

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Sex-Related Differences and Factors Associated with Peri-procedural and 1-year Mortality in Chronic Limb-Threatening Ischemia Patients from the CLIMATE Italian Registry.

***Eugenio Martelli^{1,2,3†}, *Matilde Zamboni^{4†}, Giovanni Sotgiu⁵, Laura Saderi⁵, Massimo Federici⁶, Giuseppe M. Sangiorgi⁷, Mariangela V. Puci⁵, Allegra R. Martelli⁸, Teresa Messina⁹, Paolo Frigatti¹⁰, Maria Pia Borrelli¹⁰, Carlo Ruotolo¹¹, Ilaria Ficarelli¹¹, Paolo Rubino¹², Francesco Pezzo¹², Luciano Carbonari¹³, Andrea Angelini¹³, Edoardo Galeazzi¹⁴, Luca Calia Di Pinto¹⁴, Franco M. Fiore¹⁵, Armando Palmieri¹⁵, Giorgio Ventoruzzo¹⁶, Giulia Mazzitelli¹⁶, Franco Ragni¹⁷, Antonio Bozzani¹⁷, Enzo Forliti¹⁸, Claudio Castagno¹⁸, Pietro Volpe¹⁹, Mafalda Massara¹⁹, Diego Moniaci²⁰, Elisa Pagliasso²⁰, Tania Peretti²⁰, Mauro Ferrari^{21†}, Nicola Troisi²¹, Pietro Modugno²², Maurizio Maiorano²², Umberto M. Bracale²³, Marco Panagrosso²³, Mario Monaco^{24,25}, Giovanni Giordano²⁵, Giuseppe Natalicchio²⁶, Antonella Biello²⁶, Giovanni M. Celoria²⁷, Alessio Amico²⁷, Mauro Di Bartolo²⁷, Massimiliano Martelli²⁸, Roberta Munaó²⁸, Davide Razzano²⁹, Giovanni Colacchio³⁰, Francesco Bussetti³⁰, Gaetano Lanza³¹, Antonio Cardini³¹, Bartolomeo Di Benedetto³², Mario De Laurentis³², Maurizio Taurino^{33,34}, Pasqualino Sirignano^{1,34}, Pierluigi Cappiello³⁵, Andrea Esposito³⁵, Santi Trimarchi³⁶⁻⁷, Silvia Romagnoli³⁷, Andrea Padricelli³, Giorgio Giudice³, Adolfo Crinisio³⁸, Giovanni Di Nardo³⁸, Giuseppe Battaglia³⁹, Rosario Tringale³⁹, Salvatore De Vivo⁴⁰, Rita Compagna⁴⁰, Valerio S. Tolva⁴¹, Ilenia D'Alessio⁴¹, Ruggiero Curci⁴², Simona Giovannetti⁴², Giuseppe D'Arrigo⁴³, Giusi Basile⁴³, Dalmazio Frigerio⁴⁴, Gian Franco Veraldi⁴⁵, Luca Mezzetto⁴⁵, Arnaldo Ippoliti⁴⁶, Fabio M. Oddi⁴⁷, and Alberto M. Settembrini³⁷**

¹ Department of General and Specialist Surgery Paride Stefanini, Faculty of Pharmacy and Medicine, Sapienza University of Rome, 155 viale del Policlinico 00161 Rome, Italy

² Saint Camillus International University of Health Sciences, 8 via di Sant'Alessandro, 00131 Rome, Italy

³ Division of Vascular Surgery, Department of Cardiovascular Sciences, S. Anna and S. Sebastiano Hospital, via F. Palasciano, 81100 Caserta, Italy

⁴ Division of Vascular Surgery, Saint Martin Hospital, 22 viale Europa, 32100 Belluno, Italy; wambazamba@icloud.com

⁵ Clinical Epidemiology and Medical Statistics Unit, Department of Medicine, Surgery and Pharmacy, University of Sassari, viale San Pietro, 07100 Sassari, Italy; gsofgiu@uniss.it (G.S.); lsaderi@uniss.it (L.S.); pucimariangela@gmail.com (M.V.P.)

⁶ Department of Systems Medicine, University of Rome Tor Vergata, 1 viale Montpellier, 00133 Rome, Italy; federicm@uniroma2.it

⁷ Department of Biomedicine and Prevention, University of Rome Tor Vergata, 1 viale Montpellier, 00133 Rome, Italy; gsangiorgi@gmail.com

⁸ Medicine and Surgery School of Medicine, Campus Bio-Medico University of Rome, 21 via A. del Portillo, 00128 Rome, Italy; allegramartelli02@gmail.com

⁹ Division of Anesthesia and Intensive Care of Organ Transplants, Umberto I Polyclinic University Hospital, 155 viale del Policlinico, 00161 Rome, Italy; teremessina@hotmail.com

And from the following Divisions of Vascular Surgery:

¹⁰ S. Maria Misericordia University Hospital, 15 piazzale Santa Maria della Misericordia, 33100 Udine, Italy; paolo.frigatti@asufc.sanita.fvg.it (P.F.); mariapia.borrelli@asufc.sanita.fvg.it (M.P.B.)

¹¹ Cardarelli Hospital, 9 Via A. Cardarelli, 80131 Naples, Italy; carlo.ruotolo@aoocardarelli.it (C.R.); iladott@libero.it (I.F.)

¹² Pugliese Ciaccio Hospital, 83 viale Pio X, 88100 Catanzaro, Italy; paolorubinocz@virgilio.it (P.R.); fpezzo@libero.it (F.P.)

¹³ Riuniti University Hospitals, 71 via Conca, Torrette (AN), Italy; carboelle@yahoo.com (L.C.); andrea.angelini@ospedaliriuuniti.marche.it (A.A.)

¹⁴ Treviso Hospital, 1 piazzale dell'Ospedale, 31100 Treviso, Italy; edoardo.galeazzi@aulss2.veneto.it (E.G.); luca.caliadipinto@aulss2.veneto.it (L.C.D.P.)

¹⁵ SS. Annunziata Hospital, 31 via dei Vestini, 66100 Chieti, Italy; franco.fiore@asl2abruzzo.it (F.F.); palmieriarmando@hotmail.com (P.A.)

¹⁶ San Donato Hospital, 20 via Pietro Nenni, 52100 Arezzo, Italy; giorgio.ventoruzzo@libero.it (G.V.); giuliamazzitelli@libero.it (G.M.)

¹⁷ San Matteo Polyclinic, 19 viale Camillo Golgi, 27100 Pavia, Italy; f.ragni@smatteo.pv.it (F.R.); a.bozzani@smatteo.pv.it (A.B.)

¹⁸ Infermi Hospital, Via dei Ponderanesi 2, 13875 Ponderano (BI), Italy; enzo.forliti@aslbi.piemonte.it (E.F.); claudio.castagno83@gmail.com (C.C.)

¹⁹ Bianchi-Melacrino-Morelli Hospital, 21 via G. Melacrino, 89124 Reggio di Calabria, Italy; pietro.volpe257@gmail.com (P.V.); drmafaldamassara@gmail.com (M.M.)

²⁰ San Giovanni Bosco Hospital, 3 piazza del Donatore di Sangue, 10154 Turin, Italy; diego.moniaci@aslciattaditorino.it (D.M.); elisa.pagliasso@aslciattaditorino.it (E.P.); tania.p@live.it (T.P.)

²¹ Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 2 via Paradisa, 56124 Pisa, Italy; mauro.ferrari@unipi.it (M.F.); nicola.troisi@unipi.it (N.T.)

²² Gemelli Molise Hospital, 1 largo A. Gemelli, 86100 Campobasso, Italy; piero.modugno@gmail.com (P.M.); maurizio87doc@hotmail.it (M.M.)

²³ Federico II Polyclinic, Department of Public Health and Residency Program in Vascular Surgery, University of Naples Federico II, 5 via S. Pansini, 80131 Naples, Italy; umbertomarcello.bracale@unina.it (U.M.B.); marcopanagrosso@gmail.com (M.P.)

²⁴ Pineta Grande Hospital, Km. 30 via Domitiana, 81030 Castelvolutno (CE), Italy; mariomonaco55@libero.it

²⁵ Sanatrix Clinic, 31 via S. Domenico, 80127 Naples, Italy; mariomonaco55@libero.it (M.M.); giordano.giovanni85@gmail.com (G.G.)

²⁶ Venere Hospital, 1 via Ospedale di Venere, 70131 Bari, Italy; pino.natalicchio@gmail.com (G.N.); bielloantonella@gmail.com (A.B.)

²⁷ Sant'Andrea Hospital, 197 via Vittorio Veneto, 19121 La Spezia, Italy; gianniceloria@libero.it (G.M.C.); alessio.amico@asl5.liguria.it (A.A.); mdibartolo90@gmail.com (M.D.B.)

