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Abstract: Locomotor impairment is a high-prevalent and significant source of disability and signifi- 1
cantly impacts a large population’s quality of life. Despite decades of research in human locomotion, =
the challenges of simulating human movement to study the features of musculoskeletal drivers and s
clinical conditions remain. Most recent efforts in utilizing reinforcement learning (RL) techniques 4
are promising to simulate human locomotion and reveal musculoskeletal drives. However, these 5
simulations often failed to mimic natural human locomotion because most reinforcement strategies
have yet to consider any reference data regarding human movement. To address these challenges, in 7
this study, we designed a reward function based on the trajectory optimization rewards (TOR), and s
bio-inspired rewards, which includes the rewards obtained from reference motion data captured bya
single Intertial Moment Unit (IMU) sensor. The sensor was equipped on the participants’ pelvis to 1o
capture reference motion data. Also, we adapted the reward function by leveraging previous research 11
in walking simulation for TOR. The experimental results showed that the simulated agents with the 12
modified reward function performed better in mimicking the collected IMU data from participants, 1s
which means the simulated human locomotion was more realistic. Also, as this bio-inspired defined 14
cost, IMU data enhanced the agent’s capacity to converge during the training process. As a result, the  1s
models’ convergence is faster than those developed without reference motion data. Consequently, 16
human locomotion can be simulated more quicker and in a broader range of environments witha 17
better simulation performance. 18

Keywords: Reinforcement Learning, Locomotion Disorder, IMU Sensor, Musculoskeletal simulation 1o

1. Introduction 20

An accurate model and simulation of human locomotion are highly desirable for many 2
applications, such as identifying musculoskeletal features, assessing clinical conditions, and 22
preventing aging and locomotor diseases. Although separated human muscles and limbs 2
have been modeled accurately [1], a holistic and reliable simulation of human locomotion 24
is still under development. Most recent research has shown that reinforcement learning  2s
techniques are promising for training human locomotion controllers in simulation envi- 26
ronments. These controllers have been validated to produce human-like musculoskeletal 27
simulations that could be useful in predicting responses to assistive devices or therapies s
like targeted strength training. Moreover, researchers could gain insight into human motor  2¢
control by training a controller with deep RL in certain conditions (i.e., objective functions, o
simulation environment, etc.) and by analyzing the controller. One could also train con- s
trollers to mimic human motion (e.g., using imitation learning, where a controller is trained 2
to replicate behaviors demonstrated by an expert [2]) or integrate an existing neuromechan- s
ical control model with artificial neural networks to study certain aspects of human motor s
control [3]. 35

Musculoskeletal simulations using deep reinforcement learning (RL) can help us 36
overcome current control models” limitations. Furthermore, deep learning advances have 7
enabled the development of controllers with high-dimensional inputs and outputs for s
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human musculoskeletal models. The results of versatile controllers could help investigate 3o
human motor controls, despite the discrepancy between artificial and biological neural 4
networks [3,4]. To explain the relevant research, we first review the studies pertinent to the
musculoskeletal simulation and then the appropriate reinforcement algorithms that have 4
been used for the simulation purpose. a3

1.1. Musculoskeletal simulations 4

Musculoskeletal models typically have rigid segments, and muscle-tendon actuators s
[5-7] (Figure 3). In skeletal systems, rigid segments are usually connected by rotational s
joints. It is common to actuate the joints using Hill-type muscle models [8], which incor-
porate both active and passive contractile elements [3,7,9,10] (Figure 1). In simulations, s
Hill-type muscle models can be used to estimate metabolic energy consumption and muscle 4
fatigue. The musculoskeletal parameter values could be derived from measurements taken  so
from a large number of people, and cadavers [11-13] and can be customized based on the s
height and weight of an individual, as well as CT and MRI scan data [14,15]. OpenSim [16], s
which is the basis of the OpenSim-RL package [1] used in the Learn to Move competition, is  ss
a widely used open-source software package in biomechanics to simulate musculoskeletal  ss
dynamics [3]. 55

