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Abstract: Due to an increase in the consumption of food, feed, and fuel and to meet global food 11
security needs for the rapidly growing human population, there is a necessity to obtain high-yield- 12
ing crops that can adapt to future climate changes. Currently, the main feed source used for rumi- 13
nant livestock production is forage grasses. In temperate climate zones, perennial grasses grown for 14
feed are widely distributed and tend to suffer under unfavorable environmental conditions. Gene 15
editing has been shown to be an effective tool for the development of abiotic stress-resistant plants. 16
The highly versatile CRISPR-Cas system enables increasingly complex modifications in genomes 17
while maintaining precision and low off-target frequency mutations. In this review, we provide an 18
overview of forage grass species that have been subjected to gene editing. We offer a perspective 19
view on the generation of plants resilient to abiotic stresses. Due to the broad factors contributing 20
to these stresses the review focuses on drought, salt, heat, and cold stresses. The application of new 21
genomic techniques (e.g., CRISPR-Cas) allows addressing several challenges caused by climate 22
change and abiotic stresses for developing forage grass cultivars with improved adaptation to the 23
future climatic conditions. Gene editing will contribute towards developing safe and sustainable 24

food systems. 25
Keywords: CRISPR; genome editing; gene editing; forage grass; abiotic stress; plant 26

27
1. Introduction 28

Grasses belong to the family of Poaceae, which constitutes the most economically 29
important plant family [1,2]. Grasslands and meadows extend over vast portions of the 30
planet, on land, and even under the sea [3,4]. Their importance in Earth’s ecosystems goes 31
beyond their use in fields and pastures. Grassy biomes comprise more than one-quarter 32
of the planet’s land area. Grasses not only provide food, shelter, and building materials 33
for animals and humans, but they also generate oxygen and store carbon [5]. This storage, 34
mainly subterranean, contributes towards the fertilization of soils and makes grasslands 35
valuable sinks of CO:[6,7]. Furthermore, grasses are considered more resilient to dryer 36
and warmer conditions than trees. These facts suggest that in the climatic conditions pre- 37
dicted for the future, grasslands could be a better and more robust carbon sink than forests 38
[8]. 39

Grass crops provide the most essential dietary food sources globally. From these, for- 40
age grasses are the main component used to feed ruminant livestock [9,10]. Grasses can 41
be cultivated in less fertile lands compared to other crops. In these zones, normally asso- 42
ciated with developing countries [11,12], animal husbandry and its derivates e.g., dairy 43
products, remain essential [13,14]. To cope with the predicted population growth and the 44
consequential increase in food needs, high-yielding crops must be further developed [15]. 45
To reach food security, the strategies used must avoid causing negative environmental 46
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impacts. Synthetic nitrogen-based fertilizers have been important for reaching high yields, 47
nevertheless, their production and usage are a source of massive generation and emission 48
of greenhouse gases (GHGs) [16]. It is well known that the high concentration of atmos- 49
pheric GHGs is closely related to climate change. Therefore, the challenge is to increase 50
farming efficiency while reducing the impact of agricultural activity on climate change 51
[17]. Importantly, climate change not only directly affects crop productivity but also has 52
indirect and socio-economic impacts, for instance soil fertility, need for irrigation, food 53
demand, policy, rising costs (reviewed in [15]). 54

Grasses usage as forage and as reliable sinks of carbon emissions, call for animprove- 55
ment in their biomass yield, and their resistance towards the new abiotic and biotic 56
stresses caused by climate change [18]. Especially, plants will have to cope with variations 57
in temperature, water availability, and soil composition [19]. Said variations will generate 58
stresses due to heat, cold, drought, and salinity conditions. A promising approach to pro- 59
vide grasses with stress resistance is using gene editing techniques [20,21]. The first at- 60
tempts have been performed to use gene editing in forage grasses [22-29]. This is not an 61
easy task due to their reproductive and genetic characteristics which are difficult to work 62
with. The inability of forage grasses to self-pollinate hinders inbreeding. Additionally, 63
forage grasses have high variability between the genetic background of different individ- 64
uals. This provides them with a considerable gene pool, responsible for their adaptability 65
and resilience towards environmental changes. Conversely, it creates difficulties for stud- 66
ies focused on identifying the genetic cause of traits or phenotypes of interest [30,31]. 67
There are diverse ways of classifying grasses beyond their taxonomy. For instance, forage 68
grasses can be divided into different types depending on their life cycle and ecotype. In 69
the first case, according to the survival of the plant after going through its reproductive 70
phase, grasses can be considered annual, biannual, or perennial. In terms of their ecotype, 71
grasses can be separated into warm- or cool-season plants if their optimal growth happens 72
during winter or summer, respectively. Importantly, warm-season grasses are Cs plants, 73
while cool-season grasses are Cs plants [32,33]. 74

In this review, we provide an overview of the main metabolic and molecular changes 75
that plants suffer to cope with the effects of abiotic stress derived from climate change. 76
Additionally, we summarize the actual state of gene editing applications in forage grasses. 77
We propose how gene editing could be used to generate grass plants able to resist these 78
abiotic stresses. Finally, we hypothesize how the new genetic resources and tools can be 79
used to improve forage grass breeding that will help achieve food security in a sustainable 80
way. 81

2. Cellular and molecular responses to cope with the main abiotic stresses 82

Extreme temperatures, uncommon precipitation patterns, and deterioration of soils 83
are being observed due to climate change. These environmental consequences have a 84
great impact on agriculture since plants are of sessile nature. The responses used by plants 85
when encountering a stressor aim firstly to achieve acclimation to the new environment 86
and later adaptation to it. Acclimation includes adjusting the physiology and metabolism 87
of a plant to achieve a new state of homeostasis, while adaptation involves both pheno- 88
typic and genotypic alterations. Acclimation mediates quick responses to ensure the sur- 89
vival of a plant, whereas adaptation is considered an evolutionary and lengthy process 90
whose goal is to preserve a population. Plants must cope with new and more extreme 91
conditions, which lead to different abiotic and biotic stresses than those commonly pre- 92
sent in their biomes [34]. Abiotic stresses are those derived from the physical and chemical 93
factors of an environment and are independent of living organisms [35]. As a response to 94
these environmental alterations, plants undergo morphological, metabolic, and physio- 95
logical changes. In this review, we will focus on drought, salinity, cold, and heat stress 96
responses at the cellular and molecular levels. These are not the only abiotic conditions 97
that will vary due to climate change, but they represent some of the major alterations that 98
will result from it [35,36]. The stresses discussed in this review have a significant impact 99
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on the growth and development of plants, which is directly connected to crops’ yield and 100
profitability [37,38]. 101

Even though the abiotic stresses will be described separately, in nature they tend to 102
interact producing greater effects than individually. Therefore, plants normally must ac- 103
climate to a combination of stresses. This should not be ignored when designing strategies 104
to improve crops’ tolerance to stress [39]. 105

2.1. Temperature conditions 106

One of climate change’s main effects is the alteration of temperature conditions [40]. 107
Temperature affects and limits plant growth and development directly [41]. Therefore, it 108
has a great impact on crop yield which is associated with food security [9,10,40]. It is con- 109
sidered that there are two abiotic stresses derived from temperature variations: heat and 110
cold stress. 111

