

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

DIGITALESCAPE Project. Remote Sensing, New Technologies and Archaeology for the Preservation and Diffusion of the Cultural Heritage at Risk in the Sierra Sur and Sierra Morena Region.

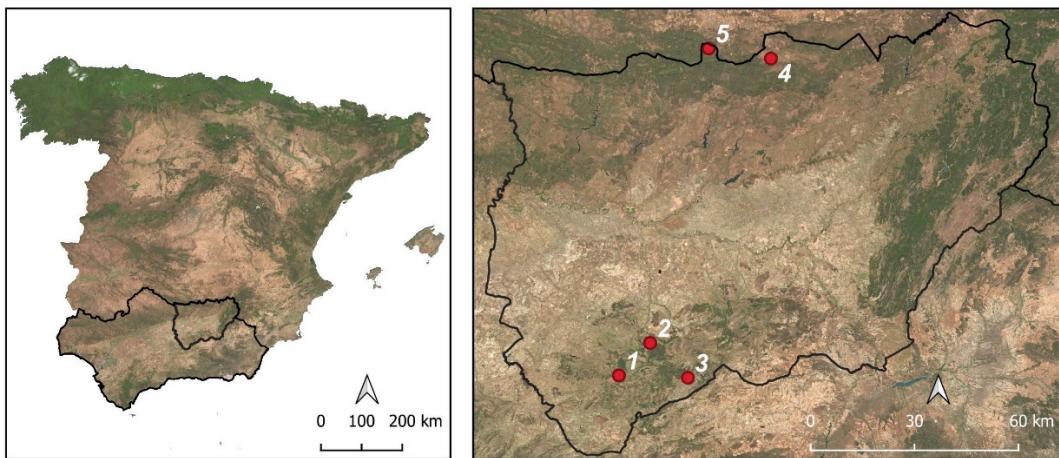
Antonio J. Ortiz Villarejo ^{1*}, José M. Delgado Barrado ²

¹ Universidad de Jaén. Department of Anthropology, Geography and History. Modern History area; ajvillar@ujaen.es

² Universidad de Jaén. Department of Anthropology, Geography and History. Modern History area; jbarrado@ujaen.es

* Correspondence: ajvillar@ujaen.es

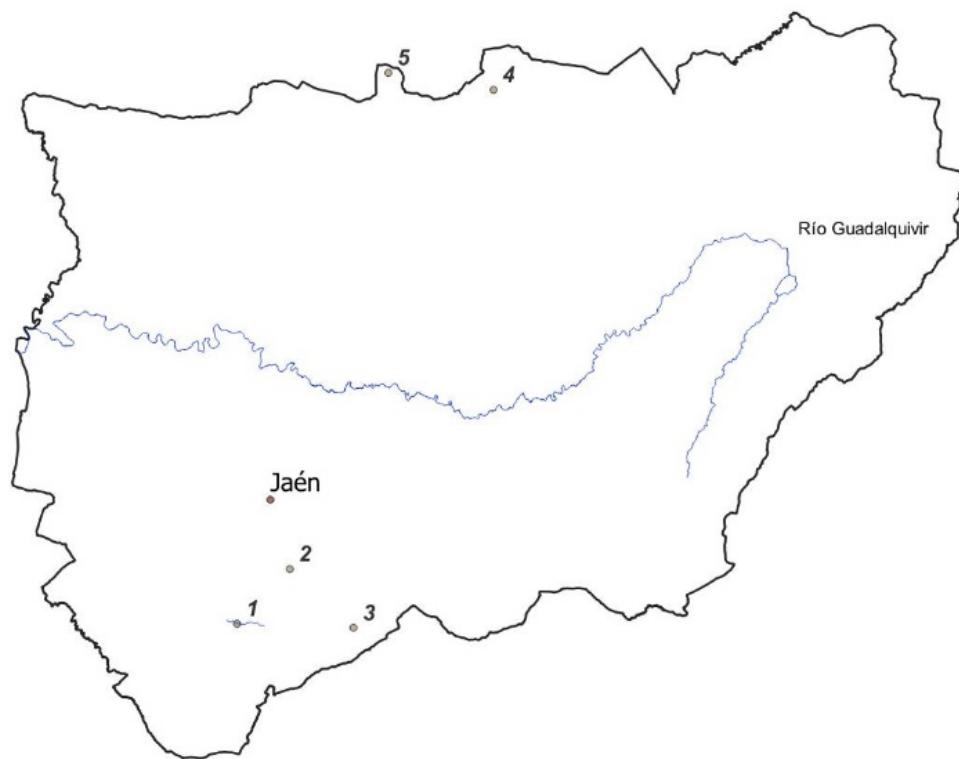
Abstract: The province of Jaén (Andalusia, Spain), despite being declared the European territory with the largest number of defensive constructions (castles and fortifications), has few conservation plans, with many remains included on the Red List of Spanish Heritage lying abandoned. This presents a problem for the conservation of the landscape and the optimal use of the province's tourism potential. Two actions are proposed to alleviate this situation: The creation of an archaeological and environmental risk chart with which to answer such questions as "How have climate change, anthropic alterations and environmental characteristics affected the state of conservation of certain heritage sites?" and to put forward proposals for improving their protection using as a basis digital and technological tools, such as remote sensing (SAR), taking advantage of data from the Sentinel 2A and 2B satellites, HBIM, RPAS and GIS. To foster the promotion of smart tourism by digitalising and virtualising tourist routes and archaeological remains by building a Smart Tourism App for mobile devices. Finally, public administrations will be apprised of the need to implement a conservation policy for cultural assets and their surroundings in a simple, quick and cost-effective manner.


