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Abstract: Krüppel-like Factors (KLFs) are a set of DNA-binding proteins belonging to a family of 
zinc-finger transcription factors, which have been associated with many biological processes related 
to activation or repression of genes, inducing cell growth, differentiation, death, and development 
and maintenance of tissues. In response to metabolic alterations caused by disease and stress, the 
heart will undergo cardiac remodeling, leading to cardiovascular diseases (CVD). KLFs are amongst 
transcriptional factors that take control of many physiological and, in this case, pathophysiological 
processes of CVD. KLFs seem to associate with congenital heart disease-linked syndromes, malfor-
mations because of autosomal diseases, mutations that relate to protein instability, and/or loss func-
tions such as atheroprotective activities. Ischemic damage also relates to KLF dysregulation because 
of differentiation of cardiac myofibroblasts or a modified fatty acid oxidation, related to the for-
mation of a dilated cardiomyopathy; myocardial infarctions, left ventricular hypertrophy and dia-
betic cardiomyopathies. MicroRNA have been involved in certain regulatory loops of KLFs as they 
may function as critical modulators of vascular smooth muscle cells in atherosclerosis, in heart fail-
ure and as markers of endothelial damage in acute myocardial infarction. 
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1. Introduction 
In response to metabolic alterations caused by disease and stress, the heart undergoes 

changes referred to as pathological remodeling, which involves hypertrophy and fibrosis, 
eventually leading to cardiac failure[1,2]. Similar metabolic changes can also affect the 
blood vasculature, which leads to structural alterations that potentially evolve into angi-
ogenesis and atherosclerosis. These affections of heart and blood vessels are termed car-
diovascular diseases (CVDs) [3–5].  

Several comorbidities have been pathologically linked to CVD, including hyperten-
sion and diabetes [4,6–8], leading to an understanding of different factors involved in 
these diseases. One such family of factors is the Krüppel-like transcription factors (KLFs), 
which have recently acquired traction because of their involvement in various processes, 
including those regulating CVDs. KLFs are a set of DNA-binding proteins belonging to a 
family of zinc-finger transcription factors [9]. KLFs were named after their similarity to 
the Drosophila melanogaster Krüppel (from German, "crippled" protein), a member of the 
gap gene class involved in the thorax and anterior abdomen segmentation of Drosophila 
embryos [10], which, when presenting alterations, result in severe body abnormalities 
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[11]. As mentioned earlier, KLFs are important gene transcription regulators capable of 
activating or repressing the expression of genes involved in several processes, including 
cell growth, differentiation, death, and the development and conservation of specialized 
tissues [12].  

2. KLFs structure and domains 
To date, researchers have identified 17 KLFs in the human genome, excluding the 

putative KLF-18 gene, which arises as a duplication of KLF17 [13]. KLFs are characterized 
by their three well-conserved carboxyl terminal C2H2 zinc finger domains, where two 
cysteines coordinate each zinc ion at one end of a β-sheet, and two histidines at the C-
terminal α-helix, creating a tetrahedral structure which allows for folding: ββα protein 
configuration [14]. These zinc fingers are highly conserved throughout the family, sticking 
to the consensus sequence C-X2-5-C-X3-(F/Y)-X5-ψ-X2-H-X3-5-H, where X represents any 
amino acid and ψ is a hydrophobic residue [15]. A seven amino acid spacer TGEKP(Y/F)X 
can be found between each finger [16]. The first two zinc fingers have 25 amino acids each, 
while the third has only 23; at a particular level, each zinc finger can bound three base 
pairs in GC-rich regions, such as CACCC-, GC-, GT-box elements, located in promoters of 
target genes [17]. The amino-terminal domain is extremely varied arranged, containing 
binding domains capable of exerting repressive or activating functions. Finally, a nuclear 
localization signal (NLS) can be found near or within zinc fingers [18].   

2.1. KLFs phylogenetic classification 
As a consensus, KLFs subdivide into three phylogenetic groups because of their 

structural similarities and binding domains (Table 1). 

Table 1. The consensus, according to the KLF group. 

Group and members Description References 

1. KLF -3 
KLF -8  

KLF -12 

These mediate transcriptional repression by binding their C-terminal domain to the CtBP protein. 
CtBP can then mediate co-repression in an HDAC-dependant process, allowing histones to wrap 

DNA tightly. This mechanism was assessed by Turner and Crossley when they proved that muta-
tions in the CtBP binding motif in KLF-3 failed to repress gene expression in SL2 cells. A gene re-
pression HDAC-independent process could be executed by CtBP recruitment of PcG-associated 

proteins complex. 

