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Abstract: The characteristics of the eddy mass transport are estimated depending on the values of the 1
parameters of a large-scale flow that forms under the conditions of the shelf seas in the Arctic. For =
this, the results of numerical simulation of the Kara Sea with a horizontal resolution permitting the s
development of mesoscale eddies are used. The parameters resulting from numerical experiment 4
are considered as a statistical sample and are analyzed using methods of sensitivity study and s
clustering of sample elements. Functional dependencies are obtained that are closest to the simulated
distributions of quantities. These expressions make it possible, within the framework of large-scale 7
models, to evaluate the characteristics of the cross-isobatic eddy mass transport in the diffusion =
approximation with a counter-gradient flux. Numerical experiments using the SibCIOM model o
showed that areas along the Fram branch of the Atlantic waters trajectory in the Arctic as well as 10
the shelf of the East Siberian and Laptev seas with adjacent deep water areas are most sensitive to 11
proposed parameterization of eddy exchanges. Accounting for counter-gradient eddy fluxes turned 12
out to be less important. 13

Keywords: eddy mass transport; subgrid-scale processes; parametrization; sensitivity study; cluster- 14
ing 15

1. Introduction 16

One of the most important tasks in large-scale modeling of the oceans in the framework 17
of climate models is an adequate description of subgrid-scale processes, that is, processes  1s
that, within the framework of the accepted horizontal and vertical resolution of the model, 1o
as well as due to a number of simplifying assumptions, cannot be explicitly described by 20
numerical solution of the relevant set of differential equations. In such cases, one resorts to 21
a parametric description of the large-scale consequences of such mesoscale processes. 22

Among these processes is the eddy transport of scalar quantities. The scales of eddy  =s
formations in the ocean are varying in a fairly wide range, and not all of them can be 24
properly described. However, the result of the action of such mesoscale (and submesoscale) 2
eddies, namely the exchange of properties of the waters involved in the movement, requires  zs
the search for additional possibilities for parameterization of these processes. 27

The most common method is the parametrization of eddy fluxes using the diffusion s
approximation, when large-scale diffusion fluxes are enhanced by a specially chosen 2o
diffusion coefficient. A uniform increase in the diffusion coefficient leads to a smoothing o
of the thermodynamic characteristics of the ocean, including cases of the absence or weak s
eddy motion. A more differentiated approach is associated with the introduction of the s
diffusion coefficient being variable in space and time. However, the question arises of 33
how to recognize the presence or absence of an eddy activity with only large-scale flow  sa
characteristics in hands. For example, in his approach, Smagorinsky [1] uses the presence s
of sheer and divergence in the velocity field to calculate the viscosity coefficient associated 36
with mesoscale eddies. 37
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Eddy diffusion and viscosity models are introduced into the coarse models to simulate s
unresolved eddy-driven motions. This mechanism is often represented by some functional 3¢
statements [3,4] that depend on the resolved flow properties. 40

The most used parametrization of the mesoscale effect is based on the eddy advection &
scheme [5-7], which consists in simulating the effect of baroclinic instability by flattening <2
the isopycnal surfaces, which transfers an available potential energy toward the eddy s
kinetic energy of subgrid-scale motions. However, such a scheme reduces the total energy, 4s
since it does not take into account the reverse transfer of kinetic energy to large scales s
[8]. Usually, the development of parameterization schemes and the evaluation of their s
parameters occur regardless of the climate models in which they are eventually to be .
included. They are tested in field experiments and the test area is relatively small compared s
to the area covered by large-scale climate models. In addition, parametrizations usually  4s
contain parameters that are uncertain, that is, there is parametric and structural uncertainty  so
[9]. 51

After parameterization schemes are developed and included into a climate model, s
modelers tune the parameters to make model adequately simulate the known physical s
processes and/or the observations of them [10]. Recently, to tune parameters modelers use  se
data-driven algorithms. This is due to big data accumulation and the rapid development of  ss
methods for processing them, including data assimilation methods [11,12], as well as ma- e
chine learning methods [13]. A whole class of data-driven parameterizations has emerged -
[14,15], rather than using idealized theories. Statistical methods are also traditionally used  ss
to manage and analyze data. They can be used to integrate high-resolution targeted local  se
modeling into a large-scale climate model, systematically learning from the results of the o
local model and quantifying uncertain parameters of large-scale modelling. o1

This article proposes to use the results of regional modeling based on a model that =
resolves mesoscale eddies and well-known statistical approaches to analyze the sensitivity s
of eddy fluxes in relation to the characteristics of large-scale motion. Using this approach, an s
attempt will be made to obtain a functional dependence of the eddy transport characteristics  es
on large-scale ocean thermodynamical characteristics using the Kara Sea shelf model in the s
Arctic as an example. In recent studies a similar approach was used in [16] and [17,18] but -
the eddy-diffusivity /mass-flux approach (EDMF) was used to parameterize convection s
and planetary boundary layer in atmospheric models. 69

Finally, the obtained expressions for the parametrization dependences were used in
the framework of large-scale modeling of processes in the Arctic and the North Atlantic 7
using the coupled ice-ocean SibCIOM model. With its help, it was possible to evaluate 7
the effectiveness of the developed parametrization and identify the main trends in the 7
simulated state of the ocean, associated with the inclusion of cross-adiabatic eddy flowsin 7

such large-scale models of the Arctic region. 75
2. Materials and Methods 76
2.1. The model of the Kara Sea 77

SibPOM sigma coordinate shelf model [19,20], which is a modification of the Princeton s
Ocean Model (POM) [2], was used as such model. It includes the parameterization of 7
vertical turbulent processes and the correction of the horizontal pressure gradient error  so
due to sigma coordinate [21]. The simulation area is shown in Figure 1. The quasi-regular e
grid of the region is constructed on the basis of a rotated spherical coordinate system with e
the poles selected so that the new equator is the central axis of the Kara Sea, while the
horizontal resolution, which, according to [22], allows reproducing large mesoscale eddies. s

The Kara Sea model is nested in Arctic and North Atlantic coupled ice-ocean model s
SibCIOM [23]. The model embedding scheme is given earlier in [19]. The main idea is that s
the Laplace operator, which describes the thermal conductivity and diffusion of the salt &
in fine resolution model, was applied only to deviations of temperature and salinity from s
their large-scale distributions. Feedback in this case was not taken into account. 80
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Figure 1. Model domain and its topography

The results discussed below refer to a numerical experiment covering the period from s
September 2006 to September 2008, the results of which were presented in our previous e
paper [20]. From this experiment, only 2007 was taken into account in our analysis below. 2
Thus, we expected to incorporate the extremal features of this year when considering s
cross-isobatic transport. 94

2.2. Parametrization of cross-isobatic transport 95

The horizontal transport of density fluctuations by velocity fluctuations is described
by the terms in the mass conservation equation of the form

D i~ aaypv = -V -, (1)

where i is the horizontal velocity fluctuation vector with components (1/,0') = (u,v) —
(11,7), and 7, ¥ are the regular components of the horizontal current velocity, that is, the
averaged velocity components over a certain characteristic period of time T. Accordingly,
the operator (-) is the result of averaging the value over this time-period. Thus, the mass

flux p’ i in the direction of some vector 7 is defined as follows

_p,u;:_mz_((ﬁ_pa).ﬁ). 2

In numerical experiment with a detailed resolution the time-averaged values of both
components i and ¢ along with the value of the density p at each point of the grid area,
as well as the time-averaged values of the flux componens pu and pv, were stored for
each 12 hour periods. Thus, any averaging period can be chosen with a resolution of 12
hours, that is, from 12 hours to several days. The time scale T characterizing the time of
the influence of the mesoscale eddy on the state of the ocean at a certain point is about 10
days [24]. Therefore, hereafter we will consider T =10 days (averaging from the 1st to the
10th day of the month from 11 to 20 and from 21 to the end of the month), that is, about 20
12-hour records will be used for the averaging operation (-). The most interesting direction
of mass transport carried out by mesoscale eddies is the direction perpendicular to the
geostrophic flow, that is, locally this direction coincides with the direction of ocean depth

growth i = VH/ ‘@H ‘ Within the framework of the diffusion approximation, such an
eddy flux is parameterized using large-scale characteristics in the form [25-27]

