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Abstract

Loop detectors are probably the widest-used technology for traffic state estimation. Previous research has shown that
loop detector positions within the link significantly affect the estimation of the macroscopic fundamental diagram
(MFD) of a given network. This paper examines the biases produced by the positioning of loop detectors on the MFD,
using both analytical and simulation methods, as well as empirical data from UTD-19. We confirm earlier results that
a uniform distribution of loop detector positions reduces the bias. For non-uniform distribution, we found that: (i)
the subsets of the MFD by the loop detector position help estimate whether the loop detector MFD will have a bias;
(ii) if the detectors in the network are positioned more downstream with a larger variation, the loop detector MFD is
more likely to have a discrepancy in position subsets of the MFD; (iii) a lower ratio of link length to green signal time
elevates the MFD bias as well. This research opens the possibility for the bias of MFD induced by the loop detector
data to be corrected by only using itself.
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1 1. Introduction

2 The modeling of traffic flow dynamics in large urban networks has proven challenging over the years (Greenshields
s etal., 1935, Smeed, 1967, Mahmassani et al., 1984, Geroliminis and Daganzo, 2008, Daganzo and Geroliminis, 2008,
« Daganzo, 2005, Geroliminis and Boyaci, 2012, Laval and Castrillén, 2015, Geroliminis and Sun, 2011, Mazloumian
s etal., 2010, Leclercq et al., 2015, Zheng and Geroliminis, 2013, Buisson and Ladier, 2009, Yildirimoglu et al., 2015,
¢ Dingetal., 2017, Gayah et al., 2014, Huang et al., 2018, Ambiihl and Menendez, 2016, Courbon and Leclercq, 2011,
7 Leclercq et al., 2014, Ambiihl et al., 2017, Aghamohammadi and Laval, 2022, Loder et al., 2019). An important
s branch of the efforts to control congestion is aggregated modeling. After Greenshields et al. (1935) observed for the
o first time the fundamental diagram of a single uninterrupted link, researchers took a profound interest in the aggregated
10 relationship between average flow and density in entire urban signalized networks (Smeed, 1967, Mahmassani et al.,
1 1984). The encapsulation of network traffic states into two variables is known as the Macroscopic Fundamental
12 Diagram (MFD). Geroliminis and Daganzo (2008), and their empirical study in Yokohama, Japan demonstrated that
13 the MFD is a convincing model to describe a network-level traffic performance. When aggregated at a network level,
12 a high scatter of average flow and density from individual loop detectors nearly vanished and the points gather along
15 the MFD curve.

16 Analytical, empirical, and simulation studies have been conducted to observe the MFD. Contemporaneous with
17 Geroliminis and Daganzo (2008), Daganzo and Geroliminis (2008) presented the method of cuts (MoC) using vari-
1e  ational theory (Daganzo, 2005) in a homogeneous signalized corridor, which sets the upper bound for the MFD.
19 Stemmed from the literature, Geroliminis and Boyaci (2012) applied variational theory to parallel corridors with
20 weak heterogeneity. Considering a strong heterogeneity of the real-world, Laval and Castrillon (2015) proposed the
21 stochastic MoC (SMoC) to handle networks with different block lengths and signal timings.

2 Numerous studies have verified that the MFD is applicable to other cities or arbitrary networks. In contrast to the
s findings from Geroliminis and Daganzo (2008) that the MFD is independent of demand, later researchers challenged

*Corresponding author: jorge.laval@ce.gatech.edu
1790 Atlantic Drive, Atlanta, GA 30332

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202212.0178.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2022 d0i:10.20944/preprints202212.0178.v1

2« that the finding is only apposite for homogeneous networks with low congestion levels. Otherwise, the MFD reveals a
s trapezoidal shape and the hysteresis phenomenon (Geroliminis and Sun, 2011). A host of posterior literature suggested
26 that the MFD shape is dependent on demand (Mazloumian et al., 2010, Leclercq et al., 2015), network topology and
27 heterogeneity (Zheng and Geroliminis, 2013, Geroliminis and Boyaci, 2012, Buisson and Ladier, 2009), routing
s strategy (Yildirimoglu et al., 2015, Ding et al., 2017), and signal control schemes (Gayah et al., 2014, Huang et al.,
20 2018) (Zhang et al., 2020).

3 While various exogenous influential factors of the MFD have been exhibited, the endogenous factor—the bias
a1 induced by the nature of empirical data—has not been discussed to a comparable extent. Loop detector data is arguably
22 the most prevailing empirical source for exploring various facets of the MFD. Some studies use probe data, but even
s this is usually fused with loop detector data (Ji et al., 2014, Ambiihl and Menendez, 2016, Du et al., 2016, An et al.,
a 2020, Saffari et al., 2022). Although the loop detector is compelling as it measures traffic flow at all times, many have
ss  faced limitations in solely exploiting it reliably for various problems (Kong et al., 2009, Kim et al., 2020, Min et al.,
s 2022). Particularly, its installation position along the link is found to be critical to accurately represent the traffic flow.
a7 Buisson and Ladier (2009) first realized that the position of the loop detectors within the links plays a substantial
s role in defining the MFD shape. They split the measurements from the detectors in Toulouse, France into three
s subsets according to the physical distance to the downstream traffic signal. Closer to the signal, the free-flow branch
s of MFD showed a lower slope. The overestimation of the queue stood as the rationale. Using simulation, Courbon
a1 and Leclercq (2011) compared three positionings— constant, uniformly distributed, and normally distributed—of virtual
«2 detectors on a corridor with an identical block length. Although the constant distance setting displayed the largest
s bias, the detectors farther from the downstream signal reproduced the free-flow conditions well and the closer ones
« reproduced the queues well at the cost of the lower slope of the free-flow branch. Uniform distribution of the detectors
ss  showed the most accurate fit to the MoC. Leclercq et al. (2014) proved that the uniform distribution of detectors is
s also the best strategy for the homogeneous network to reproduce accurate traffic state. Ambiihl et al. (2017) leveraged
47 this finding to explain not only the discrepancy in the MFD drawn by the loop detector and floating car data from
s Zurich, Switzerland, but also the decreased average occupancy when the detectors closer to the downstream signal
s were excluded. They pointed out that the loop detector bias owes to the non-uniform placement and the link selection:
so the detectors are mostly placed at the beginning or the end of the link, and they are installed in certain links to control
st traffic signals and congestion.

52 Although previous literature showed how the loop detector positions influence the shape of MFD and why the bias
ss  happens, still there are important gaps to be filled. First, two different biases induced by the nature of detectors are
s« distinguished here: (i) the bias between the link MFD and the loop detector (LD)-MFD (henceforth, LD bias) and
ss  (ii) the bias between position-based subsets of LD-MFD (henceforth, subset bias). Note that the link MFD can be
ss thought of as the “ground-truth” as it gives Edie’s generalized traffic state definitions (Edie et al., 1963). The subset
57 bias refers to MFDs using detectors that belong to a particular location subset: upstream, midstream or downstream
s within the link. Notice that Courbon and Leclercq (2011) and Buisson and Ladier (2009) concluded that the detector
s position affects the MFD without distinguishing these two biases although what they measured turned out to be LD
e bias and subset bias, respectively. Second, identifying network characteristics that contribute to each bias is required
et since the literature used only a single network when explaining the existence of bias. Third, even though the uniform
e distribution of the positions is proved to be the best strategy (Courbon and Leclercq, 2011, Leclercq et al., 2014),
es we need a further investigation on how an arbitrary distribution of detector positions affects the MFD. Lastly, as
e mentioned in Ambiihl et al. (2017), the variability of block lengths and the spatial density across the network should
es be taken into consideration.

