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Abstract: There is great interest in automatically detecting road weather and understanding its 1

impacts on the overall safety of the transport network. This can, for example, support road condition- 2

based maintenance or even serve as detection systems that assist safe driving during adverse climate 3

conditions. In computer vision, previous work has demonstrated the effectiveness of deep learning 4

in predicting weather conditions from outdoor images. However, training deep learning models 5

to accurately predict weather conditions using real-world road-facing images is difficult due to: (1) 6

the simultaneous occurrence of multiple weather conditions; (2) imbalanced occurrence of weather 7

conditions throughout the year; and (3) road idiosyncrasies, such as road layouts, illumination, road 8

objects etc. In this paper, we explore the use of focal loss function to force the learning process to 9

focus on weather instances that are hard to learn with the objective to help address data imbalance. 10

In addition, we explore the attention mechanism for pixel based dynamic weight adjustment to 11

handle road idiosyncrasies using state-of-the-art vision transformer models. Experiments with a 12

novel multi-label road weather dataset show that focal loss significantly increases the accuracy of 13

computer vision approaches for imbalanced weather conditions. Furthermore, vision transformers 14

outperforms current state-of-the-art convolutional neural networks in predicting weather conditions 15

with a validation accuracy of 92% and F1-score of 81.22%, which is impressive considering the 16

imbalanced nature of the dataset. 17

Keywords: Computer vision, Deep learning, Image classification, Loss functions, Vision Transformers, 18

Weather detection 19

1. Introduction 20

Different types of weather severely affect traffic flow, driving performance, vehicle and 21

road safety [1]. Statistics from the Federal Highway Administration show that increased 22

amount of accidents and congestion are usually directly associated with hostile weather [2]. 23

As a result, there is the need for advanced intelligent systems that accurately detect weather 24

conditions and support safe driving and effective management of the transport network. 25

Deep learning has emerged as one of the main approaches used for automatic weather 26

recognition [3–6]. The state-of-the-art literature mostly employs convolutional neural 27

networks (CNN), which are trained on outdoor weather images and subsequently label 28

new images with a single weather class. This type of classification for roads, however, 29

produces less accurate results, as multiple weather types are likely to occur simultaneously. 30

For example, Figure 1 shows multiple weather conditions (i.e sunny and wet) present 31

in a single scenario. Another limitation found in the current related work is that deep 32

learning models are mostly trained on balanced and high variance weather datasets. This 33

oversimplifies road weather conditions, which are characterised by highly imbalanced and 34

more complex scenarios, such as road layouts, interacting elements, vehicles, people, and 35

different illumination conditions. The representation learning therefore gets compromised, 36

as road elements that could potentially allow for a more specific type of learning for the 37

road problem are not included. There is also currently no research study investigating 38

intelligent strategies for multi-label, highly imbalanced and complex road scenarios, such 39
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as dynamic pixel based weighting. This drives the motivation of this study to propose a 40

publicly available realistic multi-label road weather dataset and employ vision transformers 41

based on focal loss to address class imbalance and road idiosyncrasies. 42

Figure 1. Multiple weather conditions (sunny and wet) existing in a single image

The main contributions of this study are: 43

1. A multi-label transport related dataset consisting of seven weather conditions: sunny, 44

cloudy, foggy, rainy, wet, clear, and snowy to be used for road weather detection 45

research. 46

2. Assessment of different state-of-the-art computer vision models in addressing multi- 47

label road weather detection, using our dataset as benchmark. 48

3. Evaluation of the effectiveness of focal loss function to increase model accuracy for 49

unbalanced classes and hard instances. 50

4. Implementing transformer vision models to assess the efficiency of their attention 51

mechanism (assigning dynamic weights to pixels) in addressing road weather idiosyn- 52

crasies. 53

This paper is organised as follows, in Section 2 we review the literature on weather 54

detection using deep learning techniques and describe the focal loss function to handle 55

imbalanced data and difficult to classify instances. Subsequently, we provide an overview 56

of the CNN architectures explored in this paper. Section 3 describes vision transformers in 57

comparison to CNN networks. Section 4 introduces our novel multi-label road weather 58

dataset, describes the vision transformer models implemented in this paper, and presents 59

the design of our experiments and evaluation protocols. In Section 5, the results are 60

presented along with discussion, and Section 6 concludes the paper and establishes the 61

