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Abstract: Background. Cardiorespiratory fitness (CRF) is a predictor of chronic disease that is impractical to 
routinely measure in primary care settings. We used a new estimated cardiorespiratory fitness (eCRF) algo-
rithm that uses information routinely documented in electronic health care records to predict abnormal 
blood glucose incidence. Methods: Participants were adults (17.8% female) 20-81 years old at baseline from 
the Aerobics Center Longitudinal Study between 1979 and 2006. eCRF was based on sex, age, body mass 
index, resting heart rate, resting blood pressure, and smoking status. CRF was measured by maximal tread-
mill testing. Cox proportional hazards regression models were established using eCRF and CRF as inde-
pendent variables predicting the abnormal blood glucose incidence while adjusting for covariates. Results: 
Of 8,602 participants at risk at baseline, 3,580 (41.6%) developed abnormal blood glucose during an average 
of 4.9 years follow-up. The average eCRF of 12.03 ± 1.75 METs was equivalent to the CRF of 12.15 ± 2.40 
METs within the 10% equivalence limit. In fully adjusted models, the estimated risks were the same (HRs = 
0.96), eCRF (95% CIs = 0.93−0.99), and CRF (95% CI of 0.94−0.98). Each 1-MET increase was associated with a 
4% reduced risk. Conclusion: Higher eCRF is associated with a lower risk of abnormal glucose. eCRF can be 
a vital sign used for research and prevention. 

Keywords: estimated cardiorespiratory fitness; physical activity; prediabetes; diabetes; abnormal 
blood glucose; electronic health records; epidemiology; prevention; primary care 
 

1. Introduction 
Cardiorespiratory fitness (CRF) is a complex trait influenced by heritability, envi-

ronmental, and behavioral factors [1]. It demonstrates one's collective physiological abil-
ity to perform aerobic activities, exercise, or sports at varying intensities and duration. It 
is an indicator of overall health that predicts some health outcomes better than tradi-
tional risk factors [1]. Meta-analyses demonstrated that for every metabolic equivalent 
(1MET = 3.5 mL·O2*kg–1·min–1) increase in maximal CRF, there is an 11% reduction in all-
cause mortality and incidence of heart disease [2]. Given the evidence, scientists and 
practitioners have called for CRF to be applied as a clinical vital sign and included in 
public health guidelines [1-3].  
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Objectively measured CRF is typically determined by maximal exercise testing us-
ing standardized protocols administered by clinical staff for diagnostic and prognostic 
purposes [4]. Due to healthcare guidelines, economics, and operational costs, regular 
CRF testing for non-diagnostic purposes in general practice or primary care settings is 
infeasible [1]. As a result, algorithms have been developed to estimate CRF (eCRF). eCRF 
typically includes parameters such as self-reported physical activity (PA) status, body 
mass index (BMI), and age [5]. Despite recall bias's limitations, PA status is one of the 
most heavily weighted parameters in eCRF[5]. According to a recent meta-analysis, an 
increase in eCRF of 1 MET is associated with a 17% reduction in the general population's 
risk of cardiovascular and all-cause mortality[6]. It is a better predictor than physical 
activity. Additionally, CRF was a marginally better predictor than eCRF [5,6]. However, 
using eCRF from electronic health records (EHRs) to conduct population health investi-
gations or health informatics is limited because PA status is not universally standardized 
or documented [7,8]. 

EHRs provide a wealth of real-world data that can impact health at the individual 
and population levels. Weiskopf et al. state, "While the prospective collection of data is 
notoriously expensive and time-consuming, the use of EHRs may allow a medical insti-
tution to develop a clinical data repository containing extensive records for large num-
bers of patients, thereby enabling more efficient retrospective research" [9]. To overcome 
the PA data limitation in calculating eCRF from EHRs, Sloan et al. recently developed a 
nuanced eCRF without using PA as an algorithm parameter [10]. The eCRF included 
vital signs commonly found in EHRs (e.g., resting heart rate, systolic blood pressure, 
diastolic blood pressure) and was compared with measured CRF in 42,676 adults (21.4% 
female). The balanced accuracy for detecting unfit individuals ranged from 75% to 82%. 
However, the ability of this eCRF algorithm to predict health outcomes compared to 
CRF is unknown.  

