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Abstract

Loop detectors are probably the widest-used technology for traffic state estimation. Previous research has shown that
loop detector positions within the link significantly affect the estimation of the macroscopic fundamental diagram
(MFD) of a given network. This paper examines the biases produced by the positioning of loop detectors on the MFD,
using both analytical and simulation methods, as well as empirical data from UTD-19. We confirm earlier results that
a uniform distribution of loop detector positions reduces the bias. For non-uniform distribution, we found that: (i)
the subsets of the MFD by the loop detector position help estimate whether the loop detector MFD will have a bias;
(ii) if the detectors in the network are positioned more downstream with a larger variation, the loop detector MFD is
more likely to have a discrepancy in position subsets of the MFD; (iii) a lower ratio of link length to green signal time
elevates the MFD bias as well. This research opens the possibility for the bias of MFD induced by the loop detector
data to be corrected by only using itself.
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1. Introduction1

The modeling of traffic flow dynamics in large urban networks has proven challenging over the years (Greenshields2

et al., 1935, Smeed, 1967, Mahmassani et al., 1984, Geroliminis and Daganzo, 2008, Daganzo and Geroliminis, 2008,3

Daganzo, 2005, Geroliminis and Boyacı, 2012, Laval and Castrillón, 2015, Geroliminis and Sun, 2011, Mazloumian4

et al., 2010, Leclercq et al., 2015, Zheng and Geroliminis, 2013, Buisson and Ladier, 2009, Yildirimoglu et al., 2015,5

Ding et al., 2017, Gayah et al., 2014, Huang et al., 2018, Ambühl and Menendez, 2016, Courbon and Leclercq, 2011,6

Leclercq et al., 2014, Ambühl et al., 2017, Aghamohammadi and Laval, 2022, Loder et al., 2019). An important7

branch of the efforts to control congestion is aggregated modeling. After Greenshields et al. (1935) observed for the8

first time the fundamental diagram of a single uninterrupted link, researchers took a profound interest in the aggregated9

relationship between average flow and density in entire urban signalized networks (Smeed, 1967, Mahmassani et al.,10

1984). The encapsulation of network traffic states into two variables is known as the Macroscopic Fundamental11

Diagram (MFD). Geroliminis and Daganzo (2008), and their empirical study in Yokohama, Japan demonstrated that12

the MFD is a convincing model to describe a network-level traffic performance. When aggregated at a network level,13

a high scatter of average flow and density from individual loop detectors nearly vanished and the points gather along14

the MFD curve.15

Analytical, empirical, and simulation studies have been conducted to observe the MFD. Contemporaneous with16

Geroliminis and Daganzo (2008), Daganzo and Geroliminis (2008) presented the method of cuts (MoC) using vari-17

ational theory (Daganzo, 2005) in a homogeneous signalized corridor, which sets the upper bound for the MFD.18

Stemmed from the literature, Geroliminis and Boyacı (2012) applied variational theory to parallel corridors with19

weak heterogeneity. Considering a strong heterogeneity of the real-world, Laval and Castrillón (2015) proposed the20

stochastic MoC (SMoC) to handle networks with different block lengths and signal timings.21

Numerous studies have verified that the MFD is applicable to other cities or arbitrary networks. In contrast to the22

findings from Geroliminis and Daganzo (2008) that the MFD is independent of demand, later researchers challenged23
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that the finding is only apposite for homogeneous networks with low congestion levels. Otherwise, the MFD reveals a24

trapezoidal shape and the hysteresis phenomenon (Geroliminis and Sun, 2011). A host of posterior literature suggested25

that the MFD shape is dependent on demand (Mazloumian et al., 2010, Leclercq et al., 2015), network topology and26

heterogeneity (Zheng and Geroliminis, 2013, Geroliminis and Boyacı, 2012, Buisson and Ladier, 2009), routing27

strategy (Yildirimoglu et al., 2015, Ding et al., 2017), and signal control schemes (Gayah et al., 2014, Huang et al.,28

2018) (Zhang et al., 2020).29

While various exogenous influential factors of the MFD have been exhibited, the endogenous factor–the bias30

induced by the nature of empirical data–has not been discussed to a comparable extent. Loop detector data is arguably31

the most prevailing empirical source for exploring various facets of the MFD. Some studies use probe data, but even32

this is usually fused with loop detector data (Ji et al., 2014, Ambühl and Menendez, 2016, Du et al., 2016, An et al.,33

2020, Saffari et al., 2022). Although the loop detector is compelling as it measures traffic flow at all times, many have34

faced limitations in solely exploiting it reliably for various problems (Kong et al., 2009, Kim et al., 2020, Min et al.,35

2022). Particularly, its installation position along the link is found to be critical to accurately represent the traffic flow.36

Buisson and Ladier (2009) first realized that the position of the loop detectors within the links plays a substantial37

role in defining the MFD shape. They split the measurements from the detectors in Toulouse, France into three38

subsets according to the physical distance to the downstream traffic signal. Closer to the signal, the free-flow branch39

of MFD showed a lower slope. The overestimation of the queue stood as the rationale. Using simulation, Courbon40

and Leclercq (2011) compared three positionings– constant, uniformly distributed, and normally distributed–of virtual41

detectors on a corridor with an identical block length. Although the constant distance setting displayed the largest42

bias, the detectors farther from the downstream signal reproduced the free-flow conditions well and the closer ones43

reproduced the queues well at the cost of the lower slope of the free-flow branch. Uniform distribution of the detectors44

showed the most accurate fit to the MoC. Leclercq et al. (2014) proved that the uniform distribution of detectors is45

also the best strategy for the homogeneous network to reproduce accurate traffic state. Ambühl et al. (2017) leveraged46

this finding to explain not only the discrepancy in the MFD drawn by the loop detector and floating car data from47

Zurich, Switzerland, but also the decreased average occupancy when the detectors closer to the downstream signal48

were excluded. They pointed out that the loop detector bias owes to the non-uniform placement and the link selection:49

the detectors are mostly placed at the beginning or the end of the link, and they are installed in certain links to control50

traffic signals and congestion.51

Although previous literature showed how the loop detector positions influence the shape of MFD and why the bias52

happens, still there are important gaps to be filled. First, two different biases induced by the nature of detectors are53

distinguished here: (i) the bias between the link MFD and the loop detector (LD)-MFD (henceforth, LD bias) and54