1 ²⁸ MultiMedica Hospital, 300 via Milenese, 20099 Sesto San Giovanni (MI), Italy; massmarte@gmail.com (M.M.); roberta.munao@multimedica.it
2 (R.M.)
3 ²⁹ San Pio Hospital, 1 via dell'angelo, 82100 Benevento, Italy; razzanodavide@libero.it
4 ³⁰ F.Miulli Hospital, Strada Prov. 127 Acquaviva-Santeramo Km. 4, 70021 Acquaviva delle Fonti (BA), Italy; gm.colacchio@gmail.com (G.C.);
5 francescobsussetti67@libero.it (F.B.)
6 ³¹ Multimedica Hospital, 70 viale Piemonte, 21053 Castellanza (VA), Italy; gaetano.lanza@multimedica.it (G.L.); cardini.antonio@gmail.com (A.C.)
7 ³² Monaldi Hospital, via L. Bianchi, 84100 Naples, Italy; bartolomeo.dibenedet@ospedalideicolli.it (B.D.B.); mario.delaurentis@yahoo.it (M.D.L.)
8 ³³ Department of Molecular and Clinical Medicine, Sapienza University of Rome, via Giorgio Nicola Papanicolau, 00189 Rome, Italy;
9 maurizio.taurino@uniroma1.it (M.T.)
10 ³⁴ Sant'Andrea University Hospital, 1035/1039 via di Grottarossa, 00189 Rome, Italy; maurizio.taurino@uniroma1.it (M.T.);
11 pasqualino.sirignano@uniroma1.it (P.S.)
12 ³⁵ San Carlo Hospital, via Potito Petrone, 85100 Potenza, Italy; pierluigicappiello55@gmail.com (P.C.); miandra@libero.it (A.E.)
13 ³⁶ Department of Clinical and Community Sciences, University of Milan, 19 via della Commenda, 20122 Milan, Italy; santi.trimarchi@unimi.it
14 ³⁷ Maggiore Polyclinic Hospital Ca' Granda IRCCS and Foundation, 35 via Francesco Sforza, 20122 Milan, Italy; silvia.romagnoli@policlinico.mi.it
15 (S.R.); amsettembrini@gmail.com (A.M.S.)
16 ³⁸ Salus Clinic, 4 via F. Confalonieri, 84091 Battipaglia, Italy; adolfocrinisio71@gmail.com (A.C.); dinardogiovanni47@gmail.com (G.D.N.)
17 ³⁹ San Marco Hospital, viale Carlo Azeglio Ciampi, 95121 Catania, Italy; gbattaglia54@virgilio.it (G.B.); rotrin65@gmail.com (R.T.)
18 ⁴⁰ Pellegrini Hospital, 41 via Portamedina alla Pignasecca, 80134 Naples, Italy; sdevivo71@gmail.com (S.D.V.); rita.compagna@libero.it (R.C.)
19 ⁴¹ Niguarda Hospital, piazza dell'Ospedale Maggiore 3, 20161 Milan, Italy; valerio.tolva@ospedaleniguarda.it (V.S.T.);
20 ilenia.dalessio@ospedaleniguarda.it (I.D.A.)
21 ⁴² Maggiore Hospital, 10 piazza Ospitale, 26900 Lodi, Italy; ruggiero.curci@asst-lodi.it (R.C.); simona.giovanetti@asst-lodi.it (S.G.)
22 ⁴³ Garibaldi-Nesima Hospital, 636 via Palermo, 95122 Catania, Italy; gdarr@hotmail.it (G.D.A.); basilegius4@gmail.com (G.B.)
23 ⁴⁴ Vimercate Hospital, 10 via Cosma e Damiano, 20871 Vimercate (MB), Italy; dalmazio.frigerio@asst-brianza.it
24 ⁴⁵ University Hospital Pietro Confortini, 1 piazzale Aristide Stefani, 37126 Verona, Italy; gianfranco.veraldi@aovr.veneto.it (G.F.V.);
25 luca.mezzetto@aovr.veneto.it (L.M.)
26 ⁴⁶ Department of Biomedicine and Prevention, University of Rome Tor Vergata, 1 viale Montpellier, 00133 Rome, Italy; ippoliti@med.uniroma2.it
27 (A.I.)
28 ⁴⁷ Polyclinic of Tor Vergata, viale Oxford 81, 00133 Rome, Italy; fabio.massimo89@gmail.com (F.M.O.)

29 † These authors contributed equally to this work.

30 ‡ Recently retired.

31 Corresponding author: Eugenio Martelli, MD, email: eugenio.martelli@uniroma1.it, Ph: (+39)3294003220.

33 **Abstract:** Background: Identifying sex-related differences/variables associated with 30-day/1-year mortality in patients with
34 chronic limb-threatening ischemia (CLTI). Methods: Multicenter/retrospective/observational study. Database sent to all-the-Italian
35 vascular surgeries to collect all-the-patients operated for CLTI in 2019. Acute lower-limb ischemia and neuropathic-diabetic foot
36 not included. Follow-up: 1-year. Data on demographics/comorbidities, treatments/outcome, and 30-day/1-year mortality
37 investigated. Results: Information on 2399 cases (69.8% men) from 36/143 (25.2%) centers. Median (IQR) age: 73 (66-80) and 79 (71-
38 85) yrs for men/women, respectively ($p<.0001$). Women more over-75 (63.2%vs40.1%, $p=.0001$). More men smokers (73.7%vs42.2%,
39 $p<.0001$), on hemodialysis (10.1%vs6.7%, $p=.006$), affected by diabetes (61.9%vs52.8%, $p<.0001$), dyslipidemia (69.3%vs61.3%,
40 $p<.0001$), hypertension (91.8%vs88.5%, $p=.011$), coronaropathy (43.9%vs29.4%, $p<.0001$), bronchopneumopathy (37.1%vs25.6%,
41 $p<.0001$), underwent more open/hybrid surgeries (37.9%vs28.8%, $p<.0001$), and minor amputations (22%vs13.7%, $p<.0001$). More
42 women underwent endovascular revascularizations (61.6%vs55.2%, $p=.004$), major amputations (9.6%vs6.9%, $p=.024$), and obtained
43 limb-salvage if with limited gangrene (50.8%vs44.9%, $p=.017$). Age >75 (HR3.63, $p=.003$) associated with 30-day mortality. Age >75
44 (HR2.14, $p<.0001$), nephropathy (HR1.54, $p<.0001$), coronaropathy (HR1.26, $p=.036$), infection/necrosis of the foot (dry, HR1.42,
45 $p=.040$; wet, HR2.04, $p<.0001$) associated with 1-year mortality. No sex-linked difference in mortality statistics. Conclusion: Women
46 exhibit fewer comorbidities, but are struck by CLTI when over-75, a factor associated with short/mid-term mortality, explaining
47 why mortality doesn't statistically differ between the sexes.

49 **Keywords:** chronic limb-threatening ischemia; outcome; sex; age; limb salvage

51 1. Introduction

52 Chronic limb-threatening ischemia (CLTI) affects 1% to 10% of patients with peripheral arterial disease (PAD),
53 representing its advanced stages, and is characterized by rest pain or tissue necrosis in the foot. It generally results
54 from involvement of at least two arterial segments (aorto-iliac, femoropopliteal, tibiopedal) or severe tibiopedal
55 disease. The latter is particularly involved in patients with diabetes mellitus, end-stage renal disease, or very elderly.
56 It represents a very broad range of severe malperfusion of the lower limb and associated limb threat. General and
57 limb prognosis of these patients is adverse: they are at continuous risk of a major cardiovascular event, sudden death,
58 and of course amputation [1].

59 Survival of female and male patients that underwent treatment for CLTI have been investigated with
60 discordant results. For instance, some studies from Germany and the USA showed that 30-day mortality was
61 significantly higher in females, while others from Japan and Sweden respectively identified female sex as a

1 significant positive predictor of 2-year survival, or reported that male sex was significantly associated with an
2 increased risk of death [2-11].

3 Understanding the pathophysiological differences between the sexes is important to improve the quality of
4 care. In this setting, it is reported that a lower rate of diagnostic angiograms and interventional procedures are
5 performed in women compared with men [12]. This has raised the concern that the therapeutic approach to
6 cardiovascular diseases should be sex-specific because of the existence of sex-related disparities in cardiovascular
7 physiology [13-4]. Sex differences have been identified as additional determinants in diagnostic definitions and
8 referral requirements for some diseases and sex-specific treatments are set including percutaneous coronary
9 intervention, coronary artery bypass graft surgery, and PAD [15]. In particular, factors such as older age, late
10 presentation, delayed diagnosis, smaller-size vessels, and other sex-related biases have been postulated to account, at
11 least in part, for the portended less-favorable outcome in women with PAD. In addition, most studies on PAD have
12 had low enrollment rates for women. Fortunately, the sex disparity in the management of PAD has been recognized,
13 and more effort and resources have been dedicated to study this issue. Men and women have distinct and significant
14 biological differences. Physiologically, women differ from men in many respects (eg, they have smaller blood vessels;
15 their menopausal state and eventual estrogen replacement therapy can affect their cardiovascular risk; etc.) [16-18]. It
16 is possible that these differences may contribute to the different presentations of the disease between the sexes and
17 postoperative complications of major vascular procedures.

18 Related to the increased awareness of sex differences, the objective of the present study is to evaluate sex-
19 related differences in the immediate post-surgery outcome and 1-year mortality in patients affected by CLTI.
20 Secondary endpoints consist in the identification of any demographic, risk factor for atherosclerosis, comorbidity or
21 treatment significantly associated with operative and 1-year mortality.