Prediabetes and diabetes mellitus (DM) are health outcomes that cause significant 
death and disability worldwide [11]. Two recent meta-analyses found an independent 
association between CRF and DM incidence [12,13]. Investigators further indicated that 
relatively small increases in CRF are associated with clinically meaningful reductions 
(8%) in DM incidence. The authors estimated that 4% to 21% of new annual DM cases 
could be prevented if CRF improved by 1 MET per person [13]. Studies have also shown 
that higher CRF is associated with a reduced risk of prediabetes independent of body 
composition and reduces the risk of all-cause mortality in those with abnormal glucose 
[14,15]. Therefore, our investigation aimed to determine how well eCRF without PA pre-
dicts abnormal glucose in adults compared to measured CRF.  

2. Materials and Methods 
2.1. Study Population  

Aerobics Center Longitudinal Study (ACLS) was established in 1970 and is a pro-
spective cohort study designed to investigate the association of CRF with mortality and 
morbidity in adults. The cohort is based on men and women who underwent a preven-
tive medical exam at the Cooper Clinic (Dallas, TX). Patients were self-referred or re-
ferred by their physician or company. All patients provided written informed consent to 
participate in the study, and the study is reviewed and approved annually by the 
Cooper Institute Institutional Review Board. Study participants were primarily Cauca-
sian with tertiary education employed in executive or professional positions. 17,954 par-
ticipants were included in this study, identified as having measured waist girth and 
eCRF parameters. In line with previous ACLS studies to establish a healthy cohort at 
baseline, we excluded participants with diabetes (n=5,755), prediabetes (n=531), CVD 
(n=90), cancer (n=282), abnormal ECG (n= 503), BMI<18.5 (n=499), age <20 or >90 (n=428), 
chronotropic incompetence (n=1253), missing information (n=11) [10,16,17].  
These criteria resulted in 8,602 healthy individuals (17.8% women) aged 20 to 81 years 
old at baseline from the ACLS followed between 1979 and 2006.  
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2.2. Clinical Examination  

The Cooper Clinic preventive health exam procedure is detailed in previous publi-
cations [17,18]. After a minimum 12-hour overnight fast, participants had thorough med-
ical examinations that included resting electrocardiography, anthropometric measures, 
blood pressure readings, and a blood test. On a treadmill, participants underwent a test 
of their maximum exercise tolerance. The evaluation included the completion of a self-
administered personal and family medical history. Between 1980 and 2006, follow-up 
exams were conducted after baseline exams, which took place between 1979 and 2005. 
 
2.3. Cardiorespiratory Fitness 

CRF was quantified as the duration of a symptom-limited maximal graded exercise 
treadmill test using a modified Balke protocol in a clinical setting [17,18]. Participants 
were encouraged to give maximal effort; the test endpoint was volitional exhaustion or 
termination by the physician for medical reasons. Absolute maximal METs from the fi-
nal treadmill speed and grade were calculated using metabolic equations [19]. The 
Balke-graded exercise test is highly correlated (r = 0.94) with maximal graded cardiopul-
monary exercise testing [19].  
 
2.4. Estimated Cardiorespiratory Fitness 

eCRF algorithms for males and females used age, height, weight, BMI, resting heart 
rate, systolic blood pressure, diastolic blood pressure, and smoking. All algorithm pa-
rameters are continuous except for smoking status. Details of the long-form algorithms 
are available in S1 and a previous publication [18]. Once the algorithms were imple-
mented, maximal eCRF and CRF MET values were calculated as continuous variables.  
 
2.5. Ascertainment of Abnormal Glucose 

The incidence of abnormal glucose was determined at a follow-up examination. 
Concentrations of fasting plasma glucose were measured per the standards of the CDC 
Lipid Standardization Program. The American Diabetic Association defines prediabetes 
and diabetes as fasting plasma glucose concentrations of 100 to 125 and >126 mg/dL, re-
spectively [20]. Those whom self-reported diabetes or hypoglycemic medication during 
a follow-up were also classified as having abnormal glucose. The follow-up time for 
each participant was counted from the baseline examination to the first follow-up event 
of abnormal glucose or the last follow-up observation through 2006 in adults who did 
not develop either condition.  
 
2.6. Statistical Analysis 

Descriptive statistics were calculated for study variables using mean and standard 
deviation (SD) for continuous variables and frequency and percentage (%) for categori-
cal variables. Continuous variables with non-normal distribution were log-transformed 
before the analyses. The between-group differences in eCRF and CRF by the follow-up 
diabetes status (normal, prediabetes, and DM) were tested using a general linear model 
with a Tukey's post hoc comparison. As a supplement, bivariate correlations of eCRF 
and CRF with covariates were estimated.  