- J0 J0
(p’u’.n):K(a:_)l,+’y>:Ka§,+q (©)]

using the eddy diffusion coefficient K and the counter-gradient v due to which the counter-
gradient flux 4 = K7 is formed. Such a flux is formed in the absence of a change in
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density in the direction of the vector 7i due to an ordered vortex structure. To calculate the
large-scale horizontal averaging, we will use a scale of A =50 km, since this approximately
corresponds to the grid spacing of the large-scale model. The horizontal averaging of a
certain value ¢ will be denoted by angle brackets (¢) and mean the value at the point
(x0,Y0,z0), which is obtained by averaging ¢ over all points of the model with a detailed
resolution located in the square {—A < x —xp < A, —A <y —1yo < A,z = zp}. Thus, the
values K and g can be found using the least squares method as linear regression coefficients

K(z5) +q=— (o' - i), ()
that is 35 35
o 1)Ly _ o iy (2P
o M) g — ) (G i
= 2 - : )
(2Z))-
i or
— ap
— IFTIAR _ _
q=—((o7 7)) - K. ©)
2.3. Large-scale representation of mesoscale characteristics %

Any value ¢ can be represented as its linearization in the vicinity of a point (xo, o, zo)
in horizontal coordinates (x/, ') = (x — xo, ¥ — o) in the form

9¢(x0, Yo)
ox

9¢(x0, Yo)
Iy

¢(x',y') ~ Ax' + By +C = ( )x' 4 ( W+ (@(x0,y0)), (@)

where the coefficients A, B, and C can also be found by the least squares method, i.e.

A= (2000, _ A )AYLY) — AP y)AKLY)

ox D ’ ®)
_,0¢9(x0,50), _ Alg,y)A, x") — A(g, x")A(x',y)

C = (p(x0,y0)) = (¢) — A(x") — B(y'), (10)

D =AW, X )AY,y) — A, Y), (11)

where the following operator is introduced as a notation

Alg p) = (o) — (o) (¥)- (12)

As before, the designation (-) here means such a value of the characteristic at the point o7
(x0,Y0,20), which is obtained by its averaging over all points of the model with a detailed s
resolution located in the square {—A < x —x9 < A, —A<y—yo < A,z=2zp}. o

2.4. Large-scale flow characteristics 100

The purpose of our analysis is to single out among the large-scale characteristics those 101
on which the eddy mass transport in the cross-isobatic direction depends to a greater extent. 102
That is, taking into account the parametrization dependence (3), we aim to find out on  10s
which large-scale characteristics of the flow the values K and g depend to the greatest extent. 10s

The following geographic and physical characteristics were considered: 105
1. Ocean depth H(x,y); 106
2. Local depth z, which in terms of the topography following o-coordinate system 1o

follows from the relation z(x, y,0) = cH(x,y); 108

; 109

3. The value of the bottom slope s = ’@H’ ors = (@H . ﬁ), where 7i = VH/ ’@H
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4. Component of the density gradient in the direction of the bottom slope dp(x,y, ) /07i = 110
(@p . fi) ; 11

5. The density gradient component in the direction along the isobath, that is, along the 112
vector i1t = (ny, —ny), where (ny,n,) = i, that is dp(x,y, o) /9m = (@p . n'i); 113

6.  Component of the bottom density gradient in the direction of the slope dp(x,y, 0 = —1)/d#k =

(5.1,
7. Component of the bottom density gradient in the direction along the isobath dp(x,y,0 = =d) /¢

(Vp . ﬂ’l) H ; 117
8. The speed of the current in the direction of the slope U = (ii - if); 118
9.  Flow velocity along the isobath V = (if - ); 110
10.  Divergence of the velocity component U in the direction of the slope 0U /97; 120
11.  Shift of the velocity component U in the direction of the isobath U /07i; 121
12.  Shift of the velocity component V in the direction of the slope 0V /0ii; 122
13.  Divergence of the velocity component V in the direction of the isobath oV /91; 123
14.  Vertical component of the density gradient dp(x,y,0)/0z = dp(x,y,0)/(H(x,y)00); 12
15. Geographic latitude 0(x,y); 12
16. Geographic longitude A(x,y). 126

For each of these values at each grid point of the high spatial resolution model, the corre- 127
sponding large-scale value can be found by using (-) and (-) operators described previously. 1zs
Based on the results of modeling the Kara Sea using the SibPOM [20,28] model, about 78 120
million records of these values and the corresponding values of K and g were obtained. 130
However, later on, the seven most independent values were selected from 16 values (see 131
below). 132

2.5. Independence of large-scale characteristics 133

It will be further assumed that K and g are functions of several large-scale charac- s
teristics. The sensitivity analysis of K and g in relation to these characteristics provides ss
for their statistical independence of each other. That is, 16 selected characteristics will be 136
considered as 16 independent variables on which the value of these functions depends. An 137
analysis of the 78 million records mentioned earlier showed that, based on the Fisher test, 13s
none of these variables is independent. Even latitude 6 and longitude A are not statistically 130
independent because, for example, due to the shape of the basin, latitude cannot take on 140
certain values at some fixed longitude. The same applies to local depth z. However, it was 141
possible to rule out the characteristics that are most dependent on others. 142

1. The depth of the ocean H(x,y) turned out to be strongly related to the values 0p /07, 1as
dp/dz and 6. Being, in principle, an independent value, and it can hardly be assumed  14a
that the depth of the ocean depends on dp/9d7i or dp/9z, rather, vice versa. Never- 1
theless, it was neglected, since it is better to have a connection with physical state 146
characteristics such as dp /07 or dp/9dz, and not with geographical ones, especially 147
since the former are strongly depend on the latter. Thus, rejecting the ocean depth as  14s
an independent variable, it is assumed that the dependence of the values K and g on 14
it can be replaced by the dependence on dp /97 and dp/0dz having a close relationship  1so
with the ocean depth. 151
2. Local depth z, just as an ocean depth H, is in principle an independent variable. 1s:
However, it turned out to be strongly related to physical values dp/07 and dp/0z, 1s:
therefore, it was also neglected, since instead of a geographical location it is better to  1sa
deal with the physical characteristics associated with it. 155
3. The component of the density gradient in the direction of the slope dp/ 07 turned out 1se
to be strongly dependent on the value of this characteristic near the bottom 0dp /07| ;. 157
Bearing in mind that, according to [29], the latter is an important characteristic for the 1ss
formation of cascading, when the bottom density decreases with increasing depth, 1se
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the first value was neglected, since it is largely explained by the second, which hasa 1e0
clearer physical meaning. 161
4.  Similarly, the near-bottom density gradient component along the isobath dp /97|y 162
turned out to be strongly dependent on the local value of this gradient dp /07, so this  1es
value was neglected in favor of the second one. 164
5. The flow velocity in the direction of the slope U turned out to be dependent on the 165
density gradient in this direction dp /07 and on the magnitude of the velocity along  1es
the isobaths V and its variability along the slope 9V /d1i. 167
6.  The flow velocity in the direction of the isobaths V depends on the density gradientin ies
the direction of the slope dp /9, on the steepness of that slope s, and is closely related e
to the V variability along the slope 9V /9ii. 170
7. The divergence of the velocity component U in the direction of the slope dU/07i is 1n
related to the divergence of the flow along the isobaths 0V /9r. This relationship is 172

based on the continuity equation. 173
8.  The dependence on latitude 6 and longitude A was also neglected, since the goalisto 17s
be tied to physical processes, and not to a specific geographical location. 175

As a result, the following seven values in the large-scale approximation were considered 17
as variables on which the values K and g can depend: s, dp /97|, dp/ 0, oU /9it, OV /9, 177
dV /oni and dp/ 0z. 178

