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Abstract: There is great interest in automatically detecting road weather and understanding its 1
impacts on the overall safety of the transport network. This can, for example, support road condition- =2
based maintenance or even serve as detection systems that assist safe driving during adverse climate s
conditions. In computer vision, previous work has demonstrated the effectiveness of deep learning 4
in predicting weather conditions from outdoor images. However, training deep learning models 5
to accurately predict weather conditions using real-world road-facing images is difficult due to: (1)
the simultaneous occurrence of multiple weather conditions; (2) imbalanced occurrence of weather 7
conditions throughout the year; and (3) road idiosyncrasies, such as road layouts, illumination, road s
objects etc. In this paper, we explore the use of focal loss function to force the learning process to o
focus on weather instances that are hard to learn with the objective to help address data imbalance. 1o
In addition, we explore the attention mechanism for pixel based dynamic weight adjustment to 11
handle road idiosyncrasies using state-of-the-art vision transformer models. Experiments witha 12
novel multi-label road weather dataset show that focal loss significantly increases the accuracy of 13
computer vision approaches for imbalanced weather conditions. Furthermore, vision transformers 1
outperforms current state-of-the-art convolutional neural networks in predicting weather conditions  1s
with a validation accuracy of 92% and Fl-score of 81.22%, which is impressive considering the 16
imbalanced nature of the dataset. 17

Keywords: Computer vision, Deep learning, Image classification, Loss functions, Vision Transformers, 1
Weather detection 10

1. Introduction 20

Different types of weather severely affect traffic flow, driving performance, vehicle and = 2:
road safety [1]. Statistics from the Federal Highway Administration show that increased =2
amount of accidents and congestion are usually directly associated with hostile weather [2]. 23
As a result, there is the need for advanced intelligent systems that accurately detect weather s
conditions and support safe driving and effective management of the transport network. =s
Deep learning has emerged as one of the main approaches used for automatic weather 2
recognition [3-6]. The state-of-the-art literature mostly employs convolutional neural =7
networks (CNN), which are trained on outdoor weather images and subsequently label  2s
new images with a single weather class. This type of classification for roads, however, =
produces less accurate results, as multiple weather types are likely to occur simultaneously.  so
For example, Figure 1 shows multiple weather conditions (i.e sunny and wet) present s
in a single scenario. Another limitation found in the current related work is that deep =2
learning models are mostly trained on balanced and high variance weather datasets. This 33
oversimplifies road weather conditions, which are characterised by highly imbalanced and s
more complex scenarios, such as road layouts, interacting elements, vehicles, people, and s
different illumination conditions. The representation learning therefore gets compromised, s
as road elements that could potentially allow for a more specific type of learning for the a7
road problem are not included. There is also currently no research study investigating s
intelligent strategies for multi-label, highly imbalanced and complex road scenarios, such 3o
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as dynamic pixel based weighting. This drives the motivation of this study to proposea 4o
publicly available realistic multi-label road weather dataset and employ vision transformers  a:
based on focal loss to address class imbalance and road idiosyncrasies. a2

2017/04/10 19:27:39 DOD L.S360H

Figure 1. Multiple weather conditions (sunny and wet) existing in a single image

The main contributions of this study are: a3

1. A multi-label transport related dataset consisting of seven weather conditions: sunny, 4
cloudy, foggy, rainy, wet, clear, and snowy to be used for road weather detection s

research. 46
2. Assessment of different state-of-the-art computer vision models in addressing multi- 4~
label road weather detection, using our dataset as benchmark. 48
3. Evaluation of the effectiveness of focal loss function to increase model accuracy for 4
unbalanced classes and hard instances. 50

4. Implementing transformer vision models to assess the efficiency of their attention s
mechanism (assigning dynamic weights to pixels) in addressing road weather idiosyn- =2
crasies. s