(ii) the bias between position-based subsets of LD-MFD (henceforth, subset bias). Note that the link MFD can be55

thought of as the ”ground-truth” as it gives Edie’s generalized traffic state definitions (Edie et al., 1963). The subset56

bias refers to MFDs using detectors that belong to a particular location subset: upstream, midstream or downstream57

within the link. Notice that Courbon and Leclercq (2011) and Buisson and Ladier (2009) concluded that the detector58

position affects the MFD without distinguishing these two biases although what they measured turned out to be LD59

bias and subset bias, respectively. Second, identifying network characteristics that contribute to each bias is required60

since the literature used only a single network when explaining the existence of bias. Third, even though the uniform61

distribution of the positions is proved to be the best strategy (Courbon and Leclercq, 2011, Leclercq et al., 2014),62

we need a further investigation on how an arbitrary distribution of detector positions affects the MFD. Lastly, as63

mentioned in Ambühl et al. (2017), the variability of block lengths and the spatial density across the network should64

be taken into consideration.65

To bridge these gaps, we (i) analytically investigate the condition and the extent of the LD bias and subset bias66

occurrence in a corridor, (ii) empirically analyze the characteristics of loop detector position that generate subset bias,67

and (iii) simulate the impact of different network topology on the bias. These three objectives are addressed in the68

remainder of the paper.69

2. Analytical Corridor Approximation70

Recall that the LD bias refers to the bias between the link MFD and the LD-MFD and the subset bias refers to71

the bias between position-based subsets of LD-MFD. In this section, we assume a homogeneous corridor that obeys72

a symmetric triangular fundamental diagram (FD) to analyze LD bias and subset bias. As customary to simplify73
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the analysis, we will use isosceles fundamental diagrams (free-flow speed = wave speed) since one obtains the same74

solutions using a general triangular FD (Laval and Castrillón, 2015, Laval and Chilukuri, 2016).75

The corridor to be analyzed consists of N links with an identical block length of l. The traffic signal on all76

intersections is fixed with green time, G, and red time, R, with no offset. The symmetric triangular FD has a free-flow77

speed of u, a critical density of kc, and a capacity of Q. As shown in Fig. 1(a) the queue initially grows at a shock78

wave speed s in the upstream-most intersection, depicted as a state A, and clears at a wave speed w. The traffic state79

of zero flow with zero density, i.e., a void, is depicted as a state O. The traffic state of the capacity and the jam density80

are each denoted as state C and state J, respectively. The variables and constants used are summarized in Table 1.81

Note that the symbols with asterisks are constants, and otherwise, variables.82

Table 1: Descriptions of constants and variables

Traffic states Physical attributes of the network

O Void state* l Link length

A Current state N The number of links*

C Capacity state* Nu The number of links with loop detector located upstream of critical position

J Jam state* Nd The number of links with loop detector located downstream of critical position

Fundamental Diagram Signal Setting

u Free-flow speed* R Red signal time

w Wave speed* G Green signal time

s Shock wave speed n Ceiling of time in unit of cycle length for 1st vehicle in green arrives at next intersection

kc Critical density* Dimensionless parameter

Q Capacity* λ Link length to critical link length ratio (= l
lc

)

ρ Red time to green time ratio (= R
G )

(a) (b)

Fig. 1. Initial conditions: (a) A fundamental diagram with different shock waves; (b) Time-space diagrams of the saturated and unsaturated
condition
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Here, it is important to introduce two dimensionless parameters, the mean block length to critical length ratio, λ,83

and the mean red signal time to mean green signal time, ρ, which significantly influence the MFD shape according to84

Laval and Castrillón (2015). The critical length, l∗, corresponds to the minimum block length that prevents spillbacks.85

Then λ is expressed as:86

λ =
l
l∗
=

l
G/( 1

u +
1
w )
=

l
G/ 2

u

=
2l
uG

(1)

Under the given settings, all possible patterns of the time-space diagram can be categorized according to four87

variables: (i) s, (ii) λ, (iii) ρ, and (iv) n. First of all, the shock wave speed becomes the primary determinant. It88

decides whether the initial condition influences the downstream links. The critical state A and the corresponding89

critical shock wave, sc, are obtained where the queue clearance wave intersects the end of the green phase (Fig. 1(b)).90

Thus, the critical shock wave speed is the slope between the origin and the queue dissipation point, sc =
u

2ρ+1 . If the91

shock wave speed is steeper than the critical shock wave speed (state A′), the first queue clearance wave is obstructed92

by the queue of the next red phase. This conveys that the queue accumulated in the red signal phase loses a chance93

to completely vanish before the next cycle. On the other hand, if the shock wave speed is lower (state A′′), the94

queue clearance wave traverses through the green phase, causing the initial state A′′ to spread to the downstream link.95

Hereafter, the initial condition that exceeds or equals the critical shock wave speed is considered a saturated initial96

condition, otherwise an unsaturated.97

Under saturated conditions, the time-space diagram of the upstream-most intersection is duplicated at downstream98

links, while unsaturated initial conditions do not provide this guarantee. The uncertainty of the repetition ascribes to99

the spread of the initial state to the downstream links. This causes some cases of unsaturated initial condition to not100

be expressed in a closed form. Hence, we only address the saturated condition in the following.101

Fig. 2 depicts all possible types of time-space diagrams in the saturated initial condition. It is confirmed for all102

three cases that the traffic state patterns recur throughout the corridor. Importantly, the existence of the jam state and103

the coverage of the void state distinguish three cases. As indicated by a blue line, the difference originates from the104

time it takes for the first vehicle in a green phase to reach the next intersection.105

(a) Case 1 (b) Case 2 (c) Case 3

Fig. 2. Three types of time-space diagram at the saturated initial condition

A method to derive the MFD from the time-space diagram is explained in the following. Note that only the106

downstream links of the upstream-most intersection are considered. We assume N detectors are installed in each of107
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the N links, and the aggregation interval is a multiple of a cycle length. This enables setting the aggregation interval108

simply as a cycle length. In order to obtain the LD-MFD, firstly, draw a horizontal line on a time-space diagram109

at the position of a detector by the amount of the aggregation interval. Second, calculate the weighted average of110

the traffic state, i.e., a pair of density-flow, using the time proportion of each state as a weight. This corresponds to111

the FD of a detector, which is then a linear combination of traffic states O, C, and J. Lastly, for every time interval112

measured, average the density-flow pair of all detectors to obtain the LD-MFD (Equation 2). While the LD-MFD uses113

the proportion of time as a weight, the link MFD can be obtained by using the proportion of the area of each traffic114

state throughout the link as a weight. The link MFD in the saturated initial condition equals to the intersection point115

where the stationary cut and the forward cut of MoC.116

qLD =
Σiqili
Σili
, kLD =

Σikili
Σili

(2)

where qLD is the average flow, kLD is the average density, and qi and ki are the flow and density measured by the loop117

detector i of installed link length of li.118

The MFD for each case through the above process is summarized in Table 2. We now disentangle the constraints119

and MFD formulae; i.e., how λ, ρ, and n act as the keys to distinguish these three.120

2.1. Case 1: No queues121

According to Fig. 2(a), the first vehicle of the green phase never encounters the red phase and so do all other
vehicles. Notice that only the void and the capacity state exist. This is only possible when the time for the vehicle to
complete passing the link is equal to a multiple of a cycle length. This constraint is simplified using definitions of λ
and ρ as follows:

l
u
= n(R +G) (3a)

λ = 2n(ρ + 1) (3b)