[19–22] 

2. KLF-1   
KLF-2   
KLF-4   
KLF-5  
KLF-6  
KLF-7 

They mostly operate as transcriptional activators by recruiting acetyltransferase activity factors, 
such as CBP, p300, and P/CAF, promoting chromatin remodeling. Nevertheless, KLF-2 and KLF-4 

also contain domains with repressor functions, continuous to the activation domains. 
[23,24] 

3. KLF-9   
KLF-10  
KLF-11 
KLF-13  
KLF-14  
KLF-16 

They have mostly been described as transcriptional repressors through their binding to SinA3. This 
interaction is possible because of a hydrophobic consensus sequence in these KLFs N-terminal do-
mains, a conserved α-helical motif AA/VXXL that mediates their linking to SinA3 paired amphi-

pathic helix domain, which then works as a scaffold for other chromatin modifiers, such as 
HDAC1, HDAC2, Mad, Ume6, MeCP2, N-CoR, and Ikaros. 

[23,25] 

No consensus groups. 
KLF-15 

KLF-17 (-18) 

These factors have not been incorporated into any of these phylogenetic groups since their interac-
tion domains remain undetermined. Yet, tissue expression in bone, kidney, and testis has been re-

ported. 
[11,13,26] 

 
KLFs as a family are found in several organ systems, namely the hematopoietic, gas-

trointestinal, respiratory, nervous, immune, and cardiovascular [27]. Hence, it is not un-
common for KLFs to have a ubiquitous expression pattern, such as in KLFs 6, 7, 8, 9, 10, 
and 11. Others have a more restricted expression, such as KLF-1, which is present in 
erythroid and mast cells, and KLF-2, which is involved in lung and vessel development 
[18,28]. Both KLF-1 and KLF-2 have an essential role in embryonic erythropoiesis since 
they can bind to genes involved in cell proliferation and cell cycle control, such as 
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Forkhead Box M1 (FoxM1), Spinghosine kinase 1 (Sphk1), Parathyroid hormone 1 recep-
tor (Pthr) and CD24a antigen, thus promoting the maturation of erythroid precursors [28]. 

Regarding the heart, KLFs expression and function continue at the initial elucidation 
stages. KLF-15 expresses in cardiomyocytes and cardiac fibroblasts and upregulates post-
natally, inhibiting cardiac hypertrophy by preventing myocardin (MYOCD) and serum 
response factor (SRF) interaction, thus, diminishing atrial natriuretic factor (ANF) and α-
skeletal actin (α-SKA) expression [29,30]. Meanwhile, KLF-13 has a marked reduced ex-
pression during the postnatal stage, moreover it also works as a cofactor with GATA4 and 
TBX5, an essential part of the transcriptional machinery required for inducing cardiac cell 
differentiation. Deletion of KLF-13 (as well as other GATA4 modifier factors) has been 
associated with congenital heart defects, including Holt-Oram syndrome (discussed in a 
subsequent section), atrial and septal malformations, and ventricular hypotrabeculation 
[31]. 

3. Cardiovascular diseases (CVDs) 
CVDs continue at the top of the list as causes of death worldwide [7,8]. Taking all 

into consideration, they account for nearly 56 million deaths every year [32]. CVDs affect 
both the blood vessels, as well as the heart at the mechanical, electrical, or cellular level, 
directly compromising nutrition and oxygenation, leading to damage and eventually 
death of the affected region [33–35]. At a fundamental level, we should note that the heart 
has little room for regeneration; therefore, damaged cardiomyocytes or other cardiac cells 
will eventually lead to cell loss, fibrosis, and heart failure [36–38]. The term CVDs is quite 
broad, encompassing a wide spectrum of diseases such as ischemic heart disease, heart 
failure, valvular heart disease, arrhythmias, high blood pressure, stroke, and others [6]. 
Yet, the most common causes of morbidity and mortality associated to CVDs are ischemic 
heart disease, stroke, and heart failure, which account for nearly 80% of all CVDs globally 
[35,39–41].  