6 To bridge these gaps, we (i) analytically investigate the condition and the extent of the LD bias and subset bias
e7 occurrence in a corridor, (ii) empirically analyze the characteristics of loop detector position that generate subset bias,
es and (iii) simulate the impact of different network topology on the bias. These three objectives are addressed in the
e remainder of the paper.

70 2. Analytical Corridor Approximation

7 Recall that the LD bias refers to the bias between the link MFD and the LD-MFD and the subset bias refers to
72 the bias between position-based subsets of LD-MFD. In this section, we assume a homogeneous corridor that obeys
73 a symmetric triangular fundamental diagram (FD) to analyze LD bias and subset bias. As customary to simplify
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7+ the analysis, we will use isosceles fundamental diagrams (free-flow speed = wave speed) since one obtains the same
75 solutions using a general triangular FD (Laval and Castrillén, 2015, Laval and Chilukuri, 2016).

7 The corridor to be analyzed consists of N links with an identical block length of /. The traffic signal on all
77 intersections is fixed with green time, G, and red time, R, with no offset. The symmetric triangular FD has a free-flow
7z speed of u, a critical density of k., and a capacity of Q. As shown in Fig. 1(a) the queue initially grows at a shock
79 wave speed s in the upstream-most intersection, depicted as a state A, and clears at a wave speed w. The traffic state
s of zero flow with zero density, i.e., a void, is depicted as a state O. The traffic state of the capacity and the jam density
sr are each denoted as state C and state J, respectively. The variables and constants used are summarized in Table 1.
&2 Note that the symbols with asterisks are constants, and otherwise, variables.

Table 1: Descriptions of constants and variables

Traffic states Physical attributes of the network

O Void state* l Link length

A Current state N The number of links*

C Capacity state* N,  The number of links with loop detector located upstream of critical position

J  Jam state* N;  The number of links with loop detector located downstream of critical position

Fundamental Diagram | Signal Setting

u  Free-flow speed* | R Red signal time
w  Wave speed* G  Green signal time

Shock wave speed | n Ceiling of time in unit of cycle length for 1st vehicle in green arrives at next intersection

k.  Critical density* Dimensionless parameter
Q Capacity* A Link length to critical link length ratio (= li)
P Red time to green time ratio (= %)
()
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Fig. 1. Initial conditions: (a) A fundamental diagram with different shock waves; (b) Time-space diagrams of the saturated and unsaturated
condition
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83 Here, it is important to introduce two dimensionless parameters, the mean block length to critical length ratio, A,
s and the mean red signal time to mean green signal time, p, which significantly influence the MFD shape according to
es Laval and Castrillén (2015). The critical length, I*, corresponds to the minimum block length that prevents spillbacks.
s Then A is expressed as:

) l l 21
S ———— (1)
I Gl;+;) Gl uG
87 Under the given settings, all possible patterns of the time-space diagram can be categorized according to four

e variables: (i) s, (ii) 4, (iii) p, and (iv) n. First of all, the shock wave speed becomes the primary determinant. It
s decides whether the initial condition influences the downstream links. The critical state A and the corresponding
o critical shock wave, s., are obtained where the queue clearance wave intersects the end of the green phase (Fig. 1(b)).
ot Thus, the critical shock wave speed is the slope between the origin and the queue dissipation point, s, = Tuﬂ' If the
e« shock wave speed is steeper than the critical shock wave speed (state A”), the first queue clearance wave is obstructed
e by the queue of the next red phase. This conveys that the queue accumulated in the red signal phase loses a chance
e to completely vanish before the next cycle. On the other hand, if the shock wave speed is lower (state A”), the
ss queue clearance wave traverses through the green phase, causing the initial state A" to spread to the downstream link.
s Hereafter, the initial condition that exceeds or equals the critical shock wave speed is considered a saturated initial
o7 condition, otherwise an unsaturated.

98 Under saturated conditions, the time-space diagram of the upstream-most intersection is duplicated at downstream
9o links, while unsaturated initial conditions do not provide this guarantee. The uncertainty of the repetition ascribes to
10 the spread of the initial state to the downstream links. This causes some cases of unsaturated initial condition to not
11 be expressed in a closed form. Hence, we only address the saturated condition in the following.

102 Fig. 2 depicts all possible types of time-space diagrams in the saturated initial condition. It is confirmed for all
13 three cases that the traffic state patterns recur throughout the corridor. Importantly, the existence of the jam state and
104 the coverage of the void state distinguish three cases. As indicated by a blue line, the difference originates from the
105 time it takes for the first vehicle in a green phase to reach the next intersection.

) © Y
9 2 : B R e e
& a, =% J J
) ) )
o C o C o C
R e
o
[ [ D Ry AR—" AP C C
S J J J °
o
C
L Ay A
S C o C o C
o
(]
C (o] C (o]
{1 A A Ay Ay -
NI TSI
[ 1 A Ay P - : -
o T | o f O
i & 5 & s
i~ l: s g
] C o C + H C i SE e
= : z s
3 i3 Ll
(] _ ,\N [ ] . AN [ ]
H G G, H - 5 °
A A
T "R G Time T "R G Time T R G Time
(a) Case 1 (b) Case 2 (c) Case 3

Fig. 2. Three types of time-space diagram at the saturated initial condition

106 A method to derive the MFD from the time-space diagram is explained in the following. Note that only the
17 downstream links of the upstream-most intersection are considered. We assume N detectors are installed in each of
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1s the N links, and the aggregation interval is a multiple of a cycle length. This enables setting the aggregation interval
109 simply as a cycle length. In order to obtain the LD-MFD, firstly, draw a horizontal line on a time-space diagram
1o at the position of a detector by the amount of the aggregation interval. Second, calculate the weighted average of
i the traffic state, i.e., a pair of density-flow, using the time proportion of each state as a weight. This corresponds to
12 the FD of a detector, which is then a linear combination of traffic states O, C, and J. Lastly, for every time interval
13 measured, average the density-flow pair of all detectors to obtain the LD-MFD (Equation 2). While the LD-MFD uses
1a  the proportion of time as a weight, the link MFD can be obtained by using the proportion of the area of each traffic
1s  state throughout the link as a weight. The link MFD in the saturated initial condition equals to the intersection point
11 where the stationary cut and the forward cut of MoC.

Ziqil; _ Zikil;

9p >l ’ LD ﬂ (2)

17 where g, , is the average flow, k,, is the average density, and g; and k; are the flow and density measured by the loop
1 detector i of installed link length of /;.