This paper is organised as follows, in Section 2 we review the literature on weather ss
detection using deep learning techniques and describe the focal loss function to handle s
imbalanced data and difficult to classify instances. Subsequently, we provide an overview e
of the CNN architectures explored in this paper. Section 3 describes vision transformersin s
comparison to CNN networks. Section 4 introduces our novel multi-label road weather s
dataset, describes the vision transformer models implemented in this paper, and presents  se
the design of our experiments and evaluation protocols. In Section 5, the results are o
presented along with discussion, and Section 6 concludes the paper and establishes the e

opportunity for future work. o2
2. Background 63
2.1. Related Work 6a

The rapid evolution and widespread of sensors (e.g. onboard cameras) has led to e
large volumes of data streams constantly being generated in transportation. Deep learning s
approaches have emerged as suitable approaches to address big data problems as they 7
reduce the dependency on human experts and learn high-level features from data in s
an incremental manner. Specifically, for weather recognition tasks, convolution neural s
networks have been vastly explored by many researchers. 70

Kang et al. [6] introduced a weather classification framework based on GoogleNet 7
to recognise four weather conditions- hazy, snowy, rainy and others. Their framework 7
was trained using the general MWI weather dataset[7] and achieved 92% accuracy. The 7
model outperformed multiple kernel learning based approaches [7] and AlexNet CNN [8]. 7
Similarly, An et al. [9] explored ResNet and Alexnet coupled with support vector machines 7
for weather classification. The authors evaluated the models using several multi-class 7
weather datasets. The ResNet architecture outperformed AlexNet with a classification
accuracy of 92% and 88% for sunny and cloudy classes, respectively. 78
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In Khan et al.[10], the authors developed deep learning models to recognise both 7
weather and surface conditions based on images from road-side webcams. Their dataset =0
consists of three weather conditions (clear, light snow and heavy snow) and three road &
surface conditions (dry, snowy and wet). They explored different CNN architectures e
including ResNet-18, GoogleNet and AlexNet, and amongst the architectures, ResNet- &
18 achieved the best detection accuracy with 97% for weather and 99% for road surface s
conditions. a5

Guerra et al. [11] introduced another multi-class Weather dataset called RFS consisting s
of three classes- rainy, foggy and snowy. The authors also employed ResNet architecture to &7
achieve 80.7% accuracy on their dataset. Later, Jabeen et al. [12] utilized inception CNN s
architecture for weather detection using a new multi-class weather dataset consisting of e
2000 images belonging to three classes namely, foggy, rainy and clear. Their model achieved  so
an average of 98% accuracy for the three classes. 01

Zhao et al. [13] employed CNNs coupled with recurrent networks on a multi-label o2
weather dataset to address the problem of more than one weather condition existingina s
single image. The dataset consists of five classes including sunny, snowy, cloudy, rainy, and  es
foggy. Their architecture achieved an average F-score of 87% for the five classes. However, s
the dataset used is a generalized weather dataset that is not specific to roads. %6

Recently, Xia et al. [3] explored ResNet CNNs to classify images in a multi-class o7
weather dataset called WeatherDataset-4 into different weather conditions. WeatherDataset- s
4 dataset is made up of four major classes including foggy, snowy, rainy and sunny. e
The authors achieved an average classification accuracy of 96.03%. While Togacar et 100
al. [4] employed GoogleNet and VGG16 Spiking Neural Networks (SNNs) for weather 10
recognition. The weather dataset used by the authors consists of four classes: cloudy, rainy, 12
sunny and sunrise. The features from GoogleNet and VGG16 are combined and trained 103
using SNNs. The average classification result obtained with the combined CNNs and SNNs 104
was 97.88%, which is much better than using the CNN models without SNNs. 105

