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Abstract: Soil moisture is an important factor affecting the plant growth. For a long time, the con-
venience, timeliness and accuracy of soil moisture monitoring have been limited due to the back-
ward of observation methods and equipment. Therefore, the quantitative prediction of soil moisture 
has become a difficult problem. Aiming at the problems of high erection cost, easily damaged sen-
sors and low measurement accuracy of the existing fixed sensor soil moisture monitoring system, a 
soil moisture prediction model based on the long short term memory neural network (LSTM) inte-
grating the particle swarm optimization (PSO) (PSO-LSTM) is designed and implemented. The hy-
perparameters of the LSTM network can be obtained based on the excellent global search ability of 
the PSO algorithm. According to the meteorological data and soil moisture data of Haidian Park in 
2019, the long short term memory(LSTM) neural network based prediction model is constructed 
with input vectors of surface temperature, average temperature, evaporation, sunshine hours, pre-
cipitation and average wind speed, and the output vector of soil relative humidity. The results show 
that compared with the back propagation(BP) neural network, the Elman neural network and the 
LSTM neural network, the proposed PSO-LSTM model has higher prediction performance. 
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1. Introduction 
There is a shortage of water resources in China, and plant irrigation requires a large 

amount of water. In order to reduce unnecessary water waste, it is particularly important 
to irrigate plants reasonably. Soil moisture is a key factor affecting plant growth, and its 
monitoring and prediction is of great significance to the healthy growth of plants Kerr[1]. 
Yihyun Kim et al. [2] used remote sensing technology to inverse modeling for obtaining 
farmland moisture information, but remote sensing technology can only collect soil mois-
ture information at a depth of about 5 cm, and the cost is too high, so it is difficult to Large-
scale promotion. Dumedah[3] et al. used soil hydrodynamics and soil water balance 
method to estimate the change of moisture content, which required a large amount of data 
to measure, more parameters and more complicated calculation process. Seneviratne[4] et 
al. used the characteristics of surface soil water coupling to root zone soil water through 
diffusion process for predicting the  profile soil water through surface soil state measure-
ment. But this method had strong regional characteristics, which was less versatile and 
stable. Al-Mukhtar[5] used the soil and water assessment tool(SWAT) model based on the 
comprehensive soil moisture data of the upper reaches of the Spree River  to simulate the 
soil moisture in the root zone of the upper Spree River. Zeng Li[6] used the penalized 
linear regression integration method to predict the drought index in the Northeast region. 
Due to the strong limitations of the linear regression method. Moreover, the factors affect-
ing crop water demand are very complex, so its prediction accuracy is not high. In practi-
cal application of the above methods, various parameters that meet the conditions need 
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to be obtained through experimental measurement or statistical analysis. Due to the tem-
poral and spatial variability of natural conditions, the practical extension of the model is 
limited. 

Soil moisture is a nonlinear, temporal and spatial heterogeneous dynamic uncertain 
variable, so neural networks have been widely used in soil moisture prediction in recent 
years. At present, the static BP neural network is mostly used for the soil moisture predic-
tion[7-9]. However, the complexity of static BP neural networks increases with the in-
crease of the system order, which makes the network learning more efficient. The conver-
gence speed is slowed down, resulting in too many network input nodes and difficulties 
in training. Tabari et al.[10] studied the adaptive fuzzy inference system and the support 
vector machine (SVM) to establish the nonlinear relationship between ET 0 and meteoro-
logical factors, and the simulation accuracy was better. Fung[11] et al. used the wavelet 
decomposition and the fuzzy support vector to predict soil moisture. However, the calcu-
lation of the SVM parameters and kernel functions is complex, which affects the prediction 
accuracy. Al-Mukhtar et al.[12] used the Elman dynamic neural network to predict the 
soil moisture content in the Spree River Basin. Sankhadeep et al.[13] used the improved 
flower pollination algorithm(MFPA) to train artificial neural network for predicting soil 
water content. However, the flower pollination algorithm is easy to fall into the local ex-
treme value, and the stability needs to be further improved. 