2.1.1. Heat stress 112

As a direct consequence of climate change, global warming has led to steady and 113
yearly temperature rises. It has become common to experience warmer seasons with par- 114
ticularly extreme temperatures during summer. Hence, heat waves have increased world- 115
wide causing heat stress for plants [42]. Heat stress appears with sudden increases in tem- 116
perature, 10 or 15 °C above usual conditions [43], and its consequence depends on the 117
plant genotype and ecotype, on the level of incremented temperature, and on the length 118
of the stress [44,45]. Plants may survive heat stress through heat-avoidance or heat-toler- 119
ance mechanisms [46]. The avoidance processes intend to ensure the survival of a plant, 120
for example altering its leaf orientation or regulating its stomatal conductance, while heat- 121
tolerance mechanisms are related to the plant’s ability to maintain its growth under heat 122
stress. These processes involve the synthesis and regulation of different enzymes and pro- 123
teins [44]. Plants primary sensing mechanism towards heat stress is located in the plasma 124
membrane of cells. These membranes become more fluid and permeable under heat stress, 125
which activates heat sensor proteins. It is believed that these heat sensors are, or interact, 126
with calcium channels [47]. Calcium is known to be a key molecule involved in the acti- 127
vation of diverse stress responses mechanisms [48]. Different transmembrane proteins re- 128
lated to calcium transport have been proposed to act as heat sensors. Members of the An- 129
nexin gene family, the protein Synaptotagmin A (SYTA) in Arabidospis thaliana (L.) Heynh. 130
and the Cyclic Nucleotide-Gated Channels (CNGCs) are examples of heat sensor proteins 131
from plants [49-51]. The CNGCs are cation channels that regulate the entrance of ions, 132
e.g., Ca%, into the cytosol from the apoplast and have a calmodulin-binding domain in 133
their cytosolic region. This suggests that increased levels of cytosolic Ca? trigger an un- 134
known signaling cascade that mediates the accumulation of heat-shock proteins (HSPs) 135
[47]. Inrice, the induced loss of function of two of these CNGCs proteins, OsCNGC14 and 136
OsCNGC16, showed that mutant plants exhibited reduced survival when exposed to both 137
heat and cold stresses. This concurs with the observed role of CNGCs in heat stress sig- 138
naling and shows that temperature stresses have overlapping signaling mechanisms [52]. 139
The abrupt changes derived from heat stress can degrade cellular components, altering 140
the composition of membranes and denaturing proteins. Moreover, oxidative stressis also 141
a common result of abiotic stresses. In consequence, the production of reactive oxygen 142
species (ROS) increases. ROS can be generated in different cellular compartments, suchas 143
peroxisomes, mitochondria, and chloroplasts [53]. These molecules are very toxic and can 144
end up inducing cell death due to damage to proteins, cell membranes, and even DNA 145
[54]. To avoid drastic consequences, cells induce the synthesis of HSPs and heat-shock 146
transcription factors (HSFs). In response to heat stress, these transcription factors bind the 147
heat-shock elements (HSEs) that are conserved regions of the HSPs genes. This leads to 148
increased levels of HSPs in the cells, which aims to preserve the integrity of cell proteins 149
by preventing their misfolding and aggregation thanks to the chaperoning role of HSPs 150
[55]. The overexpression of Lolium arundinaceum (Schreb.) Darbysh. HsfA2c produced 151
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plants tolerant to heat stress [56]. In addition, to prevent damage from oxidative stress 152
plants can use different antioxidant enzymes like peroxidase and catalase. The plant spe- 153
cies and ecotype determine which enzymes will be responsible for coping with oxidative 154
stress [40]. Importantly, metabolic changes, like alterations in enzymes’ activity, also occur 155
due to heat stress. In plants, for example, the oxygenase activity of rubisco rises, leading 156
to more photorespiration and therefore reduced carbon fixation and photosynthesis. Fur- 157
thermore, heat stress alters the degradation and synthesis of carotenoids and chlorophyll 158
that causes a more pronounced decrease in photosynthetic activity [41]. 159

2.1.2 Low temperature tolerance and winter hardiness 160

Winter survival of forage grasses is a very complex trait determined by the interac- 161
tion of abiotic stresses like low temperature, frost, desiccation, water logging, ice-encase- 162
ment and snow cover, which also can cause biotic stress by low-temperature fungi [57]. 163
Winter hardiness, persistency and stable high yields are limiting factors for forage grass 164
production in temperate regions. Short growing seasons with long days, the long winter 165
with short days and low light intensity cause stressful conditions for perennial plants. 166
Cold acclimation, tolerance to freezing and ice-encasement are crucial components of win- 167
ter survival. Plant species from temperate climates, which are frequently exposed to sub- 168
zero temperatures have developed advanced mechanisms to cope with extended periods 169
of cold during winters. These plant species, when exposed to low but non-lethal temper- 170
atures, increase their freezing tolerance through a process called cold acclimation [58,59]. 171
Most forage grass species and winter-types of cereals need vernalization, i.e., the induc- 172
tion of flowering when exposed to low temperatures [60]. During autumn the plants pro- 173
duce only leaves until the vernalization requirement is met and the tillers switch from 174
vegetative to generative growth. However, stem elongation and flowering need long days 175
and normal growth temperatures and will not happen until spring [61]. 176

Long duration of ice cover (ice-encasement) is the major cause of winter damage [62]. 177
Warm spells in winter cause snowmelt, which then form non-permeable ice layers when 178
the temperature returns to below zero, causing anoxic conditions for plants [63]. Though 179
freezing tolerance gives a good estimate for winter hardiness, the correlation between 180
freezing tolerance and tolerance to ice-encasement is relatively less known [64]. Studies 181
by Gudleifsson et al [65] showed a weak correlation (r=0.36) between freezing tolerance 182
and ice-encasement. 183

Freezing tolerance is a complex dynamic trait which requires a fine-tuned coordi- 184
nated response at the physiological and sub-cellular level in relation to environmental 185
cues to induce physiological, biochemical, and metabolic changes [66,67]. Many of these 186
resulting cold-associated changes are mainly due to changes in gene expression [66,68,69]. 187
Temperature, light, and a complex interaction of these two variables are key factors driv- 188
ing the process of cold acclimation and determining the extent of freezing tolerance ac- 189
quired [70-73]. 190

With the increase in autumn temperatures, cold acclimation will occur during late 191
autumn or early winter under different irradiance levels than normal conditions [73,74]. 192
Water logging conditions as a result of the heavy precipitation in autumn during cold 193
acclimation may also negatively affect cold acclimation and freezing tolerance [75]. Winter 194
survival under novel climate conditions is likely to be determined by the ability to cold 195
acclimate at low non-freezing temperatures, resist deacclimation during short warm spells 196
in mid-winters and re-acclimation when the temperatures drop again after the warm 197
spells [76-78]. 198

The ICE-CBF-COR signaling cascade is known to play a key role in freezing tolerance 199
and remains the best-characterized pathway to date [69,79]. CBF regulon consisting of 200
genes CBF1, CBF2 and CBF3 amongst others, which contributes to acclimation to cold 201
temperatures [80]. These genes were first studied in Arabidopsis and encode transcription 202
factors that bind to dehydration responsive genes, as well as those with an early response 203
to cold and dehydration [81]. Other important proteins contributing to winter survival are 204
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dehydrins (DHNSs) or group 2 Late Embryogenesis Abundant (LEA) proteins. Many grass 205
species are tolerant to freezing by upregulating DHN genes [82]. Dehydrins are often reg- 206
ulated by CBF cold-responsive pathways. CBF/DREB transcription factors recognize and 207
bind to the DRE/CRT elements in the promoter of cold-responsive genes (COR) [83]. The 208
transcriptome analysis in Elymus nutans showed that the genes encoding LEA14-A, cold- 209
regulated plasma membrane protein COR413PM, cold-responsive protein COR14a and 210
dehydrin COR410 (Table 2) had higher transcriptional abundance in a genotype with 211
higher tolerance to cold [84]. Further, quantitative trait loci (QTLs) for winter survival, 212
frost and drought tolerance have been mapped in meadow fescue (Lolium pratense (Huds.) 213
Darbysh.). Several of the QTLs were located in the same chromosomal regions as QTLs 214
and genes in Triticeae species, notably DHNs, CBFs and vernalization response genes. 215
The major frost tolerance/winter survival QTL co-located with the position of the CBF6 216
gene. Some of the winter survival QTLs co-located with frost tolerance QTLs, others with 217
drought QTLs, while some were unique and most likely this was due to segregation for 218
genes affecting seasonal adaptation, e.g., photoperiodic sensitivity [85]. 219