The classification performance achieved in the above studies for weather recogni- 106
tion is acceptable. However, majority of the studies focused on multi-class classification 1oz
which could be unrepresentative of real-world weather conditions where more than one  1os
weather condition can occur simultaneously (as shown in the sample image in Fig. 1). The 100
few studies that employ multi-label classification [13] are either implemented on general 110
weather dataset or fail to make their datasets available for comparison and advancement. 11
In addition, the studies use carefully selected outdoor images which create well-balanced 112
weather datasets. This oversimplifies the road weather detection problem, which is usually 113
imbalanced in nature e.g. icy and snowy weather conditions rarely occur in the United 114
Kingdom (UK). The outdoor datasets also fail to include different lighting conditions and 115
road characteristics, making them ungeneralisable to road weather images. 116

We address the above limitations by proposing a multi-label weather dataset for roads 17
to address the problem of multiple weather existing in a single frame. In addition, as the 11
weather data is inherently unbalanced, an attention mechanism needs to be provided to 11
address those categories that are harder to learn, as those are more likely to be extreme 120
(rare) conditions and their misclassification by the intelligent systems should be minimised. 122
Hence, the systematic approach followed in this study allows the model to focus more iz
on less represented classes instead of data-dominated labels to prevent training a bias 123
network. We also focus on feeding the model information about hard instances to avoid the 124
gradient being outclassed by the accumulation of the losses of easy instances. Lastly, we 125
focus on dynamically assigning weights to the pixels allowing the model to focus more on 126
relevant features during classification which can potentially increase model’s efficiency for 127
highly complex data. Specifically, the study involves identifying the potential of adapting 12s
weighted loss and focal loss function to deal with class imbalance problems and hard-to- 12
learn instances in the dataset. The study also involves exploring vision transformer models 130
allowing the model to focus more on relevant pixels only. To the best of our knowledge, 13
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this study is the first attempt to recognise the potential of weighted loss, focal loss and  1s2
pixel-based attention mechanism for multi-label road weather classification. 133

2.2. Loss functions explored in this study to deal with data predicaments 134

¢ Class Weighted Loss Function: The traditional cross entropy loss doesn’t take into 135
account the imbalance nature of the dataset. The inherent assumption that the datais 136
balanced often lead to fallacious results. Since the learning becomes biased towards 137
majority classes, the model fails to learn meaningful features to identify the minority 1ss
classes. Therefore, to overcome these issues, loss function can be optimized by as- 1
signing weights such that more attention is given to minority classes during training. 1o
Weights are assigned to each class such that smaller the number of instances in a class, 1
greater the weight assigned to that class. For each class, Weight assigned to the class = 142
Total images in dataset/ Total images in that class. The weighted cross-entropy loss a3
function is given by: 144

N C
L= );1 ;wc[(yc log(pe) + (1ye) log(1pe))] 1)

where L is the total loss, c represents the class, i represents the training instance, while 145
C and N represents total number of classes and instances respectively. The y. indicates 146
the ground truth label for the class c and p. is the predicted probability that the given 147
image belongs to class ¢, while w, represents the weight of the class c. 148
*  Focal Loss Function: A focal loss function is a dynamically scaled cross entropy loss 14
function. Focal loss forces the model to focus on the hard misclassified examples 1so
during the training process[14]. For any given instance, the scaling factor of the focal = 1s:
loss function decays to zero as the loss decreases. Thus allowing the model to rapidly is:
focus on hard examples instead of assigning similar weights to all the instances. Focal 1ss
loss function is given by 154

FL(po) = —ao(1 = po)"log(po) )

where a and v are hyperparameters such that setting 7 greater than zero reduces 1ss
relative loss for examples that are easily classified. The hyperparameter v >=0and 1se
its value controls the loss for easy and hard instances while « lies between [0,1] and 157
addresses the class imbalance problem. 158

2.3. Deep Learning Architectures Investigated 159

Several state-of-the-art CNN architectures have been successfully proposed for image 1e0
classification. Table 1 briefly describes the structure of state-of-the-art CNN architectures 16
used in this study including VGG19, GoogleNet, ResNet-152, Inception-v3, and EfficientNet- ez