119 The MFD for each case through the above process is summarized in Table 2. We now disentangle the constraints
120 and MFD formulae; i.e., how A4, p, and 7 act as the keys to distinguish these three.

121 2.1. Case I: No queues

According to Fig. 2(a), the first vehicle of the green phase never encounters the red phase and so do all other
vehicles. Notice that only the void and the capacity state exist. This is only possible when the time for the vehicle to
complete passing the link is equal to a multiple of a cycle length. This constraint is simplified using definitions of A
and p as follows:

l
- =nR+G) (3a)
u

A=2n(+1) (3b)
122 Since the traffic states are homogeneous along the link, MFD is not subject to any bias no matter where the detector
123 is positioned. In any of the positions during a cycle R + G, the void state O and the capacity state C are measured
12+ by the amount of the red time R and the green time G, respectively. Thus, the FD of all loop detectors correspond to
{50+ - C+0-J, 50 do the MFD.

126 2.2. Case 2: Jam exists & Voids are finite

Compared to Case 1, Fig. 2(b) bares the jam state for a certain length. The jam accumulates because some
vehicles departed at a previous intersection cannot pass the intersection ahead being blocked by the red time. This
happens when the first vehicle of the green time was able to pass the next intersection without stopping but was not
the foremost vehicle passed during its green time. That is, the time for the first vehicle to arrive at the next intersection
is a multiple of a cycle length plus a partial or a full amount of green time. This condition is formulated as below:

n(R+G)<£§n(R+G)+G (4a)
2n(p+ 1) < A< 2n(p + 1) +2 (4b)

127 As traffic states are non-homogeneous along the link, identifying the critical position that turns the void state into the
128 jam state is necessary. Separating the travel time into a multiple of a cycle length and the remainder gives us the length
129 of the jam state. The distance vehicle traveled during n-multiple of cycle length is - n(R + G). The remaining distance
1o of I —u-n(R + G) is bisected by the void state and the jam state due to the symmetry of the FD. Then, the length of
131 jam state and the void state are (I —u-n(R+G))/2 and (I +u-n(R + G))/2, respectively. If the loop detector is installed
122 downstream of the critical position, the jam state J and the capacity state C will be each measured for the red time R
133 and the green time G during an aggregation interval (R + G). On the other hand, if the detector is installed at upstream
13+ of the critical position, the red time and the green time are each occupied by the void state O and the capacity state
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15 C. With specifying that N; and N, detectors are installed at each downstream and upstream of critical position, the
13 LD-MFD will have a linear combination of ﬁp . N,ﬁb}vd -0+ ﬁp -C+ ﬁp . Nlﬁde I

137 Here, the bias of LD-MFD is unavoidable unless the number of detectors in each position label is proportional to
1s  its length: i.e., Ny oc (I —u-n(R+ G))/2and N, « (I + u - n(R + G))/2. Namely, the link MFD, which is theoretically
19 a weighted average of each traffic state’s area, can be simply calculated by substituting corresponding lengths to the
10 number of detectors. Similar to Buisson and Ladier (2009), partitioning the loop detectors by their position gives us
141 the position-based subsets of the MFD. For example, the downstream subset can be obtained by substituting N; = 1

12 and N, = 0 to the LD-MFD. The corresponding MFD expressions can be found in Table 2.

s 2.3. Case 3: Jam exists & Voids are infinite

144 Compared to Case 2, jam is accumulated for a shorter period of time and the void fills the gap (Fig. 2(c)). The red
s time is already initiated before the first vehicle of the green time arrives at the next intersection. The amount of red
s time elapsed before the jam accumulation remains as the void. This is only available when the link travel time of the
17 vehicle equals a multiple of a cycle length plus a full green time plus a partial red time, as below.

[
nR+G)+G<—-—<nR+G)+G+R (52)
u
2n(p+ 1) +2<A<2m+ D+ 1) (5b)
148 The critical position is obtained by the relationship between the free-flow speed u and the queue clearance duration

1 G. Using that the jam always dissipates exactly before the red phase begins, the spatial length of the jam state is u-G/2.
150 The loop detectors located downstream of the critical position will measure the void state O for time é -n(R+G)—-G,
151 the capacity state C for green time G, and the jam state J for the rest of a cycle. At the upstream of the critical position,
12 the void state O and the capacity state C are observed by the amount of red time R and the green time G, respectively.
153 With the assumption of the number of detectors Ny and N, the weighted average gives LD-MFD. The link MFD and
15« the position-based subsets are calculated likewise to Case 2 and one can refer to Table 2.

15 2.4. Discussions on Subset bias and LD bias

156 Fig. 3 illustrates MFD realizations of the corridors with different network parameters. The FD is drawn at the
157 back for comparison with the MFDs. Case 1 shows that neither the LD bias nor the subset bias resides in MFD since
18 the corridor has an ideal signal setting that the queue never forms. Regardless of n and A, the MFD of a corridor
19 always lies exactly on the free-flow branch of FD and only moves along the branch depending on the p. Specifically,
10 the yellow-green dot displayed a much slower critical shock wave speed and a smaller average density than the blue
11 dot due to its higher p value. This means that insofar as two different corridors have the same p value, their MFDs
12 stand identical regardless of different n.

163 In contrast to Case 1, the difference between MFDs are discernible in Fig. 3(b) and 3(c). The link MFD, LD-
1« MFD, upstream subset, and downstream subset are labeled with a solid circle, gray-filled symbols, open circle, and
s open square, respectively. The dotted line shows the possible range between the upstream and downstream subsets to
s~ which the LD-MFD can fall on. Slopes that connect the origin and the MFD are considered free-flow branches of the
17 corresponding MFD. In the saturated initial condition, the bias takes place only in average density values. The average
s flow is always ﬁQ, which aligns with the stationary cut of MoC (Daganzo and Geroliminis, 2008). Computations

19 reveal that the link MFD corresponds to the point where the stationary cut and the forward cut intersect (Fig. 3(d)).

1o 2.4.1. Subset bias

171 We can identify the subset bias through the comparison between position-based subsets, i.e., the difference be-
172 tween the downstream subset and the upstream subset. It is prominent that the downstream subset underestimates the
173 average free-flow speed while the upstream subset overestimates it. As the slope of the upstream subset is always
74 fixed with the free-flow speed of FD, u, the downstream subset holds the key to determining the subset bias.

175 In Case 2, the downstream subsets fall exactly on the congestion branch of FD regardless of the parameters. The
176 magnitude of the subset bias, which is lszpkc with respect to the average density, is determined only by the value
177 of p. Larger p decreases the maximum average flow and increases the subset bias. This means that the subset bias
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17e  is inevitable unless p is negligibly small. Insofar as two corridors have the same p, the position-based subsets are
179 identical despite different link MFDs.

