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Abstract: Locomotor impairment is a high-prevalent and significant source of disability and signifi- 1

cantly impacts a large population’s quality of life. Despite decades of research in human locomotion, 2

the challenges of simulating human movement to study the features of musculoskeletal drivers and 3

clinical conditions remain. Most recent efforts in utilizing reinforcement learning (RL) techniques 4

are promising to simulate human locomotion and reveal musculoskeletal drives. However, these 5

simulations often failed to mimic natural human locomotion because most reinforcement strategies 6

have yet to consider any reference data regarding human movement. To address these challenges, in 7

this study, we designed a reward function based on the trajectory optimization rewards (TOR), and 8

bio-inspired rewards, which includes the rewards obtained from reference motion data captured by a 9

single Intertial Moment Unit (IMU) sensor. The sensor was equipped on the participants’ pelvis to 10

capture reference motion data. Also, we adapted the reward function by leveraging previous research 11

in walking simulation for TOR. The experimental results showed that the simulated agents with the 12

modified reward function performed better in mimicking the collected IMU data from participants, 13

which means the simulated human locomotion was more realistic. Also, as this bio-inspired defined 14

cost, IMU data enhanced the agent’s capacity to converge during the training process. As a result, the 15

models’ convergence is faster than those developed without reference motion data. Consequently, 16

human locomotion can be simulated more quicker and in a broader range of environments with a 17

better simulation performance. 18

Keywords: Reinforcement Learning, Locomotion Disorder, IMU Sensor, Musculoskeletal simulation 19

1. Introduction 20

An accurate model and simulation of human locomotion are highly desirable for many 21

applications, such as identifying musculoskeletal features, assessing clinical conditions, and 22

preventing aging and locomotor diseases. Although separated human muscles and limbs 23

have been modeled accurately [1], a holistic and reliable simulation of human locomotion 24

is still under development. Most recent research has shown that reinforcement learning 25

techniques are promising for training human locomotion controllers in simulation envi- 26

ronments. These controllers have been validated to produce human-like musculoskeletal 27

simulations that could be useful in predicting responses to assistive devices or therapies 28

like targeted strength training. Moreover, researchers could gain insight into human motor 29

control by training a controller with deep RL in certain conditions (i.e., objective functions, 30

simulation environment, etc.) and by analyzing the controller. One could also train con- 31

trollers to mimic human motion (e.g., using imitation learning, where a controller is trained 32

to replicate behaviors demonstrated by an expert [2]) or integrate an existing neuromechan- 33

ical control model with artificial neural networks to study certain aspects of human motor 34

control [3]. 35

Musculoskeletal simulations using deep reinforcement learning (RL) can help us 36

overcome current control models’ limitations. Furthermore, deep learning advances have 37

enabled the development of controllers with high-dimensional inputs and outputs for 38
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human musculoskeletal models. The results of versatile controllers could help investigate 39

human motor controls, despite the discrepancy between artificial and biological neural 40

networks [3,4]. To explain the relevant research, we first review the studies pertinent to the 41

musculoskeletal simulation and then the appropriate reinforcement algorithms that have 42

been used for the simulation purpose. 43

1.1. Musculoskeletal simulations 44

Musculoskeletal models typically have rigid segments, and muscle-tendon actuators 45

[5–7] (Figure 3). In skeletal systems, rigid segments are usually connected by rotational 46

joints. It is common to actuate the joints using Hill-type muscle models [8], which incor- 47

porate both active and passive contractile elements [3,7,9,10] (Figure 1). In simulations, 48

Hill-type muscle models can be used to estimate metabolic energy consumption and muscle 49

fatigue. The musculoskeletal parameter values could be derived from measurements taken 50

from a large number of people, and cadavers [11–13] and can be customized based on the 51

height and weight of an individual, as well as CT and MRI scan data [14,15]. OpenSim [16], 52

which is the basis of the OpenSim-RL package [1] used in the Learn to Move competition, is 53

a widely used open-source software package in biomechanics to simulate musculoskeletal 54

dynamics [3]. 55

A wide variety of human motion recordings have been analyzed using musculoskele- 56

tal simulations. Through a variety of computational methods, muscles are found to be 57

activated in one common approach, allowing for the tracking of reference motion data, such 58

as motion capture data and ground reaction forces, while minimizing muscle effort [17,18]. 59