In addition, perennial grass species produce water soluble carbohydrates, such as 220
fructans and raffinose family oligosaccharides during cold acclimation [86]. Fructans are = 221
an important energy source found in temperate forage grasses. They are synthesized from 222
sucrose and can be defined as storage carbohydrates that are non-structural [87]. Fructans 223
are stored in vacuoles and will either have linear or branched fructose polymers with gly- 224
cosidic bonds to sucrose [88]. The linear polyfructose molecules tend to accumulate in 225
plants either as an addition to or instead of starch [89]. The levels of fructan in wintering 226
plants are involved in freezing tolerance and they are important for survival during win- 227
ter and regeneration or sprouting of tissues in spring, being an important sugar supply 228
[90]. Accumulation of fructans involves fructosyltransferases, invertases and fructan exo- 229
hydrolases, which are regulated tightly and moreover, their genes have been character- 230
ized and isolated [89,91]. 231

2.2. Drought 232

Drought is one of the main environmental factors limiting crop productivity and pre- 233
dicted climate change shifts in the future will result in temperature increases and changes 234
in precipitation patterns [40]. In the semiarid regions, plants have evolved defense mech- 235
anisms allowing them to cope with stressful environments and survive prolonged desic- 236
cation. These mechanisms include an elaborated antioxidant defense system and complex 237
gene expression programs, ensuring transcription and translation of LEA proteins, heat 238
shock proteins, and other stress-responsive genes, as well as metabolic modulations con- 239
sisting of various phytohormones and phytochemicals [92-95]. Annual crops escape the 240
limited water conditions by completing their reproductive cycle producing seeds. While 241
annuals can ensure the survival of species via seeds, perennial crops must cope with water 242
shortage using drought tolerance and avoidance strategies [41,96]. Plants avoid drought 243
by reducing transpiration and maintaining or even increasing water uptake resulting in 244
postponed tissue dehydration. In contrast, drought tolerant perennial crops experiencing 245
stress survive by suspending shoot growth leading to leaf desiccation. However, the 246
crowns of the plants stay vigorous and recover under adequate rainfall. The latter two 247
strategies are of particular importance in forage crops because they are expected to be 248
high yielding under mild stress and to quickly recover after it. Recent studies on vegeta- 249
tive desiccation tolerance have linked this mechanism to seed-development processes, by 250
showing increased expression of seed-related genes in vegetative tissues during drying 251
[97]. The finding suggests that desiccation and water-deficit tolerance mechanisms in 252
grasses derive from an alternative use or “rewiring” of seed-development pathways. Un- 253
raveling the key players involved in this mechanism could be a significant step towards 254
engineering the resurrection trait into drought tolerant forage crops. 255
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Compared to semiarid regions, the typical mild summer drought of temperate zones 256
does not threaten crop survival but causes a significant yield penalty [98,99]. The strate- 257
gies result in reduction of aboveground biomass growth and accumulation, which is one 258
of the most agronomically important traits to achieve. Genotypes adapted to water deficit 259
might maintain growth, and under temporary drought scenario they might be considered 260
as competitive in terms of stable biomass accumulation [100]. The limited water availabil- 261
ity triggers responses at the whole-plant, tissue, cellular and molecular levels [35,101]. The 262
perceived stress signal is converted to increased levels of abscisic acid (ABA) production 263
and accumulation in stomata guard cells which regulate transpiration through stomata 264
closure and thus conserve water in tissues [102,103]. However, this type of water loss pre- 265
vention negatively affects the photosynthetic activity and this in turn results in a slow- 266
down of growth and, under prolonged water shortage, growth halt [101]. Though ABA 267
negatively impacts the aboveground biomass accumulation, at the same time it has an 268
opposite effect on growth and development of roots that largely help to overcome stress 269
[104-106]. Nevertheless, improving forage crops for superior yield through ABA-in- 270
duced drought adaptation remains a great challenge because of ABA mediated stomatal 271
closure leading to reduced carbon gain and ABA-induced senescence [107]. Another con- 272
sequence of drought stress in plants is overproduction of ROS causing an oxidative stress 273
which in turn results in cellular membrane damage, imbalance of ions and oxidation of 274
bioactive molecules [108,109]. 275

ABA also plays an important role in inducing the protective role of DHNs. Dehydrins 276
are a subfamily of group 2 LEA proteins that accumulate during late stages of seed devel- 277
opment, when plant water content often decreases. In addition, DHNs accumulate in veg- 278
etative tissues that are exposed to various stress factors related to dehydration (drought, 279
high salinity, low temperatures, wounding) [110]. Hundreds of DHN genes have been 280
sequenced in both dicotyledonous and monocotyledonous plant species [111]. The regu- 281
lation of these genes involves Ca?* signaling pathways as well as ABA and mitogen-acti- 282
vated protein kinase (MAPK) cascades. Dehydrins help to detoxify ROS binding to metal 283
ions and scavenging ROS through oxidative modification. Importantly, the characteristic 284
lysine-rich K-segment of dehydrins displays high membrane affinity. DHNs are known 285
to bind and to protect membranes and even DNA from potential damaging caused by 286
adverse environment. It has been shown that DHNss interact with plasma membrane in- 287
trinsic proteins that are important members of the aquaporin family [112,113]. The coor- 288
dination of intracellular functions, including stress response, depends on the flow of in- 289
formation from the nucleus to cell organelles and back. The expression of many nuclear 290
stress response genes is regulated by 3-phosphoadenosine 5-phosphate (PAP), knownas 291
a key player in chloroplast stress retrograde signaling, which accumulates during 292
drought, salinity and intensive light stress [114]. The concentrations of PAP are regulated 293
by phosphatase SAL1, which dephosphorylates PAP to Adenosine monophosphate 294
(AMP) and thus reduces PAP levels [115]. The studies on TaSal1 knockout wheat mutants 295
obtained using CRISPR-Cas9 confirmed PAP accumulation, resulting in enhanced stress 296
signaling and induced stomatal closure. Consequently, mutant plants had bent stem and 297
rolled-leaf phenotype with better regulation of stomatal closure and seed germination 298
[116]. 299

Plants’ early responses to a deficit of water and to a high content of salt in the soil are 300
very similar. The initial water stress is followed by alterations in photosynthesis and cell = 301
growth [117,118]. 302

2.3. Salinity 303

Salt stress is considered one of the most devastating environmental stresses that lim- 304
its the productivity and quality of agricultural crops worldwide. Nowadays, over 20% of 305
the world’s cultivable lands are affected by salinity stress and these areas are in a contin- 306
uous increase [119]. 307
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During the process of soil salinization, an excessive increase in water-soluble salts 308
occurs. The most common cations found in saline soils are Na*, Ca?, and Mg?, whereas 309
chloride, sulfates, and carbonates are the main source of anions. The high concentration 310
of dissolved salts in the root zone reduces the osmotic potential difference between the 311
soil and roots, which limits water uptake in plants, causing physiological water deficiency 312
and malabsorption of essential elements [120]. The toxic effect of a high concentration of 313
Na is the most prominent one — Na* is not needed for plant metabolism, whereas it com- 314
petes for binding sites with K+ that is essential for many cellular functions [121]. 315

In cells, exposition to salt stress primarily induces osmotic stress and ionic stress. 316
Sensing salt ions and hyperosmolality triggers Ca?* accumulation in the cytosol, activation 317
of ROS signaling, and alteration of membrane phospholipid composition. These signals 318
change phytohormone signaling, cytoskeleton dynamics, and the cell wall structure. 319
Moreover, various physiological and molecular changes inhibit photosynthesis and alter 320
sugar signaling, which may lead to plant growth retention [122]. 321