180 In Case 3, the downstream subsets do not lie on the congestion branch. As the subset bias with respect to the
11 average density equals (2(n + 1) — ﬁ)kc, the subset bias gets smaller when A approximates the right-hand side
12 of the constraint of Case 3 (Equation 5b). This is because the corridor becomes more free-of-congestion with the
183 approximation of 4. We can also notice that larger p does not guarantee a larger subset bias.

g g4 e Link MFD wn=0,p=02 2<20
&= | ® Lnk MFD=LD-MFD @ n=1, p=0.5, 1=3.0 = | & LD-MFD n=1, p=02, A=3.0
& n=1, =10 A1=40 % | o Downsteam subset wwn=1, p=1.0, 1=6.0
s g Upst bset
g ® =2 p=06, 1=64 g | © Upstreamsu
z Z R
Subset bias A NiiNa=1:1
V N.:Ns=1:3
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Q
5
EQ { ]
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Fig. 3. The representation of the LD bias and the subset bias (Note: Link MFD is always identical to the intersection of the MoC forward cut and
stationary cut)
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Table 2: Summarize of link MFD, LD-MFD, and position-based subsets

Casel: A1 =2n(p+1), n=0,1,2,--- The proportion of time during a cycle
LD position Length Detector count 0(0,0) C(ke, Q) J(2ke,0)
R__ P G _ 1
B i N R+G ~ 1+p R+G ~ 1+p 0
MFD Linear combination T+p 0+ T+p C+0-J
_T1: ; Ao 1
(LD = Link) Coordinate ( T4p ke, Tip Q)
Case2: 2n(p+ 1) <A<2n(+1)+2, n=0,1,2,--- The proportion of time during a cycle
LD position Length Detector count 0(0,0) C(ke, Q) J(2k¢,0)
Downstream of un(R+G)
2 N 0 G _ 1 R _ P
G2 d R+G ~ T+ R+G ~ T+p
critical position = "’7(7 - (1+p)n)
Upstream of HunR+G)
2 N R__ P =L 0
G 1 u R+G ~ T+p R+G ~ T+p
critical position = MT(? +(1+p)n)
Linear combination £ U + C+ -
LD-MFD I+p  Ny+Ny = I+p I+p  Ny+Ny
. 1 d 1
Coordinate ( T+p (1+2p Nu+N; ke, T+p Q)
. L 1+ 1 o 1 1+p
Linear combination L~(l+—pn)-0+—-C+—~(———n)~J
Link MFD 1+p ; 2 A 1+p 1+p ‘2 A
i P 1
Coordinate ((1 -1 n)ke, T4 )
.. +2p 1
Position-based Downstream: ( ke, Q)
Coordinate L+p T+p
subset LD-MFD Upstream: ( Top ke, Top Q)
Case3: 2n(p+1)+2<a<2n+)(p+1), n=0,1,2,--- The proportion of time during a cycle
LD position Length Detector count 0(0,0) C(ke, Q) J(2ke,0)
[ I
£ -n(R+G)-G (n+1)(R+G)-
Downstream of WG _ 1 v 7 G _ 1 —rc -
N N 2 2 d 12 R+G ~ T+p 2
critical position = 2{T3p) ~ n =n+l1- )
Upstream of - UG — -1y N _R__ P G _ 1 0
2 A u (R+G) ~ 1+p R+G ~ T+p
critical position
( 2(11_439) ~1):Ng+ 155 Nu 1 1 Ny
Linear combination 0+ —— - C+(n+1—-55-—=) +—%—-J
LD-MFD Nu+Ng = T+p 20+0) ) NutNg
. 1 A d 1
Coordinate (( Tep +(n+1- PET) ) Nu+Ng ke, Tip Q)
. P 1+2p n+1 1
Link MED Linear combination ( Tap) ~ )0+ 15 +p C+(n+1- 21p) )-J
. 2(n+1) 1
Coordinate ( 1 ke, Tip Q)
Position-based Downstream: (( —= +2(n+ 1))k, T+ Q)
Coordinate *P
subset LD-MFD Upstream: ( 1 ip ke, Tip Q)
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1we  2.4.2. LD bias

185 LD bias is clearly recognizable by the green and pink symbols in each Fig. 3(b) and 3(c). LD-MFDs can take
1s  place anywhere between the upstream and downstream subsets, depending on the distribution of detectors. The link
1e7z - MFD is generally closer to the upstream subset than the downstream subset under this setting because the length of
18s  the jam state is shorter than half of the link length. LD bias will converge to zero when the number of detectors of
19 each position is proportional to its length: e.g., Ny o< (I —u-n(R + G))/2 and N, « (I + u - n(R + G))/2 for Case 2.
1o This validates the findings from Courbon and Leclercq (2011) that the uniform distribution of the detectors across the
191 corridor can best emulate the MoC.

192 Since the range to which LD-MFDs and link MFDs can exist is equal to subset bias, the estimation of subset bias
13 helps conjecture the maximum amount of LD bias. In terms of Case 2, the size of the range of LD-MFD with respect
14 to the average density is %ppkc. The range increases as p increases, which might lead to a higher LD bias. When
195 having the same p value, the possible range of LD-MFD is shorter in Case 3 than in Case 2. This is because the LD
s bias of Case 3 is affected by A, p, and n. Especially for Case 3, the possible ranges of LD-MFD of two corridors with
17 equal n and A are proportional to the rate of p.

e 2.4.3. Remarks

199 Under the saturated initial condition, the subset bias is inevitable unless the traffic signal system (i) is perfect that
200 never forms a queue (Case 1) or (ii) has a negligibly small red time portion under Case 2, or (iii) satisfies diminutive
201 2(n+1)—A4/(1+p) under Case 3. The LD bias occurs unless the signal timing is perfectly programmed or the detector
202 positions are uniform. When LD bias is directly immeasurable, the subset bias can be used to estimate the maximum
203 amount of LD bias.

204 3. Empirical Data Analysis

205 We recognized previously that some cases have no bias regardless of loop detector positions. When a bias was
206 noticeable, the LD bias and subset bias were clearly distinguished. We now validate the applicability of the findings
207 in the empirical data.

208 Courtesy of the UTD-19 dataset provided by Loder et al. (2019), the loop detector data for 40 cities worldwide
200 are easily accessible. Aghamohammadi and Laval (2022) found the discrepancy of the MFD parameters in the dataset
210 and raised the existence of bias from the loop detector position and its coverage. As mentioned earlier, no city
211 can avoid LD bias unless loop detectors are uniformly distributed or the signal timing is perfectly planned, which
212 1s not expected in the real world. Unfortunately, LD bias cannot be accurately estimated without complete signal
213 information. However, the subset bias, which can be solely obtained by the loop detector data, enables predicting the
214 possible range of LD bias. This conveys that determining the factors affecting the extent of the subset bias will help
215 understand LD bias. In this respect, we aim to investigate specific characteristics of the loop detector position that
216 induces the subset bias.

217 Emulating the processing criteria from Aghamohammadi and Laval (2022), 10 cities (Paris, Bolton, Birmingham,
218 Groningen, Innsbruck, Manchester, Melbourne, Rotterdam, Torino, and Utrecht) are ruled out due to the long ag-
219 gregation intervals and incomplete occupancy measurements. Bordeaux and Constance are also excluded due to the
220 incomplete loop detector information. Hereafter, the characteristics of loop detectors are explored for the remaining
21 28 cities.

