = 1.19.

(a) (b)

Figure 7. Same as Figure 5, but depending on the slope of the bottom s.
342
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The dependence of the characteristic tanh q−q̄
σ(q) in representation (25) turned out to be 343

not so pronounced. The mean value and standard deviation in cluster A for the counter- 344

gradient flux turned out to be q̄ = −0.0467 kg/(m2·s) and σ(q) = 473 kg/(m2·s). The same 345

parameters as before, but in a different order ∂ρ
∂⃗n

∣∣∣
H

, s and ∂ρ
∂z turned out to be most useful 346

in explaining the variability of this value at the level of 69%, 65% and 53%, respectively. 347

However, the one-dimensional dependence on these parameters explains only 7.6%, 3.4%, 348

and 2.2% of the variability. The largest contribution up to 20%, as it turned out, is given in 349

the aggregate by functions of five variables, while one-dimensional ones give only 16%, 350

and two-dimensional ones only 12%. The total proportion of explained variability was 351

98.7%. 352

To get a more detailed picture of the dependence on these three parameters, we 353

reduced the number of variables considered to N = 3, while increasing the number of 354

intervals to L = 50, so that the total number of boxes became 503 = 125000. As a result, the 355

total part of explained variability decreased to 78.9%, but the dependence pattern became 356

clearer. The parameter ∂ρ
∂⃗n

∣∣∣
H

is involved in explaining 92% of the variability of the value 357

tanh q−q̄
σ(q) , the parameter ∂ρ

∂z – 78%, and s – 63%. The one-dimensional dependence on ∂ρ
∂⃗n

∣∣∣
H

358

explains 14% of the variability of this value, the ∂ρ
∂z contribution is 4%, the s contribution 359

is less than 1%. Among the two-dimensional dependences, the maximum contribution 360

is made by the dependence on the pair
(

∂ρ
∂⃗n

∣∣∣
H

, ∂ρ
∂z

)
– 19%. The rest give

(
∂ρ
∂⃗n

∣∣∣
H

, s
)

– 8%, 361(
∂ρ
∂z , s

)
– 3%. The three-dimensional dependence on all three parameters explains 51% of 362

the variability. 363

Next, we aim to consider one-dimensional functions of the parameters ∂ρ
∂⃗n

∣∣∣
H

and
∂ρ
∂z , and neglect the dependance on s. Figure 8 shows a one-dimensional dependence of

tanh q−q̄
σ(q) on the parameter ∂ρ

∂⃗n

∣∣∣
H

expressed in units (kg/m4). The closest functional depen-
dence was sought in the form of a hyperbolic tangent, which resulted in the expression(

tanh
q − q̄
σ(q)

− f0

)
∂ρ
∂⃗n

∣∣∣
H

=

= 10−4 ·

3.269 − 3.930 · tanh

106 · ∂ρ

∂⃗n

∣∣∣∣
H
− 2.093

1.269


 , (31)

where f0 = 1.058 · 10−4 is equal to the average value of tanh q−q̄
σ(q) in the cluster A. The 364

standard deviation of graph points from this dependence is σ = 6.68 · 10−5. This leads 365

to an error in determining the value q of the order of ±0.03 kg/(m2·s), despite the fact 366

that the maximum value within this dependence will be 0.34, and the minimum -0.03 367

kg/(m2·s). The latter turns out to be at the error level, so the presence of negative values of 368

counter-gradient fluxes remains questionable. A positive mass flux, as can be seen from 369

Figure 8, takes place in the presence of a negative value of the density derivative in the 370

direction of the slope, that is, under conditions of cascading. Based on the distribution of 371

the value ∂ρ
∂⃗n

∣∣∣
H

presented in Figure 4b, this does not happen often. 372

The one-dimensional dependence of the value tanh q−q̄
σ(q) on the parameter ∂ρ

∂z (kg/m4)
in cluster A in the region of negative values of the parameter resembles a log-normal
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(a) (b)

Figure 8. One-dimensional dependence of tanh q−q̄
σ(q) on the parameter ∂ρ

∂⃗n

∣∣∣
H

(kg/m4) in cluster A: (a)
deviation of average values for each interval from the average for the cluster when divided into 50
intervals with an equal number of cluster elements; (b) an enlarged view of the group of dots in a
red box shown in (a). The blue curve represents the closest functional relationship. The vertical bars
show the standard deviation for each box.

