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Abstract: United Nations Framework Convention on Climate Change (UNFCCC) has recently

established the Reducing Emissions from Deforestation and forest Degradation (REDD+) program

that requires countries to report their carbon emissions and sink estimates through national

greenhouse gas inventories (NGHGI). Thus, developing automatic systems capable of estimating the

carbon absorbed by forests without in-situ observation becomes essential. To support this critical

need, in this work, we introduce ReUse, a simple but effective deep-learning approach to estimate the

carbon absorbed by forest areas based on remote sensing. The proposed method’s novelty is in using

the public above-ground biomass (AGB) data from the European Space Agency’s Climate Change

Initiative Biomass project as ground truth to estimate the carbon sequestration capacity of any portion

of land on Earth using Sentinel-2 images and a pixel-wise Regressive UNet. The approach has been

compared to two literature proposals using a private dataset and human-engineered features. The

results show a more remarkable generalization ability of the proposed approach, with a decrease in

Mean Absolute Error and Root Mean Squared Error over the runner-up, respectively of 16.9 and 14.3

in the area of Vietnam, 4.7 and 5.1 in the area of Myanmar, 8.0 and 1.4 in the area of Central Europe.

As a case study, we also report an analysis made for the Astroni area, a World Wildlife Fund (WWF)

natural reserve struck by a large fire, producing predictions consistent with values found by experts

in the field after in-situ investigations. These results further support the use of such an approach for

the early detection of AGB variations in urban and rural areas.

Keywords: U-Net; carbon storage; above-ground biomass; remote sensing; deep learning; CNN;

Sentinel-2; ESA CCI biomass project

1. Introduction

Accurate assessment of forest above-ground biomass (AGB), which in this work is defined as

the mass expressed as oven-dry weight of the woody parts (stem, bark, branches, and twigs) of

all living trees excluding stump and roots, and related carbon stock is essential for the sustainable

management of forests. Recently, the United Nations Framework Convention for Climate Change

(UNFCCC) established the Reducing Emissions from Deforestation and forest Degradation (REDD+)

that requires countries to report their carbon emissions and sink estimates through national greenhouse

gas inventories (NGHGI) [1,2]. Furthermore, Sustainable Development Goal 15 aims to “protect,

restore and promote the sustainable use of terrestrial ecosystems, sustainably manage forests, combat

desertification, halt and reverse land degradation and halt biodiversity loss” [3]. Subsequently, it

is paramount to conduct an explicit investigation into the methods and procedures for quantifying

carbon sinks. Generally, the above-ground dry biomass holds about 50% of carbon; as such, a friction

factor of 0.5 is commonly used for converting AGB into carbon concentration [4,5].

There are two basic approaches to obtaining biomass estimation: traditional field-based and

remote sensing (RS) methods. There is no doubt that traditional methods are more accurate [6],
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https://orcid.org/0000-0001-7143-1244
https://orcid.org/0000-0002-2690-7570
https://orcid.org/0000-0001-6852-0377
https://orcid.org/0000-0002-8176-6950


2 of 13

still, they are also way more time-consuming, laborious, challenging to implement in inaccessible

areas, and destructive in nature [7]. A more and more investigated solution is to rely on images

acquired by satellites and/or drones. Among all, the Sentinel-2 satellite system, launched on 23 June

2015 by the European Space Agency (ESA) and equipped with a multi-spectral instrument (MSI) ,

presents a high potential for applications in land management, agricultural industry (food security),

forestry (AGB) disaster control, and humanitarian relief operations [8]. Sentinel-2 is a polar-orbiting

satellite system comprised of two satellites, each carrying an MSI characterized by a 290-km swath

width, offering a multi-purpose design of 13 spectral bands traversing from visible and near-infrared

(NIR) wavelengths to shortwave infra-red wavelengths at refined (10, 20 m) and coarse (60 m) spatial

resolution. Furthermore, the presence of four bands within the red-edge region, centred at 705 (band 5),

740 (band 6), 783 (band 7), and 865 nm (band 8a), gives the satellite system the potential for mapping

various vegetation characteristics [9].