22 **2. Materials and Methods**

23 CLIMATE (Chronic Limb-threatening Ischemia Mortality At short-medium Term and sEx) is a multicenter and
24 retrospective observational study.

25 The same ad hoc electronic questionnaire was sent by email to all the 143 Italian Divisions of Vascular Surgery, which
26 consist of 20 (14%) academic and 123 (86%) non-academic centers. The questionnaire asked to anonymously collect
27 data regarding all the patients treated in each Center from January 1 to December 31, 2019 for the first episode of CLTI
28 on the target limb (by endovascular, surgical, hybrid revascularization, regenerative cellular therapy, or major
29 amputation). Patients with acute lower limb ischemia or exclusively neuropathic diabetic foot (non-ischemic, i.e. with
30 triphasic wave distal arterial blood-flow at duplex scan) were not object of this study, and were not considered in the
31 database. Follow-up was limited to the first year after the operative treatment.

32 Data on demographics, risk factors for atherosclerosis, comorbidities, clinical presentation, treatment,
33 technical and clinical success, post-operative medical therapy, limb salvage, 30-day and 1-year mortality, and cause of
34 death were collected from clinical charts, operator reports, discharge letters, institutions' archives, and reported on the
35 electronic database by each Division of Vascular Surgery. The result from each variable of the database was classified
36 as reported in Table 1 (for instance: 0=no, 1=yes), that is, ready for statistical analysis. Each Center provided two
37 surgeons for this study: the one deputed to data collection, and the Chief of the Division, who was responsible for the
38 accuracy and integrity of it. All the 35 databases were checked for congruency, and summarized together in the
39 original database from the first author (EM). Further supervision of all the data collected from all the Centers was
40 performed by the co-first author (MZ), and by the statistician co-authors # 3, 4, and 7 (GS, LS, and MP). Data
41 supporting the findings of this study are available from the corresponding author upon reasonable request. Weekly
42 web meetings were held between the authors and the study group while drafting the protocol, and over the following
43 two months of patient recruitment, to standardize data collection.

44 Here are some definitions we adopted, the remaining are reported in the tables. Hyperlipemia: low-density
45 lipoprotein, or total cholesterol, or triglyceride severe elevation. Arterial hypertension: systolic and/or diastolic blood
46 pressure ≥ 140 mmHg and ≥ 90 mmHg, respectively. Coronary artery disease (CAD): stable or unstable angina,
47 ejection fraction $< 30\%$, history of myocardial infarction or congestive heart failure. Chronic obstructive pulmonary
48 disease (COPD): symptomatic, but even only radiological signs. Cerebrovascular disease (CVD): previous TIA or
49 stroke. Minor amputation: toe or trans-metatarsal amputation. Limb salvage (LS): any treatment for CLTI which is
50 successful in avoiding a major amputation. Use of antiplatelets, anticoagulants, and statins was classified as mono-
51 therapy, two medications, and three or more medications.

1 Institutional Review Board approval and patient informed consent were waived. The current Italian
 2 legislation on observational studies (our study falls under this category) does not request the above-mentioned
 3 documents when clinical data are anonymized (Official Gazette of the Italian Republic # 76, March 31, 2008).

4 **2.1 Statistical analysis**

5 Sample characteristics were collected in ad hoc dataset (supplementary file: dataset S1).

6 Qualitative variables were summarized with absolute and relative (percentages) frequencies, quantitative
 7 ones with median and interquartile range (IQR). Pearson or Fisher exact tests were used to evaluate differences of
 8 qualitative variables between males and females, whereas the Mann-Whitney test was performed to compare
 9 quantitative variables.

10 Survival analysis at 30-days and at 1-year was performed by Cox proportional hazard regression. Candidate
 11 variables for multivariate analysis were chosen if they were statistically significant at univariate analysis or clinically
 12 relevant.

13 Kaplan-Meier curve and Log-Rank test were performed to describe survival according to gender.

14 A p-value less than .05 was considered statistically significant. STATA13 statistical software was used for all
 15 statistical computations.

16 **3. Results**

17 Thirty-six (25.2%) of the 143 Divisions of Vascular Surgery from 17 of the 20 Italian Regions replied to the
 18 invitation and joined the study. The proportion between the typology of the adhering Centers, compared to the
 19 typology of the Italian Divisions of Vascular Surgery, was found to be constant: 5 (14.3%) academic vs 35 (85.6%) non-
 20 academic. Information on 2399 cases was collected. All the data requested from the database was obtained from each
 21 Vascular Surgery Center, and at follow-up no patient was lost at 30 days, while 20 (0.8%) were missing at 1 year.

22 Table 1 shows the sample characteristics stratified by sex.

23 **Table 1.** Sample characteristics.

Variables	Total cohort (n=2399)	Men (n=1677)	Women (n=722)	p-value
Median (IQR) age, yrs	75 (67-81)	73 (66-80)	79 (71-85)	<.0001
Age > 75 yrs	1128 (47.0)	672 (40.1)	456 (63.2)	.0001
Tobacco use:	1538 (64.2)	1234 (73.7)	304 (42.2)	<.0001
never	857 (35.8)	441 (26.3)	416 (57.8)	<.0001
former (stop > 10 yrs)	840 (35.1)	693 (41.4)	147 (20.4)	<.0001
smoker	698 (29.1)	541 (32.3)	157 (21.8)	<.0001
Overt diabetes mellitus (yes vs no):	1418 (59.2)	1038 (61.9)	380 (52.8)	<.0001
no	978 (40.8)	638 (38.1)	340 (47.2)	<.0001
non-insulin dependent	717 (29.9)	529 (31.6)	188 (26.1)	.007
insulin dependent	701 (29.3)	509 (30.4)	192 (26.7)	.068
Hyperlipemia:	1601(66.9)	1160 (69.3)	441 (61.3)	<.0001
no	794 (33.1)	515 (30.8)	279 (38.6)	.001
under therapy	1498 (62.6)	1089 (65.0)	409 (56.8)	.0001
no therapy	103 (4.3)	71 (4.2)	32 (4.4)	.825
Arterial hypertension:	2176 (90.8)	1538 (91.8)	638 (88.5)	.011
no	221 (9.2)	138 (8.2)	83 (11.5)	.011
under therapy	2147 (89.6)	1515 (90.4)	632 (87.7)	.047
no therapy	29 (1.2)	23 (1.4)	6 (0.8)	.245
Chronic renal insufficiency:	626 (26.1)	453 (27.0)	173 (24.0)	.123
no	1769 (73.9)	1222 (73.0)	547 (76.0)	.125
creatinine >2mg/dl	408 (17.0)	283 (16.9)	125 (17.4)	.765

	hemodialysis treatment	218 (9.1)	170 (10.1)	48 (6.7)	.006
Coronary artery disease:		947 (39.6)	736 (43.9)	211 (29.4)	<.0001
	no	1447 (60.4)	939 (56.0)	508 (70.7)	<.0001
	revascularized	705 (29.5)	559 (33.4)	146 (20.3)	<.0001
	non-revascularized	242 (10.1)	177 (10.6)	65 (9.0)	.246
Chronic obstructive pulmonary disease:		806 (33.7)	622 (37.1)	184 (25.6)	<.0001
	no	1589 (66.3)	1054 (62.9)	535 (74.4)	<.0001
	only radiological signs	479 (20.0)	363 (21.7)	116 (16.1)	.002
	symptomatic	327 (13.7)	259 (15.4)	68 (9.5)	.0001
Cerebrovascular disease:		186 (7.8)	128 (7.6)	58 (8.0)	.736
	no	2213 (92.2)	1549 (92.4)	664 (92.0)	.918
	previous TIA	139 (5.8)	95 (5.7)	44 (6.1)	
	previous stroke	47 (2.0)	33 (2.0)	14 (1.9)	
Rutherford category:	4 (rest pain)	964 (40.2)	697 (41.6)	267 (37.0)	.107
	5 (minor tissue loss)	1078 (44.9)	738 (44.0)	340 (47.1)	
	6 (major tissue loss)	357 (14.9)	242 (14.4)	115 (15.9)	
Necrosis/infection of the foot:	no	1194 (49.9)	854 (51.0)	340 (47.4)	.202
	dry	603 (25.2)	407 (24.3)	196 (27.3)	
	wet	596 (24.9)	414 (24.7)	182 (25.4)	
First intervention:	endovascular only (rarely, regenerative cellular therapy)	1366 (57.1)	922 (55.2)	444 (61.6)	.004 <.0001 .024
	any open revascularization surgery	840 (35.2)	632 (37.9)	208 (28.8)	
	any major amputation	184 (7.7)	115 (6.9)	69 (9.6)	
Any intervention below the knee		1287 (53.9)	912 (54.6)	375 (52.3)	.313
Technical success of CLTI revascularization:	no	211 (9.5)	152 (9.7)	59 (9.0)	.611
	yes	2004 (90.5)	1410 (90.3)	594 (91.0)	
Associated minor amputation		467 (19.5)	368 (22.0)	99 (13.7)	<.0001
Post-operative antiplatelets, anticoagulants, statins:	mono-therapy	561 (24.3)	373 (23.1)	188 (26.9)	.105
	two medications	1229 (53.2)	863 (53.6)	366 (52.4)	
	three or more medications	519 (22.5)	375 (23.3)	144 (20.6)	
Clinical success of CLTI revascularization:	worsen	157 (7.1)	109 (7.0)	48 (7.4)	.951
	no change	343 (15.5)	142 (15.5)	101 (15.5)	
	improved	1716 (77.4)	1212 (77.5)	504 (77.2)	
Limb salvage:		1965 (82.1)	1382 (82.6)	583 (80.9)	.307
	in Rutherford category 4	882 (44.9)	638 (46.2)	244 (41.9)	.080
	in Rutherford category 5	917 (46.7)	621 (44.9)	296 (50.8)	.017
	in Rutherford category 6	166 (8.5)	123 (8.9)	43 (7.4)	.275
30-day mortality		74 (3.1)	44 (2.6)	30 (4.2)	.047
1-year mortality		317 (13.5)	211 (12.8)	106 (14.9)	.167
Cause of death:	cardiac	141 (42.1)	91 (41.2)	50 (43.9)	.635
	neurologic	19 (5.7)	10 (4.5)	9 (7.9)	.202
	pulmonary	33 (9.9)	31 (14.0)	3 (2.6)	.001
	cancer	19 (5.7)	13 (5.9)	6 (5.3)	.822
	multi-organ failure	46 (13.7)	25 (11.3)	21 (12.4)	.074

	other	77 (23.0)	51 (23.1)	25 (21.9)	.804
--	-------	-----------	-----------	-----------	------