Keywords: SAR; Climate Change; GIS; Archaeological Chart; Risk Assessment; Digital Humanities.

1. Introduction

In this article we present a theoretical approach to the integration of the latest digital technologies applied to environmental protection and their dissemination aimed at providing twin protection for heritage assets in the heritage and environmental spheres. Through the DIGITALESCAPE project, we will develop an innovative and experimental proposal oriented towards a twin study path. Firstly, we will analyse how climate change, anthropic alterations and environmental characteristics have affected the state of conservation of a certain historical-cultural heritage assets, the extent of their level of deterioration, and the measures to be taken to halt this. Secondly, we will look at how to highlight the value this heritage for tourism use and raise environmental awareness of it using digital tools. This proposal is directly linked to United Nations Sustainable Development Goal (SDG) 15. To achieve the aforementioned objectives, we will use the latest advances in digital and technological tools, such as remote sensing (SAR), HBIM, RPAS flights, GIS development and the construction of a Smart Tourism App for mobile devices. To do this, we will take advantage of data provided by the European Space Agency (ESA) Copernicus mission, thanks to the constellation of Sentinel satellites (accessible free of charge), and the application of the ISO 28000 and ISO 31000 International Risk Management Standard.

Figure 1. Study zone locations. 1. Castillo de Susana (Valdepeñas); 2. Castillo de Otiñar (Los Vilares); 3. Castillo de Arenas (Campillo de Arenas); Sierra Morena: 4. Aldea de Buenos Aires (Aldeaquemada) 5. Aldea de Magaña (Santa Elena).


The area under study, to which the methodology contained in this project will be applied, is the province of Jaén in the northern part of the Andalusia region in southern Spain (Fig. 1). This province has been declared the territory with the greatest number of defensive constructions (castles, fortifications, towers, etc.) in Europe, more than 400, although there could be more. Currently, nineteen structures are included on the aforementioned Heritage Red List [1]. The list does not reflect all the structures that are in a ruinous state. Therefore the number of these is greater, as many are at risk and there are few measures in place for their protection and conservation. Many are completely abandoned. Completing this bleak panorama we have other civil elements associated with the history of the territory and its landscape that are in an advanced state of ruin (localities, villages, farmhouses, etc.) that have been included on the Spanish Heritage Red List [1]. This situation constitutes a problem for the province's landscape conservation and the optimisation of its tourism potential. We believe that to solve or alleviate it, it is necessary to address a series of proposals for change and transformation. In this respect, the symbiosis between archaeological remains, localities and environmental characteristics cannot be approached independently, but rather in combination. We will therefore apply a multidisciplinary methodology adapted to each case and the different scales of analysis, in order to deal with the issues raised. The proposed methodology, as we will see in detail below, includes an approach based on remote sensing combined with terrestrial archaeological surveys and other disciplines, such as geology, musicology, archiving and gender studies, to cover all the mentioned sections.

The areas chosen for our study are the Sierra Sur de Jaén and the Sierra Morena. Given this situation, we decided to focus our research on five specific case studies that reflect the situation described in two different areas of Jaén province. Both reflect the same idea, the transformation of the territory through projects for the foundation of new populations. However, they are based on two different historical realities: the border area in medieval and modern times in the Sierra Sur and the New Populations in an area that was depopulated in the second half of the 18th century. From the Sierra Sur we chose the sites of Castillo de Susana, Castillo de Otiñar and Castillo de Arenas, while from Sierra Morena we selected the cases of villages in the New Populations, such as Buenos Aires and Magaña (Fig. 2).