A wide variety of human motion recordings have been analyzed using musculoskele- se
tal simulations. Through a variety of computational methods, muscles are found to be s
activated in one common approach, allowing for the tracking of reference motion data, such  ss
as motion capture data and ground reaction forces, while minimizing muscle effort [17,18].  se
Using a simulation, we can estimate body states, such as individual muscle forces, that are <o
difficult to measure directly. Using this approach, human walking and running have been &
validated by comparing the simulated muscle activation to recorded electromyography e
data [19,20]. It has been shown that motion-tracking approaches are useful for predicting e
locomotion diseases [21,22], analyzing human locomotion [17,23], controlling assistive s
devices [24-26], and predicting how exoskeleton assistance and surgical interventions will s
affect muscle coordination [27,28]. Despite being able to analyze recorded motions with s
these simulations, they cannot predict movement in novel scenarios since they do not e
produce new motions [3]. o8

It is also possible to create musculoskeletal motions without reference motion data  ee
using trajectory optimization methods [29]. This approach finds muscles that produce 7o
the target motion through muscle activation patterns and musculoskeletal model opti- 7
mization, assuming that the target motion is well optimized. In this way, this method 7
has produced well-practiced motor tasks, such as walking and running [30,31], as wellas 73
insights into the optimal gait for different objectives [32,33], biomechanical features [34], 7
and assistive devices [35]. If a behavior has not been trained well and is, therefore, func- s
tionally suboptimal, the application of this approach is not straightforward. For example, 7
when wearing lower leg exoskeletons, people initially walk inefficiently and adapt to more
energy-efficient gaits over days and weeks [36], so trajectory optimization based on energy 7
minimization likely would not predict the initial gait. Physiological control constraints, 7
such as neural transmission delays and limited sensory information, limit human brain s
function by producing functionally suboptimal behaviors due to the nervous system being s
optimized for typical motions, such as walking. A better representation of the underlying e
controller might be necessary to predict emergent behaviors that deviate from minimum e
effort optimal behavior. se

1.2. Reinforcement learning for simulation of human locomotion o

A reinforcement learning paradigm is an approach to solving decision-making prob- s
lems using machine learning. Hence, through interactions with its environment, an agent &7
tries to optimize its policy pi to maximize its cumulative reward [37] (Figure. 2). Higher s
cumulative rewards can be obtained with better-followed target velocities and lower muscle s
effort in this study’s musculoskeletal model and physics-based simulation environment. A o0
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Figure 1. Hill-type muscle models consist of contractile elements (CE), parallel elastic elements (PE),
and series elastic elements (SE). Depending on the length and velocity of the contractile element, it
produces contractile forces proportional to the excitation signal. Passive elements act as non-linear
springs with length-dependent forces.

general RL problem involves receiving observations o; at timestep t and querying its policy
for the action a; (excitation values of the muscles in the model) at timestep ¢. Observations =
are full or partial descriptions of the state of the environment at timestep t. 7r(a¢|o;) can s
be either stochastic or deterministic, with a stochastic policy defining a distribution over s
actions at timestep t [38—40]. It is possible to calculate gradients from non-differentiable o5
objective functions [41], such as those generated from neuromechanical simulations, and s
then use the gradients as a basis for updating the policies. After applying the actionin o7
the environment, the agent transitions to a new state s;;1 and receives a scalar reward s
rt = r(s¢,a¢,5¢41). Using a dynamics model, we determine the state transition p(s;11|s¢, at). oo
A policy should be learned that maximizes the agent’s cumulative reward. 100
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Figure 2. Reinforcement learning algorithm

One of the crucial design decisions in applying RL to a particular problem is the choice 101
of policy representation. Deep RL is the combination of RL with deep neural network 102
function approximators. While a policy can be modeled by any class of functions that maps  1os
observations to actions, the use of deep neural networks to model policies demonstrated ios
promising results in complex problems and has led to the emergence of the field of deep 105
RL. The policies trained with deep RL methods achieved high performance [42-45]. 106