Several Na*-binding molecules have been demonstrated to act as sensors able to re- 322
spond and signal an excess of Na* [123]. The best-studied of them is the hyperosmolality- 323
gated calcium-permeable channel family OSCA that has been identified in many species, 324
including important cereals [124,125]. 325

The environment-triggered Ca?* influx signal in the cytoplasm is received by Ca?- 326
sensing proteins. Among those, calcineurin B-like proteins (CBLs) are responsible for 327
maintaining the ion transport and homeostasis through interactions with the serine/thre- 328
onine protein kinases (CIPKs) which activate Na*, K*, H*, NO*>, NH* and Mg? transport- 329
ers located in different cellular membranes. In addition, regulation of ROS and ABA sig- 330
naling is also modulated by CBL-CIPK complexes [118]. Regulation of Na* transport from 331
cytosol to the apoplast is mediated by the salt overly sensitive (SOS) pathway where the 332
specific complexes of CBLs-CIPKs interact with Na*/H* antiporter SOS1 that removes ex- 333
cessive Na*. Another CBL-CIPK complex activates Na*/H* exchange transporter 1 located 334
in the vacuole tonoplast to transport the excess of Na* to that organelle [118]. The CBL and 335
CIPK encoding genes seem to be conserved among dicots and monocots [126,127]. Seques- 336
tering of the ions into vacuoles helps to avoid stress but needs the osmotic potential ad- 337
justment in the cytosol by the accumulation of osmotically active substances such as pol- 338
yols, amides and amino acids, soluble carbohydrates, and quaternary ammonium com- 339
pounds. The toxic and osmotic effects of salt ions in the cytoplasm are usually reached by 340
scavenging ROS by antioxidant enzymes that also help to tolerate the toxic effects of salt 341
ions [128]. 342

Other early events in salt stress response include rise of cyclic nucleotides (e.g., 343
¢GMP) and ROS. The cGMP inhibits Na* influx via non-selective ion channel. In addition, 344
rise in cGMP and ROS induces transcriptional regulation that can activate MAPK cas- 345
cades. Rise in expression of MAPKs leads to increased osmolyte synthesis to alleviate salt- 346
induced osmotic stress. Osmolytes are also a signal for production of ABA, regulating 347
stomatal closure and therefore osmotic homeostasis and water balance [122]. Salt stress- 348
induced accumulation of ABA activates the sucrose non-fermenting-1 related protein ki- 349
nases 2 (SnRK2s). In turn, activated MAPKs and SnRK2s transduce signals to downstream 350
transcription factors to induce the expression of stress-responsive genes [129]. 351

The ability to resist saline environments differs remarkably among plants. Non-hal- 352
ophytic plants (i.e., glycophytes) are sensitive to salinity stress, and their growth and de- 353
velopment are hampered by a salinized environment. However, glycophytes exhibit nat- 354
ural variation in their salinity tolerance. Such variation often relies on an allelic variation 355
of genes involved in salinity stress response [130]. For example, it has been noticed that 356
under salt treatment to reduce sodium influx in response to osmotic stress, an aquaporin, 357
a cation antiporter, and a calcium-transporting ATPase were downregulated, while a 358
manganese transporter and a vacuolar-type proton ATPase subunit were upregulated in 359
the roots of a salt-tolerant accession of Poa pratensis L. when compared to a susceptible 360
accession of P. pratensis [131]. 361
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Halophytic plants have adapted to salinized environments and they show stimula- 362
tion of growth enhancement and productivity at moderate salinity (50-250 mM NaCl) 363
[128]. These plant species have developed specific mechanisms that regulate internal salt 364
load, e.g., many have developed specialized salt glands which excrete ions on the leaf 365
surface. Such structures are characteristic of C4 grasses belonging to the tribes Chlorideae, 366
Sporoboleae and Aeluropodeae. Other halophytes, including as well C4 grasses (e.g., Pas- 367
palum vaginatum Sw.), use bladder-like protrusions from epidermal cells into which ions 368
are sequestered and accumulated until these cells senesce and die [132,133]. The number 369
and density of salt glands or salt bladders depends on salt concentration in the soil during 370
plant growth indicating the dynamic adaptation to environmental conditions [128]. 371

Identification of genetic components and their variance underlying salinity tolerance 372
is a useful source for plant breeders [134]. The overexpression of several halophytic genes 373
in glycophytic recipients has been demonstrated to enhance abiotic stress tolerance [135]. 374
An increasing number of transcriptomic studies from salt-tolerant non-halophytic and 375
halophytic grasses grown under different salinity conditions will help to elucidate the 376
gene networking process behind the effective salinity response [136-138]. 377

3. Gene editing: a tool for developing stress resistant forage grasses 378

The biggest challenge for agriculture nowadays is to obtain plants that are resilient 379

to adverse environmental conditions that at the same time provide enough yield to fulfill 380
food and feed security in a sustainable way. In the case of perennial forage grasses, yield 381
is determined by repeated harvesting of herbage over as many years as possible. There- 382
fore, forage grass genotypes with improved survival and growth under abiotic stress con- 383
ditions are needed. 384
Genome editing tools have proven to be useful for achieving such aims, especially 385

the Nobel prize-winning discovery of application of RNA-directed Cas9 nuclease for ge- 386
nome editing [139,140] abbreviated as CRISPR-Cas9. Although this editing strategy was 387
immediately applied in model and crop plants, almost ten years ago [141-145], not much 388
has been achieved in the forage grasses landscape. The European GMO database EU- 389
GENIUS lists only green foxtail (Setaria viridis (L.) P. Beauv.) line 193-31 that has been 390
modified using CRISPR-Cas9 mediated mutagenesis. The expressed CRISPR-Cas9 system 391
targeted the coding region of the S. viridis homolog of the Zea mays L. ID1 gene, which 392
promotes flowering in maize. The deactivation of the homolog in S. viridis led to delayed 393
flowering. In the knockout line 193-31, the CRISPR-Cas9 DNA construct was segregated 394
away [146]. 395
To find out how many publications have been released showing edited genes in for- 396

age grasses, a search was carried out in the following databases: Scopus, Web of Science, 397
Google scholar and PubMed. The search included the scientific or the common names of 398
47 grass species (Table S1) or the name of each of the 12 subfamilies of Poaceae and in 399
addition, one of the following terms: “CRISPR”, “gene editing”, “genome editing”. The 400
outcome of the search is shown in Table 1. The genome of only six species, three annual 401
grasses and three perennial ones, all growing in temperate regions, has been targeted with 402
CRISPR-Cas tools. Genome editing in S. viridis, a model plant for C4 grasses, has been 403
reported three times. Most of the work has been done knocking out one gene using the 404
easiest genome editing approach, i.e., CRISPR-Cas9. 405
406

407

408

409

410

411

412

413
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Table 1. Gene editing in forage grasses. 414
Species Common name  Biome Life cycle Editing system  Publication
Lolium multiflorum Italian ryegrass Temperate Annual CRISPR-Cas9 [24]
Lolium perenne Perennial ryegrass Temperate Perennial CRISPR-Cas9 [24,28]
Panicum virgatum Switchgrass = Temperate Perennial CRISPR-Cas9 [22]
Lolium arundinaceum * Tall fescue Temperate Perennial CRISPR-Cas9/Casl2a [147]
Setaria italica Foxtail millet =~ Temperate Annual CRISPR-Cas9 [25,29,148]
L . CRISPR-Cas9_Trex2 [23]
Setaria viridis Green foxtail =~ Temperate Annual CRISPR-Cas9 [27.149]
" Festuca arundinacea. 415