1 Quantitative variables are expressed with median and interquartile range (IQR), qualitative ones as absolute and relative (percentages) 2 frequencies, n (%). TIA, transient ischemic attack. CLTI, chronic limb-threatening ischemia.

3

4 Among 2399 patients, 1677 (69.9%) were males, median (IQR) age in the sample was 75 (67-81) yo with significant 5 difference between men and women [73 (66-80) yrs vs 79 (71-85) yrs, p<.0001, respectively]. Women were more over- 6 75 yo compared to men (63.2% vs 40.1%, p=.0001). The age 75 cut-off (≤ 75 or > 75) was chosen on the basis of the 7 median value.

8 The most common cardiovascular risk factor and comorbidity in the total cohort are, respectively, arterial 9 hypertension and CAD, followed by hyperlipemia, tobacco use, diabetes mellitus, and COPD, chronic renal 10 insufficiency, CVD.

11 A significantly greater proportion of men were smokers, affected by diabetes, dyslipidemia, end-stage renal disease 12 on hemodialysis treatment, arterial hypertension, CAD, COPD, have undergone significantly more open or hybrid 13 surgeries for CLTI revascularization, and amputations of the toes or the forefoot as a complementary treatment for LS. 14 On the contrary, a significantly greater proportion of women underwent less-invasive direct or indirect 15 revascularizations for CLTI, mainly endovascular (cellular therapy only in 18, 2.5% of women, 27, 1.6% of men), and 16 major amputations.

17 CVD, clinical presentation according to the Rutherford's classification, infection/necrosis of the foot, above the knee vs 18 below the knee revascularization, technical and clinical success of revascularization for CLTI, postoperative medical 19 therapy, 1-year mortality, cardiac, neurologic, malignant and multi-organ failure causes of death do not statistically 20 differ between the sexes, as well as 30-day mortality which, despite being close to being so, is not statistically 21 significant (p=.047, which with approximation is p=.05). Instead, significantly more women with limited tissue loss 22 (Rutherford category 5) obtain LS, and significantly more males die for pulmonary causes.

23 Table 2 reports the Cox regression analysis to assess relationship between demographic, epidemiological, 24 clinical characteristics, and 30-day mortality.

25
26 **Table 2.** Cox regression analysis to assess risk factors for 30-day mortality.
27

Variables	Univariate analysis		Multivariate analysis		
	HR (95% CI)	p-value	HR (95% CI)	p-value	
Age > 75 yrs	3.42 (1.93-6.01)	<.0001	3.63 (1.53-8.62)	.003	
Men	0.62 (0.38-1.03)	.063	0.71 (0.34-1.48)	.359	
Tobacco use	1.20 (0.71-2.04)	.501	-	-	
Overt diabetes mellitus	0.80 (0.49-1.32)	.386	-	-	
Hyperlipemia:	no	Ref.	Ref.	Ref.	
	under therapy	0.60 (0.36-0.98)	.042	0.86 (0.39-1.86)	.693
	no therapy	0.26 (0.04-1.92)	.187	-	-
Arterial hypertension	1.19 (0.48-2.97)	.705	-	-	
Chronic renal insufficiency:	2.01 (1.22-3.32)	.006	1.37 (0.82-2.27)	.227	
	no	Ref.	Ref.	Ref.	
	creatinine >2	1.78 (0.97-3.23)	.061	0.96 (0.39-2.39)	.937
	hemodialysis treatment	2.45 (1.25-4.81)	.009	-	-
Coronary artery disease:	1.69 (1.03-2.78)	.037	0.69 (0.25-1.92)	.479	
	no	Ref.	Ref.	Ref.	
	revascularized	1.79 (1.06-3.03)	.029	2.88 (0.90-9.17)	.074
	non-revascularized	1.40 (0.62-3.19)	.424	-	-
Chronic obstructive pulmonary disease	1.14 (0.68-1.90)	.624	-	-	
Cerebrovascular disease	2.89 (1.54-5.41)	.001	2.02 (0.80-5.06)	.136	
Necrosis/infection of the foot:	no	Ref.	Ref.	Ref.	
	dry	1.37 (0.64-2.95)	.424	0.88 (0.34-2.24)	.783

	wet	4.61 (2.56-8.31)	<.0001	1.71 (0.73-4.02)	.217
First intervention:	endovascular only (rarely, regenerative cellular therapy)	Ref.	Ref.	Ref.	Ref.
	any open revascularization	1.26 (0.67-2.37)	.474	1.02 (0.48-2.17)	.962
	any major amputation	8.96 (5.05-15.90)	<.0001	-	-
Any intervention below the knee		0.77 (0.47-1.27)	.309	-	-
Associated minor amputation		1.31 (0.64-2.69)	.460	-	-
Technical success of CLTI revascularization		0.41 (0.19-0.88)	.023	0.60 (2.25-1.47)	.262
Post-operative antiplatelets, anticoagulants, statins:	mono therapy	Ref.	Ref.	Ref.	Ref.
	two medications	0.45 (0.27-0.77)	.003	0.73 (0.33-1.61)	.440
	three or more medications	0.24 (0.10-0.57)	.001	0.39 (0.12-1.27)	.118
Clinical success of CLTI revascularization:	worsen	Ref.	Ref.	Ref.	Ref.
	no change	0.34 (0.13-0.91)	.032	0.50 (0.16-1.55)	.230
	improved	0.22 (0.10-0.47)	<.0001	0.53 (0.18-1.56)	.248
Limb salvage		0.15 (0.09-0.25)	<.0001	0.51 (0.19-1.36)	.180

1 CLTI, chronic limb-threatening ischemia.

2

3 Results from multivariate analysis shows that age >75 yrs was the only variable associated with the 30-day

4 mortality (HR=3.69, 95%CI: 1.53-8.62; p=.003).

5 Table 3 reports the Cox regression analysis to assess relationship between demographic, epidemiological,

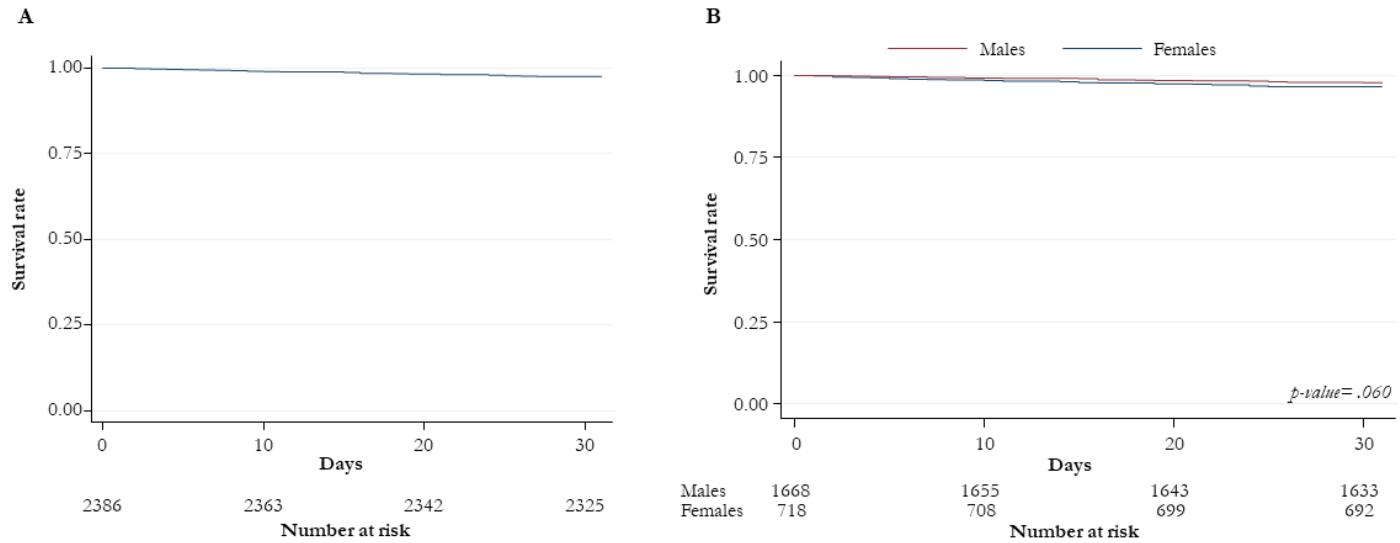
6 clinical characteristics, and 1-year mortality.