opportunity for future work. 62

2. Background 63

2.1. Related Work 64

The rapid evolution and widespread of sensors (e.g. onboard cameras) has led to 65

large volumes of data streams constantly being generated in transportation. Deep learning 66

approaches have emerged as suitable approaches to address big data problems as they 67

reduce the dependency on human experts and learn high-level features from data in 68

an incremental manner. Specifically, for weather recognition tasks, convolution neural 69

networks have been vastly explored by many researchers. 70

Kang et al. [6] introduced a weather classification framework based on GoogleNet 71

to recognise four weather conditions- hazy, snowy, rainy and others. Their framework 72

was trained using the general MWI weather dataset[7] and achieved 92% accuracy. The 73

model outperformed multiple kernel learning based approaches [7] and AlexNet CNN [8]. 74

Similarly, An et al. [9] explored ResNet and Alexnet coupled with support vector machines 75

for weather classification. The authors evaluated the models using several multi-class 76

weather datasets. The ResNet architecture outperformed AlexNet with a classification 77

accuracy of 92% and 88% for sunny and cloudy classes, respectively. 78
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In Khan et al.[10], the authors developed deep learning models to recognise both 79

weather and surface conditions based on images from road-side webcams. Their dataset 80

consists of three weather conditions (clear, light snow and heavy snow) and three road 81

surface conditions (dry, snowy and wet). They explored different CNN architectures 82

including ResNet-18, GoogleNet and AlexNet, and amongst the architectures, ResNet- 83

18 achieved the best detection accuracy with 97% for weather and 99% for road surface 84

conditions. 85

Guerra et al. [11] introduced another multi-class Weather dataset called RFS consisting 86

of three classes- rainy, foggy and snowy. The authors also employed ResNet architecture to 87

achieve 80.7% accuracy on their dataset. Later, Jabeen et al. [12] utilized inception CNN 88

architecture for weather detection using a new multi-class weather dataset consisting of 89

2000 images belonging to three classes namely, foggy, rainy and clear. Their model achieved 90

an average of 98% accuracy for the three classes. 91

Zhao et al. [13] employed CNNs coupled with recurrent networks on a multi-label 92

weather dataset to address the problem of more than one weather condition existing in a 93

single image. The dataset consists of five classes including sunny, snowy, cloudy, rainy, and 94

foggy. Their architecture achieved an average F-score of 87% for the five classes. However, 95

the dataset used is a generalized weather dataset that is not specific to roads. 96

Recently, Xia et al. [3] explored ResNet CNNs to classify images in a multi-class 97

weather dataset called WeatherDataset-4 into different weather conditions. WeatherDataset- 98

4 dataset is made up of four major classes including foggy, snowy, rainy and sunny. 99

The authors achieved an average classification accuracy of 96.03%. While Togacar et 100

al. [4] employed GoogleNet and VGG16 Spiking Neural Networks (SNNs) for weather 101

recognition. The weather dataset used by the authors consists of four classes: cloudy, rainy, 102

sunny and sunrise. The features from GoogleNet and VGG16 are combined and trained 103

using SNNs. The average classification result obtained with the combined CNNs and SNNs 104

was 97.88%, which is much better than using the CNN models without SNNs. 105

The classification performance achieved in the above studies for weather recogni- 106

tion is acceptable. However, majority of the studies focused on multi-class classification 107

which could be unrepresentative of real-world weather conditions where more than one 108

weather condition can occur simultaneously (as shown in the sample image in Fig. 1). The 109

few studies that employ multi-label classification [13] are either implemented on general 110

weather dataset or fail to make their datasets available for comparison and advancement. 111

In addition, the studies use carefully selected outdoor images which create well-balanced 112

weather datasets. This oversimplifies the road weather detection problem, which is usually 113

imbalanced in nature e.g. icy and snowy weather conditions rarely occur in the United 114

Kingdom (UK). The outdoor datasets also fail to include different lighting conditions and 115

road characteristics, making them ungeneralisable to road weather images. 116

We address the above limitations by proposing a multi-label weather dataset for roads 117

to address the problem of multiple weather existing in a single frame. In addition, as the 118

weather data is inherently unbalanced, an attention mechanism needs to be provided to 119

address those categories that are harder to learn, as those are more likely to be extreme 120