B7. 163
‘ Model | Author [ Year | Number of Layers | Input image size |
VGGI19 Oxford University Researchers[15] | 2014 19 layers 224 x 224
GoogleNet Researchers at Google[16] 2015 22 layers 224 x 224
ResNet-152 He et al.[17] 2015 152 layers 224 x 224
Inception-v3 Szegedy et al.[18] 2016 48 layers 299 x 299
EfficientNet-B7 Tan et al.[19] 2019 813 layers 600 x 600

Table 1. State-of-the-art CNN models assessed in this study
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3. Vision Transformers 164

Transformers were initially introduced for Natural Language Processing (NLP) tasks[20] 1es
while image processing tasks usually relied on convolution neural networks. Recently, 1es
transformers have been adopted for computer vision tasks [21] and they are called vision 16
transformers. Vision transformers are similar to NLP transformers, where patches of im- 168
ages are used instead of sentences. Images are broken down into a series of patches and  ee
transformed into embeddings which can be easily fed into NLP transformers, similar to 17
embeddings of words. 7

Conventional CNNSs typically assign similar attention (weights) to all the pixels of an
image during classification. As already proven in the field of NLP, introducing attention
mechanisms such that higher weights are assigned to pixels of relevant information could
lead to potentially better results and efficient models. Therefore, Vision Transformers (ViT)
captures relationships between different parts of an image allowing the model to focus
more on relevant pixels in classification problems. ViT computes relationships among pixels
in small sections of the image (also known as patches) to reduce computation time instead
of computing the relationship between each individual pixel. Each image is considered as a
sequence of patches of pixels. However, for retaining the positional information, positional
embeddings are added to the patch embeddings as shown in the figure 3. These positional
embeddings are important to represent the position of features in a flattened sequence
otherwise the transformer will loss information about the sequential relationships between
the patches. A positional embedding (PE) matrix is used to define the relative distance of
all possible pairs in the given sequence of patch embeddings and is given by the formula:

PE (o5, = sin(pos/ 10002/ tmocct)) 3

PE(pos 3,1) = €05(pos /1000 o))

where pos is the position of the feature in the input sequence, i is used to map column 172
indices such that 0 <=1i <= d/2, and d is the dimension of the embedding space. 173

The results with the position embeddings are then fed to a transformer encoder for 17
classification as shown in figure 2. The transformer encoder module consists of a Multi- 17s
Head Self Attention (MSA) layer and a Multi-Layer Perceptron (MLP) layer. The MSA 17
layer splits the given input into multiple heads such that each head learn different levels 17
of self-attention. The outputs are then further concatenated and passed through the MLP 175
layer. The concatenated outputs from the MSA layer are normalised in the Norm layer and 17
sent to the MLP layer for classification. The MLP layer consists of Gaussian Error Linear 1so
Unit (GELU) activation functions. 181

Transformer
Encoder

MLP - Norm ——@—{ Multi-Head Attention Norm

Embedded Patches

Figure 2. Overview of the Transformer Encoder.

Figure 3 shows an overview of ViT. This section concludes by explaining in more detail 1.2
the attention mechanism adopted by the MSA layer. 183
A typical attention mechanism is based on trainable vector pairs consisting of keys 1ss
and values. A set of k key vectors is packed in a matrix K (KR**?) such that the query 1ss
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vector (gR?) is matched against this set of k key vectors. The matching is based on inner  1ss
dot products which are then scaled and normalised. A softmax function is then applied 1er
to obtain k weights. The weighted sum of k value vectors then serve as an output of the s
attention. For self-attention, the vectors (Query, Key and Value) are calculated from a given 1ee
set of N input vectors (i.e., patches of images) such that: 190

Query = XWg,, Key = XWy, Value = XW, , where W, W, and W, are the linear 1o
transformations with the constraint k = N, indicating that the attention is computed e
between the given N input vectors. 193