222 The loop detector installation information of each city is described in Table 3. The number of time intervals can
223 be viewed as the temporal sample size. The number of detectors shows the sample size to compute average network
222 flows and occupancies for a given temporal point. The area is calculated with a convex-hull method that encircles the
225 edge of LD-installed links. As the number of detectors and the area covered differ by city, the spatial density of loop
226 detectors is calculated by dividing the former by the latter. The length distribution of LD-installed links is represented
227 with a mean, standard deviation, skewness, and kurtosis, and so does the distance distribution from the detector to the
22s  downstream traffic signal. The distribution of the relative position of the detector, which is the distance divided by the
229 link length, is also presented for normalization.
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Table 3: Descriptive statistics related to loop detector in 28 cities

Length of Distance from LD Relative Position
No. of No. Area | Detector LD-installed to downstr. of LD
City time of covered | Density links (m) signal (m) (%)

interval detector (km?) (#/km?) | mean | std | skew | kurt | mean | std | skew | kurt | mean | std | skew | kurt
Augsburg 5757 445 29.3 15.2 | 219 | 167 1.7 3.8 37 36 5.6 | 38.3 24| 19 1.3 1.1
Basel 2016 60 2.0 30.7 | 214 | 127 1.5 24 74 57 5.1 | 313 41 | 22 0.7 | -0.6
Bern 2016 441 20.6 214 | 256 | 216 1.2 0.9 33 74 8.1 | 81.5 17 | 23 19| 32
Bremen 6720 462 | 100.3 4.6 | 324 | 241 1.5] 40| 152 | 208 | 2.1 | 44 45 | 34| 03| -1.6
Cagliari 24000 80 25.5 3.1 | 554 | 304 0.6 0.5 | 283 | 231 0.7 | -0.6 49 | 29 0.1 | -1.3
Darmstadt 17873 204 29.8 6.8 | 312|239 | 16| 26| 202|206 | 1.81 | 4.8 61 | 33| -0.6 | -1.3
Essen 8159 36 11.4 3.2 | 419 | 180 0.9 0.4 | 270 | 160 1.3 2.3 66 | 26 | -0.7 | -0.8
Frankfurt 288 73 1.8 39.6 | 216 | 141 1.0 | 1.3 79 | 101 1.9 | 32 33 25| 06 -12
Graz 2880 246 13.0 18.9 | 229 | 169 2.3 5.8 94 97 3.3 | 141 47 | 29 03| -14
Hamburg 50142 325 18.6 175 | 218 | 178 | 20| 53 66 | 114 | 4.7 | 27.8 32| 27 1.0 | 0.0
Kassel 1171 422 54.4 7.8 | 291 | 236 1.6 3.0 77 | 150 40 | 17.8 28 | 27 13| 05
London 6454 | 4736 | 190.1 25.0 | 218 | 182 | 26| 105 | 124 | 122 | 44 | 326 64 | 28 | -0.6 | -0.9
Los Angeles 2879 1643 55.6 29.6 | 214 | 122 1.5 3.0 78 30 4.6 | 544 45 | 21 03 | -1.1
Luzern 175116 135 7.2 187 | 172 | 114 1.6 | 29 82 | 91 26| 7.6 49 |1 30| 01|-13
Madrid 4560 977 35.1 279 | 182 | 101 2.0 8.6 95 53 2.5 | 139 58 | 24| -04 | -09
Marseille 14400 146 45.4 32| 205 | 117 1.6 | 33| 158|102 | 13| 20 77 | 22| -1.6 | 1.7
Munich 288 280 | 138.9 2.0 | 390 | 314 2.1 5.7 | 146 | 201 2.2 5.7 33 | 27 0.8 | -0.6
Santander 2239 190 9.4 203 | 246 | 210 | 2.1 | 45| 119|164 | 3.1 | 11.7 48 | 34| 0.1 | -1.6
Speyer 6720 136 8.4 16.2 | 302 | 214 1.0 0.3 31 22 0.0 | -1.0 16 | 18 20| 3.6
Strasbourg 9349 138 27.6 50| 281 | 150 | 15| 34| 156 | 106 | 15| 43 56| 25| -04 ] -0.8
Stuttgart 2304 20 46.6 04 | 969 | 569 0.2 | -1.1 | 662 | 408 02| -13 70 | 20 | -04 | -0.1
Taipei 6620 353 41.5 85| 213 | 8 | 1.7 | 53| 107| 62| 19| 78 50| 17 | 0.0 | -0.7
Tokyo 17857 228 235 9.7 | 165 | 115 3.8 | 19.1 | 117 82 4.3 | 28.6 73| 18 | -1.6 | 2.6
Toronto 5856 163 54 30.2 | 241 | 118 | 1.8 | 7.1 | 172|109 | 2.6 | 11.8 70 | 17 | -1.1 | 04
Toulouse 3360 455 87.9 52| 265 | 178 1.9 4.0 | 224 | 163 2.2 5.7 8 | 17| 23| 52
Vilnius 481 444 15.2 292 | 238 | 160 | 1.7 | 34 82 | 114 | 3.1 | 104 38| 31| 09]-06
Wolfsburg 6720 104 25.2 4.1 | 540 | 383 0.6 | -1.0 | 271 | 335 1.5 1.5 46 | 34 0.0 | -1.7
Zurich 3359 | 1012 65.5 155 | 255 | 228 | 2.6 | 103 68 | 116 | 4.1 | 23.0 31| 30| 09 -06
Average 13914 499 | 40.54 | 1498 | 298 145 48
Std 33168 902 | 4329 | 11.01 | 163 124 18

230 To consider the different link length distributions by city, a relative position along the link is used as the classifica-

231 tion criteria. The lower the relative position, the closer the loop detector is to the downstream signal. The histogram
222 of the relative position for each city can be found in Fig. 4. The distribution highly differs by cities; e.g., right-skewed,
2 left-skewed, inverted bell, etc. In particular, the loop detectors are located mostly downstream in Augsburg, whereas
24 Toulouse has most installations upstream.

235 The detectors with a relative position of less than 33 percent are labeled downstream detectors, greater than 67
256 percent as upstream detectors, and otherwise considered midstream detectors. Fig. 5 illustrates the spatial distribution
257 of loop detectors for each city. The detector density is visibly comparable with the link color. In Augsburg, where
28 445 detectors cover 29.3 square kilometers with a detector density of 15.2 detectors per square kilometer. In contrast,
20 Toulouse with a detector density of 5.2 per square kilometer is much sparser and with loop detectors positioned mostly
240 Upstream.
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Fig. 5. Links colored by the loop detector position: street maps (Boeing, 2017) (gray), the link with LD located downstream (orange), midstream
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241 As the variations of the relative position distribution and the spatial density are discovered, we now draw MFDs.
22 It is conspicuous that some cities have different slopes of a free-flow branch by the position of loop detectors, while
23 others present the same slope (Fig. 6 and Fig. 7). For example, in Bern, the downstream subset MFD has a relatively
24 low slope compared to the midstream and the upstream. In Bremen, however, the subset MFDs are all overlapped
25 regardless of positions. This aligns well with the observations from the analytical approach that the subset bias is not
2s  always extant.