2.6. Clustering 179

The total sample, built on the results of a fine resolution simulation, contains elements
consisting of a set of parameters characterizing the large-scale motion

dp
&

and parameters describing the integral effect of mesoscale pulsations on the large-scale 1eo
motion (K, q). Since the nature of mesoscale movements can be completely different and 1
refer to completely unrelated physical mechanisms, it makes sense to divide in the way it = 1s2
was done in [30,31] the entire sample into clusters, that is, into groups of the most closely  1es
related sample elements. 184
There are a number of approaches related to the choice of the criterion for the tightness 1es
of the connection between elements. In this study, the so-called k-means method was used s
[32], in which belonging to a cluster is determined by the fact that the distance to its center = 1e7
is minimal among the centers of all clusters. The clustering procedure is iterative, after 1ss
determining the belonging of elements to clusters, the center of each cluster is redefined 1eo
in accordance with which elements are included in it. The iterations stop as soon as the 100
composition of the clusters becomes unchanged. 191
An important issue in the implementation of the k-means method is the choice of the sz
number of clusters k and the initial position of their centers. The choice of the number 1o
of clusters is based on the fact that the source of mesoscale motions can be barotropic 1ss
or baroclinic instabilities in the region of jet streams or near density fronts, as well as in 195
regions of intense convective and wind mixing. Having considered the values k from 2to 8 106
as options, it was decided to stop at the value of k = 3, due to the fact that the resulting o7
clusters in this case are more cohesive according to the relevant criteria, and also have 108
a clear geographical localization, indicating a certain nature associated with this cluster 199
physical processes (see below). 200
The values of the parameters characterizing the large-scale movement is a vector
(x1,x2,...,xN) in N-dimensional space, where N is equal to the number of these parameters
(in our case, N = 7). Since the parameters are heterogeneous in nature, normalization

dp U v v 3
o om’ om’ i’ I’ Jz
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is used to achieve their equivalence, that is, instead of a vector (x1, X, ..., xy), modified
vector (X1, Xp, ..., Xy) is used, where

X,==—"1 i=1,...,N (13)

and

(14)

M is the length of the sample, x; ; is the value of the i-th parameter in the j-th element of the
sample. After normalization, the coordinates of the center of the I-th cluster are defined as

%
Ry = (R, Ry, Rnyp), Rip= M Y Xij, (15)

where S is the set of sample elements belonging to the I-th cluster, M is the number of
these elements, X; ; is the value of the normalized i-th parameter in the j-th sample element.
After finding the centers of clusters, the belonging of the sample elements to clusters is
redefined as

?]- = (Xl,j/ XZ,j/'--/XN,j) €5 (16)
if
k N ’
l: r]-,l = 1‘;1:11? rj,pr where rj,p = Zl(Xl'] — Ri,p) . (17)
1=
The initial position of cluster centers is determined by following the k-means++ [33] 2
algorithm: 202
1. The center of the first cluster is determined randomly. 203
2. The center of the second cluster is determined randomly with a probability propor- zes
tional to the distance to the center of the first cluster. 205
3. The center of the next i-th cluster is also determined randomly with a probability 206
proportional to the minimum among the distances to the known cluster centers. 207
Conventional indices are used to determine the quality of clustering and search for the 2o
most appropriate partition. 200
2.6.1. Davies-Bouldin Index 210

The index is calculated using the formula [34]:

1 & !
DB = - ) max U(_)>+ U_(T:l) , (18)
k =1 m#l ‘Rl — Rm‘
where k, as before, is equal to the number of clusters, |R; — Rm’ is the distance between

I-th and m-th cluster centers,

=1,m, (19)

where the notation introduced earlier is used, and the operation |-| determines the distance
by the formula

N
— =
‘lexz‘z Z i1— Xi2)" (20)
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The numerator of each term in the expression (18) for the index DB depends on the distances 211
within the clusters, and the denominator is equal to the distance between their centers. 212
Thus, the smaller the distances within a cluster compared to the distances to other clusters, =212
the better clustering is considered. Therefore, the clustering with the smallest index is the 214
most preferable. 215

2.6.2. Dunn index 216
This criterion is based on the index calculated by the formula [35]:

= =
min ‘Rl — Rm‘
p  1sl<msk ) 1)
max o(n)
1<n<k

that is, on the contrary, the numerator depends on the distance between the cluster centers, iz
and the denominator depends on the distances within the clusters. Therefore, clustering 21s
with the highest index value is considered more preferable in this case. 210

2.6.3. Silhouette coefficients 220

For each sample element 7, two values are calculated [36]:

(22)

a(i) =

]6511#1

b(i) = mm — (23)

m#l M =

where S is the set of elements of the I-th cluster to which this element belongs, a(i) is the
average distance from this element to the remaining elements of this cluster, b( ) is the
minimum of the average distances to elements of other clusters. The silhouette coefficient
of a given sample element is determined using these values as follows:

. b(i)—a(i)
) = b (@), a(@]’ ()

so that the value of this coefficient is —1 < s(i) < 1, and if the distances within a cluster are 221
negligibly small compared to the distances between clusters, then s(i) — 1, and if vice versa, 222
then s(i) — —1. That is, in this case, the highest values of the silhouette coefficients are z2s
more preferable. In our analysis, we consider the mean values of the silhouette coefficients 22
for each cluster S(I) = M Lics, (i), and the silhouette coefficient for the entire clustering 22
gk = % Zf\il S(l) [37] 226

To speed up the calculation of these coefficients, randomly selected M elements of 227
each cluster were used, that is, it was assumed that S(I) ~ S*(I) = Mio Z;A:A(i’l s(i), where 228
i1,ip,...,im, € S; are randomly selected elements of the I-th cluster. Assuming that S*(I)is 2z
an estimate for S(1), the estimate for the coefficient Sk can be obtained from the formula 230
Sk ~ %Z;(:l Ml S*(l) 231

2.7. Analysis of dependencies on the selected parameters 232

The values of eddy diffusion coefficient K and counter-gradient flux g resulting from 23
fine resolution simulations vary in a fairly wide range. The variability of the K value is 23
several orders of magnitude. Therefore, in order to narrow the range, the logarithm of this 235
value was considered, made dimensionless with the help of some characteristic value Ky, 236
thus, instead of the eddy diffusion coefficient, the value log K% was considered, while only  2a7

the values of K > 1 m?/s were taken into account. The variability of the counter-gradient s
eddy flux g is also several orders of magnitude and, at the same time, has both positive =230
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and negative values in a comparable proportion. In addition, it takes most of the values 240
in a fairly narrow range. Therefore, to isolate the region of the most frequent values of 2
the characteristic, instead of the eddy flux itself, the following function was considered 2s:
tanh ((g — ) /o (q)) where § is the sample mean value of the flux, and ¢(g) is its standard  2as
deviation. The use of hyperbolic tangent narrows the range of values to the segment [—1,1], 2
while the values in the central part, represented by the overwhelming number of sample  2as
elements, experience only a linear normalization transformation. 246
Following the Sobol’ method [38,47], we represent the dependence of the value
Y = log K% or Y = tanh ((g —4)/c(q)) on the N parameters of the large-scale model
(Z1,Zy,...,ZN) in the form

Y=fo+Y fi+Y fi+--+ Y Sfiint N (25)
i i<j i< iy
2<m<N
where
fo=E(Y),

fi = fi(Zi) = E(Y|Zi) = fo,
fii = fii(Zi, Zj) = E(Y|Zi, Z;) — fo— fi — fi,
' (26)

fz‘l...z‘m :E(Y|Zi1r~--rzim)_f0_ Z fi_ Z ffl-~~fk'
i€ [i10verlim] 1< <jk
o A<k<m
]1!""]1(6[11/"-!1"1]