7

8 **Table 3.** Cox regression analysis to assess risk factors for 1-year mortality.

Variables	Univariate analysis		Multivariate analysis		
	HR (95% CI)	p-value	HR (95% CI)	p-value	
Age > 75 yrs	2.50 (1.96-3.18)	<.0001	2.14 (1.60-2.87)	<.0001	
Men	0.83 (0.65-1.06)	.134	0.99 (0.72-1.34)	.928	
Tobacco use	0.70 (0.55-0.88)	.002	0.89 (0.66-1.20)	.447	
Overt diabetes mellitus	0.90 (0.72-1.14)	.395	-	-	
Hyperlipemia:	no	Ref.	Ref.	Ref.	
	under therapy	0.64 (0.51-0.81)	<.0001	0.69 (0.51-0.93)	.015
	no therapy	0.86 (0.50-1.50)	.602	0.97 (0.51-1.86)	.937
Arterial hypertension	1.04 (0.69-1.55)	.865	-	-	
Chronic renal insufficiency:	1.92 (1.52-2.43)	<.0001	1.54 (1.28-1.84)	<.0001	
	no	Ref.	Ref.	Ref.	
	creatinine >2	1.42 (1.06-1.92)	.021	0.84 (0.59-1.21)	.354
	hemodialysis treatment	2.89 (2.15-3.88)	<.0001	-	-
Coronary artery disease:	1.51 (1.20-1.90)	<.0001	1.26 (1.02-1.57)	.036	
	no	Ref.	Ref.	Ref.	
	revascularized	1.47 (1.14-1.89)	.003	1.20 (0.88-1.65)	.255
	non-revascularized	1.64 (1.16-2.32)	.005	-	-
Chronic obstructive pulmonary disease	1.02 (0.80-1.29)	.902	-	-	
Cerebrovascular disease:	1.48 (1.01-2.17)	.046	-	-	
	No	Ref.	Ref.	Ref.	
	previous TIA	1.86 (1.25-2.76)	.002	1.53 (0.95-2.46)	.084

	previous stroke	0.39 (0.10-1.57)	.19	0.38 (0.1-1.55)	.177 ¹
Necrosis/infection of the foot:	no	Ref.	Ref.	Ref.	Ref. ²
	dry	1.83 (1.35-2.48)	<.0001	1.42 (1.02-1.98)	.040 ³
	wet	3.15 (2.39-4.13)	<.0001	2.04 (1.46-2.85)	<.0001 ⁴
First intervention:	endovascular only (rarely, regenerative cellular therapy)	Ref.	Ref.	Ref.	Ref. ⁵
	any open revascularization	0.81 (0.62-1.06)	.122	0.86 (0.64-1.15)	.310 ⁶
	any major amputation	3.05 (2.25-4.13)	<.0001	-	- ⁷
Any intervention below the knee		1.06 (0.84-1.33)	.624	-	- ¹⁰
Associated minor amputation		1.29 (0.96-1.73)	.091	-	- ¹¹
Technical success of CLTI revascularization		0.83 (0.55-1.25)	.37	-	- ¹²
Post-operative antiplatelets, anticoagulants, statins:	mono-therapy	Ref.	Ref.	Ref.	Ref. ¹⁴
	two medications	0.63 (0.48-0.82)	.001	0.93 (0.67-1.29)	.678 ¹⁵
	three or more medications	0.52 (0.37-0.73)	<.0001	0.78 (0.52-1.18)	.243 ¹⁶
Clinical success of CLTI revascularization:	worsen	Ref.	Ref.	Ref.	Ref. ¹⁸
	no change	0.81 (0.50-1.34)	.415	1.02 (0.59-1.77)	.949 ¹⁹
	improved	0.58 (0.38-0.88)	.011	0.89 (0.52-1.51)	.666 ²⁰
Limb salvage		0.41 (0.32-0.52)	<.0001	0.71 (0.47-1.06)	.022 ²¹


23

24 TIA, transient ischemic attack. CLTI, chronic limb-threatening ischemia.

25

26 Results from multivariate analysis shows that factors associated with 1-year mortality were: age >75 yrs (HR=2.14, 27 95% CI: 1.60-2.87; p<.0001); therapy for hyperlipidemia (HR=0.69, 95% CI: 0.51-0.93; p=.015); chronic renal insufficiency 28 (CRI) (HR=1.54, 95% CI: 1.28-1.84; p<.0001); CAD (HR=1.26, 95% CI: 1.02-1.57; p=.036); dry necrosis (HR=1.42, 95% CI: 29 1.02-1.98; p=.040) and wet necrosis (HR=2.04, 95% CI: 1.46-2.85; p<.0001) of the foot.

30 Figures 1 and 2 show the Kaplan-Meier survival curves (overall distribution and for men/women) at 30 days 31 and 1 year, respectively. Again, no statistically significant difference is noted between the sexes.

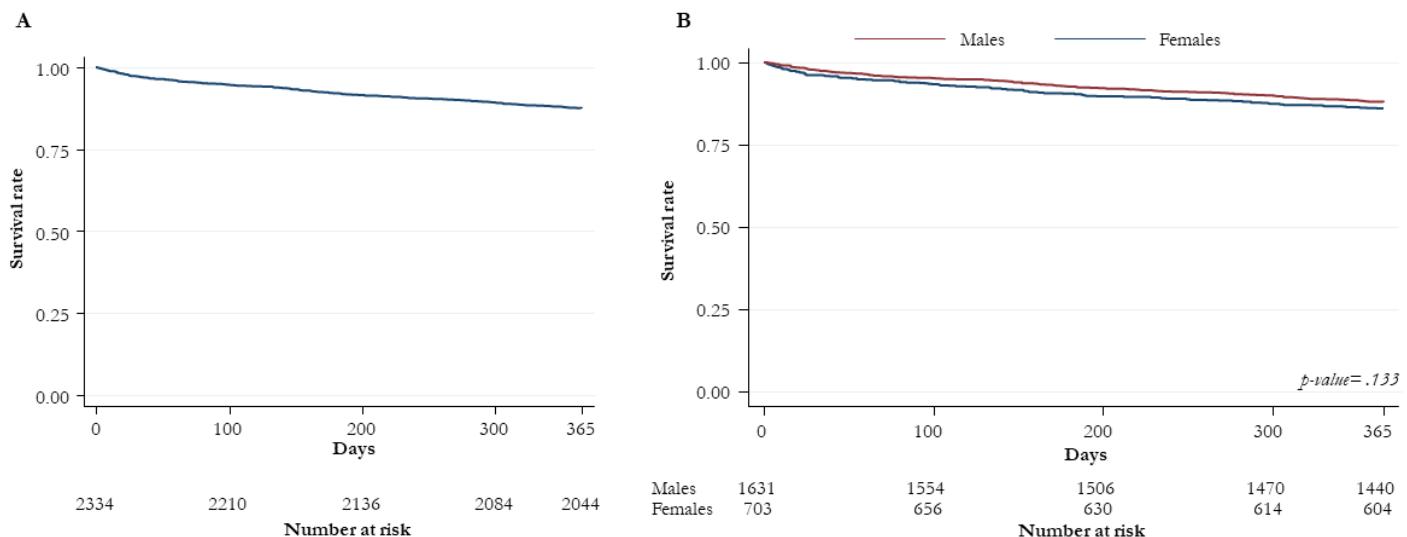


Figure 2. Kaplan-Meier curves for overall survival at 1 year. (A) distribution of overall survival (B) overall survival for males and females.

4. Discussion

The aim of the study was to evaluate the differences between men and women in 30-days and 1-year mortality. Our findings showed that no differences were observed between the sexes. In this study on 2399 patients treated for CLTI, 30-day mortality is overall 3.1%. One-year mortality is 13.5%, which is much lower than 23.1–28.7% reported in the COPART French registry on 411 patients treated for CLTI [19]. Differences in risk factors and comorbidities of the French and Italian populations may explain the difference in 1-year-mortality between these two studies. Notwithstanding our male patients were significantly more smokers, affected by diabetes, end-stage renal disease on hemodialysis treatment, arterial hypertension, CAD, COPD, revascularized for CLTI by open surgery, however they were also significantly younger, more on statin therapy and more revascularized for CAD, potentially inducing more protection from cardiovascular risk. Also the male patients of the Medicare population affected by CLTI and analyzed from 2015 to 2017 received significantly more statin therapy compared to females [4]. The current clinical practice guidelines from the European Society for Vascular Surgery strongly recommend the use of moderate or high-intensity statin therapy to reduce all-cause and cardiovascular mortality in patients with CLTI [20]. Cardiologists from the University of Minnesota found that patients with unprotected left main coronary artery disease benefit with preoperative coronary artery revascularization before vascular surgery [21]. Our findings that some vascular beds are more affected than others when comparing men and women (ie. the coronary district vs the peripheral arterial district), and that some risk factors are so disparate between the groups, suggests a potentially different phenotypic expression of the disease process. However, it is due to notice that this result might merely be a function of which men and women were selected for the treatment. Anesthesiologists from Melbourne, Toronto and Auckland have recently evaluated the effects of randomized interventions by sex in large international perioperative trials, and concluded that women were healthier than men but outcomes were similar. These authors encouraged further research to understand the reason for this discrepancy [22]. Colleagues from Auckland and Hamilton analyzed 1773 patients with CLTI in the midland region of New Zealand over a 12-year period. They found a worse long-term survival rate for women with CLTI, despite 30-day mortality not differing depending on sex [23]. A recent German study from the cardiologists of the University of Muenster on almost 200000 unselected patients treated for CLTI over an 8-year-period showed that 30-day-mortality is significantly higher in women [3]. Same results were obtained from the US National Inpatient Sample database [7,10]. Other French colleagues from the University of Strasbourg demonstrated a significantly lower survival rate at 6 years, but not at 30 days, among women compared to men undergoing infra-inguinal open surgery for CLTI: they concluded that female sex was an independent factor predicting death [24].