Since the traffic states are homogeneous along the link, MFD is not subject to any bias no matter where the detector122

is positioned. In any of the positions during a cycle R + G, the void state O and the capacity state C are measured123

by the amount of the red time R and the green time G, respectively. Thus, the FD of all loop detectors correspond to124
ρ

1+ρ ·O +
1

1+ρ · C + 0 · J, so do the MFD.125

2.2. Case 2: Jam exists & Voids are finite126

Compared to Case 1, Fig. 2(b) bares the jam state for a certain length. The jam accumulates because some
vehicles departed at a previous intersection cannot pass the intersection ahead being blocked by the red time. This
happens when the first vehicle of the green time was able to pass the next intersection without stopping but was not
the foremost vehicle passed during its green time. That is, the time for the first vehicle to arrive at the next intersection
is a multiple of a cycle length plus a partial or a full amount of green time. This condition is formulated as below:

n(R +G) <
l
u
≤ n(R +G) +G (4a)

2n(ρ + 1) < λ ≤ 2n(ρ + 1) + 2 (4b)

As traffic states are non-homogeneous along the link, identifying the critical position that turns the void state into the127

jam state is necessary. Separating the travel time into a multiple of a cycle length and the remainder gives us the length128

of the jam state. The distance vehicle traveled during n-multiple of cycle length is u ·n(R+G). The remaining distance129

of l − u · n(R +G) is bisected by the void state and the jam state due to the symmetry of the FD. Then, the length of130

jam state and the void state are (l−u ·n(R+G))/2 and (l+u ·n(R+G))/2, respectively. If the loop detector is installed131

downstream of the critical position, the jam state J and the capacity state C will be each measured for the red time R132

and the green time G during an aggregation interval (R+G). On the other hand, if the detector is installed at upstream133

of the critical position, the red time and the green time are each occupied by the void state O and the capacity state134
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C. With specifying that Nd and Nu detectors are installed at each downstream and upstream of critical position, the135

LD-MFD will have a linear combination of ρ
1+ρ ·

Nu
Nu+Nd

·O + 1
1+ρ · C +

ρ
1+ρ ·

Nd
Nu+Nd

· J.136

Here, the bias of LD-MFD is unavoidable unless the number of detectors in each position label is proportional to137

its length: i.e., Nd ∝ (l − u · n(R +G))/2 and Nu ∝ (l + u · n(R +G))/2. Namely, the link MFD, which is theoretically138

a weighted average of each traffic state’s area, can be simply calculated by substituting corresponding lengths to the139

number of detectors. Similar to Buisson and Ladier (2009), partitioning the loop detectors by their position gives us140

the position-based subsets of the MFD. For example, the downstream subset can be obtained by substituting Nd = 1141

and Nu = 0 to the LD-MFD. The corresponding MFD expressions can be found in Table 2.142

2.3. Case 3: Jam exists & Voids are infinite143

Compared to Case 2, jam is accumulated for a shorter period of time and the void fills the gap (Fig. 2(c)). The red144

time is already initiated before the first vehicle of the green time arrives at the next intersection. The amount of red145

time elapsed before the jam accumulation remains as the void. This is only available when the link travel time of the146

vehicle equals a multiple of a cycle length plus a full green time plus a partial red time, as below.147

n(R +G) +G <
l
u
< n(R +G) +G + R (5a)

2n(ρ + 1) + 2 < λ < 2(n + 1)(ρ + 1) (5b)

The critical position is obtained by the relationship between the free-flow speed u and the queue clearance duration148

G. Using that the jam always dissipates exactly before the red phase begins, the spatial length of the jam state is u·G/2.149

The loop detectors located downstream of the critical position will measure the void state O for time l
u −n(R+G)−G,150

the capacity state C for green time G, and the jam state J for the rest of a cycle. At the upstream of the critical position,151

the void state O and the capacity state C are observed by the amount of red time R and the green time G, respectively.152

With the assumption of the number of detectors Nd and Nu, the weighted average gives LD-MFD. The link MFD and153

the position-based subsets are calculated likewise to Case 2 and one can refer to Table 2.154

2.4. Discussions on Subset bias and LD bias155

Fig. 3 illustrates MFD realizations of the corridors with different network parameters. The FD is drawn at the156

back for comparison with the MFDs. Case 1 shows that neither the LD bias nor the subset bias resides in MFD since157

the corridor has an ideal signal setting that the queue never forms. Regardless of n and λ, the MFD of a corridor158

always lies exactly on the free-flow branch of FD and only moves along the branch depending on the ρ. Specifically,159

the yellow-green dot displayed a much slower critical shock wave speed and a smaller average density than the blue160

dot due to its higher ρ value. This means that insofar as two different corridors have the same ρ value, their MFDs161

stand identical regardless of different n.162

In contrast to Case 1, the difference between MFDs are discernible in Fig. 3(b) and 3(c). The link MFD, LD-163

MFD, upstream subset, and downstream subset are labeled with a solid circle, gray-filled symbols, open circle, and164

open square, respectively. The dotted line shows the possible range between the upstream and downstream subsets to165

which the LD-MFD can fall on. Slopes that connect the origin and the MFD are considered free-flow branches of the166

corresponding MFD. In the saturated initial condition, the bias takes place only in average density values. The average167

flow is always 1
1+ρQ, which aligns with the stationary cut of MoC (Daganzo and Geroliminis, 2008). Computations168

reveal that the link MFD corresponds to the point where the stationary cut and the forward cut intersect (Fig. 3(d)).169

2.4.1. Subset bias170

We can identify the subset bias through the comparison between position-based subsets, i.e., the difference be-171

tween the downstream subset and the upstream subset. It is prominent that the downstream subset underestimates the172

average free-flow speed while the upstream subset overestimates it. As the slope of the upstream subset is always173

fixed with the free-flow speed of FD, u, the downstream subset holds the key to determining the subset bias.174

In Case 2, the downstream subsets fall exactly on the congestion branch of FD regardless of the parameters. The175

magnitude of the subset bias, which is 2ρ
1+ρkc with respect to the average density, is determined only by the value176

of ρ. Larger ρ decreases the maximum average flow and increases the subset bias. This means that the subset bias177
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is inevitable unless ρ is negligibly small. Insofar as two corridors have the same ρ, the position-based subsets are178

identical despite different link MFDs.179

In Case 3, the downstream subsets do not lie on the congestion branch. As the subset bias with respect to the180

average density equals (2(n + 1) − λ
1+ρ )kc, the subset bias gets smaller when λ approximates the right-hand side181

of the constraint of Case 3 (Equation 5b). This is because the corridor becomes more free-of-congestion with the182

approximation of λ. We can also notice that larger ρ does not guarantee a larger subset bias.183

(a) Case 1 (b) Case 2

(c) Case 3 (d) Comparison with Method of Cuts

Fig. 3. The representation of the LD bias and the subset bias (Note: Link MFD is always identical to the intersection of the MoC forward cut and
stationary cut)
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Table 2: Summarize of link MFD, LD-MFD, and position-based subsets