The LSTM neural network model has the characteristics of self-organization, self-ad-
aptation and self-learning, which is suitable for the prediction of highly nonlinear and 
dynamic time series. It only needs less preparation to map the internal rules between in-
puts and outputs, and it is not easy to fall into local minimum, and has good generaliza-
tion ability. Compared with the ordinary neural network, each hidden layer unit of the 
LSTM neural network is not independent of each other. Each hidden layer is not only 
related to each other, but also related to the time series input before the time received by 
the hidden layer unit. This feature is extremely helpful for processing time series-related 
data. When facing long sequences, the RNN is prone to gradient explosion and gradient 
disappearance problems. However, the LSTM network can remember long-term depend-
encies, which can overcome this problem [17]. 

The parameter settings of the LSTM model have a direct impact on the prediction 
accuracy of soil relative humidity. Because the addition of the gate structure increases the 
number of parameters, the LSTM model needs to constantly adjust the parameters to 
achieve the optimal effect of the prediction model. The PSO algorithm is a biologically 
inspired swarm intelligence optimization algorithm, which originated from the research 
on bird predation[14]. In this paper, the PSO algorithm is used to optimize the parameters 
with the number of hidden layer units, the number of iterations and the dropout coeffi-
cient in the LSTM model to obtain the optimal hyperparameters of the LSTM model and 
determine the optimal parameters of the soil relative humidity prediction model. This 
process has no influence of artificial parameter adjustment, small randomness and rela-
tively stable optimization effect. 

2. The LSTM neural network 
The internal structure of the LSTM is mainly to control the transmission state through 

the gated state. It can remember key information and forget the unnecessary information 
in long sequence information. This is a very effective network for long sequence data such 
as network security situation prediction. The structural unit of the LSTM is shown in Fig. 
1. It mainly includes the input gate, the output gate, the forget gate and the self-connected 
memory cell state value (candidate value). The main functions of the input gate, the out-
put gate and the forget gate in the LSTM model are to control the transmission of infor-
mation, how much information can be transmitted to the current neuron, and how much 
information of the current neuron is allocated to the next neuron. The values of xt, ht-1 and 
Ct-1 are related. 
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Figure 1. LSTM network structure diagram. 

1. The forgetting gate is the output of the previous unit and the input of this unit. 
Through the sigmoid function, the value in [0, 1] generated by the function controls 
the degree to which the state of the previous unit is forgotten as shown in Eq.(1). 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓 • [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓), (1) 

2. The input gate determines what values to keep and what values to update. After ap-
pling the sigmoid function to decide what to update, the tanh function is applied to 
create a new vector of candidate values. 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 • [ℎ𝑡𝑡−1] + 𝑏𝑏𝑖𝑖), (2) 

�̃�𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊𝑐𝑐 • [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐), (3) 

Updating the old cell state Ct-1 to the new cell state Ct implements this process with 
the following formula: 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ �̃�𝐶𝑡𝑡, (4) 

where 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡−1 is the information that needs to be discarded, and 𝑖𝑖𝑡𝑡 ∗ �̃�𝐶𝑡𝑡 is the new 
candidate value, which changes according to the extent of updating each state. 

3. The output gate use a sigmoid layer to determine the output part of the unit state, 
then process the unit state through tanh (to get a value between -1 and 1) and multi-
ply it with the output of the sigmoid gate, and finally output the section to determine 
the output. 