CRISPR-Cas9 as a system for carrying out simple mutations (indels: insertions/dele- 416
tions) that change the reading frame of a coding region and therefore generate knockouts, 417
is straightforward and still mainly used for functional genomics. It consists of two main 418
components: the Cas9 nuclease from Streptococcus pyogenes and the short guide RNA 419
(gRNA) that targets the DNA sequence of interest. Designing the gRNA with precision 420
enables the simultaneous mutations of all alleles of a gene in a polyploid plant, as it was 421
the case for Panicum virgatum L. (tetraploid) and Lolium arundinaceum (allohexaploid, Ta- 422
ble 1). Specific genes that have been knocked-out in forage grasses are related to flowering 423
(PHYC of Setaria italica (L.) P.Beauv. and FON2 of S. viridis), tillering and branching (tbla 424
and tb1b of Panicum virgatum), meiosis (DMC1 of Lolium multiflorum Lam.), haploid induc- 425
tion (MTL of S. italica) and heat stress response (HSP17.9 of L. arundinaceum), apart from 426
the PDS gene used as endogenous marker (Table 1 and references therein). In most of the 427
cases the cited publications discuss the targeted mutagenesis method and results ob- 428
tained, but the phenotypic characterization of the mutants is limited and far away from 429
field trials. Interestingly, not only classical CRISPR-Cas9 system has been used, but also 430
CRISPR-Casl2a in the case of L. arundinaceum [26] and CRISPR-Cas9_Trex2 in the case of 431
S. viridis [23]. 432

The toolkit of CRISPR-Cas applications has expanded to around twenty different 433
techniques that allow diverse targeted modifications in the genome [36,150]. On one hand, 434
Cas enzymes from different bacteria have been characterized and adopted for use. Thatis 435
the case for Cas12a (former Cpfl), an enzyme from the Lachnospiraceae bacterium ND2006 436
that cuts DNA strands distal from the sequence recognized by the nuclease (the PAM site), 437
generating 4-5 nucleotide overhangs that enable an easy insertion of donor DNA se- 438
quences [151,152]. Other modifications of the CRISPR-Cas9 system imply the co-expres- 439
sion or the fusion of different proteins to the Cas9 nuclease, in its original or mutated 440
versions. CRISPR-Cas9_Trex2, for example, has the Trex2 exonuclease co-expressed with 441
Cas9 for increasing the mutation efficiency [23,153]. Importantly, an enzymatically inac- 442
tive variant of Cas9, called “dead Cas9” (dCas9) that maintains its specific DNA binding 443
ability, can be fused to transcription activators or repressors to regulate transcriptional 444
levels of endogenous genes [154]. Therefore, CRISPR-Cas tools are not only meant to in- 445
activate genes and create loss-of-function mutants, but also gain-of-function mutants can 446
be obtained. In addition, thanks to the Super Nova Tag (SunTag) system, the transcrip- 447
tional regulation can be potentiated. The SunTag contains peptide repeats that bind sev- 448
eral transcription factors for cooperatively activating a target gene [155]. Moreover, a gene 449
of interest may also be up- or downregulated epigenetically. For instance, CRISPR-dCas9 450
linked to DRM methyltransferase catalytic domain targets methylation to specificloci and 451
thereby inactivates the target gene [156]. 452

An alternative way of inducing a change in the levels of expression of a gene is alter- 453
ing its promoter sequence. In fact, the promoter can be even swapped by another one that 454
ensures e.g., higher levels of expression in a ubiquitous manner. Using CRISPR-Cas9 such 455
a substitution is possible, as shown for the ARGOS8 gene in maize, whose overexpression 456
was associated with improved grain yield under field drought stress conditions [157]. 457
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It should be pointed out that yield and stress resistances are among the most difficult 458
polygenic traits to improve through genetic engineering, but examples as the former one 459
give hope that it can be achieved by CRISPR-Cas. Another example is the knockout via 460
CRISPR-Cas9 of the main effect gene OsRR22 that controls salt tolerance in rice. Obtained 461
plants showed salt tolerance in growth chambers and no difference in agronomic traits 462
compared to wild type plants in field trials under normal growth conditions [158,159]. 463

As explained in section 2, abiotic stress responses are complex, linked to different 464
metabolic pathways and the genes involved in those mechanisms are mainly pleiotropic. 465
Fishing out a specific key player, a master gene to be mutated, could be possible in some 466
cases and it is worth trying. Since gene editing in grasses is in its early stages (Table 1), we 467
selected specific genes related to the four abiotic stresses discussed in this review and fig- 468
ured out if those target genes would need to be overexpressed or downregulated to gain 469
tolerance to specific stresses. If a candidate gene was found in forage grasses or at leastin 470
a Poaceae species, that species was selected, but this was not possible in all cases (Table 471
2). As shown in the table, there are genes that are related to more than one stress response. 472
For simplicity, it is not shown that, e.g., DHN11 seems to be also involved in cold and 473

drought stresses and COR410 appears to be related to drought stress as well. 474
Table 2. Target genes for improvement of abiotic stress tolerance. 475
Abiotic stress Target gene Species Role Proposed Strategy Publication
OspsbA Oryza sativa Stress response Upregulate [160]
LaHsfA2c Lolium arundinaceum”  Stress response Upregulate [56]
Heat OsCNGC14/CNGC16 Oryza sativa Stress sensing Upregulate [52]
SIMAPK3 Solanum lycopersicum  Stress response  Downregulate [161]
OsPYL1/4/6 Oryza sativa Stress response  Downregulate [162]
SIPHYA and SIPHYB1B2  Solanum lycopersicum _ Stress response  Downregulate [163]
EnCOR410 Elymus nutans Stress response Upregulate [84]
AcSnRK2.11 Agropyron cristatum  Stress response Upregulate [164]
Cold OsCOLD1 Oryza sativa Stress sensing Upregulate [165]
OsMYB30 Oryza sativa Stress response  Downregulate [166]
AtEGR2 Arabidopsis thaliana ~ Stress response  Downregulate [167]
AtCRPK1 Arabidopsis thaliana ~ Stress response  Downregulate [168]
CdDHN4 Cynodon dactylon Stress response Upregulate [169]
OsSYT-5 Oryza sativa Stress sensing Upregulate [170]
Drought AcSnRK2.11 Agropyron cristatum  Stress response Upregulate [164]
OsDST Oryza sativa Stress response  Downregulate [171]
TaSall Triticum aestivum Stress response  Downregulate [116]
HvCBP20 Hordeum vulgare Stress response  Downregulate [172]
ZmDHN11 Zea mays Stress response Upregulate [173]
AcSnRK2.11 Agropyron cristatum  Stress response Upregulate [164]
Salinity OsOSCA1.4 Oryza sativa Stress sensing Upregulate [134]
OsbHLH024 Oryza sativa Stress response  Downregulate [174]
HvlTPK1 Hordeum vulgare Stress response  Downregulate [175]
OsRR22 Oryza sativa Stress response  Downregulate [158]
" Festuca arundinacea. 476
Section 2 mentioned that plants detect an increase in temperature (in the soil or air) 477
when the structure and fluidity of their cell membranes change. Heat stress tends to make 478
membranes more fluid [176], which activates pathways through heat sensors like the 479
CNGCs. In theory, an increased expression of stress receptors can lead to an improved 480
response to stress. Consequently, the genes involved in the heat stress response signaling 481
pathway can be upregulated by overexpressing a heat sensor coding gene. In A. thaliana, 482
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an overexpression of the SYTA gene resulted in higher germination and seedlings survival 483
rates than in wild-type and knockout lines after heat stress exposition. Moreover, the over- 484
expression plants presented higher expression of both HSPs and HSFs, together with 485
lower levels of membrane lipid peroxidation than in non-overexpression lines [50]. All 486
these changes provide evidence that upregulating a heat stress sensor can improve the 487
stress tolerance of a plant. Therefore, overexpressing a similar gene in grasses, like a ho- 488
mologous of rice OsCNGC14 or OsCNGC16 gene, could result in forage species with 489
higher tolerance to heat stress. A similar approach can be followed by upregulating pro- 490
teins present in plants in a basal state that are involved in the responses to abiotic pres- 491
sures (Figure 1). Kinase proteins are suitable for this goal since they are involved in most 492
stress response pathways, regulating posttranslational modifications of other proteins as 493
a response to both abiotic and biotic stress [177]. Therefore, overexpressing a gene from 494
the SnRK2 family, a group of kinases specific to plants that have been shown to play im- 495
portant roles in abiotic stress regulation is an adequate approach [178]. The heterologous 496
overexpression of the gene TuSnRK2.3 from wheat in Arabidopsis produced plants that 497
had higher tolerance to drought conditions [179]. Similarly, another study was able to 498
overexpress the AcSnRK2.11 gene from Agropyron cristatum (L.) Gaertn., a forage grass 499
species, in Nicotiana tabacum L. The overexpression plants had significantly higher sur- 500
vival rates than the wild-type ones after recovery periods from cold stress and presented 501
significantly upregulated patterns of abiotic stress-related genes like dehydrins. Possibly, 502
upregulation of these protein kinases could provide drought, cold and salinity stress tol- 503
erance to forage grasses plants. 504