Using a simulation, we can estimate body states, such as individual muscle forces, that are 60

difficult to measure directly. Using this approach, human walking and running have been 61

validated by comparing the simulated muscle activation to recorded electromyography 62

data [19,20]. It has been shown that motion-tracking approaches are useful for predicting 63

locomotion diseases [21,22], analyzing human locomotion [17,23], controlling assistive 64

devices [24–26], and predicting how exoskeleton assistance and surgical interventions will 65

affect muscle coordination [27,28]. Despite being able to analyze recorded motions with 66

these simulations, they cannot predict movement in novel scenarios since they do not 67

produce new motions [3]. 68

It is also possible to create musculoskeletal motions without reference motion data 69

using trajectory optimization methods [29]. This approach finds muscles that produce 70

the target motion through muscle activation patterns and musculoskeletal model opti- 71

mization, assuming that the target motion is well optimized. In this way, this method 72

has produced well-practiced motor tasks, such as walking and running [30,31], as well as 73

insights into the optimal gait for different objectives [32,33], biomechanical features [34], 74

and assistive devices [35]. If a behavior has not been trained well and is, therefore, func- 75

tionally suboptimal, the application of this approach is not straightforward. For example, 76

when wearing lower leg exoskeletons, people initially walk inefficiently and adapt to more 77

energy-efficient gaits over days and weeks [36], so trajectory optimization based on energy 78

minimization likely would not predict the initial gait. Physiological control constraints, 79

such as neural transmission delays and limited sensory information, limit human brain 80

function by producing functionally suboptimal behaviors due to the nervous system being 81

optimized for typical motions, such as walking. A better representation of the underlying 82

controller might be necessary to predict emergent behaviors that deviate from minimum 83

effort optimal behavior. 84

1.2. Reinforcement learning for simulation of human locomotion 85

A reinforcement learning paradigm is an approach to solving decision-making prob- 86

lems using machine learning. Hence, through interactions with its environment, an agent 87

tries to optimize its policy pi to maximize its cumulative reward [37] (Figure. 2). Higher 88

cumulative rewards can be obtained with better-followed target velocities and lower muscle 89

effort in this study’s musculoskeletal model and physics-based simulation environment. A 90
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Figure 1. Hill-type muscle models consist of contractile elements (CE), parallel elastic elements (PE),
and series elastic elements (SE). Depending on the length and velocity of the contractile element, it
produces contractile forces proportional to the excitation signal. Passive elements act as non-linear
springs with length-dependent forces.

general RL problem involves receiving observations ot at timestep t and querying its policy 91

for the action at (excitation values of the muscles in the model) at timestep t. Observations 92

are full or partial descriptions of the state of the environment at timestep t. π(at|ot) can 93

be either stochastic or deterministic, with a stochastic policy defining a distribution over 94

actions at timestep t [38–40]. It is possible to calculate gradients from non-differentiable 95

objective functions [41], such as those generated from neuromechanical simulations, and 96

then use the gradients as a basis for updating the policies. After applying the action in 97

the environment, the agent transitions to a new state st+1 and receives a scalar reward 98

rt = r(st, at, st+1). Using a dynamics model, we determine the state transition ρ(st+1|st, at). 99

A policy should be learned that maximizes the agent’s cumulative reward. 100

Figure 2. Reinforcement learning algorithm

One of the crucial design decisions in applying RL to a particular problem is the choice 101

of policy representation. Deep RL is the combination of RL with deep neural network 102

function approximators. While a policy can be modeled by any class of functions that maps 103

observations to actions, the use of deep neural networks to model policies demonstrated 104

promising results in complex problems and has led to the emergence of the field of deep 105