Interestingly, much information about the risk factors involved in developing CVDs 
are known. Many of these factors are preventable by behavioral changes. These prevent-
able risk factors include tobacco consumption, physical inactivity, obesity, and unhealthy 
eating habits [42]. As an example of the latter, research has shown that a high lipid intake 
in the diet is associated with the development of atherosclerotic plaques, a condition di-
rectly related to CVDs [43,44]. Researchers have further linked high fat consumption and 
dietary obesity to an induced state of inflammation, generating adipose tissue and increas-
ing the secretion of pro-inflammatory cytokines such as NF-kb, TNF-a, and INF-g [45]. 
This inflammatory state induces the production of reactive oxygen species (ROS) in the 
mitochondria, which leads to lipid peroxidation that can eventually induce several pa-
thologies, including Alzheimer's and the development of aneurysms [46]. Excessive fatty 
acids lead to triglyceride and cholesterol esterification. Next, these lipids are taken-up by 
VLDL and later directed to LDL. In an already primed inflammatory state, high LDL lev-
els can become oxidized (ox-LDL). Ox-LDL then becomes a problem as signals lead mac-
rophages to engulf them, becoming foam cells that stack up in the arteries over time, even-
tually forming atherosclerotic plates [47]. Another preventable source of high ROS levels 
and oxidation is tobacco consumption. Particularly, vascular smooth muscle cells can re-
act to external stimuli. Changes in these cells directly affect their differentiation from con-
tractile cells to cells concerned with inflammation and ECM remodeling, reducing their 
expression of alpha smooth muscle actin (α -SMA) and smooth muscle 22 alpha (SM22α) 
and enhancing the production of inflammatory mediators as previously described with 
an outcome of atherosclerosis progression [48]. Unfortunately, not all risk factors are pre-
ventable, such as hyperglycemia related to type-1 diabetes, which has a genetic compo-
nent, and its prevention is more complex. In this situation, a healthy lifestyle continues to 
be paramount [49]. At a molecular level, cardiac regulation and function involve a pleth-
ora of transcriptional factors that specify genes which take control of many physiological 
and, in this case, pathophysiological processes of CVDs[50]. One subset family of 
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transcriptions factors involved in cardiac regulation during pathophysiological processes 
of CVDs is the KLF family.  

3.1. KLFs in atherosclerosis 
Atherosclerosis is a phenomenon characterized by the deposition of ox-LDL choles-

terol in the arterial walls, is the primary pathology of CVD[47]. It develops from endothe-
lial dysfunction, LDL retention, and the occupation of leukocytes in the subendothelial 
space, followed by signaling, recruitment, and differentiation of macrophages. Through 
the induction of nitric oxide synthase (eNOS and iNOS) and LDL oxidation, macrophages 
transform into foam cells, eventually forming atherosclerotic plates [51]. This change fa-
vors the evolution towards fibrous plaques that progressively reduce the diameter of the 
arterial lumen. Turbulent blood flow through a partially occluded vessel (or even normal 
fluctuations in the blood vessel path, such as in arterial bifurcations) damages the endo-
thelium by shear force [51,52]. 

At the molecular level, KLF-2 activation has been associated with laminar blood flow, 
a key protective force in the arterial walls that helps prevent atherosclerosis since it in-
duces a protective phenotype in endothelial cells. In low-shear stress regions, KLF-2 in-
hibits a mechanosensory complex composed of platelet endothelial cell adhesion molecule 
(PECAM-1), vascular endothelial cadherin (VE-cadherin), and vascular endothelial 
growth factor receptor 2/3 (VEGFR2/3). These factors trigger the MEK2/ERK2 pathway to 
upregulate myocyte enhancer factor-2 (MEF2) and allow KLF-2 transcriptional activity. 
KLF-2 exerts as it downregulates vascular adhesion molecule-1 (VCAM-1) and E-selectin, 
molecules that support leukocyte migration and adhesion [53]. Researchers have identi-
fied suberanilohydroxamic acid as a potent pharmacological inducer of KLF-2, capable of 
repressing vascular inflammation and atherosclerosis [54]. Researchers believe that the 
main mechanism for this repression is the inhibition of thrombin-mediated cytokine as a 
repression mechanism of the protease-activated receptor 1 (PAR-1) [55]. 

According to Xie et al. (2021), one of the key changes in the progression of atheroscle-
rosis is the transition of vascular smooth muscle cells (VSMCs) from a contractile pheno-
type to a proliferative phenotype. This transition leads to an increase in extracellular ma-
trix secretion, resulting in the formation of arterial intima layer thickening. In this regard, 
KLF-5 expression evidence seems to indicate an elevation in atherosclerotic plaques com-
pared to normal human aortic tissue, suggesting that KLF-5 may play a role in promoting 
this phenotypic switch [56]. 

Transiently induced KLF-4 after a vascular injury is not constitutively expressed in 
VSMCs [57]. In animal models, researchers found that after carotid artery ligation, KLF-4 
activates rapidly in the SMC, which inhibited the expression of SMC differentiation 
marker genes (SM-22 and α-SMA), as evidence suggests that KLF-4 blocks these markers 
through the binding of TGF-β's control element-containing promoter (5′-GAG-
TGGGGCG-3′). In contrast, no binding of KLF-4 has been shown in intact carotid arter-
ies[58–60]. Moreover, KLF-4 KO mice exhibited enhanced neointimal proliferation after 
vascular injury, contributing to the reduced arterial lumen. These results suggest that KLF-
4 is a negative regulator of neointima formation [61], also observed have been effects on 
non-vascular endothelial cells. KLF-4 does not affect SMC differentiation markers, but it 
downregulates TNF-α-induced VCAM1 expression by targeting and blocking the binding 
site of NF-κB to the VCAM1 promoter. Adhesion molecule expression promotes the accu-
mulation of inflammatory cells that contribute to neointima formation [62]. 