On the other hand, negative regulators of abiotic stress responses are also suitable 505
targets for abiotic stress tolerance improvement by downregulating them via genome ed- 506
iting (Figure 1). Possible candidates for downregulation could be enzymes that degrade 507
signaling molecules involved in stress response, like for example the inositol phospha- 508
tases [180]. As previously mentioned in this review, the phosphatase SAL1 negatively reg- 509
ulates plants’ response to drought [181]. Using the CRISPR-Cas9 system, scientists have 510
already generated Tasall knockout mutant wheat with fewer and smaller stomata, that 511
germinate and grow better under drought conditions [116]. Likewise, modifying the ex- 512
pression of transcription factors related to abiotic stress is another alternative for produc- 513
ing tolerant plants. The transcription factors of the bHLH family have been shown to par- 514
ticipate in abiotic stress regulation in different plant species [182]. In rice, the OsbHLH024 515
gene seems to negatively regulate salinity tolerance. This was demonstrated by generating 516
knockout plants using the CRISPR-Cas9 system. The mutated plants had an increased sa- 517
linity tolerance when compared to the wild-type ones. Additionally, the knockout lines 518
presented a reduced accumulation of sodium ions and ROS, but higher concentrations of 519
potassium ions than the control plants. Finally, the expression of genes encoding ion trans- 520
porter was upregulated in the knockout plants in comparison to the wild-type ones [174]. 521
All these variations suggest that the downregulation of homologues of the OsbHLH024 522
gene in grasses could provide them with salinity stress tolerance. 523

During the last years, innovative ways of inserting specific targeted mutations based 524
on CRISPR-Cas have been developed, e.g., base- and prime editing and for now, some 525
technical problems need to be overcome when applied to plants [183-185]. In these cases, 526
the Cas9 nuclease is mutated in such a way that it acts as nickase, cutting only one strand 527
of the targeted DNA. These strategies and the activation of homology- directed repair 528
(HDR) instead of Non-Homologous End Joining (NHE]), makes it possible to replace, in- 529
sert or delete large sequences and even to generate chromosomal rearrangements 530
[186,187]. 531

The possibilities to induce targeted changes with CRISPR-Cas in the genome of crops, 532
and specifically in forage grasses, are immense, not to mention the speed of obtaining the 533
desired traits compared to conventional breeding techniques. In addition, gene editing 534
can be easily multiplexed for targeting different sequences at one shot. Depending on the 535
specific trait and species, there can be bottlenecks to be removed like specific ways of 536
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transforming a plant or quality in the annotation of the genome. These obstacles are 537
thought to be solved with technical advances, however in the case of grasses, important 538
biological features need to be taken into consideration when aiming to combine gene ed- 539
iting with a breeding program. These challenges are elaborated in section 5. Here we 540
briefly mention that also biological characteristics of grasses related to the way they re- 541
produce could be changed with genome editing. 542

Forage grasses have a strong gametophytic self-incompatibility (SI) system that 543
makes inbreeding almost impossible. The two multi-allelic S and Z genes have since long 544
been known to govern Sl in grasses [188,189], and recently it was shown that two DUF247 545
genes are behind the S and Z loci [190,191]. With the sequences and molecular function of 546
these genes known, they would be an obvious target for generating self-fertile knockout 547
lines by gene editing. A similar approach has been used to develop self-compatibility in 548
potato [192]. 549

To obtain male sterile lines is also of importance in the case of forage grasses. The 550
way has been paved by research in maize, where genes Ms1 and Ms45 have been targeted 551
by CRISPR-Cas9 and male-sterile wheat lines for hybrid seed production have been ob- 552

tained [193,194]. 553
Also, double haploids can be generated artificially inducing haploids with a knock- 554
out of MTL, as it has been done already in S. italica (Table 1) [25]. 555

Finally, apomixis is present in several grass species, e.g., Poa pratensis, a species used 556
both in lawns, pastures, and leys. Inducing apomixis in other forage grasses would be of 557
importance for fixing hybrid vigor. Some steps towards achieving this aim have been 558
taken already in rice. Mutations using CRISPR-Cas of several genes related to the abolish- 559
ment of meiotic steps produced clonal diploid gametes. Then, parthenogenesis was in- 560
duced by ectopic expression in the egg cell of BABY BOOMI1 and clonal progeny was ob- 561

tained [184,195]. 562
diting
o bHLHO24 ,
mﬁh}lﬁlz « MYB30 Agrobacterium \
i+ psbA
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Figure 1. Proposed strategy for the improvement of abiotic stress tolerance in forage grasses using 564
genome editing. Four abiotic stresses (heat, low temperature, drought, salinity) hinder the overall 565
wellbeing of a non-tolerant grass (plant shown in yellow). Using the CRISPR-Cas system, different 566
genes can be targeted. Agrobacterium-mediated transformation or biolistics are suitable delivery 567
methods of the CRISPR-Cas+gRNAs complex for in-vitro culture modifications that lead towards 568
the generation of abiotic stress tolerant plant (blue rectangle). Once tolerant parental plants are ob- 569
tained (GE: gene editing), these can be crossed to produce a population able to overcome the effects 570
of abiotic stress (green rectangle). The green plant on the bottom left represents a tolerant grass. 571

4. Gene editing versus traditional genetic modifications 572

Genetic variation is fundamental to crop improvement. Modern plant breeding 573
started in the late 19t century with the advent of cross-breeding which still is the backbone 574
of most plant breeding efforts [196,197]. After the discovery that physical and chemical 575
factors can lead to heritable changes in genetic material, random mutagenesis became a 576
valuable tool for plant breeding to increase genetic diversity and to develop specific traits. 577
With the discovery of recombinant DNA technology in the 1970s, the development of new 578
combinations of genetic elements by splicing genes and regulatory elements from differ- 579
ent species became possible. The discovery of Agrobacterium-mediated transformation en- 580
abled scientists to introduce these novel combinations of genes into plant genomes to pro- 581
duce new traits [197]. While the introduction of transgenes into plant genomes has con- 582
tributed enormously to the understanding of gene functions in plants, the commercial ap- 583
plications have been limited to mostly herbicide tolerance and insect resistance, which 584
provide obvious advantages for farmers, but little direct, tangible benefits for consumers 585
in developed countries. Only a few commercial applications of transgenic plants with im- 586
proved yield and abiotic stress resistance are known. Wheat expressing the sunflower 587
transcription factor HaHB4 has been shown to provide improved water use efficiency re- 588
sulting in higher grain production [198]. Wheat HB4 marketed by the company Bioceres 589
Crop Solutions has been authorized for food and feed uses in a number of countries, such 590
as Argentina, Australia, Brazil and United States, but its cultivation is approved only in 591
Argentina [199,200]. Maize MON87403 contains the ATHB17 gene from A. thaliana encod- 592
ing a transcription factor of the HD-Zip II family with reported increase in ear biomass at 593
the early reproductive phase [201], which may provide an opportunity for increased grain 594
yield under field conditions [202]. Maize MON87460 expresses the Bacillus subtilis cold 595
shock protein B (CspB) resulting in increased grain yield under drought conditions [203]. 596
Both GMO events have been assessed by the European Food Safety Authority (EFSA) 597
[204,205], and MONS87460 was authorized for food and feed uses in the EU. Transfor- 598
mation techniques have been developed for most of the economically important forage 599
and turf grass [206], however, very few transgenic forage grasses have been registered for 600
commercial cultivation. The ISAAA GMO approval database lists only one transgenic 601
event in creeping bentgrass (Agrostis stolonifera L.) with tolerance to glyphosate (ASR368) 602
[207]. 603