RL. The policies trained with deep RL methods achieved high performance [42–45]. 106

In the OpenSim-RL environment [1], where the actions are continuous values of 107

muscle excitations, model-free deep RL algorithms are widely used for continuous control 108

tasks, such as learning to walk the agent using continuous values of muscle excitations. 109

Model-free algorithms do not learn an explicit dynamics model of state transitions; instead, 110

they directly learn a policy to maximize the expected return, or reward. In these continuous 111

control tasks, the policy specifies actions that represent continuous quantities such as 112
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control forces or muscle excitations. Policy gradient algorithms incrementally improve a 113

policy by first estimating the gradient of the expected return using trajectories collected 114

from forward simulations of the policy, and then updating the policy via gradient ascent 115

[46]. 116

Even though the standard policy gradient update is simple, it has several drawbacks, 117

such as instability and inefficiency in sampling. Gradient estimators may have a high 118

variance, leading to unstable learning, and it may take a great number of training samples 119

to get a good gradient estimate. The stability of policy gradient methods has been improved 120

using algorithms such as TRPO [47] and PPO [48], which limit policy behavior changes 121

after each step, as measured by relative entropy between policies. 122

Low sample efficiency is another limitation of policy gradient methods. At each 123

iteration of updating the current policy, standard policy gradient algorithms estimate the 124

gradient from a new batch of data collected with the current policy. As a result, each batch of 125

data is used for a relatively small number of updates, then discarded, and millions of sample 126

data are often needed for a relatively simple problem. In off-policy gradient algorithms, 127

new data from previous iterations of the algorithm can be reused when updating the most 128

recent policy, which greatly reduces the number of samples required to learn effective 129

policies [49–51]. An off-policy algorithm, such as DDPG [49], approximates the policy 130

gradient by fitting a Q-function, Q(s, a), which is the expected return for performing 131

an action a in the current state. Using these methodologies, the learned Q-function is 132

differentiated to approximate a policy gradient, and the policy is then updated using the 133

learned gradient. SAC and TD3 are recent off-policy methods that improve both sample 134

efficiency and stability with a number of modifications. 135

The application of deep RL to high-dimensional parameter controllers has also been 136

shown to yield promising results [48,49]. An advantage of deep RL is that it enables 137

the learning of controllers based on low-level, high-dimensional representations of the 138

underlying system, reducing the need to design compact control representations manually 139

and having a deeper understanding of motion. As a result of the development of deep RL 140

models, controllers for complex environments as well as complex musculoskeletal models 141

have been trained [52–54]. Moreover, deep RL is compatible with cases where reference 142

motion data can be used to develop the controller [2,53,55]. In this regard, IMU sensor 143

data due to being inexpensive and easy to collect in various environments (except being 144

exposed to an environment with extensive varying magnetic fields) is very desirable to be 145

employed as the reference motions [56]. 146

2. Materials and Methods 147

Our method combines continuous and discrete action space reinforcement learning by 148

using Soft Actor-Critic (SAC) and Recurrent Experience Replay in Distributed Reinforce- 149

ment Learning while we use a combination of bio-inspired and TOR for training. We used 150

the L2M2019 environment of Opensim-rl [1] for our simulation. This environment provides 151

a physiologically plausible 3D human model to move following velocity commands with 152

minimum effort [1]. This human model consists of a pelvis segment, a single segment 153

showing the upper section of the body, and several segments for legs (Figure 3). 154

2.1. Simulation environment 155

The simulation environment provides observation or the input to the controller con- 156

sists of a local target velocity map V and the body state S. The states consist of a vector 157

with 97 values for pelvis state, ground reaction forces joint angles and rates and muscle 158

states as observation [1]. In addition, the environment provides a local target velocity field 159

in a 2 × 11 × 11 matrix, representing a 2D vector field on an 11 × 11 grid (Figure 4.a). The 2D 160

vectors are target velocities, and the 11 × 11 grid is for every 0.5 meters back-to-front and 161

left-to-side. The agent starts at the coordination of [0,0] and the target coordination is [5,0] 162