Case 1: λ = 2n(ρ + 1), n = 0, 1, 2, · · · The proportion of time during a cycle

LD position Length Detector count O(0, 0) C(kc ,Q) J(2kc , 0)

- l N R
R+G =

ρ
1+ρ

G
R+G =

1
1+ρ 0

Linear combination ρ
1+ρ ·O +

1
1+ρ · C + 0 · JMFD

(LD = Link) Coordinate
(

1
1+ρ kc , 1

1+ρ Q
)

Case 2: 2n(ρ + 1) < λ ≤ 2n(ρ + 1) + 2, n = 0, 1, 2, · · · The proportion of time during a cycle

LD position Length Detector count O(0, 0) C(kc ,Q) J(2kc , 0)

Downstream of

critical position

l−u·n(R+G)
2

= uG
2 ( λ2 − (1 + ρ)n)

Nd 0 G
R+G =

1
1+ρ

R
R+G =

ρ
1+ρ

Upstream of

critical position

l+u·n(R+G)
2

= uG
2 ( λ2 + (1 + ρ)n)

Nu R
R+G =

ρ
1+ρ

G
R+G =

1
1+ρ 0

Linear combination ρ
1+ρ ·

Nu
Nu+Nd

·O + 1
1+ρ · C +

ρ
1+ρ ·

Nd
Nu+Nd

· J
LD-MFD

Coordinate
(

1
1+ρ (1 + 2ρ

Nd
Nu+Nd

)kc , 1
1+ρ Q

)
Linear combination ρ

1+ρ · (
1
2 +

1+ρ
λ n) ·O + 1

1+ρ · C +
ρ

1+ρ · (
1
2 −

1+ρ
λ n) · J

Link MFD
Coordinate

(
(1 − 2ρ

λ n)kc , 1
1+ρ Q

)
Position-based

subset LD-MFD
Coordinate

Downstream:
(

1+2ρ
1+ρ kc , 1

1+ρ Q
)

Upstream:
(

1
1+ρ kc , 1

1+ρ Q
)

Case 3: 2n(ρ + 1) + 2 < λ < 2(n + 1)(ρ + 1), n = 0, 1, 2, · · · The proportion of time during a cycle

LD position Length Detector count O(0, 0) C(kc ,Q) J(2kc , 0)

Downstream of

critical position

uG
2 = l

λ Nd

l
u −n(R+G)−G

R+G

= λ−2
2(1+ρ) − n

G
R+G =

1
1+ρ

(n+1)(R+G)− l
u

R+G

= n + 1 − λ
2(ρ+1)

Upstream of

critical position
l − uG

2 = l(1 − 1
λ ) Nu R

(R+G) =
ρ

1+ρ
G

R+G =
1

1+ρ 0

Linear combination
( λ−2

2(1+ρ) −n)·Nd+
ρ

1+ρ ·Nu
Nu+Nd

·O + 1
1+ρ · C + (n + 1 − λ

2(1+ρ) ) ·
Nd

Nu+Nd
· J

LD-MFD
Coordinate

(
( 1

1+ρ + (n + 1 − λ
2(1+ρ) )

2Nd
Nu+Nd

)kc , 1
1+ρ Q

)
Linear combination ( 1+2ρ

2(1+ρ) −
n+1
λ ) ·O + 1

1+ρ · C + (n + 1 − 1
2(1+ρ) ) · J

Link MFD
Coordinate

(
2(n+1)
λ kc , 1

1+ρ Q
)

Position-based

subset LD-MFD
Coordinate

Downstream:
(
( 1−λ

1+ρ + 2(n + 1))kc , 1
1+ρ Q

)
Upstream:

(
1

1+ρ kc , 1
1+ρ Q

)
8

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 December 2022                   doi:10.20944/preprints202212.0178.v1

https://doi.org/10.20944/preprints202212.0178.v1


2.4.2. LD bias184

LD bias is clearly recognizable by the green and pink symbols in each Fig. 3(b) and 3(c). LD-MFDs can take185

place anywhere between the upstream and downstream subsets, depending on the distribution of detectors. The link186

MFD is generally closer to the upstream subset than the downstream subset under this setting because the length of187

the jam state is shorter than half of the link length. LD bias will converge to zero when the number of detectors of188

each position is proportional to its length: e.g., Nd ∝ (l − u · n(R + G))/2 and Nu ∝ (l + u · n(R + G))/2 for Case 2.189

This validates the findings from Courbon and Leclercq (2011) that the uniform distribution of the detectors across the190

corridor can best emulate the MoC.191

Since the range to which LD-MFDs and link MFDs can exist is equal to subset bias, the estimation of subset bias192

helps conjecture the maximum amount of LD bias. In terms of Case 2, the size of the range of LD-MFD with respect193

to the average density is 2ρ
1+ρkc. The range increases as ρ increases, which might lead to a higher LD bias. When194

having the same ρ value, the possible range of LD-MFD is shorter in Case 3 than in Case 2. This is because the LD195

bias of Case 3 is affected by λ, ρ, and n. Especially for Case 3, the possible ranges of LD-MFD of two corridors with196

equal n and λ are proportional to the rate of ρ.197

2.4.3. Remarks198

Under the saturated initial condition, the subset bias is inevitable unless the traffic signal system (i) is perfect that199

never forms a queue (Case 1) or (ii) has a negligibly small red time portion under Case 2, or (iii) satisfies diminutive200

2(n+1)−λ/(1+ρ) under Case 3. The LD bias occurs unless the signal timing is perfectly programmed or the detector201

positions are uniform. When LD bias is directly immeasurable, the subset bias can be used to estimate the maximum202

amount of LD bias.203

3. Empirical Data Analysis204

We recognized previously that some cases have no bias regardless of loop detector positions. When a bias was205

noticeable, the LD bias and subset bias were clearly distinguished. We now validate the applicability of the findings206

in the empirical data.207

Courtesy of the UTD-19 dataset provided by Loder et al. (2019), the loop detector data for 40 cities worldwide208

are easily accessible. Aghamohammadi and Laval (2022) found the discrepancy of the MFD parameters in the dataset209

and raised the existence of bias from the loop detector position and its coverage. As mentioned earlier, no city210

can avoid LD bias unless loop detectors are uniformly distributed or the signal timing is perfectly planned, which211

is not expected in the real world. Unfortunately, LD bias cannot be accurately estimated without complete signal212

information. However, the subset bias, which can be solely obtained by the loop detector data, enables predicting the213

possible range of LD bias. This conveys that determining the factors affecting the extent of the subset bias will help214

understand LD bias. In this respect, we aim to investigate specific characteristics of the loop detector position that215

induces the subset bias.216

Emulating the processing criteria from Aghamohammadi and Laval (2022), 10 cities (Paris, Bolton, Birmingham,217

Groningen, Innsbruck, Manchester, Melbourne, Rotterdam, Torino, and Utrecht) are ruled out due to the long ag-218

gregation intervals and incomplete occupancy measurements. Bordeaux and Constance are also excluded due to the219

incomplete loop detector information. Hereafter, the characteristics of loop detectors are explored for the remaining220