Agreement of the eCRF with CRF was evaluated using the two one-sided tests 
(TOST) based equivalence test, Pearson correlation (r), and mean absolute percent error 
(MAPE). Equivalency between CRF and eCRF was claimed if the 90% confidence inter-
val (CI) for the geometric mean ratio fell within the 10% equivalence limit (0.9 and 1.11) 
[21]. Pearson r coefficient was interpreted as a weak (<0.5), moderate (0.5−0.7), or strong 
(>0.7) association [22]. MAPE was considered excellent (<10%), good (10% − <20%), rea-
sonable (20% − <50%), and unacceptable (≥50%) [23].  
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Cox proportional hazard regression models were constructed predicting the risk of 
developing abnormal glucose based on either eCRF or CRF as a primary exposure varia-
ble before and after adjusting for covariates (age, gender, exam year, waist girth, heavy 
drinking, smoking, and family history of DM, HDL-C, glucose, and triglycerides). The 
model performance was compared using the model fits statistics, including Akaike In-
formation Criterion (AIC), Schwarz Bayesian information criterion (SBIC), Schemper 
and Henderson (S-H) predictive inaccuracy, and Harrell's concordance index (C-index). 
The model with smaller AIC, SBIC, and S-H predictive inaccuracy and a higher value of 
Harrel's C-index indicate a better model fit. The proportional hazard assumption was 
checked by testing an interaction term of each covariate with log-transformed sur-
vival/censored time. Statistical significance was set at P≤0.05, and SAS v9.4 (SAS Insti-
tute, Cary, NC) was used for statistical analyses. 

3. Results 

Descriptive statistics of the sample characteristics are presented in Table 1. Of 8,602 
participants at baseline (mean age = 43.04 ±8.94 years; male = 82.19%), 37.78% and 1.92% 
developed prediabetes (n = 3,250) and DM (n = 165), respectively, during an average of 
4.87 years of follow-up. There were significant between-group differences in CVD risk 
factors and family history of DM by the follow-up abnormal glucose status (Ps<0.05). At 
follow-up, individuals with normal glucose levels generally showed favorable attributes 
compared to those with abnormal glucose.   

Table 1. Descriptive Characteristics of the Study Sample By Follow-up Prediabetes and Diabetes 
Status 

 Total 
Follow-up abnormal glucose status 

P-valueb 
Normal Prediabetes Diabetes 

N (%) 8602 (100%) 5187 (60.30%) 3250 (37.78%) 165 (1.92%)  
Exam yearsc 1986 (14) 1988 (16)† 1983 (10) 1992 (14) <.001 

Average follow-up years 4.87 (4.58) 5.11 (4.83)†‡ 4.38 (4.03)‡ 6.59 (5.69) <.001 
Age (years) 43.04 (8.94) 42.45 (8.96)† 43.96 (8.87) 43.14 (8.59) <.001 
Sex (n, %)     <.001 

Male 7070 (82.19%) 3987 (76.87%)† 2957 (90.98%)‡ 126 (76.36%)  
Female 1532 (17.81%) 1200 (23.13%) 293 (9.02%) 39 (23.64%)   

CVD risk factors       
Glucose (mg/dL)c 93 (8) 92 (8)† 94 (6)‡ 93 (8) <.001 

Triglycerides (mg/dL) c 94 (69) 91 (66)† 99 (72) 92 (76) <.001 
HDL-C (mg/dL) 49.6 (13.90) 50.63 (14.38)† 47.93 (12.88) 50.13 (14.69) <.001 

Systolic BP (mm/Hg) 117.16 (12.71) 116.53 (12.70)† 118.14 (12.64) 117.3 (13.47) <.001 
Diastolic BP (mm/Hg) 78.94 (9.19) 78.68 (9.21)† 79.37 (9.09) 78.7 (10.01) .004 

Waist circumference (cm) 87.65 (11.8) 86.24 (12.23)†‡ 89.91 (10.66) 87.25 (12.55) <.001 
BMI (kg/m2) 25.09 (3.36) 24.91 (3.41)† 25.37 (3.23) 25.31 (3.76) <.001 