𝑂𝑂𝑡𝑡 =  𝜎𝜎(𝑊𝑊𝑜𝑜 • [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜), (5) 

ℎ𝑡𝑡 = 𝑂𝑂𝑡𝑡 ∗ tanh (𝐶𝐶𝑡𝑡), (6) 

Where xt and ht represent the input vector and output vector, respectively. 𝑓𝑓, 𝑖𝑖, and 
𝑂𝑂 represent the forget gate, input gate and output gate, respectively. Ct and Ct-1 rep-
resent the previous moment and the current unit state, respectively. ht-1 and ht repre-
sent the outputs of the previous and current hidden layer units respectively. σ rep-
resents the sigmoid activation function, tanh represents the tangent function, and 𝑊𝑊 
and 𝑏𝑏 represent the weight matrix and bias vector, respectively. 
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Since the selection of key parameters of the LSTM has a great influence on the accu-
racy of load forecasting, it is necessary to select these parameters reasonably. The PSO 
algorithm has the advantages of simple structure, high accuracy and fast convergence , 
which has certain advantages in dealing with nonlinear and multi-variable problems and 
can be used to select parameters of the LSTM model[18]. 

3. The prediction model based on the PSO-LSTM 

3.1. The PSO algorithm 
The PSO algorithm is used to optimize the hyperparameters of the LSTM for obtain-

ing the optimal parameter combination of the entire network. 
The principle of PSO updating weights: The D parameters including weights and 

thresholds that need to be updated in the neural network are formed into a vector and 
considered to be a particle and represent a "position" [15]. 

Initializing the particle to randomly generate N particles is expressed as: 

𝑋𝑋𝑖𝑖 = (𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … … , 𝑥𝑥𝑖𝑖𝑖𝑖), i = 1,2, … … N, (7) 

The "velocity" of each particle is also a D-dimensional vector, which is denoted as: 

𝑉𝑉𝑖𝑖 = (𝑣𝑣𝑖𝑖1, 𝑣𝑣𝑖𝑖2, … … , 𝑣𝑣𝑖𝑖𝑖𝑖), 𝑖𝑖 = 1,2, … … ,𝑁𝑁, (8) 

The optimal position searched by the i-th particle is called the individual extremum, 
which is recorded as: 

Pbest = (𝑝𝑝𝑖𝑖1 , 𝑝𝑝𝑖𝑖2, … … , 𝑝𝑝1𝑖𝑖), 𝑖𝑖 = 1,2, … … ,𝑁𝑁, (9) 

The optimal position searched by the entire particle swarm is the global extremum, 
which is recorded as: 

gbest = �𝑝𝑝𝑔𝑔1, 𝑝𝑝𝑔𝑔2, … … , 𝑝𝑝𝑔𝑔𝑖𝑖�, (10) 

Upon finding the individual extrema and the global extremum, the particle updates 
velocity and position according to the following formula: 

�𝑉𝑉𝑖𝑖𝑖𝑖
(𝑡𝑡 + 1) = 𝑉𝑉𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑐𝑐1 ∗ 𝑟𝑟1�𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡) − 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡)� + 𝑐𝑐2 ∗ 𝑟𝑟2(𝑝𝑝𝑔𝑔𝑖𝑖(𝑡𝑡) − 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡))

𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) = 𝑥𝑥𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖𝑖𝑖(𝑡𝑡 + 1)
, (11) 

The flow process of the PSO is shown in Fig.2. 

 
Figure 2. The flow chart of the PSO algorithm. 
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3.2. The PSO-LSTM model 
The structure of PSO-LSTM model is shown in Fig. 3. 

 
Figure 3. the structure of PSO-LSTM. 

The process of the PSO-LSTM is described as follows: 
Step 1. Taking the number of LSTM hidden layer units, the number of iterations, and 

the dropout coefficient as the optimization object, and initializing the position information 
of the particle according to the preset range. 

Step 2. Initialize the particle swarm, divide the training set and the test set, and input 
the initialization parameters in step 1 into the LSTM network for training, and ue the 
model prediction error is used as the fitness value of the particle. 

Step 3. Compare the fitness value of each particle and the best position it has experi-
enced, determine the optimal position of the particle, update the speed and position of the 
particle according to Eq. (5), and calculate the fitness value of a new round of particles. 

Step 4. When the search process reaches the preset maximum number of iterations, 
or the fitness value of the particle no longer changes significantly with the number of it-
erations, the updating is stopped to obtain the sample batch of the LSTM model, the num-
ber of hidden layer units, the learning rate and the number of iterations value. 