Most of the approaches so far developed make use of classical machine learning models (such

as SVM, Random Forest, etc.) to estimate above-ground biomass and the related carbon stock,

leveraging expert-made features to be extracted from Sentinel-2 images [10–14]. More recently, some

works [15,16] are investigating the use of Convolutional Neural Network (CNN) to estimate AGB

using the commercial satellite Worldview-2 and visible spectrum images captured by an unmanned

aerial vehicle. In all the reported examples, the AGB target variable is always collected by field

measurements (i.e., they rely on data collected by experts physically located on the target terrain). This

characteristic strongly limits the usability of AI-based AGB automatic estimators, as their use in a real

context, such as the continual analysis of the impact of natural disasters as well as monitoring the

effectiveness of environmental policies, requires the reliable acquisition of the ground truth on wide

and heterogeneous landscapes.

To cope with this need, in this work we propose to use the open data released by the ESA Climate

Change Initiative (CCI) BIOMASS project as ground truth for AGB. This, together with the images

acquired by the Sentinel-2 system allows, unlike field measurements, the acquisition of AGB on a

global scale. To the best of our knowledge, this is the first time that this data combination has been

used for AGB estimation. The rest of the paper is as follows: Section 2 reports a detailed review of the

approaches so far proposed for AGB estimation from satellite images; Section 3 details the proposed

approach, as well as the considered dataset, competition and experimental setup; Section 4 reports the

obtained results and a case study analysis performed on a WWF natural reserve struck by a severe

wildfire; Finally, Section 5 draw some conclusions.

2. Related Works

Literature on remote sensing for vegetation detection is wide. However, Above-Ground Biomass

detection is a different and more crucial task, especially when needed for detailed estimation of other

indicators, such as the carbon sequestration ability of a portion of land. Thus, in this section, we focus

only on works aimed at estimating above-ground biomass and carbon storage from Sentinel-2 images.

In [13], the authors attempted to examine the prospects of Sentinel-2 spectral data for quantifying

the carbon stock in a reforested urban landscape, using Random Forest and, as predictors, 10 Sentinel

bands plus 15 spectral indices that summarise the spectral content without taking into account in any

way the spatial correlations typical of an image. Similarly, in [10] the authors applied Sentinel-2 satellite

images combined with field-measured biomass using Random Forest (RF) to estimate above-ground

biomass in Yok Don National Park, Vietnam. A total of 132 spectral and texture variables were

extracted from the Sentinel-2 images; the grey level co-occurrence matrix (GLCM) method [17] was

used to compute the texture variables.

In [12], Sentinel-2 performance was evaluated for a buffer zone community forest in Parsa National

Park, Nepal, using field-based AGB as a dependent variable, as well as spectral band values and

spectral-derived vegetation indices as independent variables in the Random Forest algorithm; in this

study, no features were extracted from the spatial dimensions, but indicators were only extracted
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from the spectral dimension of the input tensor. Spectral bands, vegetation indices (VIs) and texture

variables derived from processed Sentinel-2 data and topographic parameters have been used in [14] to

statistical link with field-based AGB by implementing random forest and stochastic gradient boosting

(SGB) algorithms. The grey level co-occurrence matrix method [17] and wavelet decomposition were

applied using the first principal component of the Sentinel-2 multispectral tensor.

In [18], to estimate the AGB from remotely sensed data, parametric and non-parametric methods,

including Multiple Regression (MR), k-Nearest Neighbour (kNN), Random Forest, the multi-layer

perceptron, which performed best among the various methods, were applied to a single Sentinel-2

image using spectral bands and derived indices. Similarly, in [19] the authors explored the capability

of spectral and texture features from the Sentinel-2 Multispectral Instrument (MSI) for modelling

grassland AGB using random forest (RF) and extreme gradient boosting (XGBoost) algorithms in

Shengjin Lake wetland (a Ramsar site), showing that the RF and XGBoost models had a robust and

efficient performance and that the introduction of eight grey-level co-occurrence matrix (GLCM)

textures moderately improved the accuracy of modelling AGB. The texture is also the core of [20], in

which texture metrics were derived based on different working window sizes (3×3, 5×5, 7×7, and 9×9),

and the results were compared with those obtained using raw traditional bands (Band 2, 3, 4, 8, 11

and 12), raw traditional and red edge bands (Band 5, 6, 7 and 8A), and red edge bands only; the use of

texture with a 7×7 window size and vegetation indices (VIs) yielded higher biomass estimates.