(Figure 4.b). The action space consists of a vector with 22 values showing the activation of 163

22 muscles (11 per leg). 164
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Figure 3. The body sections of the musculoskeletal, which consist of one upper body segment, a
pelvis, and several segments for legs

Figure 4. The path that the agent should walk toward the target

Moreover, the environment offers difficulty levels in this environment. Although 165

in difficulty=2 the environment assigns a random location as the target for the agent, in 166

difficulty=1, the target is located at the coordination of [5,0] (Figure 4). This scenario is 167

the same as our data collection. In our data collection, one 35-year old male participant 168

with 170 cm height and 75 kg weight walked in a straight line for 5 meters. As shown in 169

Figure 5, the IMU sensor, Shimmer, was connected to the pelvis of the participant. Then, 170

a penalty was considered for deviation of the observed IMU values of the agent in the 171

environment from the collected IMU values. This constrain builds the bio-inspired reward 172

of our algorithm. For TOR, we used the defined reward at [54]. The following equations 173

show all the defined reward functions: 174

The total reward J(π) is high when the human model locomotes at desired velocities 175

with minimum effort: 176

J(π) = Ralive + Rstep = ∑
i

ralive + ∑
i

rstep(wstep.rstep-wvel .cvel-we f f .ce f f ) (1)

Figure 5. The attached IMU to the partic-
ipant’s shimmer for data collection dur-
ing straight walking

where Ralive prevents the agent from falling and 177

step term urges the agent to move toward the target, 178

which is here coordination of [5,0] on Figure 4.a. 179

Also, in the OpenSim-rl [1], ralive, rstep, cvel, and ceff 180

are defined as: 181
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ralive = 0.1

rstep = ∑
i in stepi

∆ti = ∆tstepi

cvel = || ∑
i in stepi

(vvel − vtgt)∆ti||

cvel = ∑
i in stepi

muscles

∑
m

A2
m∆ti

(2)

in equation 2, ∆ = 0.01 second is the simulation 182

timestep, vvel is the velocity of the pelvis, vtgt is the target velocity, Ams are the muscle 183

activations, and wstep, wvel, and we f f are the weights for the stepping reward and velocity 184

and effort cost. 185

The objective of this paper is to simulate the musculoskeletal agent walking similar to 186

the participant that IMU data has been collected from using reinforcement learning. To this 187

end, the RL is utilized to develop a policy π(at | st) to maximize the discounted sum of the 188

expected rewards: 189

J(π) = ∑
t
E(st ,at)∼ρπ

[γtr(st, at)] (3)

where st ∈ S is state, at ∈ A is action, r : S × A→ [rmin, rmax] is reward function and ρπ 190

presents the state-action marginals of the trajectory distribution induced by the policy π(at 191

| st). As the main RL procedure as described in [54], Soft Actor-Critic algorithm, [51,57] is 192

used. SAC is the current state-of-the-art DDPG improvement. Deep Deterministic Policy 193

Gradient (DDPG) is an off-policy RL method, which is used for continuous action spaces. 194

The off-policy methods allow data re-usage for policy optimization. SAC method relies on 195

maximizing the entropy while the agent maximize the expected reward. SAC algorithm has 196

shown its data efficiency, learning stability, and hyper-parameter robustness. Maximum 197

entropy RL framework augments reward term in equation 3 with an entropy term: 198

J(π) = ∑
t
E(st ,at)∼ρπ

[γt(r(st, at) + αH(π(· | st)))] (4)

where α is a trade-off between the entropy and reward and thus controls the stochas- 199

ticity of the optimal policy. Reinforcement learning methods using off-policy continuous 200

action spaces are based on the actor-critic pair, where the critic estimates Q-value: 201

Qπ(st, at) = r(st, at) + ∑
k=t+1

E(sk ,ak)∼ρπ
[γk(r(sk, ak) + αH(π(· | st)))] (5)