Step 5. Input the values obtained in Step 4 into the LSTM model for training and 
prediction. 

4. Case Study 

4.1. Data processing and analysis 
In order to verify the effectiveness of the PSO-LSTM model, the daily meteorological 

data and soil moisture of Haidian Park in 2019 are used to predict the land moisture. The 
land moisture data comes from the installed land information sensors on the ground. At 
the same time, the meteorological data is comprehensively collected. The meteorological 
data includes the daily average wind speed, average air pressure, sunshine hours, surface 
temperature, precipitation, evaporation in 2019, volume and average temperature. Due to 
the variety of meteorological data, it is not conducive to the optimization of the neural 
network. In order to determine the degree of correlation between each meteorological data 
and soil moisture, the grey relational analysis (GRA) method is introduced. 
4.1.1. Data processing 
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Data preprocessing can improve the mining value of soil moisture and reduce the 
impact of sample errors on the prediction model. The data preprocessing method adopted 
in the experiment mainly include screening outliers and data supplementation. Among 
them, SPSS is used to draw soil moisture box plot, and outliers are screened according to 
the box plot. Fig. 4 is the boxplot in the process of data cleaning for the average wind 
speed, in which the discrete points are the points with large errors in the data, and these 
data are eliminated. 

 
Figure 4. Box plot of selected data. 

Since soil moisture data is a continuous time series, which is closely related to the 
adjacent values, kriging interpolation is used to fill in the vacancies in the data to make 
the data complete. Similarly, the data of average air pressure, sunshine hours, average 
surface temperature, precipitation, evaporation and average air temperature, and soil rel-
ative humidity are also subject to the same process of data cleaning. The abnormal data 
processing of meteorological data is shown in Table 1. 

Table 1. Exception data handling list. 

Case Causal variable Variable influence Variable  
   

Variable norm Anomaly indicator 

224 average wind speed 0.330 3.9 1.663 3.431 
181 Small evaporation 0.451 10.0 4.653 3.369 
139 average wind speed 0.338 2.8 1.039 3.301 
221 precipitation 0.787 88.5 9.565 2.892 
108 average wind speed 0.480 4.1 1.663 2.716 
204 sunshine hours 0.489 10.9 1.349 2.616 
228 precipitation 0.410 9.6 0.405 2.499 
180 Small evaporation 0.336 8.4 4.653 2.451 
80 average wind speed 0.557 4.1 1.663 2.340 
30 average wind speed 0.439 3.0 1.471 2.333 
45 Relative humidity 0.409 73 40.41 2.108 
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225 average wind speed 0.685 2.6 1.231 2.021 
 

In order to avoid the inconsistency of the input data dimension, it also needs to be 
normalized as is shown in Eq.(12). 

𝑥𝑥′ = 𝑥𝑥−min (𝑥𝑥)
max(𝑥𝑥)−min (𝑥𝑥)

, (12) 

4.1.2. The Grey relation analysis (GRA) 
The GRA refers to a method of quantitative description and comparison of the devel-

opment and change of a system [19]. The closer the curves are, the greater the correlation 
between the corresponding sequences and vice versa. TheGRA method makes up for the 
shortcomings caused by using mathematical statistics methods for systematic analysis. 
The GRA is applied in the size of the sample and the regularity of the sample. The calcu-
lation amount is small, and there is no mismatch between the quantitative results and the 
qualitative analysis results. 
1. Determine the system reference sequence and comparison sequence. 