In [21] the authors proposed an innovative and dynamic architecture based on the generative

neural network that extracts target-oriented generative features for forest prediction AGB using

satellite data. The architecture exploits its generative capacity to produce variables in a latent

space to predict AGB, exploiting only the spectral dimension and not the spatial correlations of

the images. In the same year, in [22] the authors present an automated machine learning (AutoML)

framework for modelling, evaluating, and stacking multiple base models for AGB prediction. This

work incorporates a hyperparameter optimization procedure for automatically extracting targeted

features from multitemporal Sentinel-2 data that minimizes human bias. Also, in this context, the

automatic feature extraction took into account only the spectral dimension. Finally, a recent work [23]

mainly discusses three non-parametric models: the artificial neural network (ANN) and the random

forests, and in particular, explores the quantile regression neural network (QRNN), using spectral

index and texture features as variables.

These works use machine learning techniques combined with intensive feature extraction, with

some focusing only on the spectral dimension and others involving both the spatial and spectral

dimensions. Besides the used features, some works [21,22] also exploited generative networks and

AutoMl pipelines to minimize the human bias in the feature extraction phase. Moreover, as for other

image processing related domains, researchers [15,16] are also working on the use of Convolutional

Neural Networks (CNNs), designed to produce numerical values for AGB prediction (one for each

input image), using input from commercial satellites such as Worldview-2 or visible spectrum images

captured by an unmanned aerial vehicle instead of Sentinel-2 open data.

As far as we know, no deep learning approach relying on fully convolutional architecture (such

as UNet) trained on Sentinel-2 multi-spectral images has been proposed so far to predict AGB and

carbon storage. In this work, we cope with this lack with the aim of introducing a new approach that

embeds feature extraction within the network to produces not a simple numerical value for the whole

input image (as in the case of CNNs) but a mask of numerical values associating the AGB value to

each pixel in the input image. This combines a very fine-grained estimation and wide computational

advantages, together with a greater generalization ability, especially in the case of learning over large

and variegate geographic areas. Moreover, all the reported works, including recent ones [24] designed

to provide an in-depth analysis of forests and individual trees’ carbon storage estimation, use AGB field

measurements as the target variable and/or require input data for which field surveys are necessary.

Instead, in our work we rely on the ESA public data for AGB. The aim is to show that the combined

use of a Regressive UNet network with public data (Sentinel-2 and ESA AGB) can help monitor carbon
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content in forest areas at a global scale in close a real-time manner (i.e., as soon as a new image is

available from the Sentinel-2 system).

3. Materials and Methods

In this paper, we introduce a Regressive UNet trained on the public above-ground biomass data

from the European Space Agency’s Climate Change Initiative Biomass project as ground truth to

estimate the carbon sequestration capacity of any portion of land on Earth using Sentinel-2 images,

comparing its performance against two literature proposals [10,14] on their respective study areas.

Section 3.1 introduces the proposed approach, describing ideas and motivations. Section 3.2 details the

experimental setup as well as the considered competitors. Finally, Section 3.3 describes the considered

dataset, focusing on data acquisition and pre-processing.

3.1. Regressive UNet

In the following study, we introduce ReUse, a UNet network trained to carry out a pixel-wise

regression task to map Sentinel-2 images into AGB rasters. The UNet was developed by [25] for

biomedical semantic segmentation. In the original proposal, the architecture contains two paths. The

first is a contraction path (also known as the encoder) designed to capture the context in the image.