Atherosclerosis and the shear stress forces associated with it lead to plaque rupture, 
causing thrombosis or vascular embolism, giving rise to ischemic heart disease in any of 
its two main clinical forms: angina or acute myocardial infarction (AMI) [63]. 

3.2. KLFs in ischemic disease, remodeling, and heart failure 
Myocardial infarction (MI) is the most severe clinical manifestation of ischemic heart 

disease. It comprises the abrupt obstruction of blood flow in the main branches of the 
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coronary arteries, eventually leading to cardiomyocyte ischemia [4,8,35]. In ischemic heart 
disease progression, fibrotic tissue replaces damaged muscle inducing geometric, biome-
chanical, and biochemical changes in the heart. This process is crucial to prevent ventric-
ular wall rupture in the post-infarction period; however, an exaggerated fibrotic response 
has detrimental effects, leading to heart remodeling and a progressive loss of cardiovas-
cular function to establish heart failure since it does not restore flood flow[64]. There is an 
affection of the myocardial tissue that leads to an overall decrease in oxygen or hypoxia, 
which ultimately causes necrosis of the area. Interestingly enough, as hypoxia and stress 
increases, there is an overall shift in signaling, which renders activation of a fetal program 
in the tissue, characteristic of development [65]. Elevation of embryonic signaling, as was 
seen in eight patients treated with pressure-controlled intermittent coronary sinus occlu-
sion (PISCO), which resulted in the elevation of the transcription factors GATA4, MEF2C, 
TBX5, and HAND2 in blood samples. These are particular cardiac transcription factors, 
which have a history of being used in direct differentiation studies [66–68]. In the PISCO 
study, patient serums were collected and co-cultured with human fibroblasts and cardio-
myocytes. Their findings indicated an upregulation in KLF-4; a known pluripotent stem 
cell inducer [57,69–71]. Unsurprisingly, KLF-4 promotes cardiac myofibroblast differenti-
ation and collagen synthesis in angiotensin II-induced cardiac fibrosis through its binding 
to the TGF-β1 promoter, activating the TGF-β1/Smad3 pathway, increasing the expression 
of a-smooth muscle actin, and the secretion of type I and type III collagen, contributing to 
the induction of a proliferative phenotype in cardiomyocytes [72]. 

Previously identified KLF-5 is a prohypertrophic factor that is increased in patients 
with terminal heart failure and mice with ischemic cardiomyopathy. The exact mecha-
nisms by which KLF-5 induces cardiac hypertrophy remain unknown; however, research 
by Hoffman et al. confirmed that in mice subjected to left coronary artery ligation, Klf-5 
expression increased 2-fold at 24 hours and 4-fold at 2 and 4 weeks. A reduction in frac-
tional shortening and expansion of the end-diastolic and systolic dimensions accompa-
nied Klf-5 upregulation. When using the pharmacological inhibitor of Klf-5, ML264, an 
improvement in echocardiographic parameters, such as ejection fraction, was observed, 
as well as a reduction in end-diastolic and systolic volume, exerting a protective effect 
against ischemic cardiomyopathy[73].  

Previous research showed that KLF-5 could regulate PPAR-α expression and modify 
fatty acid oxidation (FAO). The heart depends on fatty acid oxidation (FAO) to produce 
≈70% of its ATP and meet its energy demands [74]. This process transcriptionally depends 
on PPAR-α, which KLF-5 can activate via direct promoter binding [40,75]. Cardiac myo-
cyte–specific ablation of KLF-5 consequently resulted in a decrease in Ppar-α, FAO, cardiac 
ATP levels, and triacylglycerol accumulation [40]. Interestingly, even though KLF-5 was 
being suppressed, the experimental model indicated signs of dilated myocardiopathy, 
such as a reduction of fractional shortening and an increase in left ventricle internal di-
mensions, showing that an excessive accumulation of lipids in the heart can indeed lead 
to dilated cardiomyopathy [40,75]. Although in this study, cardiomyopathy was sug-
gested to develop in a KLF-independent manner, recent evidence shows a link between 
KLF-5 and ceramide biosynthesis. KLF-5 has been proposed as a direct transcriptional 
regulator of SPTLC1 and SPTLC2 (serine palmitoyltransferase [SPT] long-chain base sub-
unit 1 and 2, respectively), enzymes involved in the rate-limiting step of ceramides de 
novo pathway synthesis, producing ceramides from serine and palmitoyl coenzyme A 
[73,75].  