distribution and exponential one in the region of its positive values (Figure 9). The best
dependence in this class of functions is given by the following expression(

tanh
q − q̄
σ(q)

− f0

)
∂ρ
∂z

=

= 10−4 ·



1.298
∂ρ

∂z

· exp

−

(
log

∣∣∣∣∂ρ

∂z

∣∣∣∣− 1.901
)2

9.420

+ 1.072, if
∂ρ

∂z
< 0

3.615 − 1.833 · exp

−
∂ρ

∂z
9.902 · 10−4

, if
∂ρ

∂z
≥ 0

, (32)

Standard deviation in first case σ = 1.33 · 10−5, for the second σ = 0.72 · 10−5.

(a) (b)

Figure 9. Same as Figure 8, but for the parameter ∂ρ
∂z .

373

3.3. Practical use 374

The system of equations of numerical models usually proceeds from the Boussinesq
approximation, which reduces the mass conservation equation to a continuity equation, and
therefore the mass flux is not explicitly taken into account. However, it can be calculated if
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we assume that the heat and salt fluxes can be represented in the equations for temperature
T and salinity S in a form similar to (3), i.e.

−
(

T′u⃗′ · n⃗
)

= KT
∂T̄
∂⃗n

+ qT

−
(

S′u⃗′ · n⃗
)

= KS
∂S̄
∂⃗n

+ qS

(33)

If the equation of state is presented in a linearized form, then the density change can be
written as δρ = αδT + βδS, where α = ∂ρ

∂T and β = ∂ρ
∂S . Then, multiplying the first row in

(33) by α, and the second by β and after adding them and comparing with (3), we get

K
∂ρ̄

∂⃗n
+ q =

(
αKT

∂T̄
∂⃗n

+ βKS
∂S̄
∂⃗n

)
+ (αqT + βqS). (34)

To ensure that the first term on the left is equal to the expression in the first bracket on the
right, we set KT = KS = K. For counter-gradient fluxes, then we get

q = αqT + βqS. (35)

We assume that qT = µTq and qS = µSq, where µT and µS are some constants. Then after
substitution we obtain for them the following expression

αµT + βµS = 1. (36)

First we assume that µT
µS

= α
β . It means that the more sensitive the density is to changes in a

variable, the greater the eddy flux of that variable. In this case, we get
µT =

α

α2 + β2

µS =
β

α2 + β2

(37)

Assuming the opposite that µT
µS

= β
α , that is, the more sensitive the density to changes in

the variable, the less eddy flux of this variable will be needed for mass transfer, we get
µT =

1
2α

µS =
1

2β

(38)

In general 
µT =

α(1 − p)
α2 + β2 +

p
2α

µS =
β(1 − p)
α2 + β2 +

p
2β

,
(39)

where p is a parameter which could be equal to any value from (−∞,+∞) but giving
(37) in case p = 0 and (38) in case p = 1. When p is outside [0, 1] interval then the terms
in (39) will have opposite signes. Since the expressions (33) give the values of the eddy
flux modulus in the direction of the bottom slope n⃗, then finally for the heat fluxes in the
direction of the model coordinates we obtain a two-component vector(

KT
∂T̄
∂⃗n

+ qT

)
n⃗ = KT

(
nx
ny

)(
nx

∂T̄
∂x

+ ny
∂T̄
∂y

)
+ qT

(
nx
ny

)
. (40)

The same is for salinity flux. The first term in (40) could be written as

KT R · ∇⃗T̄, (41)
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where

R =

(
n2

x nxny
nxny n2

y

)
. (42)

The diagonal elements of R are always positive (not negative) but off-diagonal elements 375

could be both positive or negative depending on vector n⃗ direction. 376

The next series of numerical experiments is to use the obtained parametrizations 377

and the proposed way of including them in a large-scale model. As such a model, we 378

used the coupled ocean-ice model SibCIOM, the computational domain of which includes 379

the Atlantic Ocean north of 20S and the Arctic Ocean, whose boundary with the Pacific 380

Ocean in the Bering Strait is considered to be the boundary of the domain. The model 381

is described in more detail in [39]. The horizontal resolution of the model is 0.5◦ in the 382