Bern Bremen
ann
subset bias All All
D (81.9%) 700 1 D (50.0%)

E M(11.6%) ‘g 00 M (15.4%)
é: U (6.6%) ._‘_g U (34.6%)
= £ 5
= = doo
v o
< < 400
o g 00
o o
£ £
g o 200
= £

100

T 07 T T T T
a0 100 o 20 40 60 a0 100
Average Ocoupancy (%) Average Occupancy (36)
(@) (b)

Fig. 6. Representation of subset bias: (a) Bern - subset bias observed; (b) Bremen - no subset bias observed.

247 However, the expectation that heterogeneous complex networks would always retain subset bias, is contradicted.
28 This also tackles the contentions of the past literature that the downstream loop detectors tend to overestimate average
29 occupancy. The evidence does not direct towards that the city would not have had traffic jams. Rather, we attribute it
250 to the distribution of loop detector positions. The necessity to identify the determinants of the subset bias arises here.
251 According to Fig. 7, the position-based subsets of 28 cities can be classified into three: scattered, biased, and
22 unbiased. Cities with a scattered MFD are the resultant of the insufficient number of detectors in certain positions
2sa - such as downstream located loop detectors in Marseille. Augsburg, Darmstadt, Speyer, Stuttgart, Tokyo, Toronto, and
2 Toulouse are classified as scattered. Cities with subset bias show different slopes by their position (Bern, Cagliari,
255 Frankfurt, Graz, Hamburg, Kassel, London, Madrid, Munich, Santander, Vilnius, Wolfsburg, and Zurich). Otherwise,
256 cities with no subset bias show overlapping shapes by subsets.

257 With all that classified, a simple logistic regression is performed to find variables that might explain the subset
28 bias. Note that cities classified as scattered are excluded from the analysis since a high scatter hampers determining
20 the subset bias. Logistic regression is a probabilistic statistical classification model applied when the dependent
20 variable is categorical (Freedman, 2009, Boateng and Abaye, 2019). Although it is typically used to predict a binary
261 outcome, here we utilize it to determine the significant variables that affect the subset bias. The dependent variable,
22 Y, corresponds to the label for the MFD shape: 13 cities of biased (¥ = 1) and 7 cities of unbiased (Y = 0). The
23 logistic regression in an aggregated form is expressed with a natural logarithm of odds when there are n independent

26« variables of X, X», -+, X, with (n + 1) coefficients of By, Bi, -, Bn :
P(Y
In (1_(—1,()1/)) =Po+B1Xi + Xy + - + BuXy (6)

12


https://doi.org/10.20944/preprints202212.0178.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 December 2022

Ao Fli h/hrfl Ao Fli h/hrfl
Average Flow (veh/hrilane) Average Flow (veh/hrilane) erage Flow (veh/hrilane) Average Flow (veh/hrilane) Average Flow (veh/hrilane) erage Flaw (veh/hr/lane}

Average Flow (veh/hrilane)

Augsburg

All
D (72.8%)
M (21.8%)
U (5.4%)

Average Occupancy (%)

Cagliari

All
D (35.0%)
M (31.2%)
U (33.8%)

Average Occupancy (%)
Graz

All
D (42.7%)
M (23.6%)
U (33.7%)

400 4

200 A

0 40 60
Average Occupancy (%)

Losangeles

1500 {
All

D (35.7%)
M (42.7%)
U (21.7%)

1000 4

500

o 20 60
Average Occupancy (%)

Munich
3
f
£

All
D (61.4%)
LE: : . . :
o 20 (=]

M (21.4%)
U(17.1%)
Average Occupancy (%)
Stuttgart
All
D (5.0%)

M (50.0%)
, U (45.0%)

400

00

200

100

T T T
o n 40 60 a0
Average Occupancy (%)

100

Toulouse

Al
D (3.3%)
M (7.9%)
U (88.8%)

o 20 60 a0
Average Occupancy (%)

100

Average Flow (veh/hrflane) Average Flow (veh/hrilane) Average Flow (veh/hrilane) Average Flow (veh/hrilane) Average Flow (veh/hrilane) Average Flow (veh/hrilane)

Average Flow (veh/hrilane)

750

500

250

o4 T T T T

400

300

200

100

Basel

All
D (45.0%)
M (36.7%)
U (18.3%)

60
Average Occupancy (%)

Darmstadt

All
D (27.9%)
M (14.2%)
U (57.8%)

0
Average Occupancy (%)
Hamburg

All
D (63.7%)
M (21.5%)
3 U (14.8%)

40 60
Average Occupancy (%)

Luzern

Al
D (38.5%)
M (30.4%)
U (31.1%)

Average Occupancy (%)
Santander

All
D (41.1%)
M (21.1%)
U (37.9%)

o 20 60
Average Occupancy (%)

Taipeh
All
D (19.3%)

M (61.2%)
U (19.5%)

40 60
Average Occupancy (%)

Vilnius
All
D (60.6%)
M (17.3%)
U (22.1%)

o 20 60
Average Occupancy (%)

Average Flow (veh/hrflane) Awerage Flow (veh/hrilane) #Average Flaw (veh/hrilane) Average Flow (veh/hr/lane) Awerage Flow (veh/hrilane) Awerage Flow (veh/hrflane)

Awerage Flow (veh/hrflane)

All

i D (81.9%)

p M (11.6%)
U (6.6%)

400

200

o 20 40 60
Average Occupancy (%)

Essen

All
D (16.7%)
M (30.6%)
U (52.8%)

40 60
Average Occupancy (%)

Kassel

All
D (68.7%)
M (16.8%)
U (14.5%)

o 0 40 60
Average Occupancy (%)

Madrid
All
D (19.3%)
M (35.5%)
U (45.1%)

o 20 40 60
Average Occupancy (%)

Speyer

All
D (89.0%)
M (7.4%)
U (3.7%)

Average Occupancy (%)
Tokyo

All

D (5.3%)

M (20.6%)
U (74.1%)

0 T T T T
o 0 40 60

Average Occupancy (%)
Wolfsburg

Al
D (45.2%)
M (15.4%)
U (39.4%)

60

o 20
Average Occupancy (%)

do0i:10.20944/preprints202212.0178.v1

Average Flow (veh/hrilane) Average Flow (veh/hrilane) Average Flow (veh/hrilane) Average Flow (veh/hrilane) Average Flow (veh/hrilane) Average Flow (veh/hrilane)

Average Flow (veh/hrilane)

400

200

400

200

Bremen

All
D (50.0%)
M (15.4%)
U (34.6%)

20 60
Average Occupancy (%)

Frankfurt

All
D (61.6%)
M (15.1%)
U (23.3%)

Average Occupancy (%)
London

All
D (20.2%)
M (22.9%)
U (56.9%)

60
Average Occupancy (%)

Marseille

100

All
D (5.2%)

M (16.4%)
U (77.4%)

Average Occupancy (%)

Strasbourg

All
D (21.7%)
M (39.9%)
U (38.4%)

60
Average Occupancy (%)

Toronto

All
D (7.4%)

M (25.2%)
U (67.5%)

40 60 a0
Average Occupancy (%)

100

Zurich

Al
D (63.9%)
M (16.7%)
U (19.4%)

20 60 a0
Average Occupancy (%)

100

Fig. 7. MFD of all loop detectors, downstream subset (D), midstream subset (M), and upstream subset (U) for 28 cities
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265 Here, the model aims to estimate the coefficients of independent variables. The odds are the probability that
266 the outcome occurs to not occur. The odds ratio indicates how much odds are to be changed by the 1-unit increase
27 of the independent variable, X;, and it equals to €. The model evaluation is done by a likelihood-ratio (LLR) test
26s  which shows how strong a relationship between all of the independent variables and a dependent variable is. The null
20 hypothesis is that all coefficients are equal to zero. The p-value of this test will determine whether the null hypothesis
270 of the LLR test is rejected.