Regarding diabetic cardiomyopathy (DbCM), KLF-5 has been linked to oxidative 
stress via upregulation of NADPH oxidase 4 (NOX4) by directly binding to NADPH oxi-
dase 4 promoter and inducing NOX4 expression and leading to cardiomyocyte superox-
ide accumulation, mitochondrial abundance decrement and a change in the cardiac lip-
idome profile towards a ceramide-rich environment, therefore, contributing to DbCM 
physiopathology [75]. Meanwhile, dilated cardiomyopathy (DCM) is the most frequent 
cause of heart failure in young people. In the most severe cases, it is also a major reason 
for a heart transplant [76–78]. KLF-5 has been recently documented as being highly 
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involved in the development of DCM. According to whole exome sequencing studies, 
KLF-5 mutations were directly responsible for DCM with complete penetration within the 
proband's family members [77]. Hence, KLF-5 inhibition has been proposed as a strategy 
to treat heart failure and other cardiovascular diseases [75,79].  

Genetic variations of KLF-15, documented as a hypertrophy inhibitor, have been 
studied in patients with type 2 diabetes. These findings have shown that a single nucleo-
tide variation (SNV) in intron two of the KLF-15 gene (rs9838915) was associated with 
increased left ventricle mass index and septal wall thickness. Additional follow-up of 5.6 
years on average was performed, where 22 patients (7%) were hospitalized for the first 
time because of heart failure. In the latter, the adjusted risk of hospitalization for those 
patients with left ventricular hypertrophy (LVH) carrying the A allele was 5.5-fold greater 
than the G homozygous genotype. Therefore, the findings of this study propose the KLF15 
SNV rs9838915 A allele as a marker of left ventricle hypertrophy in patients with type 2 
diabetes [26]. As a we have mentioned, the regulatory effects of KLF can play a role in 
CVD, the most important mechanisms can be seen on Table 2. 

Table 2. KLFs involvement in different CVD, including the mechanism affected. 

Disease KLF involved Effect Mechanism Reference 

Atherosclerosis 

KLF-5 Promoter 
VSMCs proliferative phenotype 

switch via Myod repression. 
[80] 

KLF-2 Protector 
Reduces inflammation as it down-
regulates VCAM1 and E-selectin. 

[54,55] 

KLF-4 Protector 
Inhibition of neointima formation 
via SM-22 and α-SMA repression. 

[81,82] 

Myocardial infarction KLF-4 Promoter 
Myofibroblasts differentiation and 

collagen secretion via TGF-
β1/Smad3 pathway. 

[72] 

Left Ventricle Hypertro-
phy 

KLF-15 Promoter 
Rs9838915 associated with in-

creased left ventricle mass index 
and septal wall thickness 

[26] 

Dilated cardiomyopa-
thy 

KLF-5 Promoter Upregulation FOXO1 [29,75]  

Diabetic cardiomyopa-
thy 

KLF-5 Promoter 
Upregulation of NOX4, O−2 and 

ceramide accumulation 
[75] 

 

3.3. KLFs in Congenital Heart Diseases 
While there is still much to be addressed in developmental biology, recent research 

has linked KLFs to birth defects, and in particular to certain congenital heart diseases. Out 
of these congenital heart diseases, the most prominently described disease linked to KLFs 
is the Holt-Oram Syndrome. The Holt-Oram Syndrome is an autosomal dominant disease 
characterized by upper-limb defects, congenital heart malformation, and cardiac electrical 
conduction related issues. Holt-Oram Syndrome has been typically associated with mu-
tations in TBX5, even though new evidence has shown that KLF-13 plays a pathogenic 
role; as researchers have identified KLF-13 as a genetic modifier for TBX5 [83,84]. During 
development, these two genes co-express in myocardium of the atrio-ventricular cushion, 
atrial septum, interventricular septum and ventricular trabeculae as early as E11.5 in the 
mouse embryo[84]. In silico sequence analysis has further revealed conservation of bind-
ing sites on the Nppa promoter for both TBX5 and KLF-13 genes, and other several key 
cardiac transcription factors such as Nppb, Vegfa and Nos3, all of them essential for heart 
development. To test the existence of a genetic interaction between these two transcription 
factors in heart morphogenesis, Darwich et al., (2017) created a Tbx5 and Klf13 double 
heterozygote mouse model, finding significantly lower left ventricular mass over body 
weight ratios and atrial septal defects in 80% of the mice. Gene expression patterns of heart 
development regulators (Gata4, Mef2a, Erbb4, Vegfc, and Myh7, among others) were further 
analyzed in physiologically normal Klf13 or Tbx5 heterozygotes, as well as the double 
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heterozygous. Their results have indicated upregulation in Tbx5 or Klf13 heterozygotes, 
yet similar to control levels in the double heterozygote mice. These findings suggest a 
compensatory effect between the loss of either Klf13 or Tbx5, but the inability to activate 
these compensatory pathways when the simultaneous decrease of both transcription fac-
tors [84].  