To analyze an abstract system or phenomenon, it is necessary to select the data se-
quence that reflects the characteristics of the system behavior as the mapping quan-
tity of the system behavior, and use the mapping quantity to indirectly represent the 
system behavior. According to the experimental requirements, the relative soil hu-
midity is selected as the reference sequence of the system, and seven groups of data 
including average wind speed, average air pressure, sunshine hours, surface temper-
ature, precipitation, evaporation and average temperature are respectively used as 
the comparison sequence in order. 
The reference sequence is set to 

Y = 𝑌𝑌(𝑡𝑡)|𝑡𝑡 = 1,2, … ,365;, (13) 

The reference sequence is set to 

𝑋𝑋𝑖𝑖 = 𝑋𝑋𝑖𝑖(𝑡𝑡)|𝑡𝑡 = 1,2, … ,365, 𝑖𝑖 = 1,2, … ,7, (14) 

2. Normalized data. 
The dimensions of data in each factor column in the system are different, so correct 
conclusions cannot be drawn during comparison. Therefore, in the analysis of grey 
relational degree, it is generally necessary to carry out dimensionless processing of 
the data. There are two main methods of dimensionless including initial value pro-
cessing and mean value processing. This paper adopts the initial value processing 
method as shown in Eq.(15). 

𝑥𝑥𝑖𝑖(𝑡𝑡) = 𝑥𝑥𝑖𝑖(𝑡𝑡)
𝑥𝑥𝑖𝑖(1)

, 𝑡𝑡 = 1,2, … ,365, 𝑖𝑖 = 1,2, … ,7, (15) 

3. The correlation coefficient is calculated as follows. 

𝜉𝜉𝑖𝑖(𝑡𝑡) =
𝑚𝑚𝑖𝑖𝑚𝑚
𝑖𝑖

𝑚𝑚𝑖𝑖𝑚𝑚
𝑡𝑡 |𝑦𝑦(𝑡𝑡)−𝑥𝑥𝑖𝑖(𝑡𝑡)|+𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡 �𝑦𝑦(𝑡𝑡)−𝑚𝑚𝑖𝑖(𝑡𝑡)�

|𝑦𝑦(𝑡𝑡)−𝑥𝑥𝑖𝑖(𝑡𝑡)|+𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡 |𝑦𝑦(𝑡𝑡)−𝑥𝑥𝑖𝑖(𝑡𝑡)|

, (16) 

Among them, 𝜌𝜌 is called the resolution coefficient. The smaller the ρ, and the greater 
the resolution. Generally, the value range of 𝜌𝜌 is (0, 1), usually 𝜌𝜌=0.5. 

4. Calculate the degree of correlation. 
The mean value of the correlation coefficient at each moment is used as the correla-
tion degree between the reference sequence and the i-th group comparison sequence, 
which is shown in Eq.(17). 

ri = 1
𝑛𝑛
∑ 𝜉𝜉𝑖𝑖(𝑡𝑡)𝑛𝑛
𝑡𝑡=1 , 𝑡𝑡 = 1,2, … 365, (17) 

5. Relevance ranking 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 December 2022                   doi:10.20944/preprints202212.0141.v1

https://doi.org/10.20944/preprints202212.0141.v1


 8 of 13 
 

 

The degree of association is sorted by size. If r1>r2, it means that the association be-
tween X1 and the reference sequence Y is stronger than that of X2. 
The correlation between each group of data and soil relative humidity after the GRA 

analysis is shown in Table 2 and Fig.5. 

Table 2. Correlation of meteorological data with soil relative humidity. 

Reference 
sequence 

(X) 

Average 
wind 
speed 

Average air 
pressure  

Sun-
shine 
hours 

Surface tem-
perature 

Precipitation 
 

Evaporation 
 

Average 
temperature 

Relevance 
(r) 0.9025 0.3465 0.9119 0.9297 0.9030 0.9239 0.9271 

 

 
Figure 5. Data correlation analysis. 

It can be seen form Table 3 and Fig.5  that the highest correlation with soil relative 
humidity is surface temperature, while the correlation between average air pressure and 
soil relative humidity is the lowest, only 0.35, indicating that the average air pressure has 
little effect on the change of soil moisture. For other meteorological data with average 
wind speed, sunshine hours, precipitation, evaporation, average temperature and soil rel-
ative humidity, the correlation is above 0.9. Therefore, the average air pressure data can 
be removed in the next experiments to simplify the neural network. structure. 