In practice actor and critic are represented by neural networks πφ (at | st) and Qθ 202

(st | at) with parameters φ and θ. Standard practice is to estimate mean and variance 203

of factorized Gaussian distribution, πφ(at | st) = N (µφ(st), ∑φ(st)). A distribution like 204

this allows for reparametrization and policy training through backpropagation. Using 205

such parametrization, learning objectives for actor, critic, and entropy parameters read as 206

follows: 207

Jπ(φ) = Est∼D [Eat∼πφ [α log(πφ(at | st))−Qθ(st, at)]],

JQ(θ) = E(st ,at)∼D [
1
2
(Qθ(st, at)− (r(st, at) + γEst+1∼p[Vθ̄(st+1)]))

2],

J(α) = Eat∼πt [−α log πt(at | st)− αH̄]

(6)

The experience replay is denoted by D, and the objectives can be optimized by using 208

any stochastic gradient descent method. Aside from the previously mentioned proper- 209

ties, the policy has another good point: it constantly investigates promising actions and 210

abandons the ones that obviously don’t work. 211
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Experience Replay (ER) is the traditional data storage method for off-policy reinforce- 212

ment learning algorithms. During training, an agent sends transactions (s, a, r, s′) while 213

collecting data from the environment. A Prioritized Experience Replay [58] adjusts its 214

sample probabilities based on the loss value associated with a transaction, so training is 215

more likely to include transactions with higher loss values. In the R2D2 approach, the 216

transaction itself is not stored in ER, but overlapping sequences of consecutive (s, a, r) trans- 217

actions. Sequences never cross episode boundaries and overlap by half-time steps. These 218

sequences are referred to as segments. To compute prioritization weights over segments, 219

R2D2 pipeline uses n-step prioritization based on n-step TD-errors δi over the sequence: 220

p = η maxi δi + (1-η) δ̄, where η is set to 0.9. 221

2.2. Reward Shaping 222

The reward function is pivotal to RL agents’ behavior: they are motivated to maximize 223

the returns from the reward function, so the optimal policy is determined by the reward 224

function [54]. Sparse and/or delayed rewards can make learning difficult in many real- 225

world application domains. RL agents are typically guided by reward signals when 226

interacting with their environment. Learning speed and converged performance can 227

be improved by adding a shaping reward to the reward naturally received from the 228

environment, which is called reward shaping principle. Nonetheless, there are two main 229

problems in using reward shaping in RL [54]: 1) interference of rewards. For example, 230

moving with minimum effort is desired, however, to define the reward function a velocity 231

bonus sums up with effort penalty. 2) difficulty of modifying the existing rewards. When 232

the agent learned through a reward to take an action but the action is not enough to achieve 233

a purpose, e.g., moving a leg but not moving forward. Hence, modifying a reward function 234

is needed, which can cause to forget the previous learned action. 235

To address these two issues, a Q-function split technique called multivariate reward 236

representation is introduced [54], in which the scalar reward function is weighted as sum 237

of the n terms: 238

rt =
n

∑
i=1

wi · ri,t (7)

In this approach, the reward terms do not interfere with each other as it uses each 239

term separately and optimize the corresponding Q-function of each reward term. Accord- 240

ingly, if more physiological reward is collected, more reward functions based on realistic 241

human locomotion can be added to this reward function, which makes this algorithm a 242

suitable choice to use a combination of TOR and bio-inspired physiological data. Also, 243

this multivariate reward approach allows the critic pretraining to add new or remove the 244

existing reward terms. The critic is in fact, represented by the neural network. To remove a 245

reward, the parameters assigned to the reward can be set to zero, or to add a new reward, 246

the matrix should be extended by adding a new row. To train the actor and critic with 247

multivariate reward representation, the vector of critic loss should be optimized and the 248

actor should optimize its policy with the scalar representation of the Q-function: 249

Q(st, at) =
n

∑
i=1

wi ·Qi(st, at) (8)