MSA layer refers to the “h” number of self-attention functions applied to the input, 104
as follows: Multihead(Q,K,V) = [headl, ..., headh)|W,, where W refers to the learnable 1es
parameter matrices. MSA computation is made such that query, key and value vectors are 16
split into N vectors before applying self-attention. The self-attention process is then applied 197
to each split vector individually. The independent attention modules are concatenated and  10e
linearly transformed. 109

We conclude this section by summarising the image classification process of ViT using 200
the self-attention mechanism and encoder layer described above. Input images are split 20
into patches of fixed sizes and multiplied with embedding matrices. Each patch is assigned  zo:
a trainable positional embedding vector to remember the order of the input sequence before 203
feeding the input to the transformer. The transformer uses constant vector size in all the 204
layers so all the patches are flattened to map these dimensions using a trainable linear =zos
projection. Each encoder comprises two sub-layers. The first sub-layer allows the input to 26
pass through the self-attention module while the outputs of the self-attention operation are 207
then passed to a feed forward neural network in the second sub-layer with output neurons  zoe
for classifying the images. Skip connections and layer normalisation are also incorporated  zoe
in the architecture for each sublayer of the encoder. 210

Yision Transformers

MLP Head
‘ (ViT) Overview
/ Transformer Encoder /
Fixed size x 4 ¥ i 1‘ *
patches with
position
embeddings

Linear Projection of Flattened Patches

A i1

Figure 3. Transformer vision model architecture overview.

4. Experiments 211
4.1. Proposed Dataset Description 212

Due to lack of publicly available multi-label road weather dataset, we have created 21
an open source dataset consisting of road images depicting seven classes of weather and 214
road surface conditions i.e sunny, cloudy, foggy, rainy, wet, clear, and snowy. The images =15
are extracted from available online videos in YouTube captured and uploaded by ‘Alan 216
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Z1000sx”' using a video camera mounted on the dashboard of a heavy goods vehicle 217
completing journeys across the UK (a sample video is available at [22]). The video clips 2.
were capture different roads in UK (i.e. motorways, urban roads, rural roads, and undivided 2
highways), different weather conditions (i.e. sunny, cloudy, foggy, rainy, wet, clear, and 220
snowy) and different lighting conditions (i.e. sunset, sunrise, morning, afternoon, night, 22
and evening). We downloaded 25 videos uploaded by ‘Alan Z1000sx” with an average 222
duration of 8 minutes. We developed a python script to extract images from the videos 223
every 10 seconds. A total of 2,498 images were extracted. 224

To annotate the images, we utilised an online annotation platform called Zooni- 225
verse [23]. In Zooniverse, volunteers assist researchers in data annotation and pattern 22
recognition tasks. We created a project in Zooniverse for annotating the images, uploaded =27
the images, specified the labels, and added volunteers to our project. Zooniverse provides 2zs
an easy to use interface for annotating the images as shown in Fig. 4. As shown in the figure, 220
each image could be assigned to more than one weather condition. The annotations were =230
carried out by two volunteers. After annotating the images, Zooniverse offers an option to 23
export the annotations to a comma-separated values file. Table 2 shows the distribution of 232
the images in the different weather conditions. The dataset is imbalanced with majority of 2ss
the images classified as clear and sunny, while icy is the least classified as UK roads are 234
rarely icy. Six sample images from the dataset are shown in Fig. 5 and the complete dataset =235
is available online at [24] 236

TasK

NEED SOME HELP WITH THIS TASK?

Figure 4. A screenshot of using Zooniverse to annotate road weather images.

Class Number of Instances
Sunny 1184
Clear 1299
Cloudy 626
Wet 369
Snowy 147
Rainy 84
Foggy 78

Table 2. Class distribution of the proposed road weather dataset.