(rare) conditions and their misclassification by the intelligent systems should be minimised. 121

Hence, the systematic approach followed in this study allows the model to focus more 122

on less represented classes instead of data-dominated labels to prevent training a bias 123

network. We also focus on feeding the model information about hard instances to avoid the 124

gradient being outclassed by the accumulation of the losses of easy instances. Lastly, we 125

focus on dynamically assigning weights to the pixels allowing the model to focus more on 126

relevant features during classification which can potentially increase model’s efficiency for 127

highly complex data. Specifically, the study involves identifying the potential of adapting 128

weighted loss and focal loss function to deal with class imbalance problems and hard-to- 129

learn instances in the dataset. The study also involves exploring vision transformer models 130

allowing the model to focus more on relevant pixels only. To the best of our knowledge, 131
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this study is the first attempt to recognise the potential of weighted loss, focal loss and 132

pixel-based attention mechanism for multi-label road weather classification. 133

2.2. Loss functions explored in this study to deal with data predicaments 134

• Class Weighted Loss Function: The traditional cross entropy loss doesn’t take into 135

account the imbalance nature of the dataset. The inherent assumption that the data is 136

balanced often lead to fallacious results. Since the learning becomes biased towards 137

majority classes, the model fails to learn meaningful features to identify the minority 138

classes. Therefore, to overcome these issues, loss function can be optimized by as- 139

signing weights such that more attention is given to minority classes during training. 140

Weights are assigned to each class such that smaller the number of instances in a class, 141

greater the weight assigned to that class. For each class, Weight assigned to the class = 142

Total images in dataset/ Total images in that class. The weighted cross-entropy loss 143

function is given by: 144

L =
N

∑
i=1

C

∑
c=1

ωc[(yc log(pc) + (1yc) log(1pc))] (1)

where L is the total loss, c represents the class, i represents the training instance, while 145

C and N represents total number of classes and instances respectively. The yc indicates 146

the ground truth label for the class c and pc is the predicted probability that the given 147

image belongs to class c, while ωc represents the weight of the class c. 148

• Focal Loss Function: A focal loss function is a dynamically scaled cross entropy loss 149

function. Focal loss forces the model to focus on the hard misclassified examples 150

during the training process[14]. For any given instance, the scaling factor of the focal 151

loss function decays to zero as the loss decreases. Thus allowing the model to rapidly 152

focus on hard examples instead of assigning similar weights to all the instances. Focal 153

loss function is given by 154

FL(po) = −αo(1 − po)
γ log(po) (2)

where α and γ are hyperparameters such that setting γ greater than zero reduces 155

relative loss for examples that are easily classified. The hyperparameter γ >= 0 and 156

its value controls the loss for easy and hard instances while α lies between [0,1] and 157

addresses the class imbalance problem. 158

2.3. Deep Learning Architectures Investigated 159

Several state-of-the-art CNN architectures have been successfully proposed for image 160

classification. Table 1 briefly describes the structure of state-of-the-art CNN architectures 161

used in this study including VGG19, GoogleNet, ResNet-152, Inception-v3, and EfficientNet- 162

B7. 163

Model Author Year Number of Layers Input image size
VGG19 Oxford University Researchers[15] 2014 19 layers 224 x 224

GoogleNet Researchers at Google[16] 2015 22 layers 224 x 224
ResNet-152 He et al.[17] 2015 152 layers 224 x 224

Inception-v3 Szegedy et al.[18] 2016 48 layers 299 x 299
EfficientNet-B7 Tan et al.[19] 2019 813 layers 600 x 600

Table 1. State-of-the-art CNN models assessed in this study
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3. Vision Transformers 164

Transformers were initially introduced for Natural Language Processing (NLP) tasks[20] 165

while image processing tasks usually relied on convolution neural networks. Recently, 166

transformers have been adopted for computer vision tasks [21] and they are called vision 167

transformers. Vision transformers are similar to NLP transformers, where patches of im- 168

ages are used instead of sentences. Images are broken down into a series of patches and 169

transformed into embeddings which can be easily fed into NLP transformers, similar to 170