271 We consider all columns in Table 3 as the candidates for independent variables. Since the relative position
272 (columns 12-14) is obtained by dividing the distance to the downstream signal (columns 9-11) by the link length
273 (columns 6-8), we discard columns from the sixth to the eleventh in order to avoid collinearity. Similarly, as the
27+ detector density (column 5) is obtained by dividing the number of detectors (column 3) by the area covered (column
275 4), we drop columns 3 and 4. Then we execute the logistic regression with the remaining candidates and then apply
276 backward step-wise elimination until the independent variables in the model are all at least 5% significant (Chowdhury
277 and Turin, 2020). Table 4 summarizes the process.

278 Since each of the p-values is below 0.05 in the final step, the variables of mean and the standard deviation of
279 relative position are statistically significant at the 95% confidence level. Also, the LLR p-value of 0.014 states that
200 the proposed model was more effective than the null model. Based on the coefficients, the odds ratio is obtained as
21 e %% = 0.92 and ¢*'7° = 1.19 for the mean and the standard deviation, respectively. A 1% increase in the mean
252 of relative position results in an 8% decrease in the probability of position-based subsets having different slopes.
253 Similarly, a 1% increase in the standard deviation results in a 19% increase in the probability of having the subset
23  bias. In other words, if the loop detectors are mostly located downstream and have a large variation, subset MFDs of
255 each position are more likely to have different free-flow branch slopes. Although it is conjectured in many articles
256 that the empirical MFD cannot accurately represent entire networks unless the loop detectors are sufficiently installed
257 (Aghamohammadi and Laval, 2022, Ambiihl et al., 2017), their spatial density was not a significant factor that decides
28 the subset bias.

Table 4: Backward Elimination of Logistic Regression model

Model 1 Pseudo R-squared: 0.422 Log-Likelihood: -7.4863 | LLR p-value: 0.027
Variables Coefficient Std. Err. t-statistics p-value Lower CI Upper CI
Mean of Relative Position -0.260 0.130 -1.998 0.046 -0.515 -0.005
Std. Dev. of Relative Position 0.572 0.288 1.984 0.047 0.007 1.136
Skewness of Relative Position -5.023 3.123 -1.609 0.108 -11.144 1.098
Kurtosis of Relative Position 3.604 2.710 1.330 0.184 -1.708 8.916
Detector Density 0.104 0.072 1.447 0.148 -0.037 0.244
Model 2 Pseudo R-squared: 0.289 Log-Likelihood: -9.2124 | LLR p-value: 0.058
Variables Coeficient Std. Err. t-statistics p-value Lower CI Upper CI
Mean of Relative Position -0.164 0.1 -1.671 0.095 -0.356 0.028
Std. Dev. of Relative Position 0.278 0.161 1.721 0.085 -0.039 0.594
Skewness of Relative Position -1.702 1.843 -0.923 0.356 -5.314 1.910
Detector Density 0.064 0.063 1.020 0.308 -0.059 0.187
Model 3 Pseudo R-squared: 0.253 Log-Likelihood: -9.6762 | LLR p-value: 0.038
Variables Coeflicient Std. Err. t-statistics p-value Lower CI Upper CI
Mean of Relative Position -0.093 0.046 -2.051 0.040 -0.183 -0.004
Std. Dev. of Relative Position 0.161 0.077 2.109 0.035 0.011 0.311
Detector Density 0.033 0.048 0.693 0.488 -0.061 0.128
Model 4 Pseudo R-squared: 0.233 Log-Likelihood: -9.9300 | LLR p-value: 0.014
Variables Coeflicient Std. Err. t-statistics p-value Lower CI Upper CI
Mean of Relative Position -0.087 0.042 -2.055 0.040 -0.170 -0.004
Std. Dev. of Relative Position 0.170 0.075 2.279 0.023 0.024 0.317
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eso  3.1. Insights from the Analytical Approach

290 LD bias cannot be obtained directly from loop-detector data since no complete information is accessible for typical
201 cities. As noticed in the analytical approach, nevertheless, the subset bias provides the possible range of LD bias. That
202 18, the upstream and downstream subsets offer the upper and lower bound for the link MFD. For example, the link
20s  MFD of Bern will have average occupancy between 20% and 40% at an average flow of 400 veh/hr. Still, the bound
204 may be too wide to shed significant insights. We even cannot conclude whether the cities with a subset bias possess
205 LD bias or not. However, it is meaningful that the cities with no subset bias are likely to have no LD bias.

296 We have proved the presumption from Aghamohammadi and Laval (2022) that the discrepancy between the MFD
27 parameters might account for the loop detector position. Since the cuts are the upper bound that hems all points in, the
208 bounds would be overestimated if the LD-MFD lies on the left of the link MFD, and otherwise cause underestimation.
200 We can expect that the parameter estimation of the cities with no subset bias would reveal a consistent result.

s0 4. Simulation

301 So far we have shown in the analytical part that the network parameters such as A and p have a significant impact
sz on the corridor MFD. In the empirical analysis, it is observed that the distribution of the loop detector position itself
as influences the subset bias in the network MFD. In this regard, we examine how the network parameter, A, affects the
s« bias in the network MFDs. We run network simulation experiments in the microscopic traffic simulation platform
as  SUMO (Lopez et al., 2018) to verify and extend the previously described analysis results.

ss  4.1. Simulation Settings

307 Simulations are carried out on a 10 x 10 grid network. All links have one lane per direction. Each intersection
as 1s controlled by a two-phase traffic signal without a protected left turn. Traffic signals for all internal nodes share
as constant parameters: the cycle length of C = 90 s, the green phase of G = 45 s, and the offset of 8 = 0 s. We adopt
a0 a triangular fundamental diagram. The traffic flow parameters are given by: the free-flow speed of u = 54 km/h, the
s wave speed of w = 16.6 km/h, the capacity of Q = 1944 veh/h, the jam density of k; = 153 veh/km, and the critical
sz density of k. = 36 veh/km. With the above parameters fixed, four networks with different A are constructed. For A as
an 0.5, 1, 2, and 4, the link length corresponds to 80 m, 160 m, 320 m, and 640 m, respectively.

a1 The trips are generated to promote homogeneous density distribution throughout the network by assigning iden-
ais  tical demand at all interior links. The routes are randomly assigned with a turning probability of one-third each for
aie  turning left, right, or going straight. The U-turns are executed at the boundary links. Vehicles are allowed to leave
a7 the network at all links. Free-flow branch of MFD was reproduced by allowing vehicles to take all links as their
ais  destination, whereas the destination is restricted to a single boundary link to emulate the congested state.