4.2. Vision transformers implemented 237

Popular vision transformers include ViT-B and ViT-L architectures. Both architectures zss
differ from each other with respect to the dimension of flattened patches D such that D = 23s
equals 768 for ViT-B and 1024 for ViT-L. In this study, pre-trained ViT-B models are adopted 240
as their lower dimension makes them faster to train. We employ two variants of the ViT-B 24
model corresponding to the input patch size,including ViT-B/16 and ViT-B/32. The former s
refers to the input patch size of 16 x 16 whereas the latter corresponds to 32 x 32 patch size. 243

1" The YouTube account that owns the road-facing videos
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o1 163
Label: clear Labels: sunny, cloudy Labels: icy, cloudy

Figure 5. Six samples of weather images from our multi-label road weather dataset

Smaller patch sizes are resource-intensive. The models are pretrained on the 21k-ImageNet 242
dataset which consists of 21k classes and 14 million images. Furthermore, the architecture 245
is fine-tuned on the ILSVRC-2012 ImageNet dataset consisting of 1k classes and 1.3 million 246
images. 247

4.3. Experimental Design 248

The training and evaluation process for the CNN architectures comprised of four 24
stages: 250

1.  Stage 1: Pre-trained the state-of-the-art CNN architectures on the ImageNet dataset. 2s:
2. Stage 2: Re-trained the architectures on our proposed road weather dataset using =zs:

cross entropy loss function. 253
3. Stage 3: Optimise the architectures using class weighted loss function. 254
4.  Stage 4: Optimise the architectures using focal loss function. 255
5.  Stage 5: Pre-trained the state-of-the-art Transformer vision models on the ImageNet  2s6
dataset. 287
6. Stage 6: Re-trained the architectures on our proposed multi-label road weather 2se
dataset. 250

In the first stage, ImageNet[25] dataset is utilized to pre-train the CNN architectures: ze0
VGG19, GoogLeNet, ResNet-152, Inception-v3 and EfficientNet-B7. We chose these ar- 2
chitectures due to their remarkable image classification performance on the ImageNet 262
dataset [26,27]. The images are first resized into the required image size for the CNN archi- zes
tectures e.g. 224 x 224 for most of the models except EfficientNet-B7 and Inception-v3 which  2es
require input size of 600x600 and 299x299 respectively. Later, the models are pre-trained by  zes
setting the ‘pretrained’ parameter in the models to True (in Pytorch). 266

In stage 2, the pre-trained models are re-trained on our proposed road weather dataset ez
by replacing the number of outputs in the final fully connected layer of the CNN models  zes
with the number of weather classes (i.e. seven classes for our multi-label weather dataset). 260
Only the last layers of the CNN architectures are optimised during the training process =270
using cross entropy loss. a1

In the third stage, we update the cross entropy loss to incorporate the number of 27
images in each class (i.e. class weighted loss function). This is important to reduce bias of 27
the majority classes of imbalanced datasets by providing higher weights to images from 27

minority classes and lower weights to images from majority classes. 275
In the fourth stage, focal loss function is implemented to pay more attention to classes =76
that are harder to learn e.g. extreme (rare) weather conditions. 277

Since convolution neural networks assign similar weight to all the pixels during zvs
classification which might lead to inefficient results especially in a complex road image =27
with a lot of background noise. To tackle this, in the fifth stage attention mechanism is =0
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implemented using Vision Transformers (ViT) which are pre-trained on ImageNet dataset. ze:
In the last stage, ViT models namely, ViT-B/16 and ViT-B/32 are re-trained on the proposed  2e2
road dataset for multi-label weather detection. 203