To understand the reasons behind the foundation of new populations in each area, we must first take a brief, concise historical approach. Our history dates back to the hinge decades of two centuries, between the years 1489 and 1539, during the reigns of the Catholic Monarchs, Juana I of Castile, Fernando the Catholic and Emperor Carlos V. The aim of the Catholic Monarchs in 1489 was to found population centres along the communica-

tion axis between the Christian territories and the last Muslim redoubt, the town of Granada. These territories are known as the *Entredichos* (Interdictions), a reference to the fact that they occupied territory "between *dicho* (said) kingdom of Jaén" and "*dicho* (said) kingdom of Granada".

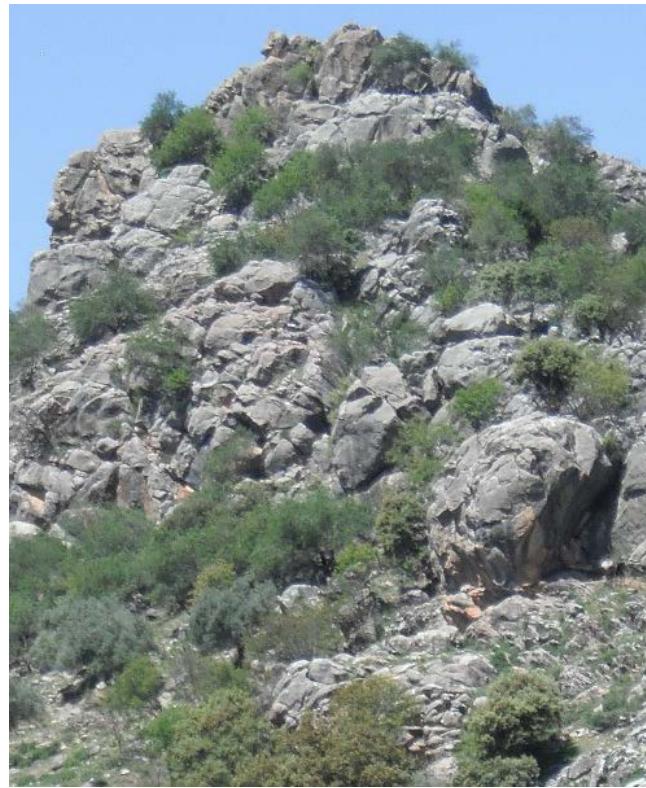

These populations would be dispersed between the Castle of Otiñar and the Eliche River. It may have been the rapid conquest of the town of Granada in 1492 that led to the abandonment of the project, although there was a later attempt, also unsuccessful, in 1494. Queen Juana I of Castile echoed these proposals and signed a royal decree on 17 March 1508, in which she expressed her support by setting the number of foundations and possible locations in the Sierra Sur de Jaén. It was made up of a series of castles, towers, farm-houses, isolated houses, villages, localities, towns and villages that reached its peak with the foundation of the towns of Valdepeñas de Jaén, Los Villares de Jaén, Mancha Real and Campillo de Arenas in the surroundings of the abandoned and ruined castles of Susana, Otiñar and Arenas.

Figure 2. General area of research. Cases 1 to 3 Sierra Sur. 1. Castillo de Susana (Valdepeñas); 2. Castillo de Otiñar (Los Villares); 3. Castillo de Arenas (Campillo de Arenas); Cases 4 and 5 Sierra Morena: 4. Aldea de Buenos Aires (Aldeaquemada) 5. Aldea de Magaña (Santa Elena).

Castillo de Susana (Valdepeñas de Jaén)

In the area of Castellón, Cerro de Castellón, near the Susana River, we find Susana Castle, which was conquered by Fernando III the Saint and donated to the Order of Calatrava. According to Jimena Jurado, Susana Castle was conquered by the master of the Order of Calatrava in 1238. It may also have had a Muslim population, judging by the pottery remains and a necropolis. It was declared an Asset of Cultural Interest on 29 June 1985 (Fig. 3).

Figure 3. State of Susana Castle. Source: <http://www.redjaen.es/francis/?m=c&o=31555>.