The reward function used here is: 250

r̄ = [renv, rclp, rvdp, rpvb, rdep, rtab, rentropy, rroll
IMU , rpitch

IMU , ryaw
IMU ] (9)

To evaluate addition of the bio-inspired rewards, we kept the reward function used in 251

[54]; however, three terms, rroll
IMU , rpitch

IMU , ryaw
IMU , have been added to the reward function and 252

thanks to the multivariate reward representation, they don’t interfere with the other rewards 253

in the training process. rroll
IMU , rpitch

IMU , ryaw
IMU are defined as the deviation of the collected IMU 254

data IMUcol from the observed IMU data IMUobs of the environment during the training. 255
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rroll
IMU = −|IMUroll

col − IMUroll
obs |

rpitch
IMU = −|IMUpitch

col − IMUpitch
obs |

ryaw
IMU = −|IMUyaw

col − IMUyaw
obs |

(10)

Also, the weight of 1 was assigned to these rewards (equation 7). Another benefit is 256

that if more physiological data (e.g., more IMU data from other parts of the body) were 257

collected, the reward function can extend and thus, more bio-inspired constrains can be 258

added to the reward function. Consequently, the musculoskeletal mimicking the human’s 259

locomotion tasks can get closer to the real scenarios. The other rewards are defined as 260

follow: 261

crossing legs penalty (rclp) is defined to stop the tendency of the agent to cross its legs. 262

rclp = min(0, (rhead − rpelvis, rle f t − rpelvis, rright − rpelvis)) (11)

where r is a radius vector. To encourage the agent to move at the early stages, rpvb, 263

pelvis velocity bonus is used: 264

rpvb = ||vbody|| (12)

Velocity deviation penalty rvdp is defined to guide the agent toward the target. 265

rvdp = − ∑
i in stepi

||vbody − vtgt|| (13)

rdep, dense effort penalty, is to move the agent with minimal effort 266

rdep = −||actiont|| (14)

to force the agent stop at the target, the reward of target achieve bonus is added (rtab): 267

rtab =


0, 0.7 < ||vtgt||
0.1, 0.5 < ||vtgt|| ≤ 0.7
1− 3.5||vtgt||2, ||vtgt|| ≤ 0.5

(15)

The last reward coordinate is entropy bonus from SAC: 268

rentropy = α ∗ H(π(·|st)) (16)

Finally, in our method, the described multivariate reward function, which is the 269

combination of bio-inspired inertial-constrained and TOR, loss functions and networks 270

from SAC, parallel data collection and prioritization, also n-step Q-learning and invertible 271

value function rescaling from R2D2 were used to train the agent. 272

3. Results 273

The process of learning in this agent is first starting to walk in any direction and then 274

walking 5 meters straight. To achieve the first end, 4-layer perception for both policy and 275

critic networks, with input size of dim(S) = 97 for policy and dim(S) + dim(A) = 97 + 22 = 276

119 for the critic, hidden size of 256, layer norm before activation function, ’ELU’ activation 277

for policy and ’ReLU’ for the critic, and residual connections. The discount factor,γ, is set 278

to 0.99. Experience replay size is 250.000 with a segment length of 10. Also, 30 data sampler 279

was set to provide a fair judgment in the case that no IMU-constrained is used. Adam 280

optimizer with the learning rate of 3× 10−5 for policy and 10−4 for critic. The batch size 281

was equal to 256 and the segment length to 10. Priority exponents α and β were set to 0.1 at 282

the beginning of training and linearly increased to 0.9 in 3000 training steps. 283
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Figure 6. Comparison of the reward obtained by the agent with the same training condition, when
no IMU sensor is used (blue) with using the IMU-constrain (orange). The horizontal axis shows the
training time (hr) and the vertical axis shows the reward.