Here E denotes the mathematical expectation of the value obtained as a result of the 247
statistical evaluation, and Y|Z, ... denotes the Y value at fixed values of the Z,... values. 245
According to [38], the values Z; are assumed to be uniformly distributed over the interval 20
[0,1]. Therefore, we will divide the entire range of X; changes into L boxes with an equal zso
number of elements in each of them. Thus, as Z; values, we can consider values that are 251
discrete on a segment [0, L] /L and obtained as a result of the distribution of X; elements zs2

over L successive intervals or boxes each containing M/ L of the sample elements. 253
3. Results 284
3.1. Clustering results 285

Due to the fact that the process of selecting clusters is random at the stage of initial 2se
separation, the result may not be optimal. Therefore, for each k value from 2 to 8, 25 s~
clusterings were carried out, among which the variant with the optimal values of the above  zss
indices was selected. Naturally, under such conditions, we are still not guaranteed that =2se
the partition will be optimal, but the chance of optimality increases significantly. From the 260
analysis of the resulting partitions, it follows that the process of selecting clusters has about 26
2-3 limit states, so choosing the most optimal one is not a problem. 262

Table 1 presents the results of the performed clusterings with the number of clusters zes
identified from k = 2 to 5, and Figures 2 and 3 show the geographical location of the zes
clusters and their depth distribution. The table shows that in the case of selecting 2 clusters, zes
their size (the number of elements in them) differs by an order of magnitude. A large =66
cluster is presented, covering 91% of all elements, and a small one, including 9% of the ze7
elements. Geographically, the former is distributed throughout the entire Kara Sea basin  z¢s
over the entire range of depths. The second is localized in the coastal part in the places 260
where the waters of Siberian rivers spread, and in depth it is located in the upper layer =7
within a few tens of meters. The latter, in our opinion, indicates that the elements of this 2n
cluster correspond to a set of parameters that describe the specifics of the distribution of 272
the river plume and the development of the salinity front in the upper layer of the sea. 273
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Table 1. The results of clustering the selected parameters of large-scale movement for the number of
clusters from 2 to 5.

Number of No. Cluster DB D Sk S*(1)
clusters percentage % %
1 91 95
2 2 9 1.62 0.953 78 -89
1(A) 88 96
3 2 (B) 9 1.37 0.958 74 -90
3(C) 3 -94
1 81 91
2 13 -84
4 3 3 1.70 0.526 57 93
4 3 -95
1 51 46
2 35 -22
5 3 9 1.73 0.376 3 -81
4 3 -89
5 3 -93
2 clusters

1500|

4 clusters

1500
Eoo
80N I 2
1000

Figure 2. Geographical localization of clusters when split into 2, 3, 4 and 5 clusters: to the right of the panels is the cluster number in
this split in descending order of the number of elements. Color represents number of elements per model grid cell.
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-2000 -2000
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-500 -500 -500
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-1500 -1500 -1500

2000 2000 -2000

-2500 -2500 -2500

-3000 -3000

-3000

70 7 80 1

70 7 80 2 70 7% 80 3 70 7% 80 4 70 7% 80 5

Figure 3. Localization of clusters in depth (vertical axis) depending on latitude (horizontal axis) when divided into 2, 3, 4 and 5 clusters:

the labels are similar to Figure 2,

line shows the minimum depth.

the solid black line shows the maximum depth for different latitudes of the Kara Sea, the dotted red

With an increase in the number of clusters to three, the previously mentioned cluster
with river influence remains practically unchanged and makes up the same 9% of the
elements. For brevity, we will denote this cluster as B. An even smaller cluster is separated
from the large cluster, covering only 3%. We will denote it with the symbol C. Thus, the

share of a large cluster has decreased to 88%. This cluster will be denoted by the symbol A.

Cluster C turned out to be geographically localized in a narrow strip of the steepest slope
at the boundary between the shelf and the deep ocean. Thus, this cluster contains elements
with parameters that describe the specifics of mesoscale movements in the region of a steep
shelf slope. This partition has the smallest among the considered Davies-Bouldin index
and the largest Dunn index, which indicates its optimality according to these criteria. Its
silhouette coefficient turned out to be somewhat smaller compared to splitting into two
clusters (0.74 instead of 0.78), but the silhouette coefficient of the largest cluster slightly
increased from 0.95 to 0.96. This partition will be further considered as the main one.

An increase in the number of clusters to four and five leads to the formation of an
intermediate cluster associated with the upper layer no deeper than 100 m due to a decrease
in the proportion of the large cluster A and the proportion of the river cluster B, the latter
becomes the smallest as a result and covers the areas immediately adjacent to the river
mouths. Our interpretation of the intermediate cluster is to identify areas of convective and
wind mixing. In addition, a large cluster also splits into two, while part of the intermediate
cluster is captured. As a result, a reduced version is formed from its remaining part.

The introduced designations of clusters for reference are presented in Table 1.

292

293

204
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3.2. Parametrization dependencies. Cluster A 205

We restrict our analysis of the resulting partition to the consideration of the largest 206
obtained cluster A, leaving consideration of other clusters and other partitions for future o7
research. 208

The dependence of the eddy diffusion coefficient K on large-scale parameters was zo0
estimated on the basis of dividing the variability ranges of each of the parameters into o0
L = 5 successive intervals with an equal number of sample elements in them. Dividing 301
by more intervals results in a lot of computation when evaluating sensitivity, because the o2
number of boxes in N-dimensional hyperspace is LN. In the considered case N = 7 their sos
number is 57 = 78125.

Cluster A covers 88% of all sample elements. The strongest dependence of the coef-
ficient of eddy diffusion K in the representation of eddy mass transport (3) was revealed
on the value of the vertical derivative of the density, which is related to the Brunt-Vais&la
frequency Np by the relation

dp [N
Fr §N B (27)
This value is involved in explaining 69% of the variability in the value log K% in this cluster. sos

The second most important value is the rate of density change along the direction of 06
the bottom slope, which is responsible for 47% of the variability. The third value, which o7
explains 39% of the variability, is the rate of the bottom slope. It is from these values that the  sos
individual dependence of the value log K% on one-dimensional functions in representation sos

1s most pronounced: == —33.4%, ==| —7.6%,and s—1.7%. e distributions of the 310
(25) i p d: % -33.4%, %| ~7.6%,and s - 1.7%. The distributions of th
H

cluster elements against these values are presented in Figure 4 using histograms in terms s
of their normalized deviations from the mean. The role of other parameters in explaining s
the dependence is not negligible and varies from 24 to 33%. Among the two-dimensional 1

functions, the most pronounced dependence on pairs of variables is (g—g, g—g H) -3%and s

( %
o
six variables explains from 0.8 to 1.6%, totaling about 8%, and the term with a function sie
of all variables explains 2.8% of the variability. The analysis of such multidimensional s~

dependences requires extensive theoretical substantiation, and in our analysis we will s
restrict ourselves mainly to one-dimensional dependences. 310

H,s) — 1.3%. For multivariate functions, it can be noted that any combination of s

x10° <10* 10

25
3 25

15
2 15

05 05
2 A 0 1 2 3 (a) 8 2 A 0 1 2 (b) 8 2 A 0 1 2 3 (C)

Figure 4. Histograms of the distribution of the number of cluster elements depending on the values

of parameters a) g—g, b) % and c) s relative to their averages. The horizontal intervals show the
deviation from the mean in units of standard deviation, the vertical axes shows the number of sample
elements in thousands. The red dotted line shows the shift of the mean relative to the zero value of
the parameters. For comparison, the black solid line shows the corresponding normal distribution,
and the red solid line shows the exponential distribution.

Having obtained an estimate of the sensitivity of the eddy flux characteristics with 320
respect to the selected set of parameters, we can now refine the dependence on them by = sz
increasing the number of intervals in the discretization of variables. The dependence on the 322
vertical component of the density gradient g—g is shown in Figure 5 for the case of dividing 23
the range of variability into L = 50 intervals. 324
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(a) T ()
Figure 5. One-dimensional dependence of the value log K% on the parameter % in cluster A: (a)
deviation of average values for each interval from the average for the cluster when divided into 50
intervals with an equal number of cluster elements (horizontal value in kg/m*); (b) an enlarged
view of the group of dots in a rectangle shown in (a). Panels contain the closest curves for negative
and positive values of the argument (red and blue solid lines). The vertical bars show the standard
deviation for each interval.