4.2. Simulation Analysis 
Divide the processed data into two parts with selecting the data from January 1, 2019 

to October 31, 2019 as the training set, and the data from November 1, 2019 to December 
31, 2019 as the test set. The time interval for meteorological data statistics is 1 day. 

This paper selects root mean square error (RMSE), mean square error (MSE), mean 
absolute percentage error (MAPE) and mean absolute error (MAE) as evaluation indica-
tors to quantitatively evaluate the prediction effect of the prediction model. Among them, 
the smaller the values of the RMSE, the MSE, the MAPE, and the MAE, the smaller the 
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deviation between the model prediction result and the true value, and the more accurate 
the result [20]. The specific formula is defined as: 

RMSE = �1
𝑁𝑁
∑ (𝑦𝑦�𝑛𝑛 − 𝑦𝑦𝑛𝑛)2𝑁𝑁
𝑛𝑛=1 , (18) 

MSE = 1
𝑁𝑁
∑ (𝑦𝑦�𝑛𝑛 − 𝑦𝑦𝑛𝑛)2𝑁𝑁
𝑛𝑛=1 , (19) 

MAPE = 1
𝑁𝑁
∑ |𝑦𝑦�𝑚𝑚−𝑦𝑦𝑚𝑚|

𝑦𝑦𝑚𝑚
𝑁𝑁
𝑛𝑛=1 , (20) 

MAE = 1
𝑁𝑁
∑ |𝑦𝑦�𝑛𝑛 − 𝑦𝑦𝑛𝑛|𝑁𝑁
𝑛𝑛=1 , (21) 

In the formula: N is the number of experimental predictions, 𝑦𝑦�𝑛𝑛 is the model pre-
dicted value, 𝑦𝑦𝑛𝑛 is the true value and 𝑦𝑦� is the average value of the true value. 
4.2.1. The prediction model 

In order to test the prediction performance of the LSTM model, different models are 
compared. The most widely used the BP model, the Elman model and the LSTM predic-
tion model are selected for prediction, and the prediction error is analyzed. 

The relevant parameters are set as: the number of neurons in the input layer of the 
BP model and the Elman model is 6, the number of hidden layers is 1, the number of nodes 
in the hidden layer is 5, the number of neurons in the output layer is 1, the required step 
size for prediction is 50, and the learning rate is set is 0.005 and the number of iterations 
is 500. The number of neurons in the input layer of the LSTM model is 6, the number of 
hidden layers is 1, the number of nodes in the hidden layer is 5, the number of neurons in 
the output layer is 1, and the dropout coefficient is 0. The prediction results are shown in 
Fig. 6, and the prediction errors of each model are shown in Table 3. 

 
Figure 6. Forecast model prediction results graph. 

Table 3. Prediction errors across models. 

Error 
Model 

RMSE MSE MAPE MAE R2 

BP 4.9653 24.6545 0.0805 4.2254 0.9266 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 December 2022                   doi:10.20944/preprints202212.0141.v1

https://doi.org/10.20944/preprints202212.0141.v1


 10 of 13 
 

 

Elman 3.8261 14.639 0.0578 2.8947 0.9267 
LSTM 3.7411 13.9957 0.0582 3.0843 0.9584 

 
As can be seen from Fig. 6 and Table 3, the errors of the three models are all within 

the required accuracy. Among them, the BP based prediction model has the largest error 
and the worst accuracy. The prediction accuracy of the Elman based prediction model is 
higher than that of the BP based prediction model, and the error between the predicted 
value and the actual value is relatively small. The four errors of the LSTM based prediction 
model are the smallest among several models, and its determination R2 is also closer to 1 
than other models. Therefore, LSTM network model has more advantage than the other 
two models in moisture predition content. 
4.2.2. The analysis of the PSO-LSTM modeling 

In order to further improve the prediction accuracy of the LSTM model, the PSO al-
gorithm is used to optimize the LSTM parameter model.  