Atlantic Ocean and is variable from 10 to 25 km in the Arctic. The application of the 383

obtained parametrizations in numerical experiments was extended beyond the Arctic to 384

the entire domain, including not only middle latitudes, but also the subtropics and tropics 385

of the Atlantic Ocean. However, only the results of numerical experiments related to the 386

Arctic region are presented below. 387

3.4. Diffusion coefficient test 388

In the first experiment B, we set the eddy diffusion coefficient equal to the sum of 389

the coefficients obtained using the expressions (28), (29) and (30) along with the equation 390

KT = KS = K and (40). The experiment is a restart from the fields of January 1, 2000, 391

obtained during the experiment from 1948 to 2020 using the state of the lower atmosphere 392

and radiation fluxes from the NCEP/NCAR reanalysis data as a forcing (see details in [39]). 393

Since the proposed parametrization is designed to take into account additional eddy 394

mass fluxes, and associated fluxes of heat and salts, we consider the integral difference of 395

these values at latitudes above 65N latitude for two experiments: A - without the inclusion 396

of the proposed parameterization and B - with the inclusion of this parameterization in the 397

variant proposed above, that is, without taking into account the counter-gradient. Figure 398

10a shows the timeseries of the difference in mass, heat content and salinity in terms of the 399

increment in the mass of water in the Arctic. More precisely, we consider the change in time 400

of the difference in the mass of water between two experiments located north of latitude 401

65N. For reference, the total mass of water in this region according to the model grid is 402

1.77·1019 kg. The heat content of water decreases until about 2007, which in terms of mass 403

means an increase (red curve in the graph), after which it reaches a certain quasi-constant 404

level. But after 2013 it continues growing. On average, the change in the heat content of one 405

cubic meter of water decreased by 0.25 J by the end of the period, which is equivalent to a 406

decrease in temperature by 6·10−8 ◦C. The salinity has been decreasing (magenta curve) 407

during all this time, and since 2004 the rate of decrease has been approximately constant 408

but in 2013 the rate of decrease has been growing significantly. This leads to a decrease 409

in the integral mass (black curve). As a result, the fluxes of heat and salts act in different 410

directions, but the change in salinity is dominant and therefore we get a general reduction 411

in the mass of water in the Arctic. The maximum difference between the two experiments 412

was 7.23·1014 kg, which is approximately 0.00004 of the total mass, or in terms of water 413

density, about 42 g per cubic meter. Figure 10b shows the vertical distribution of mass 414

change due to heat and salt fluxes. In the upper 30 m layer, the salt content (magenta curve) 415

is on average higher in experiment B than in experiment A, while in the layer from 30 to 600 416

m the situation is reversed. As for the heat content (red curve), it decreases in both cases, 417

but the changes are several times smaller in terms of mass change. As a result, the average 418

change in the mass of the layers (black curve) is only slightly greater than as a result of the 419

action of salt fluxes. Thus, the general trend of water mass reduction in the Arctic during 420

experiment B is achieved by increasing the difference between the mass inflow in the 30-m 421

layer and its decrease in the 30-600 m layer. The Figure 11 shows the deviations of the mass 422

of water, its heat content and the mass of salt per square meter of the basin area, obtained 423

as a result of vertical integration from the surface to the ocean floor. The growth of salinity 424
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(a) (b)

Figure 10. Difference in mass (black curves), heat (red curves) and salt (magenta curves) content in
terms of the increment in the mass of water in the Arctic (above 65N): (a) timeseries of the whole
content, (b) vertical distribution avaraged over time in terms of incremental values in experiment B
with respect to experiment A.

in the area of the East Siberian and Chukchi Seas, off the shelf break in Barents and Kara 425

Seas and also in the eastern part of the Beaufort Sea leads to subsequent growth in the mass 426

per unit area in this regions. Heat content changes play a minor role but its reduction at the 427

very shelf brake make the whole region in the vicinity of Barents and Kara Seas shelf break 428

to be of positive mass change. Salinity content reduces substantially in the north part of 429

Laptev Sea and farther off to the east, making mass tendency similar to it despite of heat 430

content acting in opposite.

(a) (b) (c)

Figure 11. Annually averaged deviations of: (a) mass of water (kg/m2), (b) its heat content (MJ/m2) and (c) mass of salt (kg/m2) per
square meter of the Arctic area (above 65N), obtained as a result of vertical integration from the surface to the ocean floor in terms of
incremental values in experiment B with respect to experiment A.