The histogram of the distribution of sample elements depending on g—g (Figure 4a)
has the form of an exponential distribution with only a small number of elements that go
into the region of positive values (unstable stratification), and the highest concentration
of elements is observed in the region of zero value. In this case, it makes sense to look
for dependence in the form of an exponent for values g—g less than zero and for values
greater than zero. This gives a tendency towards some extreme value in the case of neutral
stratification, and a limiting value when g—g tending to infinity. The value K is defined so
that log Ky is equal to the average value of the value log K in the given cluster. In the case
under consideration, log Ky = 5.98, which corresponds to Ky = 394 m?/s. Figure 5 shows
the exponential curves with the help of red and blue lines, which most closely describe the
log Kﬁo behavior in the region of small absolute values of 3—‘2 and somewhat worse in the
case of large values:

9
2614-exp | 5o 92 | —0611,  if g—g <0
B .
(log K0> % % 5 ’ 29
) exp| -0z 9P o
1.195 - exp 1302.103 +0.808, if 5 = 0

where the assumed g—g dimension is expressed in kg/m®*. These dependencies have a sz
standard deviation for the range of negative values of the argument ¢ = 0.262, and for s2e
positive values o = 0.138. This means that the coefficient K is determined up to a factor of sz
9262 — 1 3 in the first case and %13 = 1.15 in the second. Alternatively, one can also use sz
tabular values corresponding to the depicted points in Figure 5. 320

The dependence on the parameter g—g is shown in Figure 6. It is interesting that ss0
H

the range of this parameter also includes negative values (see also Figure 4b), that is, the 33
bottom density decreases along the sloping bottom. This is a characteristic condition for s
the formation of cascading [29]. As we have shown earlier in [28], the movement of dense 33
waters along the sloping bottom is accompanied by the active generation of mesoscale s«
eddies due to the released potential energy. 335
We searched for the curve closest to the given arrangement of points in Figure 6 in the
form of a hyperbolic tangent by adjusting its slope, the position of the center of symmetry,
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BN CY T ()
Figure 6. Same as Figure 5, but depending on the derivative of the bottom density in the direction of

the slope g—g e Panels contain the closest functional dependence curve.

and reaching a plateau for the parameter values to the right and left of the center. The
following curve turned out to be optimal in this class

G 2.093-107°

—

K P
log - — 0.145 — 0.763 - tanh | 2211 (29)
Ko/

1.306 - 10-° !

9 | g

Here, as before, the dimension of g—g is expressed in kg/m*. The value of the standard s

deviation from the averages over the intervals is o = 0.231, that is, taking into account the = ss7

logarithmic dependence, the value K is determined with an accuracy of up to a factor or  sss

divisor of e?23! = 1.26. 330
The one-dimensional dependence on the bottom slope s explains only 1.7% of the

variability in log K. The dependence on this parameter is shown in Figure 7. We looked

for the closest fitness to the location of the points in the form of a linear combination of

two exponentials: the first with a slow decay to provide a general dependence, and the

second with a fast decay to ensure growth near small slope values. In this representation,

the following curve turned out to be optimal in the sense of the smallest standard deviation

.10% . 104
(10g II<<0> =0.317 — 1.474 - exp (—SZ 81708 > + 2.666 - exp (_5021805 ) , (30)
s . .

The value is dimensionless and represents the increase in depth when moving along the 340
slope per unit length (for example, m/m). The standard error in this formula is ¢ = 0.177, s
which gives the value a multiplier or divisor of e?177 = 1.19.

Bl [ 1 2 3 a 5 6 7 8 9 T 1 2 3 4 5 6
x10° (a) 10 (b)

Figure 7. Same as Figure 5, but depending on the slope of the bottom s.

342
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The dependence of the characteristic tanh Z(;‘g in representation (25) turned out to be  sas

not so pronounced. The mean value and standard deviation in cluster A for the counter- s
gradient flux turned out to be § = —0.0467 kg/(m?-s) and o'(q) = 473 kg/(m?-s). The same  sas

parameters as before, but in a different order g—g ’H, s and ?Tg turned out to be most useful s

in explaining the variability of this value at the level of 69%, 65% and 53%, respectively. a7
However, the one-dimensional dependence on these parameters explains only 7.6%, 3.4%, 34
and 2.2% of the variability. The largest contribution up to 20%, as it turned out, is givenin s
the aggregate by functions of five variables, while one-dimensional ones give only 16%, sso
and two-dimensional ones only 12%. The total proportion of explained variability was s
98.7%. 352

To get a more detailed picture of the dependence on these three parameters, we s
reduced the number of variables considered to N = 3, while increasing the number of s
intervals to L = 50, so that the total number of boxes became 50 = 125000. As a result, the =5
total part of explained variability decreased to 78.9%, but the dependence pattern became  sse

clearer. The parameter g—g is involved in explaining 92% of the variability of the value ss7

tanh Z-1 o) ) the parameter % 78%, and s — 63%. The one-dimensional dependence on gﬁ

358

explains 14% of the variability of this value, the 2 &£ contribution is 4%, the s Contributlon 359
is less than 1%. Among the two-dimensional dependences, the maximum contribution seo

" az) —19%. The rest give (g—g - s) - 8%, 361

(g—g, s) —3%. The three-dimensional dependence on all three parameters explains 51% of e

is made by the dependence on the pair ( %

the variability. 363

9p

Next, we aim to consider one-dimensional functions of the parameters 3= 4 and

g—g, and neglect the dependance on s. Figure 8 shows a one-dimensional dependence of
tanh Z( j on the parameter g—g ° expressed in units (kg/m?). The closest functional depen-

dence was sought in the form of a hyperbolic tangent, which resulted in the expression

(o ) = 0) =

s
1Sy

106 - g% —2.093
=10"*. [3.269 — 3.930 - tanh . 2%9 , (31)

where fo = 1.058 - 10~* is equal to the average value of tanh Z(;‘g in the cluster A. The 3es

standard deviation of graph points from this dependence is ¢ = 6.68 - 107°. This leads s
to an error in determining the value g of the order of £0.03 kg/(m?:s), despite the fact ses
that the maximum value within this dependence will be 0.34, and the minimum -0.03 e
kg/(m?-s). The latter turns out to be at the error level, so the presence of negative values of s
counter-gradient fluxes remains questionable. A positive mass flux, as can be seen from  zes
Figure 8, takes place in the presence of a negative value of the density derivative in the 7
direction of the slope, that is, under conditions of cascading. Based on the distribution of 37

the value —ﬁ presented in Figure 4b, this does not happen often. 372

The one- d1rnen51onal dependence of the value tanh q( j on the pararneter &L (kg/m*)
in cluster A in the region of negative values of the parameter resembles a log-normal
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" (a) ' “ (b)

Figure 8. One-dimensional dependence of tanh Z(;Lg on the parameter % (kg/m4) in cluster A: (a)

deviation of average values for each interval from the average for the cluster when divided into 50
intervals with an equal number of cluster elements; (b) an enlarged view of the group of dots in a
red box shown in (a). The blue curve represents the closest functional relationship. The vertical bars
show the standard deviation for each box.

distribution and exponential one in the region of its positive values (Figure 9). The best
dependence in this class of functions is given by the following expression

<tanh?f(_q)__f°>ap -

0z

ap 2
s [ (e o) )
p P 9.420 R
=10"*-{ oz , (32)
9
_ . o0z it % 5
3.615 — 1.833 - exp 9902.10°% | if 5 = 0

Standard deviation in first case ¢ = 1.33 - 1072, for the second ¢ = 0.72 - 10~>.