Several structures are possible, but usually, they all involve sequences of convolutional and max

pooling layers. The second path is a symmetric expanding path (also known as the decoder) designed

to produce a pixel-wise prediction using transposed convolutions. These two paths are connected by

some skipping connections, designed to improve the localization ability of the network by combining

the high-resolution features from the contracting path with the corresponding one in the expanding

path. A final convolution layer can then be used to learn and assemble a more precise output based on

this information.

The main difference we introduce to the original UNet architecture is that the network has been

trained not for performing semantic segmentation but to produce a pixel-wise regression map. This

has been obtained by omitting the softmax in the last layer, thus forcing the optimiser to minimise the

loss function based on the actual values predicted by the network, directly comparing them with the

AGB ground truth (Figure 1). To the best of our knowledge, this is the first time such an approach has

been used to estimate AGB. The main advantage is that the proposed variant is able to extract both

spatial and spectral features from the satellite multi-spectral images using an end-to-end paradigm. In

particular, a patch-wise approach has been used [26] dividing each Sentinel-2 input and AGB-raster

into non-overlapping patches of 16*16 pixels.
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Figure 1. ReUse architecture for pixel-wise regression. The input is the Sentinel-2 image with

dimensions (patch size, patch size, number of channels); the output is the AGB image with dimensions

(patch size, patch size, 1).

3.2. Experimental Setup

One of the problems with the evaluation of remote-sensing applications is the lack of a standard

experimental protocol. Indded, given the high spatial and temporal variability associated with images

captured by satellites’ sensors, selecting different Earth zones and acquisition times can result in

different performance, making any comparison with other literature approaches less fair. To cope with

this, we perform different evaluation on different Earth zones, comparing ReUse against two literature

proposals [10,14] both leveraging a Random Forest [27] classifier trained on spatial and spectral features

in a end-to-end paradigm. It it worth noting that in [14] the authors also use topographical parameters,

such as altitude as a variable. However, as that data is not always available, in this work only Sentinel-2

data were used as input.

Comparisons between ReUse and the [10,14] approaches were made on study areas used by

the latters, located in the Central Highlands of Vietnam, and the Yinmar Forest (YM) located in the

northern and central-eastern part of Myanmar, respectively. In [10], a total of 132 spectral and texture

variables were extracted from the Sentinel-2 images; the grey level co-occurrence matrix (GLCM)

method [17] was used to compute mean, variance, homogeneity, contrast, dissimilarity, entropy,

second moment and correlation. In [14], principal component analysis (PCA) [28] was used to eliminate

correlated information in satellite images and simultaneously reduce their dimensionality. The first

principal component (PC1) was used for texture extraction. When extracting textural features, the grey

level co-occurrence matrix method [17] was used to compute mean, variance, homogeneity, contrast,

dissimilarity, entropy, second moment and correlation, and wavelet decomposition was also applied

considering their usefulness for the representation of relevant features [29]. The wavelet analysis

produces four essential components: the approximation image, horizontal detail, vertical detail, and

diagonal detail images. The latter three are regarded as helpful textural measures. In particular,

the Coiflect discrete wavelet function was chosen. Thus, based on the first principal component, a

three-level decomposition strategy was implemented to generate nine detailed images as independent

textural variables for AGB modeling. Finally, two types of textures derived from GLCM-based and

wavelet analysis were included in the AGB modeling in combination with 11 spectral indices.

The proposed ReUse arichitecture has instead been trained using two different setups: one relying

only on the raw Sentinel-2 bands, suitably normalized; the other leveraging raw band together with

textural and spectral indices as in [10,14] respectively. Focusing on the latter setup, concerning the

texture variables, the GLCM method was adopted to compute mean, variance, homogeneity, contrast,
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dissimilarity, entropy, second moment, and correlation to which the nine detail images obtained

by applying the Coiflect wavelets have been added by adopting a three-level strategy. The texture

variables were computed using the first principal component of the raw Sentinel bands. In this work, a

5 × 5 kernel was used to construct the GLCM-based features. Indeeed, considering that training was

conducted at a spatial resolution of 100 meters (because this is the spatial resolution of ESA’s AGB

data), such a kernel involves an area of 500 meters by 500 meters.