431

Seasonal changes are strongest in the upper 30-meter layer (Figure 12), but even here it 432

can be noted that the seasonal differences of all values in the period of their positive values 433

from April to June from the period of their negative values in the period from September 434

to November are not so large (Figure 13). In general, it can be noted that the changes 435

associated with the introduction of parameterization in experiment B do not exceed 2-5% 436

of the total seasonal variability and basically enhance them, that is, they work towards 437

increasing the seasonal variability of the mass, heat and salt content of water in the Arctic. 438

In the upper 30-meter layer, as a whole, one can note (regardless of the season) an 439

increase in the salt content in the shelf areas of the East Siberian and Chukchi Seas in the 440

southeastern part of the Laptev Sea and in the shallow waters of the Kara Sea, where the 441

influence of the river runoff of the Lena, Ob and Yenisei rivers is strongest. In our analysis, 442

we did not consider the role of cluster B associated with river plumes. Therefore, we can 443

assume that the selection of the last two areas as areas with the most important change 444

in salinity is not entirely fair. The strongest manifestation of positive trends in salinity, 445

as can be seen from Figure 12a, is observed in the first 5-6 years of integration after the 446

introduction of the proposed parameterization. Further, in years 7-9, the role of salinity 447

decreases to almost zero, after which it rises again. The greatest positive deviation of 448
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(a) (b) (c)

Figure 12. Timeseries of difference in mass (black curves), heat (red curves) and salt (magenta curves)
content in terms of the increment in the mass of water in the Arctic (above 65N): (a) upper 30-meter
layer, (b) 30-600 m layer, (c) layer from 600 m to bottom in terms of incremental values in experiment
B with respect to experiment A.

(a) (b) (c)

(d) (e) (f)

Figure 13. Deviations of: (a,d) mass of water (kg/m2), (b,e) its heat content (MJ/m2) and (c,f) mass of salt (kg/m2) per square meter
of the Arctic area (above 65N), obtained as a result of vertical integration from the surface to the 30-meter depth and averaged over
April-June (a,b,c) and September-November (d,e,f) periods in terms of incremental values in experiment B with respect to experiment
A.

salinity is in the winter-spring period (the period of ice growth), and the negative one is at 449

the end of summer (the period of thawing). Thus, we again note an increase in seasonal 450

changes in salinity. The role of temperature changes, as can be seen from the Figure 13b,e, 451

is not so significant and more important in the seas of the North Atlantic and partly in the 452

Barents Sea, but has almost no effect on changes in water mass. 453

Deeper layers show less seasonal variability and significant trends in heat and salt 454

content (Figure 12b,c). The salt content in the 30-600 m layer falls almost linearly, which 455

provides a corresponding trend in the mass of this layer. At the same time, the temperature 456

drop of this layer works in the opposite direction to increase the mass, but the changes 457

themselves are insufficient to withstand changes in salinity. The largest decrease in mass is 458

observed in the area of the Barents Sea, the Amundsen Basin, in the north of the Laptev, 459

East Siberian and Chukchi Seas off the shelf slope, as well as along the coast of the Beaufort 460

Sea (Figure 14a). In all of the above areas, there is also a drop in the salt content in the 461

layer (Figure 14c). An increase in mass can be seen only near the islands of the Canadian 462

Archipelago, along the Lomonosov Ridge and off the shelf slope of the Barents and Kara 463

Seas. In the latter case, an increase in mass occurs not only due to an increase in salinity, 464

but also due to a decrease in the temperature of the layer (Figure 14b). In the deepest layer 465

from 600 m to the bottom, changes become noticeable only after 5 years (Figure 12c), and 466

the next 5 years, changes in the content of heat and salt affect the water mass in different 467
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(a) (b) (c)

(d) (e) (f)

Figure 14. Annually averaged deviations of: (a,d) mass of water (kg/m2), (b,e) its heat content (MJ/m2) and (c,f) mass of salt (kg/m2)
per square meter of the Arctic area (above 65N), obtained as a result of vertical integration from 30 to 600 m depth (a,b,c) and from 600
m to the ocean floor in terms of incremental values in experiment B with respect to experiment A.