28 cities.221

The loop detector installation information of each city is described in Table 3. The number of time intervals can222

be viewed as the temporal sample size. The number of detectors shows the sample size to compute average network223

flows and occupancies for a given temporal point. The area is calculated with a convex-hull method that encircles the224

edge of LD-installed links. As the number of detectors and the area covered differ by city, the spatial density of loop225

detectors is calculated by dividing the former by the latter. The length distribution of LD-installed links is represented226

with a mean, standard deviation, skewness, and kurtosis, and so does the distance distribution from the detector to the227

downstream traffic signal. The distribution of the relative position of the detector, which is the distance divided by the228

link length, is also presented for normalization.229
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Table 3: Descriptive statistics related to loop detector in 28 cities

Length of
LD-installed

links (m)

Distance from LD
to downstr.
signal (m)

Relative Position
of LD
(%)City

No. of

time

interval

No.

of

detector

Area

covered

(km2)

Detector

Density

(#/km2) mean std skew kurt mean std skew kurt mean std skew kurt
Augsburg 5757 445 29.3 15.2 219 167 1.7 3.8 37 36 5.6 38.3 24 19 1.3 1.1
Basel 2016 60 2.0 30.7 214 127 1.5 2.4 74 57 5.1 31.3 41 22 0.7 -0.6
Bern 2016 441 20.6 21.4 256 216 1.2 0.9 33 74 8.1 81.5 17 23 1.9 3.2
Bremen 6720 462 100.3 4.6 324 241 1.5 4.0 152 208 2.1 4.4 45 34 0.3 -1.6
Cagliari 24000 80 25.5 3.1 554 304 0.6 0.5 283 231 0.7 -0.6 49 29 0.1 -1.3
Darmstadt 17873 204 29.8 6.8 312 239 1.6 2.6 202 206 1.81 4.8 61 33 -0.6 -1.3
Essen 8159 36 11.4 3.2 419 180 0.9 0.4 270 160 1.3 2.3 66 26 -0.7 -0.8
Frankfurt 288 73 1.8 39.6 216 141 1.0 1.3 79 101 1.9 3.2 33 25 0.6 -1.2
Graz 2880 246 13.0 18.9 229 169 2.3 5.8 94 97 3.3 14.1 47 29 0.3 -1.4
Hamburg 50142 325 18.6 17.5 218 178 2.0 5.3 66 114 4.7 27.8 32 27 1.0 0.0
Kassel 1171 422 54.4 7.8 291 236 1.6 3.0 77 150 4.0 17.8 28 27 1.3 0.5
London 6454 4736 190.1 25.0 218 182 2.6 10.5 124 122 4.4 32.6 64 28 -0.6 -0.9
Los Angeles 2879 1643 55.6 29.6 214 122 1.5 3.0 78 30 4.6 54.4 45 21 0.3 -1.1
Luzern 175116 135 7.2 18.7 172 114 1.6 2.9 82 91 2.6 7.6 49 30 0.1 -1.3
Madrid 4560 977 35.1 27.9 182 101 2.0 8.6 95 53 2.5 13.9 58 24 -0.4 -0.9
Marseille 14400 146 45.4 3.2 205 117 1.6 3.3 158 102 1.3 2.0 77 22 -1.6 1.7
Munich 288 280 138.9 2.0 390 314 2.1 5.7 146 201 2.2 5.7 33 27 0.8 -0.6
Santander 2239 190 9.4 20.3 246 210 2.1 4.5 119 164 3.1 11.7 48 34 0.1 -1.6
Speyer 6720 136 8.4 16.2 302 214 1.0 0.3 31 22 0.0 -1.0 16 18 2.0 3.6
Strasbourg 9349 138 27.6 5.0 281 150 1.5 3.4 156 106 1.5 4.3 56 25 -0.4 -0.8
Stuttgart 2304 20 46.6 0.4 969 569 0.2 -1.1 662 408 0.2 -1.3 70 20 -0.4 -0.1
Taipei 6620 353 41.5 8.5 213 86 1.7 5.3 107 62 1.9 7.8 50 17 0.0 -0.7
Tokyo 17857 228 23.5 9.7 165 115 3.8 19.1 117 82 4.3 28.6 73 18 -1.6 2.6
Toronto 5856 163 5.4 30.2 241 118 1.8 7.1 172 109 2.6 11.8 70 17 -1.1 0.4
Toulouse 3360 455 87.9 5.2 265 178 1.9 4.0 224 163 2.2 5.7 85 17 -2.3 5.2
Vilnius 481 444 15.2 29.2 238 160 1.7 3.4 82 114 3.1 10.4 38 31 0.9 -0.6
Wolfsburg 6720 104 25.2 4.1 540 383 0.6 -1.0 271 335 1.5 1.5 46 34 0.0 -1.7
Zurich 3359 1012 65.5 15.5 255 228 2.6 10.3 68 116 4.1 23.0 31 30 0.9 -0.6
Average 13914 499 40.54 14.98 298 145 48
Std 33168 902 43.29 11.01 163 124 18

To consider the different link length distributions by city, a relative position along the link is used as the classifica-230

tion criteria. The lower the relative position, the closer the loop detector is to the downstream signal. The histogram231

of the relative position for each city can be found in Fig. 4. The distribution highly differs by cities; e.g., right-skewed,232

left-skewed, inverted bell, etc. In particular, the loop detectors are located mostly downstream in Augsburg, whereas233

Toulouse has most installations upstream.234

The detectors with a relative position of less than 33 percent are labeled downstream detectors, greater than 67235

percent as upstream detectors, and otherwise considered midstream detectors. Fig. 5 illustrates the spatial distribution236

of loop detectors for each city. The detector density is visibly comparable with the link color. In Augsburg, where237

445 detectors cover 29.3 square kilometers with a detector density of 15.2 detectors per square kilometer. In contrast,238

Toulouse with a detector density of 5.2 per square kilometer is much sparser and with loop detectors positioned mostly239

upstream.240
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Fig. 4. Histogram of the relative position of loop detectors

Fig. 5. Links colored by the loop detector position: street maps (Boeing, 2017) (gray), the link with LD located downstream (orange), midstream
(green), upstream (purple), and convex-hull area covered by LD (light-coral)

11

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 December 2022                   doi:10.20944/preprints202212.0178.v1

https://doi.org/10.20944/preprints202212.0178.v1


As the variations of the relative position distribution and the spatial density are discovered, we now draw MFDs.241

It is conspicuous that some cities have different slopes of a free-flow branch by the position of loop detectors, while242

others present the same slope (Fig. 6 and Fig. 7). For example, in Bern, the downstream subset MFD has a relatively243

low slope compared to the midstream and the upstream. In Bremen, however, the subset MFDs are all overlapped244

regardless of positions. This aligns well with the observations from the analytical approach that the subset bias is not245

always extant.246

(a) (b)

Fig. 6. Representation of subset bias: (a) Bern - subset bias observed; (b) Bremen - no subset bias observed.