Li et al., (2020) identified two KLF-13 variants in congenital heart disease (CHD) pa-
tients. They first identified a proline into serine transversion at amino acid position 163 
(S156N) in a patient with tricuspid valve atresia, ventricular septal defects, and atrial sep-
tal defects. Followed by the transversion of serine into asparagine at position 156 (P163S) 
in a transposition of great arteries seven-month patient. Both S156N and P163S were 
found in the Nuclear Localization Signal 1 (NLS1) region, near to the KLF-13 DNA-bind-
ing domain. Expression of the S156N variant was noticeably higher than that of wild type 
and had increased transcriptional activity at activating the BNP promoter, suggesting 
S156N is a gain-of-function mutation. Otherwise, with P163S variant, demonstrated simi-
lar expression compared to wild type, yet lower transcriptional activity. Physical interac-
tion with TBX5 was also assessed by co-immunoprecipitation. In this concern, P163S 
showed a decreased physical interaction with the TBX5 protein. In contrast, S156N had a 
significantly increased ability to interact with TBX5. Although, authors suggest that the 
overexpression of KLF-13 associated to S156N might be accompanied by higher protein 
instability, resulting in a loss-of function phenotype [85] 

Lavallée et al., have previously described similar results, identifying Klf-13 as a mod-
ifier of Gata4, a key transcription factor for the cardiac natriuretic peptide genes Nppa and 
Nppb. In this study, Klf-13 Knockdown resulted in atrial septal defects, hypotrabeculation 
and hypoplastic myocardium in Xenopus embryos[31]. Mutations in GATA4, have been 
reported in patients with Fallot Tetralogy previously, although no direct relation between 
KLF-13 and this condition has been established yet[86].    

Moreover, KLF-13 seems to interact physically and functionally with GATA-6, a tran-
scription factor expressed in smooth muscle cells and cardiomyocytes [31]. Wang et al., 
(2020) reported a novel KLF-13 loss-of-function variation, with reduced activation of 
GATA-6, GATA-4 and ANP promoters. Researchers identified this mutation in a three gen-
eration Chinese family, in which 5 out of 18 living family members had double-outlet right 
ventricle and ventricular septal defects[87]. Other variations in KLF-13 have been linked 
to congenital heart defects, such as the Glu144*‑mutant of KLF13 cannot trans-activate 
VEGF-a and ANP gene promoters, associated to patent ductus arteriosus and ventricular 
septal defect, as well as bicuspid aortic valve[88].   

Recently, KLF-4 has been linked to Marfan syndrome, a common inherited connec-
tive tissue disorder caused by mutations in Fibrillin-1 gene, characterized for physical fea-
tures such as increased height, scoliosis, arachnodactyly, lens dislocation, and cardiovas-
cular disorders, including mitral valve prolapse and aortic aneurism that can trigger aortic 
dissection[89,90]. Using single-cell sequencing, Pedroza et al., identified KLF-4 as one of 
several enriched expression genes in smooth muscle cells undergoing a phenotypic mod-
ulation towards fibroblasts, in aortic aneurysm tissue from a Fbn1C1041G/+ Marfan syndrome 
murine model[91]. 

4. KLFs & miRNA in cardiovascular diseases   
MicroRNA (miR)-145 is the most abundant miR in VSMC, overseeing the mainte-

nance of cells in their contractile phenotype by promoting contractile genes[92]. The phe-
notype in which cells are is an important factor to take on account in the pathogenesis of 
atherosclerosis[93]. The VSMC phenotype increases atherosclerotic development because 
of its facility to migrate, proliferate and generate extracellular matrix proteins[94]. This 
phenotype switching is regulated by KLF-4, as suggested in several studies[80,95]. The 
overexpression of KLF-4 inhibits VSMC proliferation induced by PDGF [61,96]. miR-145 
also has a role as a key regulator of KLF-5, KLF-4, and MYOCD, as it down regulates the 
first two genes by suppressing their transcription (which are repressors of MYOCD) and 
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directly stimulates the translation of myocardin[92]. Researchers have found that miR-145 
expression (whose one of his target genes is KLF-5) was found to be considerably higher 
in the normal aortic samples group, accompanied by a higher expression of contractile 
proteins such as calponin and α-SMA, compared to the atherosclerotic group where cir-
culating levels of miR-145 were reduced [80,97]. In animal models of vascular diseases, 
miR-143/miR-145 were found to be downregulated, albeit this has not been confirmed in 
humans. Current research further proposes that miR-145 or miR-143 are part of the regu-
latory loop for KLF-4, KLF-5, MYOCD, and SRF; critical transcription factors development 
of SMC phenotype, and lacking SMC correct differentiation, could lead more easily to 
develop atherosclerosis[98,99]. KLF-5 inhibition via miR-145 results in failure to repress 
MYOCD, a transcriptional cofactor for SRF, which commands the expression of multiple 
smooth and cardiac muscle-specific genes, such SM-22, ANP, MLC-2V and α-MHC 
[97,100,101]. Transient decease in miR-145 expression 3 days post myocardial infarction 
was associated with an increase in KLF-5 and a decrease in MYOCD; in addition, miR-145 
is necessary for myocardin-induced cell reprograming of adult fibroblast into SMC and to 
induce differentiation of multipotent neural crest stem cells into VSMC [102]. These data 
suggest that the miR-145/ KLF-5 / MYOCD path might be a critical modulator of VSMC in 
atherosclerosis.  