directions and almost completely compensate each other. Only after 10 years, the influence 468

of salinity becomes dominant and its fall causes a decrease in the mass of water in the 469

layer. At the same time, the decrease in mass, according to the Figure 14d, occurs in the 470

central part of all basins, where the bottom depth is maximum, and the increase occurs in 471

shallower areas of the ridges and shelf slopes bordering these basins. 472

3.5. Counter-gradient tests 473

The next two experiments are related to the introduction of the counter-gradient 474

parametrization based on the derived expressions for the counter-gradient mass flux, as 475

well as using the equations (35,36,39) under the assumption that the counter-gradient fluxes 476

of heat and salts are expressed as qT = µTq and qS = µSq with µT and µS dependent on 477

two linearization coefficients derived from equation of state α = ∂ρ
∂T and β = ∂ρ

∂S . 478

In the first C1 experiment, we assumed the p parameter in the equation (39) to be 479

equal to zero, which corresponds to the situation when the heat and salt fluxes are taken in 480

proportion to the contribution of temperature and salinity variations to density variations 481

in accordance with the equation of state. In this case, the counter-gradient salt flux turns 482

out to be co-directed with the counter-gradient mass flux, and the heat flux is opposite to 483

them. The coefficient βµS in the equation (36) is approximately 16 times greater than the 484

value of the coefficient αµT and is approximately equal to 0.94, while the coefficient αµT is 485

approximately 0.06. 486

Figure 15a shows the timeseries of mass increments due to changes in water temper- 487

ature and salinity. It can be seen that, compared with experiment B, the mass increment 488

is more than two orders of magnitude smaller and mostly becomes noticeable about 17 489

years after the start of the experiment. As expected, the contribution of salinity changes 490

has a more significant effect on mass changes and is mostly negative within first 17 years 491

and becomes positive after. An decrease in density due to an increase in temperature 492

counteracts this increment in mass but is not dominating. Figure 15b shows that averaged 493

over the basin density drop is most pronounced in the upper 20 m layer but substantial 494

growth happen in deeper 20-50 m layer and less distinct but more extended in 50-400 m 495

layer. In both cases the salinity contribution is dominating. 496

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 December 2022                   doi:10.20944/preprints202212.0226.v1

https://doi.org/10.20944/preprints202212.0226.v1


22 of 27

(a) (b)

Figure 15. Difference in mass (black curves), heat (red curves) and salt (magenta curves) content in
terms of the increment in the mass of water (kg) in the Arctic (above 65N): (a) timeseries of the whole
content, (b) vertical distribution avaraged over time in terms of incremental values in experiment C1
with respect to experiment B.

According to the Figure 16, the greatest changes in salinity occur on the shelf and 497

its vicinity in the Laptev Sea and the East Siberian Sea. Moreover, salinity increases in 498

the East Siberian Sea extending positive trend toward Chukchi Sea and decreases in the 499

Laptev Sea and less significantly in the rest of Arctic. Obviously, the reason for this is the 500

accelerated eddy counter-gradient fluxes of fresh waters of the Lena, Olenek and Khataga 501

rivers towards the open ocean and the subsequent deficit of these waters in the East Siberian 502

Sea. As a result, a similar picture develops in the field of changes in the water mass. The 503

rise in temperature in the Laptev Sea and its fall in the East Siberian Sea act in concert and 504

also contribute to mass trends in these areas. However, in general, the opposite positive 505

effect of temperature is manifested in the vicinity of the Fram Strait, where Atlantic waters 506

intrude into the polar Arctic. According to the vertical distribution of temperature changes, 507

the strongest temperature growth occurs precisely in the Atlantic water layer (Figure 15b 508

does not show it clearly because of its small contribution to the mass distribution). Since 509

the difference between experiment C1 and experiment B lies in taking into account counter- 510

gradient fluxes, it is the ordered eddy motions in the area of the shelf slope that have the 511

effect on the noticed changes in heat content of the Atlantic water layer in this area.

(a) (b) (c)

Figure 16. Annually averaged deviations of: (a) mass of water (kg/m2), (b) its heat content (MJ/m2) and (c) mass of salt (kg/m2) per
square meter of the Arctic area (above 65N), obtained as a result of vertical integration from the surface to the ocean floor in terms of
incremental values in experiment C1 with respect to experiment B.