However, the expectation that heterogeneous complex networks would always retain subset bias, is contradicted.247

This also tackles the contentions of the past literature that the downstream loop detectors tend to overestimate average248

occupancy. The evidence does not direct towards that the city would not have had traffic jams. Rather, we attribute it249

to the distribution of loop detector positions. The necessity to identify the determinants of the subset bias arises here.250

According to Fig. 7, the position-based subsets of 28 cities can be classified into three: scattered, biased, and251

unbiased. Cities with a scattered MFD are the resultant of the insufficient number of detectors in certain positions252

such as downstream located loop detectors in Marseille. Augsburg, Darmstadt, Speyer, Stuttgart, Tokyo, Toronto, and253

Toulouse are classified as scattered. Cities with subset bias show different slopes by their position (Bern, Cagliari,254

Frankfurt, Graz, Hamburg, Kassel, London, Madrid, Munich, Santander, Vilnius, Wolfsburg, and Zurich). Otherwise,255

cities with no subset bias show overlapping shapes by subsets.256

With all that classified, a simple logistic regression is performed to find variables that might explain the subset257

bias. Note that cities classified as scattered are excluded from the analysis since a high scatter hampers determining258

the subset bias. Logistic regression is a probabilistic statistical classification model applied when the dependent259

variable is categorical (Freedman, 2009, Boateng and Abaye, 2019). Although it is typically used to predict a binary260

outcome, here we utilize it to determine the significant variables that affect the subset bias. The dependent variable,261

Y , corresponds to the label for the MFD shape: 13 cities of biased (Y = 1) and 7 cities of unbiased (Y = 0). The262

logistic regression in an aggregated form is expressed with a natural logarithm of odds when there are n independent263

variables of X1, X2, · · · , Xn with (n + 1) coefficients of β0, β1, · · · , βn :264

ln
(

P(Y)
1 − P(Y)

)
= β0 + β1X1 + β2X2 + · · · + βnXn (6)
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Fig. 7. MFD of all loop detectors, downstream subset (D), midstream subset (M), and upstream subset (U) for 28 cities
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Here, the model aims to estimate the coefficients of independent variables. The odds are the probability that265

the outcome occurs to not occur. The odds ratio indicates how much odds are to be changed by the 1-unit increase266

of the independent variable, Xi, and it equals to eβi . The model evaluation is done by a likelihood-ratio (LLR) test267

which shows how strong a relationship between all of the independent variables and a dependent variable is. The null268

hypothesis is that all coefficients are equal to zero. The p-value of this test will determine whether the null hypothesis269

of the LLR test is rejected.270

We consider all columns in Table 3 as the candidates for independent variables. Since the relative position271

(columns 12-14) is obtained by dividing the distance to the downstream signal (columns 9-11) by the link length272

(columns 6-8), we discard columns from the sixth to the eleventh in order to avoid collinearity. Similarly, as the273

detector density (column 5) is obtained by dividing the number of detectors (column 3) by the area covered (column274

4), we drop columns 3 and 4. Then we execute the logistic regression with the remaining candidates and then apply275

backward step-wise elimination until the independent variables in the model are all at least 5% significant (Chowdhury276

and Turin, 2020). Table 4 summarizes the process.277

Since each of the p-values is below 0.05 in the final step, the variables of mean and the standard deviation of278

relative position are statistically significant at the 95% confidence level. Also, the LLR p-value of 0.014 states that279

the proposed model was more effective than the null model. Based on the coefficients, the odds ratio is obtained as280

e−0.087 = 0.92 and e0.170 = 1.19 for the mean and the standard deviation, respectively. A 1% increase in the mean281

of relative position results in an 8% decrease in the probability of position-based subsets having different slopes.282

Similarly, a 1% increase in the standard deviation results in a 19% increase in the probability of having the subset283

bias. In other words, if the loop detectors are mostly located downstream and have a large variation, subset MFDs of284

each position are more likely to have different free-flow branch slopes. Although it is conjectured in many articles285

that the empirical MFD cannot accurately represent entire networks unless the loop detectors are sufficiently installed286

(Aghamohammadi and Laval, 2022, Ambühl et al., 2017), their spatial density was not a significant factor that decides287

the subset bias.288

Table 4: Backward Elimination of Logistic Regression model

Model 1 Pseudo R-squared: 0.422 Log-Likelihood: -7.4863 LLR p-value: 0.027
Variables Coefficient Std. Err. t-statistics p-value Lower CI Upper CI

Mean of Relative Position -0.260 0.130 -1.998 0.046 -0.515 -0.005
Std. Dev. of Relative Position 0.572 0.288 1.984 0.047 0.007 1.136
Skewness of Relative Position -5.023 3.123 -1.609 0.108 -11.144 1.098
Kurtosis of Relative Position 3.604 2.710 1.330 0.184 -1.708 8.916
Detector Density 0.104 0.072 1.447 0.148 -0.037 0.244

Model 2 Pseudo R-squared: 0.289 Log-Likelihood: -9.2124 LLR p-value: 0.058
Variables Coefficient Std. Err. t-statistics p-value Lower CI Upper CI

Mean of Relative Position -0.164 0.1 -1.671 0.095 -0.356 0.028
Std. Dev. of Relative Position 0.278 0.161 1.721 0.085 -0.039 0.594
Skewness of Relative Position -1.702 1.843 -0.923 0.356 -5.314 1.910
Detector Density 0.064 0.063 1.020 0.308 -0.059 0.187

Model 3 Pseudo R-squared: 0.253 Log-Likelihood: -9.6762 LLR p-value: 0.038
Variables Coefficient Std. Err. t-statistics p-value Lower CI Upper CI

Mean of Relative Position -0.093 0.046 -2.051 0.040 -0.183 -0.004
Std. Dev. of Relative Position 0.161 0.077 2.109 0.035 0.011 0.311
Detector Density 0.033 0.048 0.693 0.488 -0.061 0.128

Model 4 Pseudo R-squared: 0.233 Log-Likelihood: -9.9300 LLR p-value: 0.014
Variables Coefficient Std. Err. t-statistics p-value Lower CI Upper CI

Mean of Relative Position -0.087 0.042 -2.055 0.040 -0.170 -0.004
Std. Dev. of Relative Position 0.170 0.075 2.279 0.023 0.024 0.317
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3.1. Insights from the Analytical Approach289

LD bias cannot be obtained directly from loop-detector data since no complete information is accessible for typical290

cities. As noticed in the analytical approach, nevertheless, the subset bias provides the possible range of LD bias. That291

is, the upstream and downstream subsets offer the upper and lower bound for the link MFD. For example, the link292

MFD of Bern will have average occupancy between 20% and 40% at an average flow of 400 veh/hr. Still, the bound293

may be too wide to shed significant insights. We even cannot conclude whether the cities with a subset bias possess294

LD bias or not. However, it is meaningful that the cities with no subset bias are likely to have no LD bias.295