In the OpenSim-RL environment [1], where the actions are continuous values of o7
muscle excitations, model-free deep RL algorithms are widely used for continuous control ies
tasks, such as learning to walk the agent using continuous values of muscle excitations. 10
Model-free algorithms do not learn an explicit dynamics model of state transitions; instead, 110
they directly learn a policy to maximize the expected return, or reward. In these continuous 111
control tasks, the policy specifies actions that represent continuous quantities such as 112
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control forces or muscle excitations. Policy gradient algorithms incrementally improve a 11
policy by first estimating the gradient of the expected return using trajectories collected 114
from forward simulations of the policy, and then updating the policy via gradient ascent 11s
[46] 116

Even though the standard policy gradient update is simple, it has several drawbacks, 17
such as instability and inefficiency in sampling. Gradient estimators may have a high s
variance, leading to unstable learning, and it may take a great number of training samples 1
to get a good gradient estimate. The stability of policy gradient methods has been improved 120
using algorithms such as TRPO [47] and PPO [48], which limit policy behavior changes 121
after each step, as measured by relative entropy between policies. 122

Low sample efficiency is another limitation of policy gradient methods. At each 12
iteration of updating the current policy, standard policy gradient algorithms estimate the 124
gradient from a new batch of data collected with the current policy. As a result, each batch of 125
data is used for a relatively small number of updates, then discarded, and millions of sample 126
data are often needed for a relatively simple problem. In off-policy gradient algorithms, 127
new data from previous iterations of the algorithm can be reused when updating the most  12s
recent policy, which greatly reduces the number of samples required to learn effective 120
policies [49-51]. An off-policy algorithm, such as DDPG [49], approximates the policy 130
gradient by fitting a Q-function, Q(s,a), which is the expected return for performing ia:
an action a in the current state. Using these methodologies, the learned Q-function is a2
differentiated to approximate a policy gradient, and the policy is then updated using the 133
learned gradient. SAC and TD3 are recent off-policy methods that improve both sample 134
efficiency and stability with a number of modifications. 135

The application of deep RL to high-dimensional parameter controllers has also been 136
shown to yield promising results [48,49]. An advantage of deep RL is that it enables 1a7
the learning of controllers based on low-level, high-dimensional representations of the 1ss
underlying system, reducing the need to design compact control representations manually  1se
and having a deeper understanding of motion. As a result of the development of deep RL 140
models, controllers for complex environments as well as complex musculoskeletal models 1
have been trained [52-54]. Moreover, deep RL is compatible with cases where reference 1
motion data can be used to develop the controller [2,53,55]. In this regard, IMU sensor 1
data due to being inexpensive and easy to collect in various environments (except being  1ss
exposed to an environment with extensive varying magnetic fields) is very desirable to be 14
employed as the reference motions [56]. 146

2. Materials and Methods 147

Our method combines continuous and discrete action space reinforcement learning by  14s
using Soft Actor-Critic (SAC) and Recurrent Experience Replay in Distributed Reinforce- 1ss
ment Learning while we use a combination of bio-inspired and TOR for training. We used  1so
the L2M2019 environment of Opensim-rl [1] for our simulation. This environment provides s
a physiologically plausible 3D human model to move following velocity commands with sz
minimum effort [1]. This human model consists of a pelvis segment, a single segment 1ss
showing the upper section of the body, and several segments for legs (Figure 3). 154

2.1. Simulation environment 185

The simulation environment provides observation or the input to the controller con-  1se
sists of a local target velocity map V and the body state S. The states consist of a vector sz
with 97 values for pelvis state, ground reaction forces joint angles and rates and muscle 1se
states as observation [1]. In addition, the environment provides a local target velocity field s
ina2 x 11 x 11 matrix, representing a 2D vector field on an 11 x 11 grid (Figure 4.a). The 2D 160
vectors are target velocities, and the 11 x 11 grid is for every 0.5 meters back-to-front and 16
left-to-side. The agent starts at the coordination of [0,0] and the target coordination is [5,0] e
(Figure 4.b). The action space consists of a vector with 22 values showing the activation of 1es
22 muscles (11 per leg). 164
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Figure 3. The body sections of the musculoskeletal, which consist of one upper body segment, a
pelvis, and several segments for legs
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Figure 4. The path that the agent should walk toward the target