1 A possible explanation of this worse long-term survival in women treated for CLTI is that they are associated with
2 more severe disease at presentation (although in our study Rutherford categories were similar in both sexes), develop
3 arteriosclerotic changes later in life, and require treatment in older age [16].

4 On the contrary, a recent multicenter study, from Japan, has identified female sex as a significant positive predictor of
5 2-year overall survival in patients treated for CLTI [11].

6 Another Swedish population based study conducted between 2008 and 2013 on over 10000 patients undergone
7 revascularization for CLTI and followed up for a median 2.7 yrs. reported that male sex was significantly associated
8 with an increased risk of amputation or death at multivariate analysis [6].

9 This dichotomy could open a reflection on the genetic, environmental, and dietary factors implied on the outcome of
10 CLTI. The Atherosclerosis Risk in Communities (ARIC) study has already focused the attention on the association of
11 race ("Blacks vs Whites" in the ARIC study) with incident CLTI related hospitalizations that leads to differences in
12 clinical disease risk and presentation [25].

13 We have found advanced age over 75 years old to be a negative prognostic factor, both for 30-day and 1-year
14 mortality. Recently, our same result for 1-year mortality in advanced age was reported by a Dutch study, and a
15 similar result by a study from the Yale School of Medicine [26-7].

16 The older population is increasing, and this knowledge of worse CLTI outcomes for the elderly population is
17 important for clinical decision making.

18 Our female patients treated for CLTI are significantly older compared to males, and this is in contrast with the
19 exception of the Italian data (females 0.9 year younger than males) reported in the VASCUNET and International
20 Consortium of Vascular Registries [28].

21 Our analysis demonstrates that females are struck by CLTI at an age >75 yrs, a pivotal factor associated with short-
22 and mid-term mortality. This fact may explain why the mortality rate does not significantly differ between the two
23 sexes, although females have less risk factors and comorbidities associated with this condition.

24 Our study confirms other independent predictive factors for mortality at 1 year, that is CRI, CAD and tissue
25 loss.

26 CLTI is a terminal manifestation of systemic atherosclerosis. Therefore, it is often accompanied by clinically significant
27 CAD, resulting in high mortality. The goal of treating patients with CLTI is not only to save a still functional limb, but
28 also to improve cardiovascular outcome. While some risk factors (age, sex) are immutable, others are (cigarette
29 smoking, dyslipidemia, diabetes mellitus, a sedentary lifestyle, and treatable hypertension). In the absence of efficient
30 cardiovascular work-up and aggressive treatment of risk factors and associated comorbidities, the prognosis of CLTI
31 is generally poor [29-31].

32 End-stage renal disease and tissue loss are established critical factors for mid-term mortality in patients undergoing
33 revascularization for CLTI [32-35].

34 Interestingly in our study, although significantly more women underwent major amputations, LS is achieved
35 significantly more in women with minor tissue loss. Perhaps, the reason stands in the different CLTI treatment sort
36 out between the sexes, that is significantly more less-invasive therapies in women and significantly more open
37 surgery in men.

38 Also the US National Inpatient Sample database shows that women are more likely to undergo endovascular surgery
39 for CLTI than men, and this is associated with a higher incidence of major amputation [10,36]. Therefore, in our series
40 it seems that endovascular treatment has been more successful than open or hybrid treatment in terms of LS in
41 women with CLTI at the Rutherford category 5.

42 In parallel, men had significantly undergone more open or hybrid surgeries for CLTI revascularization together with
43 minor amputations, and significantly achieved less LS in Rutherford category 5: it seems that in men, minor
44 amputation as a complementary act of an open or hybrid revascularization for CLTI does not give benefits in terms of
45 LS.

46 Our study has limitations. First, data were retrospectively collected, and some key clinical information might
47 be missing or might not be recorded appropriately in the clinical records. The selection criteria for offering CLTI
48 interventions are based on real-world data, not systematic. For instance, we could not collect data on hormonal
49 replacement/supplementation therapy for the two groups. Furthermore, we did not collect data on the extent of CLTI
50 (for instance, below-the-knee vs multi-level disease). Finally, the role played by unknown confounders can be relevant
51 in an observational design. In order to mitigate potential documentation errors, patients' data was collected from
52 multiple hospital records, and several web meetings and phone calls were performed between the first author and the
53 other authors during the writing of the study protocol and the patients recruitment period to standardize data
54 collection.

1 Second, the time of patient recruitment does not coincide with actual appearance of disease. This may cause an
2 artificial extension, as the atherosclerosis and symptomatology may have developed earlier.
3 Third, we evaluated only one year of patients treated for CLTI; as such, inter-annual variability cannot be excluded.
4 Fourth, the staging of CLTI has not been performed using the current WIfI classification system: we have preferred to
5 adopt the standard Rutherford classification, together with the presence/absence of necrosis/infection of the foot and
6 excluding patients with only neuropathic (non-ischemic) diabetic foot, to make data collection easier and more
7 realistic for the participating centers which are mostly non-academic [37]. For the same reason, the current
8 international suggested standards for reports dealing with risk factors and comorbidities have been adjusted or
9 synthetized (for instance, asymptomatic carotid stenosis has not been included in CVD since in the real-world not all
10 patients treated for CLTI undergo carotid duplex scan) [38].

11 5. Conclusions

12 Our observational evaluation on patients operated for CLTI demonstrates that women are less represented,
13 and have fewer risk factors and comorbidities, compared to men. However, women are struck by CLTI at an age >75
14 yrs, a pivotal factor associated with short- and mid-term mortality, explaining why the mortality rate does not differ
15 between the two sexes. Also CRI, CAD, and tissue loss are independent negative prognostic factors for 1-year
16 survival.

17 Endovascular techniques for limited gangrene are more likely to be successful in women.

18 Statin therapy is an independent positive prognostic factors for 1-year survival: once more, its aggressive use in CLTI
19 patients appears justified.

20 **Author Contributions:** Conceptualization, Resources, Supervision, Project Administration, E.M., M.Z., G.S., L.S., M.F. (Massimo
21 Federici), G.M.S., M.V.P., A.R.M., T.M., P.F., C.R., P.R., L.C., E.G., F.F., G.V., F.R., E.F., P.V., D.M., M.F. (Mauro Ferrari), P.M.,
22 U.M.B., M.M. (Mario Monaco), G.N., G.M.C., M.M. (Massimiliano Martelli), D.R., G.C., G.L., B.D.B., M.T., P.C., S.T., A.C. (Adolfo
23 Crinisio), G.B. (Giuseppe Battaglia), S.D.V., V.S.T., R.C. (Ruggero Curci), G.D.A., D.F., G.F.V., A.I., and A.M.S. Methodology,
24 Validation, Investigation, Data Curation, Visualization, E.M., M.Z., G.S., L.S., M.F. (Massimo Federici), G.M.S., M.V.P., A.R.M.,
25 T.M., M.P.B., I.F., F.P., A.A. (Andrea Angelini), L.C.D.P., A.P. (Armando Palmieri), G.M., A.B. (Antonio Bozzani), C.C., M.M.
26 (Mafalda Massara), E.P., T.P., N.T., M.M. (Maurizio Maiorano), M.P. (Marco Panagrosso), G.G. (Giovanni Giordano), A.B.
27 (Antonella Biello), A.A. (Alessio Amico), M.D.B., R.M., F.B., A.C. (Antonio Cardini), M.D.L., P.S., A.E., S.R., A.P. (Andrea
28 Padricelli), G.G. (Giorgio Giudice), G.D.N., R.T., R.C. (Rita Compagna), I.D.A., S.G., G.B. (Giusi Basile), L.M., F.M.O., and A.M.S.
29 Software, E.M., G.S., L.S., M.V.P., and A.M.S. Formal Analysis, Writing – Original Draft Preparation, E.M., M.Z., G.S., L.S., M.F.
30 (Massimo Federici), G.M.S., M.V.P., A.R.M., T.M., and A.M.S. Writing – Review & Editing, E.M., M.Z., G.S., L.S., M.F. (Massimo
31 Federici), G.M.S., M.V.P., A.R.M., T.M., P.F., M.P.B., C.R., I.F., P.R., F.P., L.C., A.A. (Andrea Angelini), E.G., L.C.D.P., F.M.F., A.P.
32 (Armando Palmieri), G.V., G.M., F.R., A.B. (Antonio Bozzani), E.F., C.C., P.V., M.M. (Mafalda Massara), D.M., E.P., T.P., M.F.
33 (Mauro Ferrari), N.T., P.M., M.M. (Maurizio Maiorano), U.M.B., M.P. (Marco Panagrosso), M.M. (Mario Monaco), G.G. (Giovanni
34 Giordano), G.N., A.B. (Antonella Biello), G.M.C., A.A. (Alessio Amico), M.D.B., M.M. (Massimiliano Martelli), R.M., D.R., G.C.,
35 F.B., G.L., A.C. (Antonio Cardini), B.D.B., M.D.L., M.T., P.S., P.C., A.E., S.T., S.R., A.P. (Andrea Padricelli), G.G. (Giorgio Giudice),
36 A.C. (Adolfo Crinisio), G.D.N., G.B. (Giuseppe Battaglia), R.T., S.D.V., R.C. (Rita Compagna), V.S.T., I.D.A., R.C. (Ruggero Curci),
37 S.G., G.D.A., G.B. (Giusi Basile), D.F., G.F.V., L.M., A.I., F.M.O., and A.M.S. All authors have read and agreed to the published
38 version of the manuscript.