We have proved the presumption from Aghamohammadi and Laval (2022) that the discrepancy between the MFD296

parameters might account for the loop detector position. Since the cuts are the upper bound that hems all points in, the297

bounds would be overestimated if the LD-MFD lies on the left of the link MFD, and otherwise cause underestimation.298

We can expect that the parameter estimation of the cities with no subset bias would reveal a consistent result.299

4. Simulation300

So far we have shown in the analytical part that the network parameters such as λ and ρ have a significant impact301

on the corridor MFD. In the empirical analysis, it is observed that the distribution of the loop detector position itself302

influences the subset bias in the network MFD. In this regard, we examine how the network parameter, λ, affects the303

bias in the network MFDs. We run network simulation experiments in the microscopic traffic simulation platform304

SUMO (Lopez et al., 2018) to verify and extend the previously described analysis results.305

4.1. Simulation Settings306

Simulations are carried out on a 10 × 10 grid network. All links have one lane per direction. Each intersection307

is controlled by a two-phase traffic signal without a protected left turn. Traffic signals for all internal nodes share308

constant parameters: the cycle length of C = 90 s, the green phase of G = 45 s, and the offset of θ = 0 s. We adopt309

a triangular fundamental diagram. The traffic flow parameters are given by: the free-flow speed of u = 54 km/h, the310

wave speed of w = 16.6 km/h, the capacity of Q = 1944 veh/h, the jam density of k j = 153 veh/km, and the critical311

density of kc = 36 veh/km. With the above parameters fixed, four networks with different λ are constructed. For λ as312

0.5, 1, 2, and 4, the link length corresponds to 80 m, 160 m, 320 m, and 640 m, respectively.313

The trips are generated to promote homogeneous density distribution throughout the network by assigning iden-314

tical demand at all interior links. The routes are randomly assigned with a turning probability of one-third each for315

turning left, right, or going straight. The U-turns are executed at the boundary links. Vehicles are allowed to leave316

the network at all links. Free-flow branch of MFD was reproduced by allowing vehicles to take all links as their317

destination, whereas the destination is restricted to a single boundary link to emulate the congested state.318

Three loop detectors are set in every link each downstream, midstream, and upstream. We label the positions by319

the criterion which divides a link into thirds, as we used in our empirical data analysis. The loop detector is positioned320

randomly within the position range: e.g., the downstream detector selects anywhere between the relative position321

of 0% and 33%. This positioning will reduce LD bias and help observe the impact of λ on the subset bias. The322

aggregation interval is set to 180 s.323

4.2. Simulation Results324

We have taken both signal and network settings into account figuring out the influential factor of the MFD shape,325

by changing λ. Fig. 8 illustrates the MFDs of four networks with different λ. The average flow and the density are326

each normalized by the value of Q and k j, respectively. Note that the free-flow speed and the wave speed of FD are327

each 4.3 and 1.3 when normalized. The forward cuts of the MoC and the SMoC calculated through the parameters of328

each network are also superimposed.329

We can verify that the random positioning within the position range does not hinder the accurate representation of330

the link MFD since the link MFD and LD-MFD aligns well on all four figures. Also, it is observed that the link MFD331

is well bounded by the forward cuts of the MoC and the SMoC. As discussed in both previous sections, free-flow332

branch slopes are high by order of upstream, midstream, and downstream subsets. In view of a congested branch,333

the downstream subset overestimates its slope and the upstream subset underestimates it. Hence, from the viewpoint334

of subset bias, the downstream and upstream subsets show each left-skew and right-skew distribution from the link335

15

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 December 2022                   doi:10.20944/preprints202212.0178.v1

https://doi.org/10.20944/preprints202212.0178.v1


MFD. We have explicitly shown that the upstream subset is not bounded by the forward cut. This empowers our336

anticipation mentioned in 3.1. that estimating network parameters using LD-MFD will likely suppose longer blocks337

than the original if the network has detectors installed mostly upstream. The midstream subsets of all four figures338

are considerably close to the upstream subset, meaning that the jam state is not likely to propagate beyond the third339

downstream point. Following are the main observations as lambda increases.340

• The maximum average flow increases since the long blocks are not prone to spillbacks.341

• It is observed that free-flow branches of other MFDs including the link MFD approach that of the upstream342

subset. The free-flow branch of the upstream subset also gets steeper and closer to the free-flow speed u f . This343

implies that the duration of the traffic jam is canceled out by the long block length.344

• Larger λ assures the smaller subset bias. While the free-flow branches highly differ by the subsets in shorter345

blocks, these become overlapped as λ increases. Recalling that we have stated that the possible range of LD346

bias is equivalent to the subset bias, longer blocks have less chance to show bias in the LD-MFD.347

• This is also analytically demonstrated by the slope of MoC and SMoC forward cut (Table 5). The average348

speed of the observer passing the origin increases when λ gets larger. Namely, the difference between the349

free-flow slope of the upstream subset and the slope of forward cuts becomes smaller. For long blocks, uγmax350

approximates the free-flow speed u f . However, in short blocks, uγmax is just half of the free-flow speed.351

Fig. 8. The link MFD, the LD-MFD, and the position-based subsets for different values of λ
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Table 5: The forward cut parameters of the MoC and the SMoC. Note that γmax and uγmax are the number of blocks that the observer with
free-flow speed can pass without stopping and the average speed of the observer in the forward cut passing the origin, respectively. u#

s1
and u#

s2
are the average speed of the observer in SMoC, each corresponds to the steepest forward cut and the next steepest forward cut. Also note that
c = (1 + δ2)ρ2/(λ(1 + ρ)).

Variables λ = 0.5 λ = 1 λ = 2 λ = 4

MoC
γmax 9 5 3 2

uγmax (km/h) 27 32.04 38.16 51.84
uγmax (normalized) 2.15 2.55 3.04 4.13

SMoC
c 1 0.5 0.25 0.125

u#
s1

2 2.67 3.2 3.55
u#

s2
0.6 0.83 1.125 1.42

5. Conclusion352

This paper presented an analysis of the impacts of loop detector position within the link on the resulting empirical353

MFDs. Previous research has been based either on empirical data or simulation. Here, we have (i) added an analytical354

approach based on kinematic wave theory that enables the explanation of these impacts in the corridor MFD, (ii)355

postulated a logistic regression model based on empirical data to predict the occurrence of bias on a given network,356

and (iii) revealed that the network parameter λ plays a key role in the bias magnitude.357