Moreover, the environment offers difficulty levels in this environment. Although 1es
in difficulty=2 the environment assigns a random location as the target for the agent, in 166
difficulty=1, the target is located at the coordination of [5,0] (Figure 4). This scenario is 1e7
the same as our data collection. In our data collection, one 35-year old male participant ies
with 170 cm height and 75 kg weight walked in a straight line for 5 meters. As shownin 1e
Figure 5, the IMU sensor, Shimmer, was connected to the pelvis of the participant. Then, 17
a penalty was considered for deviation of the observed IMU values of the agent in the 1n
environment from the collected IMU values. This constrain builds the bio-inspired reward 17
of our algorithm. For TOR, we used the defined reward at [54]. The following equations 17s

show all the defined reward functions: 174

The total reward J(7r) is high when the human model locomotes at desired velocities 175

with minimum effort: 176
J(7t) = Rative + Rstep = Zrulive + ertep(wstep-rstep’wvel-Cvel'weff'ceff) 1)

1 1

where R,jive prevents the agent from falling and
step term urges the agent to move toward the target,
which is here coordination of [5,0] on Figure 4.a.
Also, in the OpenSim-1l [1], rajive, Istep, Cvel, and Ceff
are defined as:

1

Figure 5. The attached IMU to the partic-
ipant’s shimmer for data collection dur-
ing straight walking
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Talive = 0.1
Tstep = Z At; = Atstepj

iin step;
Coel = || Z (vvel - Utgt)AtiH (2)

iinstep;
muscles )

Coel = Y, ), AnAt

iinstep; M

in equation 2, A = 0.01 second is the simulation 182

timestep, vyel is the velocity of the pelvis, v;gt is the target velocity, A;;s are the muscle s
activations, and wstep, wyel, and w, f f are the weights for the stepping reward and velocity 1ss
and effort cost. 165

The objective of this paper is to simulate the musculoskeletal agent walking similar to  1se
the participant that IMU data has been collected from using reinforcement learning. To this 1er
end, the RL is utilized to develop a policy 7t(at | s¢) to maximize the discounted sum of the 1ss
expected rewards: 189

](7‘[) = ZE(st,ut)an [7tr(stl al‘)] 3)
t

where s; € Sis state, a; € Ais action, r: S x A = [I'in, 'max] is reward function and p; 190
presents the state-action marginals of the trajectory distribution induced by the policy 7r(a; 101
| st). As the main RL procedure as described in [54], Soft Actor-Critic algorithm, [51,57]is  1e2
used. SAC is the current state-of-the-art DDPG improvement. Deep Deterministic Policy  1es
Gradient (DDPG) is an off-policy RL method, which is used for continuous action spaces. 104
The off-policy methods allow data re-usage for policy optimization. SAC method relies on 105
maximizing the entropy while the agent maximize the expected reward. SAC algorithm has 196
shown its data efficiency, learning stability, and hyper-parameter robustness. Maximum  1e7
entropy RL framework augments reward term in equation 3 with an entropy term: 198

J () = ;E(st,at)an [V (r(st,a¢) +aM (7 (- | s0)))] @)

where « is a trade-off between the entropy and reward and thus controls the stochas- 199
ticity of the optimal policy. Reinforcement learning methods using off-policy continuous 200

action spaces are based on the actor-critic pair, where the critic estimates Q-value: 201
Qnl(syar) =r(s,ar) + Y Eg ), [V (r(s0,ax) + aH(7(- | 51)))] ®)
k=t+1