-4
0.01 410
e
3 s
0.005
2 S
11
of & e 1
0
-0.005 ‘e,
_1 .
*
%6 04 w02 0 02 04 2 0.4 0.2 0 02
(a) (b)
. . 9
Figure 9. Same as Figure 8, but for the parameter a—‘z).
373
3.3. Practical use 374

The system of equations of numerical models usually proceeds from the Boussinesq
approximation, which reduces the mass conservation equation to a continuity equation, and
therefore the mass flux is not explicitly taken into account. However, it can be calculated if
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we assume that the heat and salt fluxes can be represented in the equations for temperature
T and salinity S in a form similar to (3), i.e.

oT

_(T/T?.ﬁ) = Kroz +ar (33)
—(ﬁﬂ) = ng%+QS

If the equation of state is presented in a linearized form, then the density change can be
written as dp = adT + BOS, where o = g—g and B = g—g. Then, multiplying the first row in
(33) by &, and the second by p and after adding them and comparing with (3), we get

» (. aT 95
Kﬁ +q= (“KTaﬁ +[3Ksaﬁ> + (agr + Bgs)- (34)

To ensure that the first term on the left is equal to the expression in the first bracket on the
right, we set K1 = Kg = K. For counter-gradient fluxes, then we get

q = aqr + Bqs. (35)

We assume that g7 = purq and g5 = pgq, where 7 and yg are some constants. Then after
substitution we obtain for them the following expression

apr + pus = 1. (36)

First we assume that % = % It means that the more sensitive the density is to changes in a
variable, the greater the eddy flux of that variable. In this case, we get

o

e -
hs = aip

Assuming the opposite that % = g, that is, the more sensitive the density to changes in
the variable, the less eddy flux of this variable will be needed for mass transfer, we get

1
HT = 57
g (39)
Hs = 28
In general
- a(l—p)  p
a2+ p2 2«
39
s — p—p) P 9)
° o2 gz 2B

where p is a parameter which could be equal to any value from (—o0,+o0) but giving
(37) in case p = 0 and (38) in case p = 1. When p is outside [0, 1] interval then the terms
in (39) will have opposite signes. Since the expressions (33) give the values of the eddy
flux modulus in the direction of the bottom slope 7, then finally for the heat fluxes in the
direction of the model coordinates we obtain a two-component vector

T \. . (m\( o _oT "
(KTaﬁ +QT>7’1 = KT( y ) (nxax +7’lyay> +5]T( ny ) (40)

The same is for salinity flux. The first term in (40) could be written as

KrR- VT, (41)
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where )
ny  Nxn
R = < X i ) . (42)
nyny 1y
The diagonal elements of R are always positive (not negative) but off-diagonal elements s
could be both positive or negative depending on vector # direction. 376

The next series of numerical experiments is to use the obtained parametrizations sz
and the proposed way of including them in a large-scale model. As such a model, we 7
used the coupled ocean-ice model SibCIOM, the computational domain of which includes sz
the Atlantic Ocean north of 20S and the Arctic Ocean, whose boundary with the Pacific = sso
Ocean in the Bering Strait is considered to be the boundary of the domain. The model e
is described in more detail in [39]. The horizontal resolution of the model is 0.5° in the sz
Atlantic Ocean and is variable from 10 to 25 km in the Arctic. The application of the zes
obtained parametrizations in numerical experiments was extended beyond the Arctic to  sa
the entire domain, including not only middle latitudes, but also the subtropics and tropics  ses
of the Atlantic Ocean. However, only the results of numerical experiments related to the sss
Arctic region are presented below. 387

3.4. Diffusion coefficient test 388

In the first experiment B, we set the eddy diffusion coefficient equal to the sum of e
the coefficients obtained using the expressions (28), (29) and (30) along with the equation  se0
Kt = Ks = K and (40). The experiment is a restart from the fields of January 1, 2000, 302
obtained during the experiment from 1948 to 2020 using the state of the lower atmosphere  ss2
and radiation fluxes from the NCEP/NCAR reanalysis data as a forcing (see details in [39]). o3

Since the proposed parametrization is designed to take into account additional eddy 304
mass fluxes, and associated fluxes of heat and salts, we consider the integral difference of ses
these values at latitudes above 65N latitude for two experiments: A - without the inclusion e
of the proposed parameterization and B - with the inclusion of this parameterization in the o7
variant proposed above, that is, without taking into account the counter-gradient. Figure sos
10a shows the timeseries of the difference in mass, heat content and salinity in terms of the 300
increment in the mass of water in the Arctic. More precisely, we consider the change in time 400
of the difference in the mass of water between two experiments located north of latitude 402
65N. For reference, the total mass of water in this region according to the model grid is o2
1.77-10' kg. The heat content of water decreases until about 2007, which in terms of mass 40
means an increase (red curve in the graph), after which it reaches a certain quasi-constant os
level. But after 2013 it continues growing. On average, the change in the heat content of one 405
cubic meter of water decreased by 0.25 ] by the end of the period, which is equivalentto a acs
decrease in temperature by 6-10~8 °C. The salinity has been decreasing (magenta curve) o
during all this time, and since 2004 the rate of decrease has been approximately constant aos
but in 2013 the rate of decrease has been growing significantly. This leads to a decrease a0
in the integral mass (black curve). As a result, the fluxes of heat and salts act in different 410
directions, but the change in salinity is dominant and therefore we get a general reduction a1
in the mass of water in the Arctic. The maximum difference between the two experiments a2
was 7.23-10'* kg, which is approximately 0.00004 of the total mass, or in terms of water s
density, about 42 g per cubic meter. Figure 10b shows the vertical distribution of mass 414
change due to heat and salt fluxes. In the upper 30 m layer, the salt content (magenta curve) a1
is on average higher in experiment B than in experiment A, while in the layer from 30 to 600 416
m the situation is reversed. As for the heat content (red curve), it decreases in both cases, 417
but the changes are several times smaller in terms of mass change. As a result, the average 41
change in the mass of the layers (black curve) is only slightly greater than as a result of the 410
action of salt fluxes. Thus, the general trend of water mass reduction in the Arctic during 20
experiment B is achieved by increasing the difference between the mass inflow in the 30-m 421
layer and its decrease in the 30-600 m layer. The Figure 11 shows the deviations of the mass a2z
of water, its heat content and the mass of salt per square meter of the basin area, obtained 23
as a result of vertical integration from the surface to the ocean floor. The growth of salinity a2s
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Figure 10. Difference in mass (black curves), heat (red curves) and salt (magenta curves) content in
terms of the increment in the mass of water in the Arctic (above 65N): (a) timeseries of the whole
content, (b) vertical distribution avaraged over time in terms of incremental values in experiment B
with respect to experiment A.

in the area of the East Siberian and Chukchi Seas, off the shelf break in Barents and Kara 425
Seas and also in the eastern part of the Beaufort Sea leads to subsequent growth in the mass 426
per unit area in this regions. Heat content changes play a minor role but its reduction at the  a2»
very shelf brake make the whole region in the vicinity of Barents and Kara Seas shelf break a2s
to be of positive mass change. Salinity content reduces substantially in the north part of 420
Laptev Sea and farther off to the east, making mass tendency similar to it despite of heat 430
content acting in opposite.

(b) ' ©)

Figure 11. Annually averaged deviations of: (a) mass of water (kg/ m?), (b) its heat content (MJ/m?) and (c) mass of salt (kg/ m?) per

square meter of the Arctic area (above 65N), obtained as a result of vertical integration from the surface to the ocean floor in terms of
incremental values in experiment B with respect to experiment A.