Even though commercial cultivation of GM crops has brought clear benefits to farm- 604
ers and more indirect benefits to environment through reduced land and pesticides 605
[208,209], cultivation and use of transgenic plants for food and feed have been controver- 606
sial in many regions of the world, and especially in Europe. Agronomic, environmental, 607
human health, social and economic effects of transgenic crops have been comprehensively 608
reviewed by the US National Academies of Sciences in 2016 [210]. 609

Genome editing became possible with advances in protein engineering which al- 610
lowed production of site-directed nucleases (SDNs), such as zinc finger nucleases (ZFNs) 611
and transcription activator-like effector nucleases (TALENSs) [211,212]. As outlined in sec- 612
tion 3, genome editing has several advantages over the transgenic techniques including 613
precision, lower number of off-target effects, more streamlined production, multiplex pos- 614
sibility, as well as potential for modification of many more different traits. A few examples 615
include lower gluten content in wheat through simultaneous editing of alpha-gliadin 616
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genes [213], increased production of gamma-aminobutyric acid in tomato [214] or in- 617
creased accumulation of provitamin D3 in tomato [215]. The maize with an increased ex- 618
pression of ARGOSS gene, as detailed in section 3, contained no exogenous DNA se- 619
quences, thus, theoretically, it could be exempt from GMO regulation depending on coun- 620
try-specific policies. 621

The increased precision, low off-target potential and the absence of exogenous DNA 622
in some of the genome-edited plants suggested that genome editing would not be regu- 623
lated similarly to GMOs. It certainly has worked out that way in Japan, where Sanatech 624
Seed has commercialized high gamma-aminobutyric acid tomato [216]. In the EU, how- 625
ever, the Court of Justice of the European Union (CJEU, case C-528/16) ruled that organ- 626
isms resulting from mutagenesis techniques in legal aspects are GMOs and are subject to 627
the regulations laid down by the Directive 2001/18/EC. This applies to mutagenesis tech- 628
niques introduced since 2001, when the GMO Directive was adopted. Site-directed nucle- 629
ases can modify plant genomes according to three scenarios, SDN-1, SDN-2 and SDN-3 630
[217], where only SDN-3 scenario results in transgenic plants, while under SDN-1 and 631
SDN-2 scenarios no exogenous DNA is inserted into the genome. Under the CJEU ruling, 632
also the SDN-1 and SDN-2 techniques, including CRISPR-Cas fall under the GMO Di- 633
rective, while chemical and radiation random mutagenesis remains exempt according to 634
Annex IB of the Directive 2001/18/EC. The ruling provoked a public outcry from both ac- 635
ademia and biotech industry, which stressed that from a scientific point of view the ap- 636
plication of GMO Directive to products created by a much more precise technique than 637
random mutagenesis and transgenesis results in a disproportionate regulatory burden 638
[218-222]. It was also noted that this ruling leads to a situation when two identical prod- 639
ucts with the same mutation resulting in, e.g., herbicide tolerance trait could be regulated 640
in totally different ways. In addition, it would create an unsustainable situation with de- 641
tection, since no technology can determine the origin of simple mutations, such as single 642
nucleotide polymorphisms. Consequently, reliable detection methods for SDN-1 and 643
SDN-2 products are problematic [223]. This legal uncertainty makes genome-editing re- 644
search in the EU less appealing, as seeking regulatory approval for gene-edited products 645
would involve the same cumbersome procedure as for GMOs. So far there are no appli- 646
cations for regulatory approval involving gene-editing, although a few applications for 647
authorization of products obtained with CRISPR-Cas9 in SDN-3 scenario, e.g., maize DP- 648
915635-4 have been submitted to member states and are currently under review by EFSA 649
[224]. 650

According to the EU (Council Decision (EU) 2019/1904), the European Commission 651
(EC) conducted a study involving input from the Member States and different stakehold- 652
ers regarding the status of new genomic techniques (NGTs) including genome editing. 653
Within this framework, the EC mandated EFSA to issue a scientific opinion on the risk 654
assessment of plants produced by the SDN-1, SDN-2, and oligonucleotide-directed muta- 655
genesis techniques. EFSA has assessed the safety of plants developed using SDN-1 and 656
SDN-2 techniques and did not identify new hazards specifically linked to these techniques 657
compared to both SDN-3 and conventional breeding. In addition, EFSA concluded that 658
the existing Guidance for risk assessment of food and feed from GM plants and the Guid- 659
ance on the environmental risk assessment of genetically modified plants are sufficient, 660
but only partially applicable, to plants generated via SDN-1 and SDN-2 [225,226]. As part 661
of the ongoing effort to update the EU GMO legislation upon EC request, EFSA recently 662
produced an updated scientific opinion on cisgenesis and intragenesis [227]. The EFSA 663
scientific opinion concluded that no new risks were identified in cisgenic and intragenic 664
plants obtained with NGTs, as compared with those already considered for plants ob- 665
tained with conventional breeding and established genomic techniques, although only 666
limited information on such plants was available. EFSA determined that the use of NGTs 667
reduces the risks associated with potential unintended modifications of the host genome 668
resulting in fewer requirements for the assessment of cisgenic and intragenic plants, due 669
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to site-specific integration of the added genetic material. However, there was no legal ne- 670
cessity to overhaul the GMO legislation, since the EFSA concluded that the current guide- 671
lines were partially applicable and sufficient. Importantly, the data requirements could be 672
reduced on a case-by-case basis for the risk assessment of cisgenic or intragenic plants 673
obtained through NGTs. While cisgenesis and intragenesis is just one of the possible ap- 674
proaches for forage grass breeding, EFSA also recently issued a statement on criteria for 675
risk assessment of plants produced by targeted mutagenesis, cisgenesis and intragenesis 676
[228]. These criteria could be used by policy makers to design a more flexible and propor- 677
tionate risk assessment framework for gene edited plants. Recently, several regulatory 678
options have been proposed [229-231]. They range from maintaining the status quo (full 679
risk assessment of genome edited organisms as GMOs) to product-based regulation or 680
regulation based on the presence of foreign DNA in the genome. These two options would 681
be preferable for commercial deployment of genome edited crops, but they would require 682
substantial reexamination of GMO Directive and authorization procedure. The EC is ex- 683
pected to present a new policy and/or legal proposal by the second quarter of 2023. Mean- 684
while, other jurisdictions around the world have already developed legal framework for 685
genome edited plants, e.g., under Argentina NBT Resolution N° 21/2021, if a product 686
(plant, animal or microorganism) does not have a new combination of genetic material, 687
the product is non-GM and considered as conventional product [232]. Different regulatory 688
approaches are summarized in a recent review [233]. 689

Interestingly, the “EU GMO database of Deliberate Release into the environment of 690
plants GMOs for any other purposes than placing on the market (experimental releases)” 691
lists over 900 applications for field trials registered by the Member States since 2002 [149]. 692
Among those there is only one application for field trial of high fructan transgenic 693
ryegrass in 2006, and there are no applications for field trials of genome edited forage 694
grasses, although at least 14 field trials of plants edited with CRISPR-Cas9 have been au- 695
thorized [234]. 696