embeddings of words. 171

Conventional CNNs typically assign similar attention (weights) to all the pixels of an
image during classification. As already proven in the field of NLP, introducing attention
mechanisms such that higher weights are assigned to pixels of relevant information could
lead to potentially better results and efficient models. Therefore, Vision Transformers (ViT)
captures relationships between different parts of an image allowing the model to focus
more on relevant pixels in classification problems. ViT computes relationships among pixels
in small sections of the image (also known as patches) to reduce computation time instead
of computing the relationship between each individual pixel. Each image is considered as a
sequence of patches of pixels. However, for retaining the positional information, positional
embeddings are added to the patch embeddings as shown in the figure 3. These positional
embeddings are important to represent the position of features in a flattened sequence
otherwise the transformer will loss information about the sequential relationships between
the patches. A positional embedding (PE) matrix is used to define the relative distance of
all possible pairs in the given sequence of patch embeddings and is given by the formula:

PE(pos,2i)
= sin(pos/1000(2i/dmodel)) (3)

PE(pos,2i+1) = cos(pos/1000(2i/dmodel))

where pos is the position of the feature in the input sequence, i is used to map column 172

indices such that 0 <= i <= d/2, and d is the dimension of the embedding space. 173

The results with the position embeddings are then fed to a transformer encoder for 174

classification as shown in figure 2. The transformer encoder module consists of a Multi- 175

Head Self Attention (MSA) layer and a Multi-Layer Perceptron (MLP) layer. The MSA 176

layer splits the given input into multiple heads such that each head learn different levels 177

of self-attention. The outputs are then further concatenated and passed through the MLP 178

layer. The concatenated outputs from the MSA layer are normalised in the Norm layer and 179

sent to the MLP layer for classification. The MLP layer consists of Gaussian Error Linear 180

Unit (GELU) activation functions. 181

Figure 2. Overview of the Transformer Encoder.

Figure 3 shows an overview of ViT. This section concludes by explaining in more detail 182

the attention mechanism adopted by the MSA layer. 183

A typical attention mechanism is based on trainable vector pairs consisting of keys 184

and values. A set of k key vectors is packed in a matrix K (KRkxd) such that the query 185
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vector (qRd) is matched against this set of k key vectors. The matching is based on inner 186

dot products which are then scaled and normalised. A softmax function is then applied 187

to obtain k weights. The weighted sum of k value vectors then serve as an output of the 188

attention. For self-attention, the vectors (Query, Key and Value) are calculated from a given 189

set of N input vectors (i.e., patches of images) such that: 190

Query = XWq, Key = XWk, Value = XWv , where Wq, Wk, and Wv are the linear 191

transformations with the constraint k = N, indicating that the attention is computed 192

between the given N input vectors. 193

MSA layer refers to the “h” number of self-attention functions applied to the input, 194

as follows: Multihead(Q, K, V) = [head1, . . . , headh]W0, where W refers to the learnable 195

parameter matrices. MSA computation is made such that query, key and value vectors are 196

split into N vectors before applying self-attention. The self-attention process is then applied 197

to each split vector individually. The independent attention modules are concatenated and 198

linearly transformed. 199

We conclude this section by summarising the image classification process of ViT using 200

the self-attention mechanism and encoder layer described above. Input images are split 201

into patches of fixed sizes and multiplied with embedding matrices. Each patch is assigned 202

a trainable positional embedding vector to remember the order of the input sequence before 203

feeding the input to the transformer. The transformer uses constant vector size in all the 204

layers so all the patches are flattened to map these dimensions using a trainable linear 205

projection. Each encoder comprises two sub-layers. The first sub-layer allows the input to 206

pass through the self-attention module while the outputs of the self-attention operation are 207

then passed to a feed forward neural network in the second sub-layer with output neurons 208

for classifying the images. Skip connections and layer normalisation are also incorporated 209

in the architecture for each sublayer of the encoder. 210

Figure 3. Transformer vision model architecture overview.