Smoking – Yes (n, %) 1116 (12.97%) 641 (12.36%) 453 (13.94%) 22 (13.33%) .109 
Family history of diabetes – Yes (n, %) 512 (5.95%) 330 (6.36%)‡ 163 (5.02%)‡ 19 (11.52%) <.001 

Heavy drinking – Yes (n, %) 597 (6.94%) 370 (7.13%) 217 (6.68%) 10 (6.06%) .655 

BP = blood pressure; CVD = cardiovascular disease; CRF = cardiorespiratory fitness; HDL-C = high-
density lipoprotein cholesterol; BMI = body mass index; MP = blood pressure; METs = metabolic 
equivalent tasks 
Values are presented using mean (standard deviation) for a continuous variable and n (%) for a 
categorical variable, unless otherwise specified. 
a Prediabetes and diabetes status are determined based on the follow-up glucose levels (i.e., 100 thru 
<126 for prediabetes and ≥126 for diabetes and self-reported diabetes (i.e., physician diagnosed di-
abetes or insulin use).  
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b P-value represents the between-group difference estimated from general linear model or x2 test of 
independence for a continuous or categorical variable, respectively. 
c values are median (interquartile range). Log-transformation was used to test the between-group 
differences. 
† significantly different with the prediabetes in post hoc comparison. 
‡ significantly different with the diabetes in post hoc comparison. 

Overall, the average CRF was 12.15 ± 2.40 METs, equivalent to the eCRF of 12.03 ± 
1.75 METs within the 10% equivalence limit (Table 2). There were strong correlations 
(r ranges 0.69–0.75) and good agreement between the CRF and eCRF based on MAPE, 
ranging between 10.99% (95% CI = 10.67, 11.30) and 11.28% (95% CI = 11.03, 11.53) across 
the follow-up abnormal glucose status.  

Table 2. Descriptive Statistics of the Measured and Estimated Cardiorespiratory Fitness (CRFs)  

 Total Normal Prediabetes Diabetes P-valuea 
Mean (95% CI)      

Measured CRF (METs) 12.15 (2.40) 12.10 (2.45)† 12.23 (2.31) 12.18 (2.60) <.001 
Estimated CRF (METs) 12.03 (1.75) 11.96 (1.80)† 12.17 (1.64)‡ 11.83 (1.95) <.001 

Equivalence testing (TOST)b      
Geometric mean ratio (90% CI) 1.004 (0.998, 1.004)* 1.003 (1.00, 1.006)* 0.997 (0.993, 1.001)* 1.02 (1.002, 1.039)*  

Pearson correlation (95% CI) 0.70 (0.69, 0.72) 0.71 (0.70, 0.73) 0.69 (0.67, 0.70) 0.75 (0.67, 0.81)  
Mean absolute percent (%) error (95% 

CI) 11.16 (10.97, 11.36) 11.28 (11.03, 11.53) 10.99 (10.67, 11.30) 11.01 (9.67, 12.36)  

TOST = two one-sided test; METs = metabolic equivalent tasks; CI = confidence interval 
a P-value represents the between-group difference estimated from a general linear model. 
b the paired equivalence testing between measured- and estimated-CRFs based on TOST. 
† significantly different with the prediabetes in post hoc comparison. 
‡ significantly different with the diabetes in post hoc comparison. 
* significantly equivalent at 10% equivalence limits (0.90<geometric mean ratio<1.11) based on TOST. 

 

Table 3 presents the results from the Cox proportional hazard regression models 
predicting the risk of abnormal glucose per eCRF and CRF MET increase before and af-
ter adjusting for study covariates. All models significantly associated higher eCRF and 
CRF with a lower risk of developing abnormal glucose levels (Ps<0.05). The estimated 
hazard ratios (HRs) for eCRF and CRF were 0.96 (95% CI ranged from 0.94−0.97 for 
eCRF and 0.95−0.97 for CRF) without adjustment of study covariates (model 0). In the 
fully adjusted model (model 3), the estimated risks were the same (HRs = 0.96), but the 
95% CI was slightly wider for the eCRF (95% CIs = 0.93−0.99) when compared to the 
measured CRF with 95% CI of 0.94−0.98. The model performance was comparable re-
gardless of the CRF measures, with fit statistics marginally better for the models with 
CRF, as evidenced by lower AIC and SBIC and higher Harrell's C-index. 
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Table 3. Comparison of the Cox Proportional Hazard Regression Models Predicting the Incidence 
of Prediabetes and Diabetes By CRF Measures 