A study using human coronary artery smooth muscle cells (HCASMCs) cultured un-
der hyperglycemic conditions found that the repression of miR-145 resulted in KLF-4 up-
regulation and thus, a decrease in MYOCD expression. This response mediated by Ang II 
secretion in HCASMCs, resulted as a reaction to high glucose conditions, which devel-
oped in facilitating migration of VSMC, as well as reducing the expression of VSMC dif-
ferentiation marker genes, such as α-SMA, transgelin, and smoothelin, among others 
[95].   

MiR-133 has also been associated with VSMC phenotypic modulation. miR-133 is ca-
pable of downregulating KLF-4 via suppression of its coactivator transcription factor, Sp1. 
In this process, miR-133 targets Sp-1, preventing KLF-4 activation and making it unable 
to displace MYOCD from the SRF complex, determining the upregulation of smooth mus-
cle genes, like MYH11 [103].   

Horie et al., assessed the role of miR-133 in chronic heart failure, identifying KLF-15 
as another miR-133 target. In their study, miR-133 was shown to reduce KLF-15 and 
GLUT4 protein expression[104]. KLF-15 and MEF2A synergistically bind to the GLUT4 
promoter, therefore increasing glucose uptake in cardiomyocytes, a process of vital im-
portance for the maintenance of myocardial energetic supply[105,106]. These results sug-
gest miR-133 may play a role in the perturbed energetics of heart failure.  

In another study, rats were infarcted to assess the role of miR-92a and its relation to 
Klf-2 and Klf-4 in endothelial injury after left coronary artery ligation. Herein, this study 
demonstrated that in animal models, endothelial injury markers H-Fabp, vWF, and miR-
92a were significantly higher than the control group, while vasoprotective factors Klf-2 
and Klf-4 were downregulated through miR-92a binding to their 3´ UTR. The suppression 
of miR-92a seems to promote endothelial activation, cardiac cell proliferation, and the de-
crease of apoptosis after AMI, proving that both Klf-2 and Klf-4 are involved in the pro-
tection and modulation of endothelial cells [107]. Similar results were obtained when us-
ing of antimiR-92a, in addition, decreased macrophage and T lymphocyte accumulation 
as well as, a marked reduction in atherosclerosis (32%, as compared to the non-treated 
group)[108].  

miR-32-5p targets the expression of KLF-2. In a recent study, researchers found ele-
vated serum levels of miR-32-5p in patients with AMI, and reduced expression of KLF-2 
[109]. KLF-2 possesses atheroprotective properties [107], hence having an adequate ex-
pression of this gene could prevent the development of a cardiovascular disease. In an-
other study, miR-363-3p was upregulated in serum of AMI patients, showing that the ex-
pression of this miR was positively correlated with the concentration of endothelial injury 
biomarkers. As confirmed in rat studies with knockdown of miR-363-3p, which showed 
that endothelial injury biomarkers are reduced. In the same study, they observed that the 
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activity of KLF-2 was inhibited with the upregulation of miR-363-3p, leading patients to-
wards a higher probability of suffering AMI [110].  

Regarding ischemic damage, miR-125b-5p was linked to a cardioprotective effect in 
the onset of AMI. Using several prediction algorithms, researchers have identified 
proapoptotic BAX1 and KLF-13 as miR-125b-5p targets. In this study, this research group 
showed that in vivo repression of miR-125b-5p associates to a higher mortality after left 
coronary artery ligation, left ventricular disfunction, enhanced susceptibility to cardiac 
rupture, higher levels of ANP and TNF-α, and larger fibrotic regions. In vitro analysis 
showed that miR-125b-5p could induce an increase in p-AKT levels, suggesting a function 
as a pro-survival miR in cardiomyocytes. Furthermore, researcher proved that β-blocker 
carvedilol was capable of upregulating miR-125b-5p (process accompanied by a decrease 
in BAX1 and KLF-13) [111]. These findings suggest miR-125b-5p as a carvedilol-respon-
sive miR, mediator of improved cardiac function after AMI, via blocking of pro-apoptotic 
proteins. 

miR-let-7g demonstrated an increase in the expression of α-SMA and calponin by 
downregulation of PDGF-β leading to a reduce interaction of KLF-4 and SRF which de-
repressed MYOCD; this maintains VSMC contractile phenotype and therefore reduced 
formation of atherosclerotic plaques [112]. There have been some miRNAs related with 
the AMI but not associated with KLF signaling. miR-139-5p has been involved in regulat-
ing cardiomyocyte proliferation and apoptosis. Finally, further research has also con-
firmed that miR-139-5p increases in the serum of AMI patients [113].  