The relevant parameters are set as follows: the inertia weight w=0.8 in the basic PSO, 
the learning factors c1=2 and c2=2; the maximum number of evolution iterations in the 
PSO algorithm is set to 100, and the population size N=50. The number of two hidden 
layer units in LSTM ranges from [1, 15], the dropout coefficient is [0, 1], and the number 
of training times ranges from [1, 100]. The fitness change curve in the optimization process 
is shown in Fig. 7. 

 
Figure 7. PSO adaptation evolutionary curves. 

It can be seen from tht the curve in Fig.7that the PSO  can converges quickly in the 
early stage and has a good global search ability. 
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Figure 8. PSO-LSTM model prediction results graph. 

 
Figure 9. PSO-LSTM model relative error. 

The results of the PSO-LSTM prediction model are shown in Figs, 8, and the relative 
error of the prediction is shown in Fig. 9. It can be seen from Figs.8-9 that the error of the 
PSO-LSTM prediction model is mostly within 0.05, and the error value of most prediction 
points is smaller than that of the LSTM network, indicating that the automatic parameter 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 December 2022                   doi:10.20944/preprints202212.0141.v1

https://doi.org/10.20944/preprints202212.0141.v1


 12 of 13 
 

 

adjustment of the LSTM model through the PSO can be optimized. The prediction accu-
racy of the proposed model is greatly improved. 

Table 4. Prediction errors across models. 

Error 
Model 

RMSE MSE MAPE MAE R2 

BP 4.9653 24.6545 0.0805 4.2254 0.9266 
Elman 3.8261 14.639 0.0578 2.8947 0.9267 
LSTM 3.7411 13.9957 0.0582 3.0843 0.9584 

PSO-LSTM 2.2911 5.2493 0.0339 1.7814 0.9725 
 

The errors predicted by these prediction models are shown in Table 4. It can be seen 
from Table 4  that the RMSE of the PSO-LSTM based soil moisture prediction model is 
2.2911, the MSE is 5.2493, the MAPE is 0.0339, and the MAE is 1.7814. Compared with the 
single LSTM model, the RMSE of the PSO-LSTM model is reduced by 1.45%, the MSE is 
reduced by 8.7464%, the MAPE is reduced by 2.43%, the MAE is reduced by 1.3029%, and 
the R2 is also improved by 0.0141. It shows that the PSO algorithm has a good application 
effect on the parameter adjustment of the LSTM model, and can improve the accuracy of 
the soil moisture prediction. 

5. Conclusion 
In this paper, the collected meteorological data are analyzed by the grey correlation 

to determine the main variables affecting soil moisture. Then, combined with the current 
mainstream time series model, the PSO algorithm is used to optimize the hyperparame-
ters of the LSTM model, Then the PSO-LSTM model is constructed to study the changing 
law of soil moisture. Through experimental comparison, it is found that: (1) Correlation 
analysis of data can effectively reduce the dimension of training data, reduce training 
time, and improve prediction accuracy. (2) The LSTM network model can better solve the 
hysteresis problem of the BP model and improve the accuracy. (3) The accuracy of the 
PSO-LSTM model is significantly improved compared to the single LSTM, indicating that 
the optimization of parameters has a greater impact on the model prediction accuracy. (4) 
Compared with the BP, the Elman, and the LSTM, the deviation between the predicted 
value and the real value of the PSO-LSTM model is small, and the accuracy and stability 
are improved significantly. The prediction accuracy of the PSO-LSTM model at one time 
point and multiple time point in the future is better than other models, and it can be better 
applied in the prediction of soil moisture. 

In summary, the PSO-LSTM model has good prediction accuracy in predicting soil 
moisture, which can play a role in water-saving irrigation and intelligent irrigation. In 
future practical applications, more comprehensive integration and analysis of data is re-
quired to further improve the accuracy and stability of predictions. 
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