For all the considered approaches (including ours and competitors), the images have been

rescaled to a spatial resolution of 100 meters to match the ESA CCI Biomass Project AGB data. All the

experiments have been run using an 8-fold cross-validation strategy, where each fold contains only

patches associated with the same zone on Earth while different folds refer to different portion of Earth

(thus ensuring that there is no data leaks between different folds). For each iteration, 6 of the eight

folds were used for training, 1 for validation, and 1 for testing.The validation set was used to optimize

the number of epochs for ReUse with an early stopping procedure [30] and the number of trees for the

two competitors using two possible values: 250 or 500. In this study, concerning the early stopping

procedure, training is stopped when the monitored validation loss has stopped improving after 35

epochs; the maximum number of epochs is set at 500. The optimizer used is Adam [31] with the default

parameters. For the learning rate, following the approach introduced in [32], if no improvement in

validation loss is seen for 25 epochs, the learning rate is reduced by a factor of 0.2. The Mean Absolute

Error is used as a loss function for ReUse. The trees in the Random Forest are maximally grown, and

the number of variables that each tree can choose at each split is equal to the square root of the number

of features, as suggested by [33]. For reproducibility purposes, the source code is available at our

GitHub repository1.

3.3. Image Acquisition and Pre-Processing

Starting from the Global Dataset of above-ground biomass of the year 2018 version 3 of the ESA

CCI BIOMASS Project, three study areas were downloaded and used separately to compare ReUse

with the competitors [10,14]. The file “N20E100” contains the AGB of the study area of [10] in Vietnam,

while the file “N30E90” contains the AGB of the study area of Yinmar (YM) forest of [14] in Myanmar.

It is again emphasized that [10,14] use field AGB data, while in this work, public AGB data provided

by ESA are used. The third study area cut from the “N60E00” file in central Europe was used to

compare the approaches in a western area and for the Astroni use case (Section 4.1). Table 1 shows the

names of the downloaded AGB files in GeoTIFF format and the clipped areas of interest in Well-known

text (WKT), a text markup language for representing vector geometry objects. From the WKTs, it was

possible to download the corresponding Sentinel-2 L2A satellite multispectral images acquired during

available cloud-free days. The dates of the downloaded Sentinel-2 images of Vietnam, Myanmar, and

Europe are three April, seven March, and twenty-seven July 2018, respectively.

1 https://github.com/priamus-lab/ReUse

https://github.com/priamus-lab/ReUse
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Table 1. List of the file names downloaded from the ESA Biomass Climate Change Initiative of the

Global above-ground forest biomass for 2018, v3 in Geotiff format containing AGB rasters. In each

GeoTiff file, a study area was cut out and reported in Well-known text (WKT) format.

AGB file name Area of interest represented in WKT

N60E00

Polygon ((6.41116296045328227 50.733179027500789,
7.47810311940281469 50.733179027500789,
7.47810311940281469 51.57252282701965385,
6.41116296045328227 51.57252282701965385,
6.41116296045328227 50.733179027500789))

N20E100

Polygon ((107.10766723771612874 12.51511413035953346,
107.83207927588165376 12.51511413035953346,
107.83207927588165376 13.26250192346686596,
107.10766723771612874 13.26250192346686596,
107.10766723771612874 12.51511413035953346))

N30E90

Polygon ((96.00143548690360262 22.97297258442770485,
96.49905818628494103 22.97297258442770485,
96.49905818628494103 23.42872411816529876,
96.00143548690360262 23.42872411816529876,
96.00143548690360262 22.97297258442770485))

The Sentinel-2 satellite system acquires images with 13 spectral channels at variable spatial

resolutions of 10, 20 and 60 meters. This satellite system covers the red-edge region (i.e., b5, 6,

7, and 8A), strategically positioned in the electromagnetic spectrum with unique band settings

critical for vegetation modelling [34]. For ReUse, bands 1, 9, and 10 were eliminated due their

coarse spatial resolution, resulting in the use of only 10-bands images. The values in the retrieved

rasters are digital numbers (DN) that must be transformed into reflectance by dividing them by the

quantification value. The quantification value in the Sentinel-2 product metadata is equal to 10000 [35].