Table 3. miRNAs involvement in KLF regulation during CVDS. 

MiRNAs Cardiovascular diseases Target or signaling 
pathways Level of expression Ref. 

miR-143/145 
miR-1 

 
 

miR-137-3p 

 
 

Pro-atheroerotic 
 

KLF4/5 
KLF4 

 
 

↓KLF15 

• ↓expression  
• MiR-1 induces SMC dif-
ferentiation through the repres-

sion of Klf4 
• Promote ischemia 

[114] 
[115] 

 
 

[116] 

miR126  KLF2 
• ↑expression of miR-126 

↑KLF2 activated VEGF  
[117] 

miR29a   KLF15 
• ↑ expression of miR-29a 
↑miR29 increased KLF15 stabil-

ity by Fbw7/CDC4.    
[118] 

miR-410 
 
 

mmu-miR-107, 
mmu-miR-142-
5p, mmu-miR-
143, mmu-miR-

155 

 
Anti- atherosclerosis 

 
 

KLF5  
 
 
 

KLF2 
 
 

• HDAC1 
• KLF5 promote IKB alpha 

↓NFKB 
 

• FOXO1 regulates the ex-
pression of the downstream 

transcription factor KLF2 in en-
dothelial cells 

[119] 
 
 
 

[120] 
 

miR-10a Myocardial infarction KLF4 

• miR-10a rejuvenated 
aged hBM-MSCs which im-

proved angiogenesis and car-
diac function in injured mouse 

hearts. 

[121] 

miR-27a Myocardial infarction KLF5 

• miR-27a expression 
could be transcriptionally sup-

pressed by KLF5 and inacti-
vated the TGF-β/Smad2/3 sig-

naling pathway 

[122] 

mIR-363-3p 
 

AMI KLF2 

• ↓miR-363-3p reduces the 
concentration of endothelial bi-
omarkers and promotes the vas-
cular endothelial cell prolifera-
tion, and this protective effect 

on endothelial injury may be ex-
erted by targeting KLF2.  

[110] 
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miR32-5p AMI KLF2 
• miR-32-5p promotes en-
dothelial cell viability by KLF2 [109] 

miR-125b-5p AMI KLF13 

• miR-125b-5p protects the 
heart against AMI by blunting 
CM death in response to injury 
in part through its repression of 

bak1 and klf13 

[111] 

miR-150 AMI KLF13 
• Increasing KLF13 expres-

sion via ↓ miR-150.  
[123] 

mIR-92a AMI 
KLF2  
KLF4 

• miR-92a promoted endo-
thelial activation, cardiac cell 

proliferation and apoptosis de-
crease after AMI, proving that 
both KLF-2 and KLF-4 are in-
volved in the protection and 

modulation of endothelial cells 

[124] 

miR-124  
 

KLF6 and STAT3  

• downregulation of miR-
124 and Sp1 levels was in-

creased sharply in human aortic 
media from clinical specimens 

of aortic dissection 

[125,126] 
 
 

miR-let-7g Atherosclerosis 
KLF4, SRF,  α-SMA, 
calponin,  PDGF-B 

• Increasing ↑  α-SMA  
expression via ↓ KL4 y SRF 
which depresses to Myod.  

[112] 

miR-139-5p AMI Serum AMI 
• Increases ↑ serum of 

AMI patients. 
[113] 

5.Conclusion 
The extensive KLFs family has been associated with many biological processes re-

lated to cell growth, differentiation, death, and development and maintenance of tissues 
in many eukaryotic organisms. In cardiovascular system dysregulation, KLFs seems to be 
associated with CVDs such as a) CHD-linked syndromes or malformations because of au-
tosomal diseases related to instability and/or loss of function, b) loss of atheroprotective 
activities c) ischemic damages due to differentiation of cardiac myofibroblasts or a modi-
fied fatty acid oxidation as related to the formation of a dilated cardiomyopathy, d) cardi-
ovascular complications such as myocardial infarctions, left ventricular hypertrophy and 
diabetic cardiomyopathies. Finally, several miR have been linked to AMI but not all are 
related to KLFs signaling. Others miR have been involved in certain regulatory loops of 
KLFs as they may act as critical modulators of VSMC in atherosclerosis, in abnormalities 
of heart failure and as markers of endothelial damage in the AMI. 
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