In conclusion, while there are a few basic studies on gene function in forage grasses 697
using genome editing technique as described in section 3 of this review, these are yet to 698
see commercial application. The main limiting factor for the investment in research and 699
development of genome edited forage grasses is probably the regulatory uncertainty, es- 700
pecially in the EU. Although edited plants without foreign DNA in the genome are ex- 701
pected to receive the least amount of regulatory scrutiny, they are also less prone to show 702
major changes in relevant traits. This is because gene knockouts or simple gene edits are 703
unlikely to result in complex phenotypes, such as enhanced abiotic stress tolerance, higher 704
yield or improved nutritional composition, especially considering the genetic complexity 705
that has hindered progress in characterization of the genes underlying such traits in forage 706
grasses. Nevertheless, as recent years have witnessed a dynamic development of gene 707
editing tools and genotype-independent transformation approaches along with increas- 708
ing genomic resources, the manipulation of plant responses may become possible to over- 709
come abiotic stresses when combining modern techniques and good breeding manage- 710
ment strategies. 711

5. Breeding grasses in the gene editing era 712

Forage grasses are outbreeding species and highly heterozygous due to the strong 713
gametophytic self-incompatibility (SI) system. Inbred line development is thus very diffi- 714
cult with strong inbreeding depression as a result. Therefore, cultivars of forage grasses 715
are usually synthetic populations [235]. Forage grass breeders usually start by phenotypic 716
selection of superior candidate genotypes for traits with high heritability, e.g., heading 717
date and disease resistance, among a large number of spaced plants. However, forage 718
grasses are sown in swards and because yield and other traits will be affected by compe- 719
tition in the swards, such traits cannot be selected on single spaced plants. The candidate 720
genotypes are therefore put in some form of progeny testing system, e.g., polycross to 721
produce half-sib (HS) families or bi-parental crosses producing full-sib (FS) families, and 722
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selection for yield and forage quality traits are based the performance of such families in 723
swards (genotypic selection). Synthetic populations/cultivars are constructed by crossing 724
the best genotypes based on their performance in the progeny test or by mixing HS or FS 725
families. The synthetic populations are further multiplied to obtain enough seed for es- 726
tablishing sward plots for testing in multi-location-year trials before the best candidate 727
cultivars are being submitted to official variety testing. A typical breeding cycle will take 728
10-15 years before synthetic cultivars are available for farmers. With the advent of high- 729
throughput molecular markers, whole-genome sequences, and genomic selection meth- 730
ods, the breeding cycle can be shortened [236,237]. 731

The success of a breeding program is very much dependent on the genetic variation 732
present in the initial breeding material. Many agronomically important traits, like yield 733
and adaptability to biotic and abiotic stresses, have been partly fixed within elite 734
germplasm, however, they still exhibit large genetic variation and are thus of primary 735
importance in breeding programs [238,239]. This variation might be employed for future 736
improvements of crop productivity and tolerance to stress; however, landraces, closely 737
related species and wild relatives can offer much wider and unexploited germplasm re- 738
sources [240,241]. Extensive studies of perennial ryegrass diversity among modern Euro- 739
pean cultivars revealed that modern cultivars are mostly related to ecotypes from north- 740
western Europe [242], while most of the natural genetic variation remains unexploited. 741
Later studies on the genetic structure of geographically diverse perennial ryegrass collec- 742
tion supported these findings and in addition showed that latitude was a prominent force 743
shaping the diversity of wild-growing perennial ryegrass populations [100]. Furthermore, 744
the ecotypes exhibit biomass and seed yielding potential similar to cultivars [243,244], 745
suggesting  that ecotypes could serve as valuable trait donors in breeding programs. 746
Field testing of many L. perenne ecotypes and cultivars at several Nordic and Baltic loca- 747
tions identified tetraploid Baltic breeding lines and diploid ecotypes from Eastern Europe 748
as being most winter hardy with stable performances across environments [245]. None of ~ 749
the cultivars were among the most stable entries, and diploid ecotypes displayed a larger 750
variation in heading date, regrowth, and winter survival than the cultivars. Thus, thereis 751
ample genetic variation still to be exploited within the genetic resources of perennial 752
ryegrass. Induced polyploidization is also widely exploited in forage crop breeding as one 753
of unconventional techniques to develop new superior yielding and abiotic stress tolerant 754
breeding material [246-248]. 755

To utilize transgenes or gene-edits in grass breeding, first, efficient methods for in- 756
troduction and regeneration in vitro need to be available in a range of independent geno- 757
types. In principle, introgression of new genes can either be introduced into the parental 758
clones of already existing varieties (variety-parent approach) or transferred into a new 759
base population (population approach) [235]. Repeated backcrossing and an efficient se- 760
lection system is needed to bring transgenes/gene-edits to homozygosity in the parental 761
clones. A side-effect of this could be increased inbreeding depression due to linkage drags 762
creating longer homozygous chromosomal segments. Traditional random insertion of 763
transgenes in several genotypes that are intercrossed to construct synthetic cultivars is 764
problematic due to the presence of multiple insertion sites, silencing and variable expres- 765
sion levels. The availability of complete genome sequences also of forage grass species, 766
notably L. perenne [249], and gene editing technologies, makes it possible to do induce 767
precise genome alterations. This will make it easier to develop synthetic cultivars of out- 768
breeding crops like forage grasses with stable expression of genetic modifications. 769

Integration of transgenic traits in perennial grasses and the challenges associated 770
with deployment and management of transgenic cultivars has been discussed by Smith et 771
al. [250] and Badenhorst et al. [251]. Using gene-drive technologies [252] would in princi- 772
ple be an efficient method for spreading gene-edits through breeding populations of 773
grasses. However, the risk of gene flow between cultivars and to feral populations is high 774
and would probably preclude practical use of such technologies. 775
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A pertinent question is what the most important targets for genetic engineering in
forage grasses would be. Genetic gain for yield has been modest due to the long breeding
cycles and extensive field testing [253,254]. The potential heterosis is only partially ex-
ploited in synthetic cultivars, and it is expected that great yield increased could be
achieved if F1 hybrids, which has been very successfully exploited in maize, could be de-
veloped [255]. Self-incompatibility, inbreeding depression, and the lack of male-sterile
lines for making hybrids are major obstacles for developing F1 hybrids. Inbreeding de-
pression needs to be tackled to implement self-fertile lines in forage breeding programs.
By generating a large number of self-fertile plants with diverse genetic backgrounds by
gene-editing, and selecting genotypes with good seed set, the prospects of developing in-
bred lines in forage grasses have never been better. These lines could be used for F1 hybrid
production and would also be very useful for functional studies. Other methods for cap-
turing heterosis would be the development of facultative apomixis. The evolution of apo-
mixis in natural populations and the challenges of utilizing apomixis in breeding has been
reviewed recently by Hojsgaard and Horandl [256].

6. Conclusions

In the current review, we focus on possible improvements of abiotic stress tolerance
in forage grasses using new genome editing tools. The potential impact of climate change
is described in relation to forage grass tolerance to four important abiotic stresses, heat,
low temperature, drought and salinity. We propose approaches for editing the genome of
grasses to regulate stress responses. Furthermore, we discuss the latest developments in
the regulatory framework for genome editing, especially with regard to the EU, and iden-
tify factors affecting the application of genome editing techniques for the improvement of
grasses. Finally, we address breeding strategies specific to the reproductive biology of
forage grasses and identify how genome editing could be used to facilitate breeding and
achieve food security in a sustainable way. In conclusion, we describe pathways for de-
veloping abiotic stress tolerance in forage grasses under climate change using genome
editing technologies, provided that an appropriate legal framework is developed.
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