The infrastructure provided by the company Latitudo 40 was used to download and prepare the

Sentinel-2 data described above. Concerning the AGB data, the dataset [36] comprises estimates of

forest above-ground biomass for 2010 [37], 2017, and 2018. They are derived from a combination of

Earth observation data, depending on the year, from the Copernicus Sentinel-1 mission, Envisat’s

ASAR instrument, and JAXA’s Advanced Land Observing Satellite (ALOS-1 and ALOS-2), along with

additional information from Earth observation sources. The data has been produced as part of the

European Space Agency’s Climate Change Initiative program by the Biomass CCI team. The mapping

is at 100 m grid spacing with a target relative error of less than 20% where AGB exceeds 50 Mg/ha.

4. Results

As described in the previous section, the proposed ReUse approach (both versions) has been

compared against two machine learning approaches [10,14] using Random Forest and leveraging

both spatial and spectral dimensions during the feature-engineering phase. The study areas used are

the area of Vietnam and the area of Myanmar, containing the areas of the articles mentioned above,

respectively, to compare ReUse with competitors in the areas in which these methodologies were

initially designed. Moreover, we also consider an area in Central Europe to test the models on the

territorial characteristics of a western country. Eight-fold cross-validation was used to estimate the

error of the models. Table 2 presents the experiments for Vietnam, Myanmar, and Central Europe,

highlighting that ReUse performs better than its competitors in terms of MAE, RMSE, and R2.
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Figure 2. Base-map of the test area in Central Europe.

Figure 3. ReUse’s AGB predictions with raw bands in Central Europe.

Figure 4. ReUse’s AGB predictions with raw bands and feature extraction in Central Europe.

Figure 5. Predictions of AGB using the machine learning approach [10] in Central Europe.

Figure 6. Predictions of AGB using the machine learning approach [14] in Central Europe.

Figures 2 to 6 show a base map of the test area in Central Europe and the AGB predictions of the

different approaches. It can be seen that the city areas where there is no greenery are appropriately

set to 0, and the tree areas are all highlighted. In particular, our solutions (Figure 3 and 4) show

more marked differences between green and non-green areas than the classical machine learning

approaches (Figure 5 and 6). Furthermore, the experiments show that ReUse with feature extraction,

42 spectral indexes as in [10] in conjunction with texture variables obtained with GLCM method and
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wavelet analysis as in [14], does not significantly improve compared to ReUse with raw bands. This

suggests that such a deep approach, in the contest of AGB prediction, can avoid the feature engineering

phase. It is worth noting that errors reported for the competitors are higher than those reported in the

corresponding papers. This is because the ground truth used in this paper comes from ESA, while the

original works used field measurements, not released for reproducibility purposes.

Table 2. The results of the experiments performed on Vietnam and Myanmar study areas of [10,14]

and Central Europe study area. At each iteration of the eight-fold cross-validation, six folds are used

for training, one for validation, and one for testing. The averages and standard deviations of the Mean

Absolute Error (MAE), Root Mean Squared Error (RMSE), and R2 metrics are calculated on the test set.

In bold, the best value for each metric, per study area.

area model MAE RMSE (R2)

Vietnam

ReUse with raw bands
ReUse with feature extraction
Competitor 1 [10]
Competitor 2 [14]

42.0 ± 6.6
44.4 ± 6.0
60.1 ± 8.3
58.9 ± 8.6

57.7 ± 7.3
59.5 ± 4.7
73.0 ± 9.4
72.0 ± 9.7

0.4 ± 0.2
0.4 ± 0.2
0.2 ± 0.2
0.2 ± 0.2

Myanmar

ReUse with raw bands
ReUse with feature extraction
Competitor 1 [10]
Competitor 2 [14]