4. Experiments 211

4.1. Proposed Dataset Description 212

Due to lack of publicly available multi-label road weather dataset, we have created 213

an open source dataset consisting of road images depicting seven classes of weather and 214

road surface conditions i.e sunny, cloudy, foggy, rainy, wet, clear, and snowy. The images 215

are extracted from available online videos in YouTube captured and uploaded by ‘Alan 216
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Z1000sx’1 using a video camera mounted on the dashboard of a heavy goods vehicle 217

completing journeys across the UK (a sample video is available at [22]). The video clips 218

were capture different roads in UK (i.e. motorways, urban roads, rural roads, and undivided 219

highways), different weather conditions (i.e. sunny, cloudy, foggy, rainy, wet, clear, and 220

snowy) and different lighting conditions (i.e. sunset, sunrise, morning, afternoon, night, 221

and evening). We downloaded 25 videos uploaded by ‘Alan Z1000sx’ with an average 222

duration of 8 minutes. We developed a python script to extract images from the videos 223

every 10 seconds. A total of 2,498 images were extracted. 224

To annotate the images, we utilised an online annotation platform called Zooni- 225

verse [23]. In Zooniverse, volunteers assist researchers in data annotation and pattern 226

recognition tasks. We created a project in Zooniverse for annotating the images, uploaded 227

the images, specified the labels, and added volunteers to our project. Zooniverse provides 228

an easy to use interface for annotating the images as shown in Fig. 4. As shown in the figure, 229

each image could be assigned to more than one weather condition. The annotations were 230

carried out by two volunteers. After annotating the images, Zooniverse offers an option to 231

export the annotations to a comma-separated values file. Table 2 shows the distribution of 232

the images in the different weather conditions. The dataset is imbalanced with majority of 233

the images classified as clear and sunny, while icy is the least classified as UK roads are 234

rarely icy. Six sample images from the dataset are shown in Fig. 5 and the complete dataset 235

is available online at [24] 236

Figure 4. A screenshot of using Zooniverse to annotate road weather images.

Class Number of Instances
Sunny 1184
Clear 1299

Cloudy 626
Wet 369

Snowy 147
Rainy 84
Foggy 78

Table 2. Class distribution of the proposed road weather dataset.

4.2. Vision transformers implemented 237

Popular vision transformers include ViT-B and ViT-L architectures. Both architectures 238

differ from each other with respect to the dimension of flattened patches D such that D 239

equals 768 for ViT-B and 1024 for ViT-L. In this study, pre-trained ViT-B models are adopted 240

as their lower dimension makes them faster to train. We employ two variants of the ViT-B 241

model corresponding to the input patch size,including ViT-B/16 and ViT-B/32. The former 242

refers to the input patch size of 16 x 16 whereas the latter corresponds to 32 x 32 patch size. 243

1 The YouTube account that owns the road-facing videos
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Figure 5. Six samples of weather images from our multi-label road weather dataset

Smaller patch sizes are resource-intensive. The models are pretrained on the 21k-ImageNet 244

dataset which consists of 21k classes and 14 million images. Furthermore, the architecture 245

is fine-tuned on the ILSVRC-2012 ImageNet dataset consisting of 1k classes and 1.3 million 246

images. 247

4.3. Experimental Design 248

The training and evaluation process for the CNN architectures comprised of four 249

stages: 250

1. Stage 1: Pre-trained the state-of-the-art CNN architectures on the ImageNet dataset. 251

2. Stage 2: Re-trained the architectures on our proposed road weather dataset using 252

cross entropy loss function. 253

3. Stage 3: Optimise the architectures using class weighted loss function. 254

4. Stage 4: Optimise the architectures using focal loss function. 255

5. Stage 5: Pre-trained the state-of-the-art Transformer vision models on the ImageNet 256

dataset. 257

6. Stage 6: Re-trained the architectures on our proposed multi-label road weather 258

dataset. 259

In the first stage, ImageNet[25] dataset is utilized to pre-train the CNN architectures: 260

VGG19, GoogLeNet, ResNet-152, Inception-v3 and EfficientNet-B7. We chose these ar- 261

chitectures due to their remarkable image classification performance on the ImageNet 262

dataset [26,27]. The images are first resized into the required image size for the CNN archi- 263

tectures e.g. 224 x 224 for most of the models except EfficientNet-B7 and Inception-v3 which 264

require input size of 600x600 and 299x299 respectively. Later, the models are pre-trained by 265

setting the ‘pretrained’ parameter in the models to True (in Pytorch). 266

In stage 2, the pre-trained models are re-trained on our proposed road weather dataset 267

by replacing the number of outputs in the final fully connected layer of the CNN models 268

with the number of weather classes (i.e. seven classes for our multi-label weather dataset). 269