In the analytical approach, the symmetric triangular diagram on a corridor was used to envision possible biases358

induced by the nature of loop detectors. Subject to the saturated initial condition constrained by the shock wave speed,359

the time-space diagram was classified according to the values of λ, ρ, and n. Formulae of the link MFD, LD-MFD,360

and the position-based subsets were cataloged. Several visualizations of MFDs and biases were presented. Under an361

ideal signalization, neither LD bias nor subset bias is apparent. If the network is programmed for the first vehicle362

of the green time to arrive at the next intersection during the green time (e.g., λ < 1), the subset bias only depends363

on ρ. If the first vehicle arrives during the red time of the next intersection, the subset bias is subject to λ, ρ, and364

n. It was proved that the LD bias is inevitable unless the signal is programmed perfectly or red time is negligible or365

the loop detectors are uniformly distributed. Also, the possible range of LD-MFD can be obtained by the subset bias366

formulas presented here. The analytical approach can be improved by considering an offset as an additional variable367

and identifying MFDs in unsaturated initial conditions.368

By analyzing the loop detector data of 28 cities provided by UTD-19, we observed a wide variation in loop369

detector installation parameters such as coverage area or mean link length. When MFDs were subset, some cities370

showed different free-flow slopes for each subset, as predicted by the theory for a corridor, while others overlapped371

and therefore exhibit no subset bias. Our logistic regression results strongly suggest that this phenomenon can be372

explained partially by the mean and standard deviation of loop-detector positions alone. This indicates that the subset373

bias can be reduced by favoring placements upstream and with low variance. Of course, the other models in Table374

4 are also instructive as they exhibit the intuitively correct coefficient sign. In particular, the skewness appears as a375

strong factor, confirming earlier results that the uniform distribution tends to minimize subset bias.376

Our simulation results indicated that the overlapping phenomenon described in the above paragraph can be ex-377

plained by the network parameter λ. For short-block networks (λ < 1) we have seen that the different branches do378

not overlap and that they tend to overlap for very long-block networks (λ ≫ 1). Although the empirical data does379

not include signal settings to verify these hypotheses, this finding highlights the importance of parameterizing urban380

networks according to their λ-value.381

Finally, the results of this paper strongly indicate that a correction method can be devised to improve the estimation382

of the link MFD using loop detector data. Overlapping position-based subset MFDs like Fig. 6(b) are fortunate to not383

require correction. However, when the subset bias is observed (e.g., Fig. 6(a)), LD-MFD may not accurately represent384

link MFD, which requires a correction method. As we have seen, both the topology of the network such as λ, and the385

distribution of positions should play a key role. This is currently being investigated by the authors.386
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Ambühl, L., Menendez, M., 2016. Data fusion algorithm for macroscopic fundamental diagram estimation. Transportation Research Part C:395

Emerging Technologies 71, 184–197.396

An, K., Hu, X., Chen, X., 2020. Traffic network partitioning for hierarchical macroscopic fundamental diagram applications based on fusion of397

gps probe and loop detector data. arXiv preprint arXiv:2011.09075 .398

Boateng, E.Y., Abaye, D.A., 2019. A review of the logistic regression model with emphasis on medical research. Journal of data analysis and399

information processing 7, 190–207.400

Boeing, G., 2017. Osmnx: New methods for acquiring, constructing, analyzing, and visualizing complex street networks. Computers, Environment401

and Urban Systems 65, 126–139.402

Buisson, C., Ladier, C., 2009. Exploring the impact of homogeneity of traffic measurements on the existence of macroscopic fundamental diagrams.403

Transportation Research Record 2124, 127–136.404

Chowdhury, M.Z.I., Turin, T.C., 2020. Variable selection strategies and its importance in clinical prediction modelling. Family medicine and405

community health 8.406

Courbon, T., Leclercq, L., 2011. Cross-comparison of macroscopic fundamental diagram estimation methods. Procedia-Social and Behavioral407

Sciences 20, 417–426.408

Daganzo, C.F., 2005. A variational formulation of kinematic waves: Solution methods. Transportation Research Part B: Methodological 39,409

934–950.410

Daganzo, C.F., Geroliminis, N., 2008. An analytical approximation for the macroscopic fundamental diagram of urban traffic. Transportation411

Research Part B: Methodological 42, 771–781.412

Ding, H., Guo, F., Zheng, X., Zhang, W., 2017. Traffic guidance–perimeter control coupled method for the congestion in a macro network.413

Transportation Research Part C: Emerging Technologies 81, 300–316.414

Du, J., Rakha, H., Gayah, V.V., 2016. Deriving macroscopic fundamental diagrams from probe data: Issues and proposed solutions. Transportation415

Research Part C: Emerging Technologies 66, 136–149.416

Edie, L.C., et al., 1963. Discussion of traffic stream measurements and definitions. Port of New York Authority New York.417

Freedman, D.A., 2009. Statistical models: theory and practice. cambridge university press.418

Gayah, V.V., Gao, X.S., Nagle, A.S., 2014. On the impacts of locally adaptive signal control on urban network stability and the macroscopic419

fundamental diagram. Transportation Research Part B: Methodological 70, 255–268.420

Geroliminis, N., Boyacı, B., 2012. The effect of variability of urban systems characteristics in the network capacity. Transportation Research Part421

B: Methodological 46, 1607–1623.422

Geroliminis, N., Daganzo, C.F., 2008. Existence of urban-scale macroscopic fundamental diagrams: Some experimental findings. Transportation423

Research Part B: Methodological 42, 759–770. doi:10.1016/j.trb.2008.02.002.424

Geroliminis, N., Sun, J., 2011. Hysteresis phenomena of a macroscopic fundamental diagram in freeway networks. Procedia-Social and Behavioral425

Sciences 17, 213–228.426

Greenshields, B.D., Bibbins, J.R., Channing, W., Miller, H.H., 1935. A study of traffic capacity.427

Huang, J., Hu, M.B., Jiang, R., Li, M., 2018. Effect of pre-signals in a manhattan-like urban traffic network. Physica A: Statistical Mechanics and428

its Applications 503, 71–85.429

Ji, Y., Luo, J., Geroliminis, N., 2014. Empirical observations of congestion propagation and dynamic partitioning with probe data for large-scale430

systems. Transportation Research Record 2422, 1–11.431

Kim, E.J., Kim, D.K., Kho, S.Y., Chung, K., 2020. Spatiotemporal filtering method for detecting kinematic waves in a connected environment.432

PloS one 15, e0244329.433

Kong, Q.J., Li, Z., Chen, Y., Liu, Y., 2009. An approach to urban traffic state estimation by fusing multisource information. IEEE Transactions on434

Intelligent Transportation Systems 10, 499–511.435

Laval, J.A., Castrillón, F., 2015. Stochastic approximations for the macroscopic fundamental diagram of urban networks. Transportation Research436

Procedia 7, 615–630.437

Laval, J.A., Chilukuri, B.R., 2016. Symmetries in the kinematic wave model and a parameter-free representation of traffic flow. Transportation438

Research Part B: Methodological 89, 168–177.439

Leclercq, L., Chiabaut, N., Trinquier, B., 2014. Macroscopic fundamental diagrams: A cross-comparison of estimation methods. Transportation440

Research Part B: Methodological 62, 1–12.441

Leclercq, L., Parzani, C., Knoop, V.L., Amourette, J., Hoogendoorn, S.P., 2015. Macroscopic traffic dynamics with heterogeneous route patterns.442

Transportation Research Procedia 7, 631–650.443
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