Seasonal changes are strongest in the upper 30-meter layer (Figure 12), but even here it a2
can be noted that the seasonal differences of all values in the period of their positive values 433
from April to June from the period of their negative values in the period from September 34
to November are not so large (Figure 13). In general, it can be noted that the changes 435
associated with the introduction of parameterization in experiment B do not exceed 2-5% 436
of the total seasonal variability and basically enhance them, that is, they work towards sz
increasing the seasonal variability of the mass, heat and salt content of water in the Arctic.  43s

In the upper 30-meter layer, as a whole, one can note (regardless of the season) an 43
increase in the salt content in the shelf areas of the East Siberian and Chukchi Seas in the 440
southeastern part of the Laptev Sea and in the shallow waters of the Kara Sea, where the 4
influence of the river runoff of the Lena, Ob and Yenisei rivers is strongest. In our analysis, 42
we did not consider the role of cluster B associated with river plumes. Therefore, we can  4as
assume that the selection of the last two areas as areas with the most important change s
in salinity is not entirely fair. The strongest manifestation of positive trends in salinity, ass
as can be seen from Figure 12a, is observed in the first 5-6 years of integration after the ass
introduction of the proposed parameterization. Further, in years 7-9, the role of salinity ss7
decreases to almost zero, after which it rises again. The greatest positive deviation of ass
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Figure 12. Timeseries of difference in mass (black curves), heat (red curves) and salt (magenta curves)
content in terms of the increment in the mass of water in the Arctic (above 65N): (a) upper 30-meter
layer, (b) 30-600 m layer, (c) layer from 600 m to bottom in terms of incremental values in experiment
B with respect to experiment A.

@ (b) o ©

(d) (e) ()
Figure 13. Deviations of: (a,d) mass of water (kg/ m?), (b,e) its heat content (MJ/m?) and (c,f) mass of salt (kg/ m?) per square meter
of the Arctic area (above 65N), obtained as a result of vertical integration from the surface to the 30-meter depth and averaged over
April-June (a,b,c) and September-November (d,e,f) periods in terms of incremental values in experiment B with respect to experiment
A.

salinity is in the winter-spring period (the period of ice growth), and the negative one is at  aas
the end of summer (the period of thawing). Thus, we again note an increase in seasonal 4so
changes in salinity. The role of temperature changes, as can be seen from the Figure 13b,e, 451
is not so significant and more important in the seas of the North Atlantic and partly in the s
Barents Sea, but has almost no effect on changes in water mass. 453

Deeper layers show less seasonal variability and significant trends in heat and salt 4ss
content (Figure 12b,c). The salt content in the 30-600 m layer falls almost linearly, which s
provides a corresponding trend in the mass of this layer. At the same time, the temperature  4ss
drop of this layer works in the opposite direction to increase the mass, but the changes sz
themselves are insufficient to withstand changes in salinity. The largest decrease in mass is  4ss
observed in the area of the Barents Sea, the Amundsen Basin, in the north of the Laptev, aso
East Siberian and Chukchi Seas off the shelf slope, as well as along the coast of the Beaufort 4so
Sea (Figure 14a). In all of the above areas, there is also a drop in the salt content in the 46
layer (Figure 14c). An increase in mass can be seen only near the islands of the Canadian  se2
Archipelago, along the Lomonosov Ridge and off the shelf slope of the Barents and Kara e
Seas. In the latter case, an increase in mass occurs not only due to an increase in salinity, ass
but also due to a decrease in the temperature of the layer (Figure 14b). In the deepest layer aes
from 600 m to the bottom, changes become noticeable only after 5 years (Figure 12c), and  ses
the next 5 years, changes in the content of heat and salt affect the water mass in different 4e7
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Figure 14. Annually averaged deviations of: (a,d) mass of water (kg/ m?), (b,e) its heat content (MJ/m?) and (c,f) mass of salt (kg/ m?)
per square meter of the Arctic area (above 65N), obtained as a result of vertical integration from 30 to 600 m depth (a,b,c) and from 600
m to the ocean floor in terms of incremental values in experiment B with respect to experiment A.

directions and almost completely compensate each other. Only after 10 years, the influence aes
of salinity becomes dominant and its fall causes a decrease in the mass of water in the aeo
layer. At the same time, the decrease in mass, according to the Figure 14d, occurs in the 470
central part of all basins, where the bottom depth is maximum, and the increase occurs in 471
shallower areas of the ridges and shelf slopes bordering these basins. ar2

3.5. Counter-gradient tests a73

The next two experiments are related to the introduction of the counter-gradient 47
parametrization based on the derived expressions for the counter-gradient mass flux, as s
well as using the equations (35,36,39) under the assumption that the counter-gradient fluxes a7e
of heat and salts are expressed as g1 = p7q and g5 = psq with yr and pg dependent on  a77
two linearization coefficients derived from equation of state & = g—? and B = g—g a78

In the first C1 experiment, we assumed the p parameter in the equation (39) to be 470
equal to zero, which corresponds to the situation when the heat and salt fluxes are taken in  4so
proportion to the contribution of temperature and salinity variations to density variations se:
in accordance with the equation of state. In this case, the counter-gradient salt flux turns ss=
out to be co-directed with the counter-gradient mass flux, and the heat flux is opposite to  es
them. The coefficient Bug in the equation (36) is approximately 16 times greater than the 4ss
value of the coefficient oyt and is approximately equal to 0.94, while the coefficient T is  aes
approximately 0.06. age

Figure 15a shows the timeseries of mass increments due to changes in water temper-  ssr
ature and salinity. It can be seen that, compared with experiment B, the mass increment s
is more than two orders of magnitude smaller and mostly becomes noticeable about 17  4se
years after the start of the experiment. As expected, the contribution of salinity changes o0
has a more significant effect on mass changes and is mostly negative within first 17 years 4o
and becomes positive after. An decrease in density due to an increase in temperature o2
counteracts this increment in mass but is not dominating. Figure 15b shows that averaged 4ss
over the basin density drop is most pronounced in the upper 20 m layer but substantial es
growth happen in deeper 20-50 m layer and less distinct but more extended in 50-400 m 405
layer. In both cases the salinity contribution is dominating. a96
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Figure 15. Difference in mass (black curves), heat (red curves) and salt (magenta curves) content in
terms of the increment in the mass of water (kg) in the Arctic (above 65N): (a) timeseries of the whole
content, (b) vertical distribution avaraged over time in terms of incremental values in experiment C1
with respect to experiment B.

According to the Figure 16, the greatest changes in salinity occur on the shelf and o7
its vicinity in the Laptev Sea and the East Siberian Sea. Moreover, salinity increases in  4es
the East Siberian Sea extending positive trend toward Chukchi Sea and decreases in the 490
Laptev Sea and less significantly in the rest of Arctic. Obviously, the reason for this is the soo
accelerated eddy counter-gradient fluxes of fresh waters of the Lena, Olenek and Khataga so:
rivers towards the open ocean and the subsequent deficit of these waters in the East Siberian  so2
Sea. As a result, a similar picture develops in the field of changes in the water mass. The  sos
rise in temperature in the Laptev Sea and its fall in the East Siberian Sea act in concert and  sos
also contribute to mass trends in these areas. However, in general, the opposite positive sos
effect of temperature is manifested in the vicinity of the Fram Strait, where Atlantic waters sos
intrude into the polar Arctic. According to the vertical distribution of temperature changes, so
the strongest temperature growth occurs precisely in the Atlantic water layer (Figure 15b  sos
does not show it clearly because of its small contribution to the mass distribution). Since  sos
the difference between experiment C1 and experiment B lies in taking into account counter- sio
gradient fluxes, it is the ordered eddy motions in the area of the shelf slope that have the s
effect on the noticed changes in heat content of the Atlantic water layer in this area.

(b) (©
Figure 16. Annually averaged deviations of: (a) mass of water (kg/ m?), (b) its heat content (MJ/m?) and (c) mass of salt (kg/ m?) per
square meter of the Arctic area (above 65N), obtained as a result of vertical integration from the surface to the ocean floor in terms of
incremental values in experiment C1 with respect to experiment B.