512

In the second experiment C2, we set the parameter p in the equation (39) to be equal 513

to one, which corresponds to the situation when the heat and salt fluxes are taken inversely 514

proportional to the contribution of temperature and salinity variations to density variations 515

in accordance with the equation of state. As in experiment C1, the counter-gradient salt 516

flux turns out to be co-directed with the counter-gradient mass flux, and the heat flux is 517

opposite to it. The coefficient βµS in the equation (36) is equal to the coefficient αµT and, 518

accordingly, both are equal to 0.5. Thus, the contribution of the counter-gradient heat 519

flux becomes more significant relative to the counter-gradient salinity flux than in the C1 520
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experiment. Nevertheless the resulting mass increment is lower than in C1 experiment and 521

even three orders of magnitude smaller than in B experiment. 522

Figure 17a shows that first ten years both salinity and temperature contribution to 523

water mass was growing being negative. Right after this period density change rate due to 524

salinity started growing so that in 2019-2020 it became positive. In the same time tempera- 525

ture contribution became positive but after 2017 was mostly negative. Vertically salinity 526

tendencies decreased water density in upper 400 m layer, but temperature tendencies 527

worked opposite in upper 150 m but supported them in 150-1000 m layer.

(a) (b)

Figure 17. Difference in mass (black curves), heat (red curves) and salt (magenta curves) content in
terms of the increment in the mass of water (kg) in the Arctic (above 65N): (a) timeseries of the whole
content, (b) vertical distribution avaraged over time in terms of incremental values in experiment C2
with respect to experiment B.

528

The most influenced by counter-gradient fluxes area is still in the Laptev and East 529

Siberian seas but the anomaly distribution is more complicated than in C1 experiment. 530

We still have a heat content growth in the vicinity of Fram Strait in the upper layer but 531

also there is a noticeable area of counter-gradient fluxes in the vicinity of the Lomonosov 532

ridge in central Arctic where Atlantic water current following Laptev Sea shelf break turns 533

northward along the ridge.

(a) (b) (c)

Figure 18. Annually averaged deviations of: (a) mass of water (kg/m2), (b) its heat content (MJ/m2) and (c) mass of salt (kg/m2) per
square meter of the Arctic area (above 65N), obtained as a result of vertical integration from the surface to the ocean floor in terms of
incremental values in experiment C2 with respect to experiment B.

534

4. Discussion and Conclusion 535

As a result of the analysis performed, some parametrization dependences of the 536

characteristics of eddy fluxes on large-scale thermodynamic characteristics of the Arctic 537

shelf zone in the Kara Sea were obtained. The resulting expressions for diffusion coefficient 538

K and counter-gradient flux q can be directly used in a large-scale oceanic model instead 539

of the available diffusive fluxes if the eddy ones exceed them. For example, in the current 540

version of the World Ocean model built using the SibCIOM model mentioned above, the 541

diffusion coefficient value is equal to 100 m2/s. Considering that all the above dependencies 542

were obtained at the value K0 = 394 m2/s, we can assume that on the previous plots 543
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(Figures 5-7) this corresponds to the level log 100
394 ≈ −1.37. As can be seen, this level is 544

below the minimum on all graphs and, therefore, eddy fluxes will be dominant. Since there 545

is no counter-gradient flux in this model, the resulting value of the flux q is unconditionally 546

applicable. 547

It should also be noted that in our analysis we considered only one-dimensional
dependencies, which were significant, but not dominant. Therefore, in the development of
this approach, more attention should be paid to multidimensional dependencies based on
various (non-additive) combinations of large-scale parameters. For example, eddy fluxes
turned out to be the most sensitive with respect to the parameters ∂ρ

∂z , ∂ρ
∂⃗n

∣∣∣
H

and s, from
which it is possible to construct a dimensionless combination equal to the angle θ between
the bottom surface and the isopycnal surface

θ(
∂ρ

∂z
,

∂ρ

∂⃗n
, s) = arccos

(
∇⃗ρ · ∇⃗H

)
∣∣∣∇⃗ρ

∣∣∣ · ∣∣∣∇⃗H
∣∣∣ ,

where ∇⃗ρ =
(

∂ρ
∂⃗n , ∂ρ

∂z

)
, and s =

∣∣∣∇⃗H
∣∣∣. As we can see, on the one hand, the value of this 548

angle depends on all three parameters, and on the other hand, the angle itself is a key 549

parameter for the formation and intensification of cascading, so the eddy flux has many 550

chances to be sensitive to this value. The study of such combinations is planned in future 551

work within the framework of this approach. 552

Our conclusion about the dependence of eddy parameters on density gradients is 553

closely related to the popular approach to the parametrization of mesoscale motions in 554

the form of isopycnal diffusion. In this approach either the coordinate system is rotated 555

along isopycnal surfaces, or an isopycnal diffusion tensor is composed to consider the 556

action of eddy fluxes along the surfaces of constant density. Unlike this method, we use 557

the obtained coefficients for horizontal fluxes, not isopycnal, but we note that the values of 558

both coefficients, gradient and counter-gradient, are calculated from the density slope. 559