39 **Funding:** This research received no external funding.

40 **Institutional Review Board Statement:** Ethical review and approval were waived. Being an observational study, according to the
41 Italian law, a mandatory approval is not needed.

42 **Informed Consent Statement:** Patient consent was waived due to the retrospective and aggregated nature of the study analysis.

43 **Data Availability Statement:** Raw data was obtained from the 25% of the Italian Divisions of Vascular Surgery, and are readily
44 available for presentation to the referees and the editors of the journal, if requested.

45 **Acknowledgments:** The authors gratefully acknowledge Edoardo Guarino, MEng, MSc for the English revision of this manuscript.

46 **Conflicts of Interest:** The authors declare no conflict of interest.

47 50 References

1. Conte MS. Lower Extremity Arterial Occlusive Disease Epidemiology and Natural History. In: *Rutherford's Vascular Surgery and Endovascular Therapy*, E-Book, 9th ed.; Sidawy AP, Perler BA, Eds; Elsevier - OHCE:Philadelphia (PA), USA, 2018; Volume 2: pp. 1368-76.
2. Wu B, Lancaster EM, Ramirez JL, Zarkowsky DS, Reyzelman AM, Gasper WJ, Conte MS, Hiramoto JS. Increased Reintervention After Infrainguinal Revascularization for Chronic Limb-Threatening Ischemia in Women. *Ann Vasc Surg.* 2020 Nov;69:307-316. doi: 10.1016/j.avsg.2020.06.006.

1 3. Makowski L, Köppe J, Engelbertz C, Kühnemund L, Fischer AJ, Lange SA, Dröge P, Ruhnke T, Günster C, Malyar N, Gerß J, Freisinger E, Reinecke H, Feld J. Sex-related differences in treatment and outcome of chronic limb-threatening ischaemia: a real-world cohort. *Eur Heart J.* 2022 May 7;43(18):1759-1770. doi: 10.1093/eurheartj/ehac016.

2 4. Mentias A, Vaughan-Sarrazin M, Saad M, Girotra S. Sex Differences in Management and Outcomes of Critical Limb Ischemia in the Medicare Population. *Circ Cardiovasc Interv.* 2020 Oct;13(10):e009459. doi: 10.1161/CIRCINTERVENTIONS.120.009459.

3 5. Anantha-Narayanan M, Doshi RP, Patel K, Sheikh AB, Llanos-Chea F, Abbott JD, Shishehbor MH, Guzman RJ, Hiatt WR, Duval S, Mena-Hurtado C, Smolderen KG. Contemporary Trends in Hospital Admissions and Outcomes in Patients With Critical Limb Ischemia: An Analysis From the National Inpatient Sample Database. *Circ Cardiovasc Qual Outcomes.* 2021 Feb;14(2):e007539. doi: 10.1161/CIRCOUTCOMES.120.007539.

4 6. Baubeta Fridh E, Andersson M, Thuresson M, Sigvant B, Kragsterman B, Johansson S, Hasvold P, Nordanstig J, Falkenberg M. Editor's Choice - Impact of Comorbidity, Medication, and Gender on Amputation Rate Following Revascularisation for Chronic Limb Threatening Ischaemia. *Eur J Vasc Endovasc Surg.* 2018 Nov;56(5):681-688. doi: 10.1016/j.ejvs.2018.06.003.

5 7. Lo RC, Bensley RP, Dahlberg SE, Matyal R, Hamdan AD, Wyers M, Chaikof EL, Schermerhorn ML. Presentation, treatment, and outcome differences between men and women undergoing revascularization or amputation for lower extremity peripheral arterial disease. *J Vasc Surg.* 2014 Feb;59(2):409-418.e3. doi: 10.1016/j.jvs.2013.07.114.

6 8. Pulli R, Dorigo W, Pratesi G, Fargion A, Angiletta D, Pratesi C. Gender-related outcomes in the endovascular treatment of infrainguinal arterial obstructive disease. *J Vasc Surg.* 2012 Jan;55(1):105-12. doi: 10.1016/j.jvs.2011.07.050.

7 9. Ferranti KM, Osler TM, Duffy RP, Stanley AC, Bertges DJ; Vascular Study Group of New England. Association between gender and outcomes of lower extremity peripheral vascular interventions. *J Vasc Surg.* 2015 Oct;62(4):990-7. doi: 10.1016/j.jvs.2015.03.066.

8 10. Elbadawi A, Barssoum K, Megaly M, Rai D, Elsherbeeny A, Mansoor H, Shishehbor MH, Abdel-Latif A, Gulati M, Elgendi MY. Sex Differences in Trends and In-Hospital Outcomes Among Patients With Critical Limb Ischemia: A Nationwide Analysis. *J Am Heart Assoc.* 2021 Sep 21;10(18):e022043. doi: 10.1161/JAHA.121.022043.

9 11. Miyata T, Kumamaru H, Mii S, Kinukawa N, Miyata H, Shigematsu K, Azuma N, Ishida A, Izumi Y, Inoue Y, Uchida H, Ohki T, Kuma S, Kurosawa K, Kodama A, Komai H, Komori K, Shibuya T, Shindo S, Sugimoto I, Deguchi J, Hoshina K, Hideaki M, Midorikawa H, Yamaoka T, Yamashita H, Yunoki Y. Prediction Models for Two Year Overall Survival and Amputation Free Survival After Revascularisation for Chronic Limb Threatening Ischaemia. *Eur J Vasc Endovasc Surg.* 2022 Oct;64(4):367-376. doi: 10.1016/j.ejvs.2022.05.038.

10 12. Maas AH, Appelman YE. Gender differences in coronary heart disease. *Neth Heart J.* 2010 Dec;18(12):598-602. doi: 10.1007/s12471-010-0841-y.

11 13. Capodanno D, Angiolillo DJ. Impact of race and gender on antithrombotic therapy. *Thromb Haemost.* 2010 Sep;104(3):471-84. doi: 10.1160/TH10-04-0232.

12 14. Chandra NC, Ziegelstein RC, Rogers WJ, Tiefenbrunn AJ, Gore JM, French WJ, Rubison M. Observations of the treatment of women in the United States with myocardial infarction: a report from the National Registry of Myocardial Infarction-I. *Arch Intern Med.* 1998 May 11;158(9):981-8. doi: 10.1001/archinte.158.9.981.

13 15. Kim C, Redberg RF, Pavlic T, Eagle KA. A systematic review of gender differences in mortality after coronary artery bypass graft surgery and percutaneous coronary interventions. *Clin Cardiol.* 2007 Oct;30(10):491-5. doi: 10.1002/clc.20000.

14 16. Lee MH, Li PY, Li B, Shakespeare A, Samarasinghe Y, Feridooni T, Cuen-Ojeda C, Alshabani L, Kishibe T, Al-Omran M. A systematic review and meta-analysis of sex- and gender-based differences in presentation severity and outcomes in adults undergoing major vascular surgery. *J Vasc Surg.* 2022 Aug;76(2):581-594.e25. doi: 10.1016/j.jvs.2022.02.030.

15 17. Pabon M, Cheng S, Altin SE, Sethi SS, Nelson MD, Moreau KL, Hamburg N, Hess CN. Sex Differences in Peripheral Artery Disease. *Circ Res.* 2022 Feb 18;130(4):496-511. doi: 10.1161/CIRCRESAHA.121.320702.

16 18. Huxley VH. Sex and the cardiovascular system: the intriguing tale of how women and men regulate cardiovascular function differently. *Adv Physiol Educ.* 2007 Mar;31(1):17-22. doi: 10.1152/advan.00099.2006.

17 19. Cambou JP, Aboyans V, Constans J, Lacroix P, Dentans C, Bura A. Characteristics and outcome of patients hospitalised for lower extremity peripheral artery disease in France: the COPART Registry. *Eur J Vasc Endovasc Surg.* 2010 May;39(5):577-85. doi: 10.1016/j.ejvs.2010.02.009.