4.4. Evaluation Protocol 284

The CNN architectures were trained and evaluated using 5-fold cross validation using  zss
Pytorch programming language. The optimal learning rate for the models was set 0.001  2s6
and momentum was 0.9. A batch size of 32 and 50 epochs were utilised in training the 2e-
models. It is worth mentioning that the results obtained by the training and validation =zss
set at each fold were averaged to evaluate the final performance of the models. We used  ze0
the following evaluation metrics to compare the performance of models: accuracy and 200
F1-score. Since the data is highly imbalanced, F1-score is a better metric to evaluate the 2o
models. Vision Transformer models were trained and evaluated using exactly the same  ze2
hyperparameter settings and the patch size of 16 x 16 and 32 x 32 for Vit-B/16 and Vit-B/32, 203

respectively. 204

5. Results and Discussion 208

5.1. State-of-the-art CNN models 206

‘ Model H Avg Training Accuracy ‘ Training SD ‘ Avg Validation Accuracy ‘ Validation SD ‘ Avg F score ‘ F-score SD ‘

VGG19 84.19 0.005 85.14 0.002 58.50 0.008
GoogleNet 84.42 0.009 85.08 0.006 50.52 0.012
ResNet-152 87.58 0.003 87.73 0.005 64.22 0.014
Inception-v3 84.23 0.008 84.80 0.006 50.56 0.004
EfficientNet-B7 85.11 0.003 86.03 0.003 56.09 0.007
ViT-B/16 93.52 0.0118 91.92 0.0088 81.22 0.0182
ViT-B/32 94.65 0.0262 91.45 0.0065 80.48 0.0115

Table 3. Multi-label classification results for road weather detection using simple binary cross entropy
loss function (best performance in bold).

‘ Model H Avg Training Accuracy ‘ Training SD ‘ Avg Validation Accuracy ‘ Validation SD ‘ Avg F score ‘ F-score SD ‘

VGG19 84.48 0.002 85.35 0.005 64.21 0.015
GoogleNet 86.79 0.002 87.19 0.003 63.54 0.010
ResNet-152 88.98 0.001 88.84 0.003 71.00 0.011
Inception-v3 85.95 0.004 86.87 0.004 62.52 0.009
EfficientNet-B7 86.82 0.002 87.24 0.005 63.38 0.007
ViT-B/16 95.97 0.3579 90.95 0.0076 79.18 0.0211
ViT-B/32 98.66 0.0178 90.48 0.0043 77.912 0.0073

Table 4. Multi-label classification results for road weather detection using class weighted loss function
to force models to handle rare weather conditions (best performance in bold).

‘ Model H Avg Training Accuracy ‘ Training SD ‘ Avg Validation Accuracy ‘ Validation SD ‘ Avg F score ‘ F-score SD ‘

VGGI19 83.90 0.003 84.85 0.005 66.28 0.012
GoogleNet 87.22 0.002 87.63 0.004 67.99 0.014
ResNet-152 89.44 0.004 88.71 0.007 74.40 0.010
Inception-v3 85.91 0.002 87.26 0.002 66.29 0.006
EfficientNet-B7 87.48 0.001 87.72 0.005 66.15 0.008
ViT-B/16 93.95 0.02942 91.26 0.0059 80.23 0.0077
ViT-B/32 94.80 0.3387 91.23 0.0050 80.25 0.0125

Table 5. Multi-label classification results for road weather detection using focal loss function to force
models to handle difficult to classify weather images (best performance in bold).

Table 3 shows the multi-label classification results for the pre-trained models using  ze7
binary cross entropy loss. It can be seen that ResNet-152 outperforms the other state-of-the- 208
art CNN models in both accuracy and F1-score using our multi-label road weather dataset, 200
followed by VGGI19 and EfficientNet-B7. ResNet-152 achieves an average validation o0
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accuracy of 87.73% and F1-score of 64.22%. This result is similar to previous studies [3,9— 301
11] where ResNet-152 showed better performance compared to other CNN architectures. o2
However, the Fl-score is low due to the imbalanced nature of the dataset. 303