In the second experiment C2, we set the parameter p in the equation (39) to be equal =1
to one, which corresponds to the situation when the heat and salt fluxes are taken inversely s
proportional to the contribution of temperature and salinity variations to density variations sis
in accordance with the equation of state. As in experiment C1, the counter-gradient salt s
flux turns out to be co-directed with the counter-gradient mass flux, and the heat fluxis s
opposite to it. The coefficient By g in the equation (36) is equal to the coefficient ayt and, sis
accordingly, both are equal to 0.5. Thus, the contribution of the counter-gradient heat s
flux becomes more significant relative to the counter-gradient salinity flux than in the C1 = s20
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experiment. Nevertheless the resulting mass increment is lower than in C1 experiment and sz
even three orders of magnitude smaller than in B experiment. 522

Figure 17a shows that first ten years both salinity and temperature contribution to s2s
water mass was growing being negative. Right after this period density change rate due to sze
salinity started growing so that in 2019-2020 it became positive. In the same time tempera- s2s
ture contribution became positive but after 2017 was mostly negative. Vertically salinity sz
tendencies decreased water density in upper 400 m layer, but temperature tendencies 27
worked opposite in upper 150 m but supported them in 150-1000 m layer.

11
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Figure 17. Difference in mass (black curves), heat (red curves) and salt (magenta curves) content in
terms of the increment in the mass of water (kg) in the Arctic (above 65N): (a) timeseries of the whole
content, (b) vertical distribution avaraged over time in terms of incremental values in experiment C2
with respect to experiment B.

The most influenced by counter-gradient fluxes area is still in the Laptev and East sz
Siberian seas but the anomaly distribution is more complicated than in C1 experiment. sso
We still have a heat content growth in the vicinity of Fram Strait in the upper layer but sa:
also there is a noticeable area of counter-gradient fluxes in the vicinity of the Lomonosov  ss2
ridge in central Arctic where Atlantic water current following Laptev Sea shelf break turns  sss
northward along the ridge.

(b) (c)
Figure 18. Annually averaged deviations of: (a) mass of water (kg/ m?), (b) its heat content (MJ/m?) and (c) mass of salt (kg/ m?) per

square meter of the Arctic area (above 65N), obtained as a result of vertical integration from the surface to the ocean floor in terms of
incremental values in experiment C2 with respect to experiment B.

4. Discussion and Conclusion 535

As a result of the analysis performed, some parametrization dependences of the sss
characteristics of eddy fluxes on large-scale thermodynamic characteristics of the Arctic  ss
shelf zone in the Kara Sea were obtained. The resulting expressions for diffusion coefficient s:s
K and counter-gradient flux q can be directly used in a large-scale oceanic model instead  sss
of the available diffusive fluxes if the eddy ones exceed them. For example, in the current  sao
version of the World Ocean model built using the SibCIOM model mentioned above, the s
diffusion coefficient value is equal to 100 m? /s. Considering that all the above dependencies s
were obtained at the value Ky = 394 m?/s, we can assume that on the previous plots s
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(Figures 5-7) this corresponds to the level log ;%2 ~ —1.37. As can be seen, this level is saa

below the minimum on all graphs and, therefore, eddy fluxes will be dominant. Since there sas

is no counter-gradient flux in this model, the resulting value of the flux g is unconditionally sas

applicable. sa7
It should also be noted that in our analysis we considered only one-dimensional

dependencies, which were significant, but not dominant. Therefore, in the development of

this approach, more attention should be paid to multidimensional dependencies based on

various (non-additive) combinations of large-scale parameters. For example, eddy fluxes

turned out to be the most sensitive with respect to the parameters g—g, g—g )H and s, from

which it is possible to construct a dimensionless combination equal to the angle 6 between
the bottom surface and the isopycnal surface

6(8‘0 ap

= L 5) = arccos
oz’ o’ )

o] o

where @p = (g—%, %’;) ,and s = ‘@H ‘ As we can see, on the one hand, the value of this s
angle depends on all three parameters, and on the other hand, the angle itself is a key sao
parameter for the formation and intensification of cascading, so the eddy flux has many sso
chances to be sensitive to this value. The study of such combinations is planned in future ss
work within the framework of this approach. 552

Our conclusion about the dependence of eddy parameters on density gradients is  sss
closely related to the popular approach to the parametrization of mesoscale motions in  sss
the form of isopycnal diffusion. In this approach either the coordinate system is rotated sss
along isopycnal surfaces, or an isopycnal diffusion tensor is composed to consider the sse
action of eddy fluxes along the surfaces of constant density. Unlike this method, we use ss7
the obtained coefficients for horizontal fluxes, not isopycnal, but we note that the values of sss
both coefficients, gradient and counter-gradient, are calculated from the density slope. 559

These methods used to parameterize eddy motions in numerical models using diffu- seo
sion operators have existed for a long time, but there is still no complete understanding of  sex
the required values of the diffusion coefficients. There are many approaches to quantify se:
unknown diffusion parameters, both horizontal/vertical and isopycnal. The possibil- ses
ity of using the eddy-permitting model output, which we are implementing here, arose ses
not so long ago with the development of computer technology, which made it possible ses
eddy-resolving simulations. 566

The earlier estimations of horizontal diffusion coefficients were based on numerical ser
and theoretical models [40-42], or observations [43]. The horizontal diffusion coefficients ses
estimated in these works vary depending on the location, ranging from almost zero to  ses
about 10* m?/s. Based on an ensemble of tracers from subsurface lagrangian drifters, [44] sz
estimated an isopycnal diffusion of 8004200 m? /s using the lagrangian dispersion method sz
[45]. In [46] the contribution of eddy kinetic energy was evaluated using a very detailed sz
(1 km) model over the entire Arctic region. They found that the largest contribution from sz
mesoscale eddies comes from continental slope regions along the main currents in autumn sz
season. In November the kinetic energy of eddies averages about 10%? m?/s? along the sz
coast of Alaska and 10%% m3/s? in the Laptev Sea. 576

In future we plan a quantitative assessment of the total contribution of mesoscale sz
movements using an eddy-resolving model and comparison with those obtained as a result sz
of a large-scale simulation with parametrization of isopycnal diffusion. 579

It is also worth noting that here we were unable to trace the relationship between eddy  sso
fluxes and the value of the Coriolis parameter (i.e., geographic latitude), largely due to the ss:
fact that its variability is small within the Kara Sea. To take it into account, it is necessary to  ss:
consider several seas or even a series of them located at different latitudes. 583
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In addition, the ratios obtained should be refined by considering other Arctic seas and  sse
in other periods of time, which, perhaps, will make it possible to get rid of the specific ses

features of the Kara Sea and the period of 2007. se6
Nevertheless, the result obtained is hopefully important and requires its further ser
approbation within the framework of a large-scale modelling of the Arctic. 585

Our numerical experiments carried out using the SibCIOM model showed that the re- seo
sults are most sensitive with respect to the parametrization of the eddy diffusion coefficient. seo
The greatest differences from the experiment without the proposed parameterization are se:
achieved in areas along the Fram branch of the Atlantic waters trajectory in the Arctic. More-  se2
over, the manifestation is most pronounced in the fields of final salinity and temperature, ses
while the density field turned out to be less sensitive. Another area where parametrization see
of eddy exchange turned out to be important is the shelf of the East Siberian and Laptev  ses
seas and adjacent deep water areas. Here, due to the increase in cross-isobatic exchanges, sss
the salinity of these seas has noticeably increased and the amount of salt has decreased sor
in the adjacent regions of the Arctic in 30-600 m layer. In this regard, it can be noted that ses
for a more accurate description of the processes in these regions, it is also necessary to ses
take into account the elements of the sample from cluster B (eddy structures at the river oo
plume boundary) and cluster C (eddy structures in areas of a sharp bottom slope). In this o
work, we have left the features associated with these regions aside and we cannot yet say to o2
what extent the identified dependencies correlate with the statistical distributions in these sos
specific clusters. 604

Accounting for counter-gradient eddy fluxes turned out to be less important, and the eos
corresponding response differs from the response to the introduction of eddy diffusion by  eos
2-3 orders of magnitude. Considering also the fact that, based on the statistical analysis, eor
the inequality of the counter-gradient flux to zero is not significant, we can conclude that ecs
they can be neglected in large-scale models. Although we could still notice that area where 0o
counter-gradient parametrization turned out to be most valuable is again the shelf of the 610
East Siberian and Laptev seas and adjacent deep water areas. 611
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