Only the last layers of the CNN architectures are optimised during the training process 270

using cross entropy loss. 271

In the third stage, we update the cross entropy loss to incorporate the number of 272

images in each class (i.e. class weighted loss function). This is important to reduce bias of 273

the majority classes of imbalanced datasets by providing higher weights to images from 274

minority classes and lower weights to images from majority classes. 275

In the fourth stage, focal loss function is implemented to pay more attention to classes 276

that are harder to learn e.g. extreme (rare) weather conditions. 277

Since convolution neural networks assign similar weight to all the pixels during 278

classification which might lead to inefficient results especially in a complex road image 279

with a lot of background noise. To tackle this, in the fifth stage attention mechanism is 280
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implemented using Vision Transformers (ViT) which are pre-trained on ImageNet dataset. 281

In the last stage, ViT models namely, ViT-B/16 and ViT-B/32 are re-trained on the proposed 282

road dataset for multi-label weather detection. 283

4.4. Evaluation Protocol 284

The CNN architectures were trained and evaluated using 5-fold cross validation using 285

Pytorch programming language. The optimal learning rate for the models was set 0.001 286

and momentum was 0.9. A batch size of 32 and 50 epochs were utilised in training the 287

models. It is worth mentioning that the results obtained by the training and validation 288

set at each fold were averaged to evaluate the final performance of the models. We used 289

the following evaluation metrics to compare the performance of models: accuracy and 290

F1-score. Since the data is highly imbalanced, F1-score is a better metric to evaluate the 291

models. Vision Transformer models were trained and evaluated using exactly the same 292

hyperparameter settings and the patch size of 16 x 16 and 32 x 32 for Vit-B/16 and Vit-B/32, 293

respectively. 294

5. Results and Discussion 295

5.1. State-of-the-art CNN models 296

Model Avg Training Accuracy Training SD Avg Validation Accuracy Validation SD Avg F score F-score SD
VGG19 84.19 0.005 85.14 0.002 58.50 0.008

GoogleNet 84.42 0.009 85.08 0.006 50.52 0.012
ResNet-152 87.58 0.003 87.73 0.005 64.22 0.014

Inception-v3 84.23 0.008 84.80 0.006 50.56 0.004
EfficientNet-B7 85.11 0.003 86.03 0.003 56.09 0.007

ViT-B/16 93.52 0.0118 91.92 0.0088 81.22 0.0182
ViT-B/32 94.65 0.0262 91.45 0.0065 80.48 0.0115

Table 3. Multi-label classification results for road weather detection using simple binary cross entropy
loss function (best performance in bold).

Model Avg Training Accuracy Training SD Avg Validation Accuracy Validation SD Avg F score F-score SD
VGG19 84.48 0.002 85.35 0.005 64.21 0.015

GoogleNet 86.79 0.002 87.19 0.003 63.54 0.010
ResNet-152 88.98 0.001 88.84 0.003 71.00 0.011

Inception-v3 85.95 0.004 86.87 0.004 62.52 0.009
EfficientNet-B7 86.82 0.002 87.24 0.005 63.38 0.007

ViT-B/16 95.97 0.3579 90.95 0.0076 79.18 0.0211
ViT-B/32 98.66 0.0178 90.48 0.0043 77.912 0.0073

Table 4. Multi-label classification results for road weather detection using class weighted loss function
to force models to handle rare weather conditions (best performance in bold).

Model Avg Training Accuracy Training SD Avg Validation Accuracy Validation SD Avg F score F-score SD
VGG19 83.90 0.003 84.85 0.005 66.28 0.012

GoogleNet 87.22 0.002 87.63 0.004 67.99 0.014
ResNet-152 89.44 0.004 88.71 0.007 74.40 0.010

Inception-v3 85.91 0.002 87.26 0.002 66.29 0.006
EfficientNet-B7 87.48 0.001 87.72 0.005 66.15 0.008

ViT-B/16 93.95 0.02942 91.26 0.0059 80.23 0.0077
ViT-B/32 94.80 0.3387 91.23 0.0050 80.25 0.0125

Table 5. Multi-label classification results for road weather detection using focal loss function to force
models to handle difficult to classify weather images (best performance in bold).