 
 Hazard ratio  

(95% CI) P-value 
Model fit statistics 

 AIC SBIC S-H predictive inac-
curacy index Harrell's C-index 

Model 0a       
Measured CRF (METs) 0.96 (0.95, 0.97) <.001 55607.3 55613.5 0.364 0.538 
Estimated CRF (METs) 0.96 (0.94, 0.97) <.001 55619.5 55625.6 0.364 0.525 

Model 1b       
Measured CRF (METs) 0.93 (0.92, 0.95) <.001 55114.6 55139.1 0.333 0.618 
Estimated CRF (METs) 0.88 (0.86, 0.91) <.001 55102.3 55126.8 0.333 0.617 

Model 2c       
Measured CRF (METs) 0.96 (0.94, 0.98) <.001 55049.3 55098.4 0.333 0.624 
Estimated CRF (METs) 0.94 (0.91, 0.97) <.001 55056.1 55105.2 0.333 0.623 

Model 3d       
Measured CRF (METs) 0.96 (0.94, 0.98) <.001 53273.6 53340.8 0.332 0.663 
Estimated CRF (METs) 0.96 (0.93, 0.99) .016 53287.4 53354.6 0.332 0.662 

AIC = Akaike information criterion; C-index = concordance index; SBIC = Schwarz Bayesian infor-
mation criteria; S-H = Schemper and Henderson’s predictive measure. 
a model 0 did not adjust any covariates. 
b model 1 includes age (years), sex, and log-transformed exam year. 
c model 2 further includes waist circumference (cm), heavy drinking, smoking, and family history 
of diabetes. 
d model 3 further includes baseline blood lipid levels (HDL-C, log-transformed glucose, and log-
transformed triglycerides levels). 

4. Discussion 
CRF is a predictor of abnormal glucose but measuring CRF in primary care settings 

and recording PA in EHRs is not standard practice. To overcome these limitations, we 
sought to determine whether eCRF calculated with vital signs and standard clinical 
measures could predict abnormal glucose in healthy adults from baseline without using 
PA as an algorithm parameter. Concomitantly we compared eCRF to measured CRF. 
eCRF and CRF showed similar independent predictive ability for abnormal glucose; 
each 1-MET increment was associated with a 4% lower risk of incident abnormal glucose 
in the overall sample. This finding was apparent regardless of family history or central 
fatness. Our results align with a previous investigation that found higher CRF was asso-
ciated lower risk of abnormal glucose (per 1 MET: HR 0.99898 [95% CI 0.99861, 0.99940], 
P< 0.01) in young adults over time and with meta-analyses that show that for every 1-
MET higher CRF, there is an 8−10% decrease in DM risk [12,13,24]. Our investigation is 
the first to show that eCRF calculated from parameters commonly found in EHRs is a 
proxy for CRF to predict abnormal glucose risk in adults. 

New evidence is emerging for the association of PA-based eCRF and health out-
comes other than mortality [5]. Three recent eCRF cohort studies have included DM inci-
dence as a health outcome.  Notably, all three studies used the ACLS Jackson eCRF 
(e.g., (METs) = 21.2870 + (age × 0.1654) – (age2 × 0.0023) – (BMI × 0.2318) – (waist girth × 
0.0337) – (resting heart rate × 0.0390) + (PA × 0.6351) – (smoking × 0.4263) initially vali-
dated with heart disease and mortality outcomes in a Caucasian population [17].  These 
three cohort studies shed light on whether or not eCRF validated with a specific popula-
tion and health outcome applies to other populations and health outcomes.   

Lee et al. investigated the associations of eCRF in older adults (61.5 y) with subclin-
ical atherosclerosis, arterial stiffness, incident cardiometabolic disease, and mortality 
[25]. Using data from the Framingham Offspring cohort (n = 2,962), the highest tertile 
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eCRF was associated with a 62% lower risk of incident DM after a 15-year average fol-
low-up.  One of the study's limitations was that PA data was unavailable for all the ex-
amination years. Other eCRF DM studies were conducted by Zhao et al. and Cabanas-
Sanchez et al. in Asian cohorts. Zhao et al. found that the fittest eCRF quartile had a 58% 
reduction in the risk of incident DMs in rural Chinese (n = 11,825; 52% women) middle-
aged (51y) adults at a six-year average follow-up. Additionally, they found that for each 
1-MET increment in CRF, the risk of DM decreased by 15% [26]. Cabanas-Sanchez et al. 
found evidence for eCRF to predict the incidence of DM in adults (38.5 y) from the Tai-
wan MJ cohort (n = 200,039; 50% women) [27]. Results showed that per 1 MET change 
increase over an average of 6.2 years, men and women decreased their risk of DM by 
25% and 36%, respectively.  