In practice actor and critic are represented by neural networks 77 (at | st) and Qp 202
(st | ar) with parameters ¢ and 6. Standard practice is to estimate mean and variance zos
of factorized Gaussian distribution, 7y (as | st) = N (pg(st), Lp(st)). A distribution like 204
this allows for reparametrization and policy training through backpropagation. Using 205
such parametrization, learning objectives for actor, critic, and entropy parameters read as 206
follows: 207

Jr(¢) = Egup[Ea,nr, [ log(7g(ar | st)) — Qo(se, ar)]],
Jo(0) = E(st,at)ND[%<Q€<5trat) — (r(st,ar) + VEsy 1 ~op [Vi(5:41)]))], (6)
J(&) = By [—alog rte(ar | s¢) — aH]

The experience replay is denoted by D, and the objectives can be optimized by using  20s
any stochastic gradient descent method. Aside from the previously mentioned proper- 2o
ties, the policy has another good point: it constantly investigates promising actions and 210
abandons the ones that obviously don’t work. 211
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Experience Replay (ER) is the traditional data storage method for off-policy reinforce- =12
ment learning algorithms. During training, an agent sends transactions (s,4,7,s’) while 21
collecting data from the environment. A Prioritized Experience Replay [58] adjusts its 214
sample probabilities based on the loss value associated with a transaction, so training is  21s
more likely to include transactions with higher loss values. In the R2D2 approach, the 216
transaction itself is not stored in ER, but overlapping sequences of consecutive (s, a,r) trans- 217
actions. Sequences never cross episode boundaries and overlap by half-time steps. These 218
sequences are referred to as segments. To compute prioritization weights over segments, 210
R2D2 pipeline uses n-step prioritization based on n-step TD-errors §; over the sequence: 220
p = nmax; 6; + (1-n) 6, where 7 is set to 0.9. 221

2.2. Reward Shaping 222

The reward function is pivotal to RL agents’ behavior: they are motivated to maximize z2:
the returns from the reward function, so the optimal policy is determined by the reward 2z
function [54]. Sparse and/or delayed rewards can make learning difficult in many real- 225
world application domains. RL agents are typically guided by reward signals when 22
interacting with their environment. Learning speed and converged performance can 2zr
be improved by adding a shaping reward to the reward naturally received from the =2z
environment, which is called reward shaping principle. Nonetheless, there are two main  zze
problems in using reward shaping in RL [54]: 1) interference of rewards. For example, 230
moving with minimum effort is desired, however, to define the reward function a velocity = 2s:
bonus sums up with effort penalty. 2) difficulty of modifying the existing rewards. When  2s:
the agent learned through a reward to take an action but the action is not enough to achieve = =2ss
a purpose, e.g., moving a leg but not moving forward. Hence, modifying a reward function 23
is needed, which can cause to forget the previous learned action. 235

To address these two issues, a Q-function split technique called multivariate reward =3e
representation is introduced [54], in which the scalar reward function is weighted as sum 237
of the n terms: 238

n
ry = 2 w;j - ri,t (7)
i=1

In this approach, the reward terms do not interfere with each other as it uses each 230
term separately and optimize the corresponding Q-function of each reward term. Accord- 240
ingly, if more physiological reward is collected, more reward functions based on realistic = za:
human locomotion can be added to this reward function, which makes this algorithm a 24
suitable choice to use a combination of TOR and bio-inspired physiological data. Also, =2as
this multivariate reward approach allows the critic pretraining to add new or remove the 24
existing reward terms. The critic is in fact, represented by the neural network. To remove a 245
reward, the parameters assigned to the reward can be set to zero, or to add a new reward, =24
the matrix should be extended by adding a new row. To train the actor and critic with 247
multivariate reward representation, the vector of critic loss should be optimized and the 24

actor should optimize its policy with the scalar representation of the Q-function: 249
n
Q(st,ar) = Y wi- Qi(st,ar) 8)
i=1
The reward function used here is: 250
_ 11 itch _yaw
= [feno, Telps Todps ¥ pobs Ydeps Vtabs Yentropy, rivus Y?MU’ ’#MU} )