10.8 ± 2.0
10.7 ± 2.2
15.7 ± 1.9
15.5 ± 1.5

15.0 ± 2.4
14.9 ± 2.6
20.2 ± 2.3
20.1 ± 1.8

0.7 ± 0.1
0.7 ± 0.1
0.4 ± 0.1
0.4 ± 0.1

Europe

ReUse with raw bands
ReUse with feature extraction
Competitor 1 [10]
Competitor 2 [14]

24.5 ± 3.3
24.1 ± 3.4
32.5 ± 3.1
34.8 ± 3.1

46.6 ± 5.2
46.9 ± 4.2
48.0 ± 4.4
51.1 ± 3.9

0.6 ± 0.1
0.6 ± 0.1
0.5 ± 0.5
0.5 ± 0.5

4.1. Case Study: Astroni Nature Reserve

A case study for the Astroni nature reserve in southern Italy was presented to show how ReUse,

Sentinel-2, and ESA’s AGB public data can help estimate CO2 in forest areas and monitor deforestation

downstream of events such as fires. ReUse is adopted with raw Sentinel-2 bands alone without using

other extracted features that would not bring decisive benefits, as demonstrated in the previous section.

The area of central Europe contained in the file ’N60E00’ was chosen to monitor the Astroni

reserve to train ReUse because it is certainly an area with characteristics closer to those of southern

Italy than the other two datasets containing the areas of Vietnam and Myanmar. In [38], research was

conducted within the Astroni Crater World Wildlife Fund (WWF) Reserve in the volcanic area of the

Campi Flegrei in the urban area of Naples, Italy. The Reserve (247 hectares) lies within the caldera of

an extinct volcano with a maximum altitude of 255 m above sea level and an elliptical shape (2 × 1.6

km). The inner part of the crater has a deep depression containing a lake, where a minimum altitude

of 9 m above sea level is reached. In the central part of the crater, near the largest lake, two other small

lakes and three hills rise to the bottom at 45, 74, and 82 m above sea level, respectively. Throughout

the crater, [38] focused on the area of holm oak forest (127 ha) and the area of mixed forest (104 ha) to

define the two main ecosystems and found that the total carbon stocks of the phytomass of these two

ecosystems were 22173 ± 7054 tonnes using sampling from April to October 2016.

In order to make inferences, the Sentinel-2 images downloaded on 31 May 2017 were upscaled to

a spatial resolution of 10 meters, assuming that the spatial correlations learned from the network at 100

meters are also reproducible at 10 meters; this improves the resolution of the predictions compared to

the resolution of the AGB raster of the ESA CCI Biomass project which is at 100 meters. The predictions

of Carbon stocks were made by creating the predicted raster of AGB ten by ten non-overlapping

patches, corresponding to one hectare each. Then, for each patch, the average AGB value expressed in

tonnes per hectare was taken, which, when multiplied by 1 hectare, which is the extent of the patch,

yields a value in tonnes. These values were summed over all patches, and the final result multiplied
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by 0.5 [4,5] to obtain the value of absorbed carbon in tonnes. From this procedure, the estimate of the

Carbon stock for Astroni on 31 May 2017 was 18748 tons, in line with the forecast of [38], which is 22173

± 7054 tons for phytomass in the year 2016. Please note that the latter includes the roots of the plants,

which is not included in our estimate, but which can be considered around 30% of above-ground

biomass for temperate oak forest [39]. Thus, considering only the 0.3*18748 + 18748 estimates, we

obtain a final value of 24372 tons which is within the range of Astroni’s estimate of 22173 ± 7054 tons.

In order to confirm the fact that the trained network recognizes a decrease in AGB downstream of a fire,

the AGB raster of Astroni on 24 August 2017 downstream of the fire on July 2017 is shown in Figure 7

compared with the AGB raster of the same area before the fire. The estimated above-ground biomass

carbon stock on 24 August 2017 for the nature reserve downstream of the fire on July 2017 is 10104

tonnes, confirming the above.

Figure 7. On the left is the predicted above-ground biomass raster of the Astroni nature reserve before

the July 2017 fire; on the right is the predicted above-ground biomass raster after a major fire event for

the same area.