The second step of learning, after starting to walk in any direction, is to walk forward 284

toward the target. To this end, a new model with πs
φ(at|st, vt) and Qs

θ(st, vt, at) are trained 285

by minimizing Kullback-Leibler divergence between policies and mean squared error 286

between critics on data from previously saved experience replay: 287

Jπs(φ) = Est∼DEvt∼N (0,0.1)[DKL(π
s
φ(at|st, vt)||πt

φ′(at|st))]

JQs(θ) = Est∼DEvt∼N (0,0.1)(Q
s
θ(st, vt, a ∼ πs(·|st, vt))−Qt

θ′(st, a ∼ πt(·|st)))
2

(17)

Models πs(at|st, vt) and Qs(st, vt, at) share the same architecture with πt(at, st) and 288

Qt(at, st) except input dim is now dim(S) + dim(V ) = 97 + 2 · 11 · 11 = 339 for policy and 289

dim(S) + dim(V )+dim(A) = 339+22 = 361 for critic and hidden size equals to 1024 for both. 290

The Adam optimizer [59] with the learning rate 10−4 is used to optimize the distillation 291

losses for policy and critic networks and batch size 128. 292

The explained hyperparameters and steps were taken for both cases where no IMU- 293

constrained reward is used and when the IMU-constrained reward is used and the results 294

are shown in Figure 6. Besides the faster training and higher reward, according to the 295

deviation of IMU data from the observation in the environment and the recorded data 296

from the participant approaches zero. In this regard, Figure 7.a shows the path that 297

musculoskeletal walk to reach to be at the target spot, which is straightly 5 meters away 298

from the start point, when IMU data is used for training the agent. Compared to Figure 299

7.c, where no IMU-constrain has been used to guide the agent to the target, the latter 300

case, Figure 7.c, shows some deviations from the straight path; however, in Figure 7.a the 301

agent walks in a more straight way. This roots in the fact that IMU-constrains provide 302

an accurate guideline for the agent to achieve its goal. For further demonstration, the 303

musculoskeletal walking frames when IMU-constrain is used (Figure 7.b) and when no 304

IMU constrain is used (Figure 7.d) demonstrate the deviation of the agent from straight 305

walking by showing its effect on the way that agent takes the steps and body direction (e.g., 306

the agent’s head direction) when no IMU-constrain is used. To investigate the deviation 307

of the agent from the locomotion behavior of the participant the Root Mean Square Error 308

(RMSE) has been calculated and RMSE for roll, pitch, and yaw data are 0.8824, 0.5825, and 309

1.5908; respectively (Figure 8.a,c,e). Moreover, 8.b,d,f compare the observed IMU data in 310

the simulation environment when IMU data is used for training (orange) and when no 311

IMU data is used for training (green). There is an increasing trend in the observed IMU 312

data from the simulation environment when no IMU data is used for training. 313
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Figure 7. a) The musculoskeletal locomotion trajectory and b) frames for a 5-meter straight walk
when no IMU constrain is used for training. c) The musculoskeletal locomotion trajectory and d)
frames for a 5-meter straight walk when IMU constrain is used for training.

4. Discussion 314

This study developed an integrative framework for designing a novel reward function 315

of both TOR and bio-inspiration to develop RL techniques to model human motor control. 316

Experimental results have demonstrated the improvement of the models in training time 317

reduction and increased rewards in simulating human locomotion, compared with previous 318

work that did not consider human motion data. Our contributions are specifically 1) to 319

introduce the novel reward function combining TOR and bio-inspired reward function and 320

2) to demonstrate a computational framework for redesigning reward function to improve 321

human locomotion simulation models. 322

As shown in Figure 6, the RL model with IMU-constrained reward function showed 323

a faster learning rate and could achieve a higher reward. With this approach, the IMU 324

constraints provide a reference guideline for the agent to walk similarly to natural human 325

movements. These rewards could help the agent achieve a higher reward and faster learning 326

than the model when no bio-inspiration is being used. Noteworthy is that this finding 327

suggests that integrating real-world data into the reward function of the RL techniques 328

could help the simulation models escape some anomalies or saddle points during the 329

training process. This observation is consistent with other theoretical analyses of deep 330

neural networks’ convergence processes [60]. 331

According to the results shown in Figure 8, the participants’ pelvis motion for a 332

straight walk can be replicated through an acceptable training process of the RL models. 333