an Three loop detectors are set in every link each downstream, midstream, and upstream. We label the positions by
a0 the criterion which divides a link into thirds, as we used in our empirical data analysis. The loop detector is positioned
a1 randomly within the position range: e.g., the downstream detector selects anywhere between the relative position
a2z of 0% and 33%. This positioning will reduce LD bias and help observe the impact of A on the subset bias. The
a2 aggregation interval is set to 180 s.

a4 4.2. Simulation Results

azs We have taken both signal and network settings into account figuring out the influential factor of the MFD shape,
as by changing A. Fig. 8 illustrates the MFDs of four networks with different A. The average flow and the density are
sz each normalized by the value of Q and k;, respectively. Note that the free-flow speed and the wave speed of FD are
as each 4.3 and 1.3 when normalized. The forward cuts of the MoC and the SMoC calculated through the parameters of
a9 each network are also superimposed.

330 We can verify that the random positioning within the position range does not hinder the accurate representation of
a1 the link MFD since the link MFD and LD-MFD aligns well on all four figures. Also, it is observed that the link MFD
sz 1s well bounded by the forward cuts of the MoC and the SMoC. As discussed in both previous sections, free-flow
ss  branch slopes are high by order of upstream, midstream, and downstream subsets. In view of a congested branch,
s« the downstream subset overestimates its slope and the upstream subset underestimates it. Hence, from the viewpoint
a5 of subset bias, the downstream and upstream subsets show each left-skew and right-skew distribution from the link
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MEFD. We have explicitly shown that the upstream subset is not bounded by the forward cut. This empowers our
anticipation mentioned in 3.1. that estimating network parameters using LD-MFD will likely suppose longer blocks
than the original if the network has detectors installed mostly upstream. The midstream subsets of all four figures
are considerably close to the upstream subset, meaning that the jam state is not likely to propagate beyond the third
downstream point. Following are the main observations as lambda increases.

e The maximum average flow increases since the long blocks are not prone to spillbacks.

e It is observed that free-flow branches of other MFDs including the link MFD approach that of the upstream
subset. The free-flow branch of the upstream subset also gets steeper and closer to the free-flow speed u,. This
implies that the duration of the traffic jam is canceled out by the long block length.

Larger A assures the smaller subset bias. While the free-flow branches highly differ by the subsets in shorter
blocks, these become overlapped as A increases. Recalling that we have stated that the possible range of LD
bias is equivalent to the subset bias, longer blocks have less chance to show bias in the LD-MFD.

This is also analytically demonstrated by the slope of MoC and SMoC forward cut (Table 5). The average
speed of the observer passing the origin increases when A gets larger. Namely, the difference between the
free-flow slope of the upstream subset and the slope of forward cuts becomes smaller. For long blocks, #y ax
approximates the free-flow speed uy. However, in short blocks, u,,,. is just half of the free-flow speed.
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Fig. 8. The link MFD, the LD-MFD, and the position-based subsets for different values of 1
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Table 5: The forward cut parameters of the MoC and the SMoC. Note that ¥,y and uy,,, are the number of blocks that the observer with
free-flow speed can pass without stopping and the average speed of the observer in the forward cut passing the origin, respectively. uﬁ] and ufz
are the average speed of the observer in SMoC, each corresponds to the steepest forward cut and the next steepest forward cut. Also note that

= (1+ 607 /(A1 +p)).

Variables A=05]|A=1|aA=2|A=4

Ymax 9 5 3 2

MoC Uy,.. (km/h) 27 | 32.04 | 38.16 | 51.84

Uy,.. (normalized) 215 | 255 | 3.04| 4.13

C 1 0.5 0.25 | 0.125

SMoC ufl 2 2.67 3.2 3.55

uﬁz 0.6 0.83 | 1.125 1.42

2 5. Conclusion

353 This paper presented an analysis of the impacts of loop detector position within the link on the resulting empirical

s« MFDs. Previous research has been based either on empirical data or simulation. Here, we have (i) added an analytical
sss  approach based on kinematic wave theory that enables the explanation of these impacts in the corridor MFD, (ii)
sss  postulated a logistic regression model based on empirical data to predict the occurrence of bias on a given network,
ss7 and (iii) revealed that the network parameter A plays a key role in the bias magnitude.

358 In the analytical approach, the symmetric triangular diagram on a corridor was used to envision possible biases
s induced by the nature of loop detectors. Subject to the saturated initial condition constrained by the shock wave speed,
a0 the time-space diagram was classified according to the values of A, p, and n. Formulae of the link MFD, LD-MFD,
st and the position-based subsets were cataloged. Several visualizations of MFDs and biases were presented. Under an
s 1ideal signalization, neither LD bias nor subset bias is apparent. If the network is programmed for the first vehicle
ss  Of the green time to arrive at the next intersection during the green time (e.g., 4 < 1), the subset bias only depends
s« on p. If the first vehicle arrives during the red time of the next intersection, the subset bias is subject to 4, p, and
ss n. It was proved that the LD bias is inevitable unless the signal is programmed perfectly or red time is negligible or
ss the loop detectors are uniformly distributed. Also, the possible range of LD-MFD can be obtained by the subset bias
s7 formulas presented here. The analytical approach can be improved by considering an offset as an additional variable
s and identifying MFDs in unsaturated initial conditions.

369 By analyzing the loop detector data of 28 cities provided by UTD-19, we observed a wide variation in loop
s detector installation parameters such as coverage area or mean link length. When MFDs were subset, some cities
s showed different free-flow slopes for each subset, as predicted by the theory for a corridor, while others overlapped
sz and therefore exhibit no subset bias. Our logistic regression results strongly suggest that this phenomenon can be
sz explained partially by the mean and standard deviation of loop-detector positions alone. This indicates that the subset
a7« bias can be reduced by favoring placements upstream and with low variance. Of course, the other models in Table
ars 4 are also instructive as they exhibit the intuitively correct coefficient sign. In particular, the skewness appears as a
are  strong factor, confirming earlier results that the uniform distribution tends to minimize subset bias.

a77 Our simulation results indicated that the overlapping phenomenon described in the above paragraph can be ex-
ars plained by the network parameter A. For short-block networks (1 < 1) we have seen that the different branches do
a7e  not overlap and that they tend to overlap for very long-block networks (41 > 1). Although the empirical data does
a0 not include signal settings to verify these hypotheses, this finding highlights the importance of parameterizing urban
a1 networks according to their A-value.

382 Finally, the results of this paper strongly indicate that a correction method can be devised to improve the estimation
ss  of the link MFD using loop detector data. Overlapping position-based subset MFDs like Fig. 6(b) are fortunate to not
s« require correction. However, when the subset bias is observed (e.g., Fig. 6(a)), LD-MFD may not accurately represent
sss  link MFD, which requires a correction method. As we have seen, both the topology of the network such as 4, and the
ass  distribution of positions should play a key role. This is currently being investigated by the authors.
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