It is stressed that the work done is based entirely on open data, and the fact that a prediction

based on public data is in agreement with ranges given by a ground truth gives worth to a tool that

can be obtained without field measurements and that could be useful for monitoring carbon stocks

in forest areas. The prediction after the fire cannot be verified in any way; however, the fact that the

prediction before the fire is in line with the ground truth and that the forecast after this event shows a

decrease due to the fire is encouraging.

5. Discussion with Conclusions

Sustainable Development Goal 15 aims to ’protect, restore and promote the sustainable use

of terrestrial ecosystems, sustainably manage forests, combat desertification, halt and reverse land

degradation and halt biodiversity loss’ [3]. Furthermore, REDD+ projects aim to reduce Greenhouse

Gases (GHG) concentrations in the atmosphere and contribute to climate change mitigation through

various activities, including carbon stock enhancement [40]. Developing systems that can estimate the

carbon absorbed by forests globally and monitor losses associated with deforestation phenomena such

as fires on time is essential. As explained in Section 1, systems that rely on field measurements are the

most reliable. However, this work aimed to show how it is possible to estimate the carbon absorbed by

forests and nature reserves such as Astroni using open AGB data from the ESA CCI Biomass Project in

conjunction with Sentinel-2 images. To the best of our knowledge, this is the first time such a study

has been done by totally relying on open data only, without field measurements and using a deep

approach based on a UNet architecture.
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The proposed ReUse architecture is based on a pixel-wise regressive UNet, able to generate a pixel

mask of AGB predictions with computational advantages, particularly when monitoring large areas.

This is a great advantage over classical machine learning algorithms that require feature extraction

work to derive indices that capture both spectral and spatial information content [10,14] or over

solutions based on convolutional neural network approaches to estimate AGB using the commercial

Worldview-2 satellite and visible spectrum images captured by an unmanned aerial vehicle [15,16]

which produce a single value as a prediction of AGB. The computational advantage of UNet over

simple CNNs lies in the fact that with CNNs, for each input pixel, its neighbourhood and associated

bands are exploited to produce a single prediction of AGB, whereas with UNet, a patch of input

pixels is associated with a patch of output pixels (e.g., for 16 × 16 pixels patches as in our case, 16*16

inferences with a simple CNN would be equivalent to a single inference with our UNet architecture.

ReUse, both when using raw bands only and raw bands in combination with spectral indices

and texture features, showed better cross-validation performance in terms of MAE, RMSE, and R2

against the two considered competitors [10,14] on three different areas (Table 2). It should also be

noted that using a ReUse verion leveraging raw bands together with some features does not lead to

substantial advantages in terms of result accuracy compared to ReUse with raw bands alone, thus

demonstrating that this approach can dispense with the feature engineering phase and work directly

with the Sentinel-2 raw bands appropriately normalized. When trained on the central European

zone, the network’s predictions were also validated on Astroni, a WWF reserve located close to the

metropolitan area of Naples in southern Italy. The predicted Carbon storage of above-ground biomass

of Astroni, prior to the July 2017 fire, is 18748 tonnes in line with the estimates reported in [38]. In

addition, an estimate of carbon storage of above-ground biomass of Astroni was also made on 24

August 2017 after a major fire event, resulting in 10104 tonnes. This last forecast cannot be verified

in any way; however, the fact that the first prediction is in line with the ground truth and the second

forecast shows a decrease due to the fire is encouraging.

In conclusion, the combined use of Sentinel-2 data and ESA’s AGB data with a UNet approach

could be suitable for estimating the carbon absorbed in urban and rural areas and help monitor

deforestation events without field measurements. To this aim, we have released the code to be used as

a monitoring tool for deforestation. Future research directions could concern the use of multi-temporal

Sentinel-2 data in which spectral images of several dates are examined, the joint use of Sentinel-2 and

Sentinel-1 as input for ReUse, the application of super-resolution to improve the estimations of AGB

and carbon stock in particular in urban areas. We will also explore other case studies to further verify

how well the AGB data of ESA’s Climate Change Initiative Biomass project is suitable as ground truth

for AI-based models for forest monitoring.
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