To evaluate addition of the bio-inspired rewards, we kept the reward function used in 251

itch .
[54]; however, three terms, rﬁd”u, 7711\/1Cu' r%jfu, have been added to the reward function and  2s2

thanks to the multivariate reward representation, they don’t interfere with the other rewards  2ss

in the training process. r;‘}\%u, r%{cg, r?ﬁ]u are defined as the deviation of the collected IMU 25

data IMU,,; from the observed IMU data IMU,, of the environment during the training. 2ss
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roll roll roll
"iMu = _|1Mucol - IMuobs
pitch pitch pitch
Timu = 7|1Mucol - IMuobs | (10)
yaw yaw yaw
Tvu = _|IMUCOZ B IMUobs |

Also, the weight of 1 was assigned to these rewards (equation 7). Another benefitis zse
that if more physiological data (e.g., more IMU data from other parts of the body) were s
collected, the reward function can extend and thus, more bio-inspired constrains can be  2ss
added to the reward function. Consequently, the musculoskeletal mimicking the human’s  2se
locomotion tasks can get closer to the real scenarios. The other rewards are defined as ze0
follow: 261

crossing legs penalty () is defined to stop the tendency of the agent to cross its legs. ze2

Telp = min(O, (rheud o rpelvis/ rleft _ rpelvis’ rright o rpelviS)) (11)
where r is a radius vector. To encourage the agent to move at the early stages, Tpob, 263
pelvis velocity bonus is used: 264
Tpob = ||Ubody‘| (12)
Velocity deviation penalty 1,4, is defined to guide the agent toward the target. 265
Tvdp = — Z Hvbody - Utgt” (13)
iinstep;
T4ep, dense effort penalty, is to move the agent with minimal effort 266
Tdep = —||action;|| (14)

to force the agent stop at the target, the reward of target achieve bonus is added (r4,): 267

0, 0.7 < ||vtgtH
Ty = 4 0.1, 0.5 < [|ogge|| < 0.7 (15)
1—3.5|\vtgt||2, ||vtgt|| S 0.5
The last reward coordinate is entropy bonus from SAC: 268
Yentropy = 0(*7'[(7‘[('|St)) (16)

Finally, in our method, the described multivariate reward function, which is the zeo
combination of bio-inspired inertial-constrained and TOR, loss functions and networks 27
from SAC, parallel data collection and prioritization, also n-step Q-learning and invertible 27
value function rescaling from R2D2 were used to train the agent. 272

3. Results 273

The process of learning in this agent is first starting to walk in any direction and then 27«
walking 5 meters straight. To achieve the first end, 4-layer perception for both policy and 25
critic networks, with input size of dim(S) = 97 for policy and dim(S) + dim(A) =97 +22 = 2z
119 for the critic, hidden size of 256, layer norm before activation function, "ELU’ activation =27
for policy and "ReLU’ for the critic, and residual connections. The discount factor,y, is set 27s
to 0.99. Experience replay size is 250.000 with a segment length of 10. Also, 30 data sampler 27
was set to provide a fair judgment in the case that no IMU-constrained is used. Adam 2e0
optimizer with the learning rate of 3 x 10~° for policy and 10~ for critic. The batch size ~zs:
was equal to 256 and the segment length to 10. Priority exponents & and B were set to 0.1 at 2.2
the beginning of training and linearly increased to 0.9 in 3000 training steps. 203
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Figure 6. Comparison of the reward obtained by the agent with the same training condition, when
no IMU sensor is used (blue) with using the IMU-constrain (orange). The horizontal axis shows the
training time (hr) and the vertical axis shows the reward.