Table 3 shows the multi-label classification results for the pre-trained models using 297

binary cross entropy loss. It can be seen that ResNet-152 outperforms the other state-of-the- 298

art CNN models in both accuracy and F1-score using our multi-label road weather dataset, 299

followed by VGG19 and EfficientNet-B7. ResNet-152 achieves an average validation 300
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accuracy of 87.73% and F1-score of 64.22%. This result is similar to previous studies [3,9– 301

11] where ResNet-152 showed better performance compared to other CNN architectures. 302

However, the F1-score is low due to the imbalanced nature of the dataset. 303

After optimising the models using the class weighted loss function to reduce bias 304

produced by the majority classes, we observe the classification results in Table 4.The table 305

shows the multi-label classification results for the pre-trained models with class weighted 306

loss function. Weights assigned to each class correspond to the total number images divided 307

by total images in that class. It can be seen that by optimising the models with the class 308

weighted loss function, performance has improved significantly. The best performing 309

model, ResNet-152, now has an average F1-score of 71%. The performance of the other 310

models have also improved with VGG19 and EfficientNet-B7 still being the second and 311

third best models. The validation accuracy for all the models also increases. 312

When we focus on difficult images to classify, focal loss function is used to optimise 313

the models. Table 5 shows that by using focal loss function, performance further improves. 314

ResNet-152 still outperforms the other models with 74.4% F1-score. However, the best 315

overall improvement can be seen for the model GoogleNet with a 17.74% from binary cross 316

entropy loss to focal loss function and 4.45% increase from class weighted loss function 317

to focal loss function. GoogleNet and Inception-v3 are now the second and third best 318

performing models instead of VGG19 and EfficientNet-B7. 319

5.2. Vision Transformers 320

Lastly, given the highly imbalanced nature of our dataset, the results achieved so far 321

are satisfactory. However, overcoming the limitations of CNN model, the transformer 322

vision model further incorporates attention mechanisms to the instances forcing the model 323

to focus on relevant pixels only. Tables 3, 4, and 5 show the results obtained from the 324

pre-trained ViT models - ViT-B/16 and ViT-B/32. It can be seen that incorporating attention 325

mechanisms in the architecture has significantly improved the overall accuracy as well 326

as F-score for our multi-label road dataset. The validation accuracy achieved is 91.92% 327

along with 81.22% F-score which outperforms all the CNN models. Nevertheless, Vision 328

Transformers seem to be outperforming all the CNN models including the best performing 329

focal loss based ResNet-152 with 3.72% increase in the validation accuracy and 6.82% 330

increase in the F-score for our given dataset. 331

6. Conclusion 332

Intelligent weather detection is important to support safe driving and effective man- 333

agement of the transport network. Previous computer vision studies perform multi-class 334

weather classification, which is not always appropriate and reliable for road safety, as 335

multiple weather conditions are likely to occur simultaneously. In addition, the majority of 336

them use balanced randomly selected outdoor images, which are unrepresentative of the 337

real-world frequency of weather types and the unbalanced nature of road weather data. In 338

this paper, we have introduced multi-label deep learning architectures for road weather 339

classification i.e. VGG19, GoogleNet, ResNet-152, Inception-v3, and EfficientNet-B7. To 340

adequately evaluate their performance, we have created a multi-label road weather dataset 341

using naturalistic road clips captured by onboard cameras. The dataset consists of road 342

images captured at different road types, different lighting conditions and different weather 343

and road surface conditions. Due to the imbalanced nature of the dataset, we improved 344

model performance using class weighted and focal loss functions to handle rare weather 345

conditions and hard-to-classify images. Results show significant classification improvement 346

when higher weights are assigned to rare weather conditions (class weighted loss function) 347

e.g. snowy and icy weather, thereby, reducing overfitting on frequently occurring weather 348

conditions such as sunny and cloudy. Additionally, further improvement is observed when 349

the models are forced to focus more on hard-to-classify weather images (focal loss function). 350

Furthermore, we explore attention mechanisms for pixel based dynamic weight adjustment 351

and segmentation to improve models’ performance. This is essential in separating the road 352
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layouts from the background and providing higher weights to pixels depending on the 353

weather conditions. For example, cloudy weather can be easily recognised by analysing the 354

background (clouds) while wet weather by analysing the road. This was achieved using 355

transformer vision models ViT-B/16 and ViT-B/32 which outperformed all other CNN 356

architectures. For future work, vision transformers can be implemented under different 357

scenarios similar to CNN architectures and Grad-CAM interpretation can be implemented 358

to observe an in-depth visual explanation to understand the learning process of ViT models 359

under these scenarios. 360
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