After optimising the models using the class weighted loss function to reduce bias sos
produced by the majority classes, we observe the classification results in Table 4.The table  sos
shows the multi-label classification results for the pre-trained models with class weighted 06
loss function. Weights assigned to each class correspond to the tofal number images divided — so7
by total images in that class. It can be seen that by optimising the models with the class sos
weighted loss function, performance has improved significantly. The best performing s
model, ResNet-152, now has an average Fl-score of 71%. The performance of the other 10
models have also improved with VGG19 and EfficientNet-B7 still being the second and 311
third best models. The validation accuracy for all the models also increases. 312

When we focus on difficult images to classify, focal loss function is used to optimise 13
the models. Table 5 shows that by using focal loss function, performance further improves. s
ResNet-152 still outperforms the other models with 74.4% Fl-score. However, the best 15
overall improvement can be seen for the model GoogleNet with a 17.74% from binary cross s
entropy loss to focal loss function and 4.45% increase from class weighted loss function 17
to focal loss function. GoogleNet and Inception-v3 are now the second and third best s
performing models instead of VGG19 and EfficientNet-B7. 310

5.2. Vision Transformers 320

Lastly, given the highly imbalanced nature of our dataset, the results achieved so far 22
are satisfactory. However, overcoming the limitations of CNN model, the transformer sz
vision model further incorporates attention mechanisms to the instances forcing the model 323
to focus on relevant pixels only. Tables 3, 4, and 5 show the results obtained from the 324
pre-trained ViT models - ViT-B/16 and ViT-B/32. It can be seen that incorporating attention s2s
mechanisms in the architecture has significantly improved the overall accuracy as well 26
as F-score for our multi-label road dataset. The validation accuracy achieved is 91.92% 327
along with 81.22% F-score which outperforms all the CNN models. Nevertheless, Vision s2s
Transformers seem to be outperforming all the CNN models including the best performing sz
focal loss based ResNet-152 with 3.72% increase in the validation accuracy and 6.82% 30
increase in the F-score for our given dataset. 331

6. Conclusion 332

Intelligent weather detection is important to support safe driving and effective man- a3
agement of the transport network. Previous computer vision studies perform multi-class s34
weather classification, which is not always appropriate and reliable for road safety, as sss
multiple weather conditions are likely to occur simultaneously. In addition, the majority of 36
them use balanced randomly selected outdoor images, which are unrepresentative of the a7
real-world frequency of weather types and the unbalanced nature of road weather data. In  s3s
this paper, we have introduced multi-label deep learning architectures for road weather 3o
classification i.e. VGG19, GoogleNet, ResNet-152, Inception-v3, and EfficientNet-B7. To 340
adequately evaluate their performance, we have created a multi-label road weather dataset a1
using naturalistic road clips captured by onboard cameras. The dataset consists of road s
images captured at different road types, different lighting conditions and different weather sas
and road surface conditions. Due to the imbalanced nature of the dataset, we improved s
model performance using class weighted and focal loss functions to handle rare weather s
conditions and hard-to-classify images. Results show significant classification improvement sas
when higher weights are assigned to rare weather conditions (class weighted loss function) sar
e.g. snowy and icy weather, thereby, reducing overfitting on frequently occurring weather sas
conditions such as sunny and cloudy. Additionally, further improvement is observed when s
the models are forced to focus more on hard-to-classify weather images (focal loss function). sso
Furthermore, we explore attention mechanisms for pixel based dynamic weight adjustment 351
and segmentation to improve models” performance. This is essential in separating the road sz
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layouts from the background and providing higher weights to pixels depending on the s
weather conditions. For example, cloudy weather can be easily recognised by analysing the  ssa
background (clouds) while wet weather by analysing the road. This was achieved using s
transformer vision models ViT-B/16 and ViT-B/32 which outperformed all other CNN 56
architectures. For future work, vision transformers can be implemented under different ss7
scenarios similar to CNN architectures and Grad-CAM interpretation can be implemented  sss
to observe an in-depth visual explanation to understand the learning process of ViT models  sso
under these scenarios. 360
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