The differences in our findings are likely due to the different methods, algorithms, 
populations, covariates, and DM outcomes. A limitation of the three studies was that 
domestic PA parameters were used to calculate the Jackson eCRF rather than the Jackson 
PA index, which may have caused misclassification. Also, the Jackson eCRF was not 
cross-validated with CRF among participants in the respective cohorts. The Framingham 
cohort participant age (61.5 y) is older than the ACLS cohort (43.5 y) but similar in eth-
nicity, whereas the Asian cohorts are more similar in participant age to ACLS but differ 
in ethnicity and have more female participants. The Jackson eCRF algorithm includes 
BMI and waist girth as parameters, so including them in the statistical models as covari-
ates may be over-adjusting [17]. Despite the limitations of the three studies, the Jackson 
eCRF was adaptable to diverse populations for predicting DM risk. Though our findings 
show that the ACLS eCRF without PA predicted abnormal glucose risk, it is unknown if 
it applies to diverse populations as the ACLS Jackson eCRF did. 

Like other non-diagnostic tests (e.g., blood pressure, cholesterol, BMI), eCRF is po-
tentially suitable for risk prediction and primary prevention [3,5]. Studies have shown 
that PA-based eCRF can be used instead of DM risk prediction models and augment 
Framingham risk prediction for CVD [28,29]. An advantage of our eCRF model is that it 
does not require PA assessment, providing a method to rapidly auto-populate data 
fields and provide standardization across EHR systems, decreasing administration time 
in busy clinics. While eCRF has potential as a public health tool, eCRF is not a diagnostic 
test. The function of clinical exercise testing goes beyond epidemiology or prevention. 
During exercise testing, valuable information such as the anaerobic threshold, rate of 
perceived exertion, blood pressure response, and EKG responses are documented and 
used for diagnosing and prognosis in CVD and respiratory diseases and developing tai-
lored exercise prescriptions for diseased patients [4]. 

Although the biochemical mechanisms of abnormal glucose are not fully under-
stood, having a higher CRF supports better insulin dynamics and glycemic control [30]. 
Adult exercise training studies show that increasing CRF results in favorable changes in 
insulin action and peripheral skeletal muscle glucose metabolism [30]. Notably, skeletal 
muscle insulin action may decline years before prediabetes manifests [31]. The develop-
ment of insulin resistance may also be influenced by inadequate oxidative capacity, and 
data suggests that higher CRF is associated with improved insulin dynamics due to en-
hanced mitochondrial flexibility [32]. Lastly, our eCRF algorithm may be further sup-
ported by a recent variety of genetic associations identified between CRF and resting 
heart rate, systolic blood pressure, diastolic blood pressure, obesity, hyperglycemia, and 
risk of diabetes [33].  

Our study had limitations. The observational nature of this study may limit causal 
inference. Measured CRF was conducted using a Balke maximal graded exercise test at 
baseline. This graded exercise test equation estimates absolute max METs, but highly 
correlates with the gold standard VO2 max testing and has been used to predict numer-
ous health outcomes [4]. Those identified with abnormal glucose were mostly predia-
betic, but recent studies show that eCRF and CRF predict DM [12,27]. Our analysis is on 
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a primarily Caucasian cohort, but there is emerging evidence that PA-based eCRF algo-
rithms designed from Caucasian cohorts generalize to diverse populations [26,27]. Also, 
the homogeneity of the ACLS cohort strengthens internal validity. The final limitation is 
that the data set included only a limited proportion of women (20%). 

5. Conclusions 

A dose-dependent relationship exists between higher eCRF and a lower risk of ab-
normal glucose. Using eCRF in EHRs may broadly support research, informatics, risk pre-
diction, and prevention of DM. Further research should investigate diverse populations 
and health outcomes, especially cancer and CVD. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1, Figure S1: eCRF Algorithms  
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