Hence, with accurate models of the human anatomy (e.g., OpenSim [61]), without any 334

invasive procedure, the participants’ locomotion disorders can be investigated, or at least 335

the pelvis part of the participant can be analyzed accurately. This function will be beneficial 336

for medical applications. For instance, a rehabilitation therapist could import their patients’ 337

IMU sensor data to the RL models. The models could provide estimates of the patients’ 338

musculoskeletal mechanisms to assist the therapist in identifying the potential issues during 339

rehabilitation and determining better strategies. 340

Another significant implication of our research is that the experimental results only 341

rely on one single IMU sensor on partipants’ pelvis. In the last decade, despite the advances 342

of wearable and mobile techniques, the affordability and acceptance of sensing techniques 343
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Figure 8. The IMU deviation of the collected IMU from the observed IMU (m/s2) for the first five
seconds of the simulation is shown on the vertical axes and the horizontal axes show the 500 frames
of the time steps: a) roll, RMSE = 0.8824 C) pitch, RMSE = 0.5825 e) yaw, RMSE = 1.5908.

have constrained existing studies on human locomotion. Using much of the bio-sensor 344

data is challenging as it is costly to collect. Also, not all of the sensors can be used 345

in all environments. For example, high-resolution cameras in an open environment or 346

Electromyography (EMG) data in a laboratory environment. In addition, by raising the 347

need for remote health monitoring and reducing the need for patients to attend doctors’ 348

clinics, it is very desirable that patients use some easy-to-wear sensors such as IMU sensors 349

and send the data to the doctors. Previous efforts in data collection of human locomotion 350

for healthcare research mostly instructed the participants to wear a wearable IMU sensor, 351

such as Fitbit, close to the pelvis [62]. With the robust framework developed in this research, 352

their locomotion could be simulated and assessed remotely and retrospectively. This is 353
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the original motivation of this research to equip researchers with a simulation model to 354

reinvestigate the existing human locomotion dataset. 355

The limitations of this study are the relatively small sample size and the small number 356

of musculoskeletal tasks in the experiment, the inaccuracy of the computational models, 357

and other factors during the data collection and preprocessing. Because the RL framework 358

is designed for personalized human locomotion modeling, the experiments focused on 359

training, testing, and validating individual participants’ data. Further work will explore 360

the characteristics of the models across participants and quantify the uncertainties during 361

the generalization process. In addition, interpreting the RL results and training process is 362

still a challenging problem, primarily how to ensure its clinical meaningness. Furthermore, 363

in future work, we will explore other musculoskeletal tasks, such as jogging, jumping, and 364

running, to embrace the knowledge learned from this study. 365

5. Conclusions and future work 366

Our study showed that integrating IMU data into the RL framework reward functions 367

could improve human locomotion simulation. In our experiments, IMU data collected from 368

a participant walking in a straightforward way for 5 meters were used to train a muscu- 369

loskeletal model in a simulation environment. Consequently, this bio-inspired constraint 370

could help the agent move its pelvis like the human from which IMU data was collected. 371

This concept was shown through a comparison of the trajectory, walking frames, obtained 372

reward in RL, and comparison of the collected IMU data with the observed IMU data in the 373

simulation environment. The comparison was conducted between musculoskeletal agents 374

trained with IMU data and those trained without IMU data. The results demonstrated 375

the improved performance of musculoskeletal agents trained with IMU data, including 376

faster convergence, higher reward, and better simulated human locomotion. These findings 377

are consistent with the existing theoretical work in escaping saddle points of deep neural 378

networks. Furthermore, we discussed the implications and potential medical applications 379

of these findings. In future work, we will implement the RL models with more than one 380

IMU constraint on different parts of the body to replicate more complicated locomotion 381

tasks such as jogging, jumping, and running. 382
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