These methods used to parameterize eddy motions in numerical models using diffu- 560

sion operators have existed for a long time, but there is still no complete understanding of 561

the required values of the diffusion coefficients. There are many approaches to quantify 562

unknown diffusion parameters, both horizontal/vertical and isopycnal. The possibil- 563

ity of using the eddy-permitting model output, which we are implementing here, arose 564

not so long ago with the development of computer technology, which made it possible 565

eddy-resolving simulations. 566

The earlier estimations of horizontal diffusion coefficients were based on numerical 567

and theoretical models [40–42], or observations [43]. The horizontal diffusion coefficients 568

estimated in these works vary depending on the location, ranging from almost zero to 569

about 104 m2/s. Based on an ensemble of tracers from subsurface lagrangian drifters, [44] 570

estimated an isopycnal diffusion of 800±200 m2/s using the lagrangian dispersion method 571

[45]. In [46] the contribution of eddy kinetic energy was evaluated using a very detailed 572

(1 km) model over the entire Arctic region. They found that the largest contribution from 573

mesoscale eddies comes from continental slope regions along the main currents in autumn 574

season. In November the kinetic energy of eddies averages about 100.2 m3/s2 along the 575

coast of Alaska and 100.05 m3/s2 in the Laptev Sea. 576

In future we plan a quantitative assessment of the total contribution of mesoscale 577

movements using an eddy-resolving model and comparison with those obtained as a result 578

of a large-scale simulation with parametrization of isopycnal diffusion. 579

It is also worth noting that here we were unable to trace the relationship between eddy 580

fluxes and the value of the Coriolis parameter (i.e., geographic latitude), largely due to the 581

fact that its variability is small within the Kara Sea. To take it into account, it is necessary to 582

consider several seas or even a series of them located at different latitudes. 583
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In addition, the ratios obtained should be refined by considering other Arctic seas and 584

in other periods of time, which, perhaps, will make it possible to get rid of the specific 585

features of the Kara Sea and the period of 2007. 586

Nevertheless, the result obtained is hopefully important and requires its further 587

approbation within the framework of a large-scale modelling of the Arctic. 588

Our numerical experiments carried out using the SibCIOM model showed that the re- 589

sults are most sensitive with respect to the parametrization of the eddy diffusion coefficient. 590

The greatest differences from the experiment without the proposed parameterization are 591

achieved in areas along the Fram branch of the Atlantic waters trajectory in the Arctic. More- 592

over, the manifestation is most pronounced in the fields of final salinity and temperature, 593

while the density field turned out to be less sensitive. Another area where parametrization 594

of eddy exchange turned out to be important is the shelf of the East Siberian and Laptev 595

seas and adjacent deep water areas. Here, due to the increase in cross-isobatic exchanges, 596

the salinity of these seas has noticeably increased and the amount of salt has decreased 597

in the adjacent regions of the Arctic in 30-600 m layer. In this regard, it can be noted that 598

for a more accurate description of the processes in these regions, it is also necessary to 599

take into account the elements of the sample from cluster B (eddy structures at the river 600

plume boundary) and cluster C (eddy structures in areas of a sharp bottom slope). In this 601

work, we have left the features associated with these regions aside and we cannot yet say to 602

what extent the identified dependencies correlate with the statistical distributions in these 603

specific clusters. 604

Accounting for counter-gradient eddy fluxes turned out to be less important, and the 605

corresponding response differs from the response to the introduction of eddy diffusion by 606

2–3 orders of magnitude. Considering also the fact that, based on the statistical analysis, 607

the inequality of the counter-gradient flux to zero is not significant, we can conclude that 608

they can be neglected in large-scale models. Although we could still notice that area where 609

counter-gradient parametrization turned out to be most valuable is again the shelf of the 610

East Siberian and Laptev seas and adjacent deep water areas. 611
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