18 20. Conte MS, Bradbury AW, Kolh P, White JV, Dick F, Fitridge R, Mills JL, Ricco JB, Suresh KR, Murad MH, Aboyans V, Aksoy M, Alexandrescu VA, Armstrong D, Azuma N, Belch J, Bergoeing M, Bjorck M, Chakfé N, Cheng S, Dawson J, Debus ES, Dueck A, Duval S, Eckstein HH, Ferraresi R, Gambhir R, Gargiulo M, Geraghty P, Goode S, Gray B, Guo W, Gupta PC, Hinchliffe R, Jetty P, Komori K, Lavery L, Liang W, Lookstein R, Menard M, Misra S, Miyata T, Moneta G, Munoa Prado JA, Munoz A, Paolini JE, Patel M, Pomposelli F, Powell R, Robless P, Rogers L, Schanzer A, Schneider P, Taylor S, De Ceniga MV, Veller M, Vermassen F, Wang J, Wang S; GVG Writing Group for the Joint Guidelines of the Society for Vascular Surgery (SVS), European Society for Vascular Surgery (ESVS), and World Federation of Vascular Societies (WFVS). Global Vascular Guidelines on the Management of Chronic Limb-Threatening Ischemia. *Eur J Vasc Endovasc Surg.* 2019 Jul;58(1S):S1-S109.e33. doi: 10.1016/j.ejvs.2019.05.006.

19 21. Garcia S, Moritz TE, Ward HB, Pierpont G, Goldman S, Larsen GC, Littooy F, Krupski W, Thottapurathu L, Reda DJ, McFalls EO. Usefulness of revascularization of patients with multivessel coronary artery disease before elective vascular

1 surgery for abdominal aortic and peripheral occlusive disease. *Am J Cardiol.* **2008** Oct 1;102(7):809-13. doi: 10.1016/j.amjcard.2008.05.022.

2 22. Leslie K, Martin C, Myles PS, Devereaux PJ, Peyton PJ, Story DA, Wijeysundera DN, Cuthbertson BH, Short TG, Corcoran TB, Kasza J. Inclusion, characteristics, and outcomes of male and female participants in large international perioperative studies. *Br J Anaesth.* **2022** Sep;129(3):336-345. doi: 10.1016/j.bja.2022.05.019.

3 23. Hart O, Xue N, Davis-Havill B, Pottier M, Prakash M, Reimann SA, King J, Xu W, Khashram M. The Incidence of Chronic Limb-Threatening Ischemia in the Midland Region of New Zealand over a 12-Year Period. *J Clin Med.* **2022** Jun 9;11(12):3303. doi: 10.3390/jcm11123303.

4 24. Lejay A, Schaeffer M, Georg Y, Lucereau B, Roussin M, Girsowicz E, Delay C, Schwein A, Thaveau F, Geny B, Chakfe N. Gender related Long-term Differences after Open Infrainguinal Surgery for Critical Limb Ischemia. *Eur J Vasc Endovasc Surg.* **2015** Oct;50(4):506-12. doi: 10.1016/j.ejvs.2015.07.014.

5 25. Hicks CW, Ding N, Kwak L, Ballew SH, Kalbaugh CA, Folsom AR, Heiss G, Coresh J, Black JH 3rd, Selvin E, Matsushita K. Risk of peripheral artery disease according to race and sex: The Atherosclerosis Risk in Communities (ARIC) study. *Atherosclerosis.* **2021** May;324:52-57. doi: 10.1016/j.atherosclerosis.2021.03.031.

6 26. Smet N, Fourneau I, Roelveld H, Boonman-de Winter L, Schraepen C, Favoreel M, van der Laan L. Age-Dependent Outcome of First-Line Endovascular and Surgical Revascularization Strategies in Chronic Limb-Threatening Ischemia. *Ann Vasc Surg.* **2022** Sep;85:133-145. doi: 10.1016/j.avsg.2022.03.021.

7 27. Kim TI, Aboian E, Fischer U, Zhang Y, Guzman RJ, Ochoa Chaar CI. Lower Extremity Revascularization for Chronic Limb-Threatening Ischemia among Patients at the Extremes of Age. *Ann Vasc Surg.* **2021** Apr;72:517-528. doi: 10.1016/j.avsg.2020.08.135.

8 28. Behrendt CA, Sigvant B, Kuchenbecker J, Grima MJ, Schermerhorn M, Thomson IA, Altreuther M, Setacci C, Svetlikov A, Laxdal EH, Goncalves FB, Secemsky EA, Debus ES, Cassar K, Beiles B, Beck AW, Mani K, Bertges D. Editor's Choice - International Variations and Sex Disparities in the Treatment of Peripheral Arterial Occlusive Disease: A Report from VASCUNET and the International Consortium of Vascular Registries. *Eur J Vasc Endovasc Surg.* **2020** Dec;60(6):873-880. doi: 10.1016/j.ejvs.2020.08.027.

9 29. Armstrong EJ, Wu J, Singh GD, Dawson DL, Pevec WC, Amsterdam EA, Laird JR. Smoking cessation is associated with decreased mortality and improved amputation-free survival among patients with symptomatic peripheral artery disease. *J Vasc Surg.* **2014** Dec;60(6):1565-71. doi: 10.1016/j.jvs.2014.08.064.

10 30. Faglia E, Clerici G, Scatena A, Caminiti M, Curci V, Morabito A, Prisco V, Greco R, Edmonds M. Effectiveness of combined therapy with angiotensin-converting enzyme inhibitors and statins in reducing mortality in diabetic patients with critical limb ischemia: an observational study. *Diabetes Res Clin Pract.* **2014** Feb;103(2):292-7. doi: 10.1016/j.diabres.2013.12.060.

11 31. Aboyans V, Ricco JB, Bartelink MEL, Björck M, Brodmann M, Cohnert T, Collet JP, Czerny M, De Carlo M, Debus S, Espinola-Klein C, Kahan T, Kownator S, Mazzolai L, Naylor AR, Roffi M, Röther J, Sprynger M, Tendera M, Tepe G, Venermo M, Vlachopoulos C, Desormais I, Document Reviewers, Widimsky P, Kohl P, Agewall S, Bueno H, Coca A, De Borst GJ, Delgado V, Dick F, Erol C, Ferrini M, Kakkos S, Katus HA, Knuuti J, Lindholt J, Mattle H, Pieniazek P, Piepoli MF, Scheinert D, Sievert H, Simpson I, Sulzenko J, Tamargo J, Tokgozoglu L, Torbicki A, Tsakountakis N, Tuñón J, Vega de Ceniga M, Windecker S, Zamorano JL. Editor's Choice - 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS). *Eur J Vasc Endovasc Surg.* **2018** Mar;55(3):305-368. doi: 10.1016/j.ejvs.2017.07.018.

12 32. Taylor SM, Kalbaugh CA, Blackhurst DW, Cass AL, Trent EA, Langan EM 3rd, Youkey JR. Determinants of functional outcome after revascularization for critical limb ischemia: an analysis of 1000 consecutive vascular interventions. *J Vasc Surg.* **2006** Oct;44(4):747-55; discussion 755-6. doi: 10.1016/j.jvs.2006.06.015.

13 33. Soga Y, Iida O, Takahara M, Hirano K, Suzuki K, Kawasaki D, Miyashita Y, Tsuchiya T. Two-year life expectancy in patients with critical limb ischemia. *JACC Cardiovasc Interv.* **2014** Dec;7(12):1444-9. doi: 10.1016/j.jcin.2014.06.018.

14 34. Bradbury AW, Adam DJ, Bell J, Forbes JF, Fowkes FG, Gillespie I, Ruckley CV, Raab GM; BASIL Trial Participants. Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) trial: A survival prediction model to facilitate clinical decision making. *J Vasc Surg.* **2010** May;51(5 Suppl):52S-68S. doi: 10.1016/j.jvs.2010.01.077.

15 35. Schanzer A, Hevelone N, Owens CD, Beckman JA, Belkin M, Conte MS. Statins are independently associated with reduced mortality in patients undergoing infrainguinal bypass graft surgery for critical limb ischemia. *J Vasc Surg.* **2008** Apr;47(4):774-781. doi: 10.1016/j.jvs.2007.11.056. PMID: 18381138.

16 36. McGinigle KL, Browder SE, Strassle PD, Shalhub S, Harris LM, Minc SD. Sex-related disparities in intervention rates and type of intervention in patients with aortic and peripheral arterial diseases in the National Inpatient Sample Database. *J Vasc Surg.* **2021** Jun;73(6):2081-2089.e7. doi: 10.1016/j.jvs.2020.11.034.

17 37. Mills JL Sr. The application of the Society for Vascular Surgery Wound, Ischemia, and foot Infection (WIFI) classification to stratify amputation risk. *J Vasc Surg.* **2017** Mar;65(3):591-593. doi: 10.1016/j.jvs.2016.12.090.

18 38. Rutherford RB, Baker JD, Ernst C, Johnston KW, Porter JM, Ahn S, Jones DN. Recommended standards for reports dealing with lower extremity ischemia: revised version. *J Vasc Surg.* **1997** Sep;26(3):517-38. doi: 10.1016/s0741-5214(97)70045-4.