The second step of learning, after starting to walk in any direction, is to walk forward zss
toward the target. To this end, a new model with n(sp(at |st, v¢) and Qp(st, vt, a;) are trained  2ss
by minimizing Kullback-Leibler divergence between policies and mean squared error =zss
between critics on data from previously saved experience replay: 287

J7* (@) = EstnEo, o pr(0,01) [Dxe (77 (atlst, vr) ||y (at[st))]

(17)
Jo: () = EstapEo, o pv(001) (Qh (5t 01,8 ~ 70 (+[st, v1)) — Qg (51,0 ~ 7' (+]sy)))

2

Models 7t (a¢|st, v;) and Q°(s¢, v, a;) share the same architecture with 7t (a;,s;) and  2ss
Q! (at, st) except input dim is now dim(S) + dim(V ) =97 +2 - 11 - 11 = 339 for policy and  2se
dim(S) + dim(V )+dim(A) = 339+22 = 361 for critic and hidden size equals to 1024 for both. 200
The Adam optimizer [59] with the learning rate 10~# is used to optimize the distillation 2e:
losses for policy and critic networks and batch size 128. 202

The explained hyperparameters and steps were taken for both cases where no IMU- 203
constrained reward is used and when the IMU-constrained reward is used and the results 204
are shown in Figure 6. Besides the faster training and higher reward, according to the 205
deviation of IMU data from the observation in the environment and the recorded data 2e6
from the participant approaches zero. In this regard, Figure 7.a shows the path that 2o
musculoskeletal walk to reach to be at the target spot, which is straightly 5 meters away zos
from the start point, when IMU data is used for training the agent. Compared to Figure 200
7.c, where no IMU-constrain has been used to guide the agent to the target, the latter so0
case, Figure 7.c, shows some deviations from the straight path; however, in Figure 7.a the = 30
agent walks in a more straight way. This roots in the fact that IMU-constrains provide 3o
an accurate guideline for the agent to achieve its goal. For further demonstration, the o
musculoskeletal walking frames when IMU-constrain is used (Figure 7.b) and when no  os
IMU constrain is used (Figure 7.d) demonstrate the deviation of the agent from straight sos
walking by showing its effect on the way that agent takes the steps and body direction (e.g., 306
the agent’s head direction) when no IMU-constrain is used. To investigate the deviation o7
of the agent from the locomotion behavior of the participant the Root Mean Square Error = sos
(RMSE) has been calculated and RMSE for roll, pitch, and yaw data are 0.8824, 0.5825, and 300
1.5908; respectively (Figure 8.a,c,e). Moreover, 8.b,d,f compare the observed IMU data in 310
the simulation environment when IMU data is used for training (orange) and when no su
IMU data is used for training (green). There is an increasing trend in the observed IMU 12
data from the simulation environment when no IMU data is used for training. 313
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Figure 7. a) The musculoskeletal locomotion trajectory and b) frames for a 5-meter straight walk
when no IMU constrain is used for training. ¢) The musculoskeletal locomotion trajectory and d)
frames for a 5-meter straight walk when IMU constrain is used for training.

4. Discussion 314

This study developed an integrative framework for designing a novel reward function = s1s
of both TOR and bio-inspiration to develop RL techniques to model human motor control. 16
Experimental results have demonstrated the improvement of the models in training time a7
reduction and increased rewards in simulating human locomotion, compared with previous 1.
work that did not consider human motion data. Our contributions are specifically 1) to s
introduce the novel reward function combining TOR and bio-inspired reward function and  szo
2) to demonstrate a computational framework for redesigning reward function to improve sz
human locomotion simulation models. s22

As shown in Figure 6, the RL model with IMU-constrained reward function showed  s2:
a faster learning rate and could achieve a higher reward. With this approach, the IMU 324
constraints provide a reference guideline for the agent to walk similarly to natural human s
movements. These rewards could help the agent achieve a higher reward and faster learning 326
than the model when no bio-inspiration is being used. Noteworthy is that this finding s2-
suggests that integrating real-world data into the reward function of the RL techniques s2s
could help the simulation models escape some anomalies or saddle points during the sz
training process. This observation is consistent with other theoretical analyses of deep 330
neural networks’ convergence processes [60]. 331

According to the results shown in Figure 8, the participants’ pelvis motion for a sa
straight walk can be replicated through an acceptable training process of the RL models. 333
Hence, with accurate models of the human anatomy (e.g., OpenSim [61]), without any sz
invasive procedure, the participants’ locomotion disorders can be investigated, or at least = sss
the pelvis part of the participant can be analyzed accurately. This function will be beneficial 36
for medical applications. For instance, a rehabilitation therapist could import their patients’ a7
IMU sensor data to the RL models. The models could provide estimates of the patients’ sss
musculoskeletal mechanisms to assist the therapist in identifying the potential issues during  sse
rehabilitation and determining better strategies. 340

Another significant implication of our research is that the experimental results only = sa
rely on one single IMU sensor on partipants’ pelvis. In the last decade, despite the advances s
of wearable and mobile techniques, the affordability and acceptance of sensing techniques sas
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Figure 8. The IMU deviation of the collected IMU from the observed IMU (1 /s?) for the first five
seconds of the simulation is shown on the vertical axes and the horizontal axes show the 500 frames
of the time steps: a) roll, RMSE = 0.8824 C) pitch, RMSE = 0.5825 e) yaw, RMSE = 1.5908.

have constrained existing studies on human locomotion. Using much of the bio-sensor s
data is challenging as it is costly to collect. Also, not all of the sensors can be used s
in all environments. For example, high-resolution cameras in an open environment or sas
Electromyography (EMG) data in a laboratory environment. In addition, by raising the a7
need for remote health monitoring and reducing the need for patients to attend doctors’ sas
clinics, it is very desirable that patients use some easy-to-wear sensors such as IMU sensors s
and send the data to the doctors. Previous efforts in data collection of human locomotion s
for healthcare research mostly instructed the participants to wear a wearable IMU sensor, s
such as Fitbit, close to the pelvis [62]. With the robust framework developed in this research, ss:
their locomotion could be simulated and assessed remotely and retrospectively. This is ss
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the original motivation of this research to equip researchers with a simulation model to s
reinvestigate the existing human locomotion dataset. 385

The limitations of this study are the relatively small sample size and the small number sse
of musculoskeletal tasks in the experiment, the inaccuracy of the computational models, s
and other factors during the data collection and preprocessing. Because the RL framework sss
is designed for personalized human locomotion modeling, the experiments focused on s
training, testing, and validating individual participants” data. Further work will explore  se0
the characteristics of the models across participants and quantify the uncertainties during e
the generalization process. In addition, interpreting the RL results and training process is sz
still a challenging problem, primarily how to ensure its clinical meaningness. Furthermore, ses
in future work, we will explore other musculoskeletal tasks, such as jogging, jumping, and  ses
running, to embrace the knowledge learned from this study. 365

5. Conclusions and future work 366

Our study showed that integrating IMU data into the RL framework reward functions ez
could improve human locomotion simulation. In our experiments, IMU data collected from  ses
a participant walking in a straightforward way for 5 meters were used to train a muscu- ses
loskeletal model in a simulation environment. Consequently, this bio-inspired constraint sz
could help the agent move its pelvis like the human from which IMU data was collected. 37
This concept was shown through a comparison of the trajectory, walking frames, obtained s7-
reward in RL, and comparison of the collected IMU data with the observed IMU data in the 37
simulation environment. The comparison was conducted between musculoskeletal agents sz
trained with IMU data and those trained without IMU data. The results demonstrated 7
the improved performance of musculoskeletal agents trained with IMU data, including s7
faster convergence, higher reward, and better simulated human locomotion. These findings sz
are consistent with the existing theoretical work in escaping saddle points of deep neural s7s
networks. Furthermore, we discussed the implications and potential medical applications s
of these findings. In future work, we will implement the RL models with more than one s
IMU constraint on different parts of the body to replicate more complicated locomotion s
tasks such as jogging, jumping, and running. 382
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