Castillo de Otiñar (Los Villares de Jaén)

In 1228 Fernando III laid waste to the Otiñar area, the site of a fortification of Muslim origin and the town of Otiñar Viejo. Subsequently in 1246, he built a castle on its ruins. The geostrategic position was especially notable for its proximity to the Nasrid lands. During the 14th century, a population in the form of a village was founded next to the castle, but with a mayor's office and a church. In the Ordinances of 1464, the mayor of Otiñar was assigned 8,000 *maravedís* a year. From 1492 it lost its geostrategic potential and little by little it was abandoned. In 1505 Otiñar was described as a town surrounded by a good lime and pebble wall, with a fortress. It is currently in ruins. It has a main tower, defensive towers, a cistern and some rooms with ogival vaults. The village or town of Otiñar in the vicinity of the castle is difficult to locate. Juana I of Castile's repopulation project in 1508 affected Otiñar, where it was planned to establish a population. The project, as we will see, did not become a reality until the time of Emperor Carlos V. The site was protected under the generic declaration of the Decree of 22 April 1949 and declared Spanish Historical Heritage under Act 16/1985 (Fig. 4).

Figure 4. Castillo de Otiñar. Source: <https://www.flickr.com/photos/eduardo72/45317457191>.

Castillo de Arenas (Campillo de Arenas)

Located on the hill known as Cerro del Castillo de Puerta Arenas in the Sierra de Alta Coloma. It has remains from a first phase (9th - 11th centuries) perhaps of Almohad origin. The second construction phases date from the 14th - 15th centuries and comprise up to three enclosures with towers, walls, gates, a moat, cisterns, a chapel, etc. It was in an excellent geostrategic position on the road between Jaén and Granada. The flags that flew over the castle alternated between those of the Christian kings and kings of Granada, until it was definitively conquered in 1486 by Fernando the Catholic. During the reign of the Catholic Monarchs, there were already projects to repopulate the area. Juana I of Castile proposed the foundation in 1508 of a town in Campillo, which was finally established in the time of Carlos V and called Campillo de Arenas. It is categorised as an Asset of Cultural Interest and was declared Spanish Historical Heritage on 22 June 1993 (Fig. 5).

Figure 5. The present-day condition of Arenas Castle. Source: https://es.wikipedia.org/wiki/Castillo_de_Arenas.

Regarding the other study area, Sierra Morena, the founding of the New Populations in Sierra Morena and Andalusia during the 18th century was the reformist project par excellence. It pursued two premises: agricultural and manufacturing development and control and dominance of the territory.

The cartography generated as a result of the decision to found the New Populations is currently being reviewed. New hypotheses are being put forward, such as the fact that some maps and plans were used by various hands and at different times, gradually adding extremely valuable layers of geo-historical information. These have remained hidden until now due to the lack of legends or notes attached to the document [2].

Aldea de Buenos Aires in La Feligresía de Aldeaquemada

The history of Aldeaquemada (Jaén) began in 1767. It was founded by order of King Carlos III as one of the new towns in Sierra Morena and Andalusia. Its legal status was that of a *feligresía* or parish. It consisted of the central town, Aldeaquemada, and three neighbouring villages, Aldea de la Cruz, Aldea de Buenos Aires (also called Aldehuela) and La Tamujosa, all within its jurisdictional boundaries.

A succession of historical events led to the gradual demise of each of the villages and today their remains are difficult to identify.

The abandonment of Aldea de Buenos Aires came about basically due to the attraction of nearby Aldeaquemada. We have documentation that cites other reasons, such as the poor construction quality and the torrential rains that destroyed many buildings.

Figure 6. 3D model of the current state of Aldea de Buenos Aires. Source: the authors.

Hypothetically, Aldea de Buenos Aires was founded in 1775. The first information about the collapse of houses due to the poor quality of the building materials was also received from 1784, with new collapses confirmed in 1786. During 1788, controlled demolitions of damaged structures were carried out. From 1789, the decision was taken to gradually abandon the village and relocate the settlers in Aldeaquevara, although some families resisted leaving the village.

Aldea de Buenos Aires (1775-1793) on the present-day Navazo road was also called Aldea Martín in 1775, after the stream that passes nearby, and either Aldehuella or Ruinas de Aldehuella. Its building materials were reused in Aldeaquevara and today only remnants covered with vegetation remain (Fig. 6). The frailty of the constructions referred to in the documentary sources clashes with the remains that can still be seen today: the structures have wide, solid walls in which in the corners still give an idea of their previous splendour.

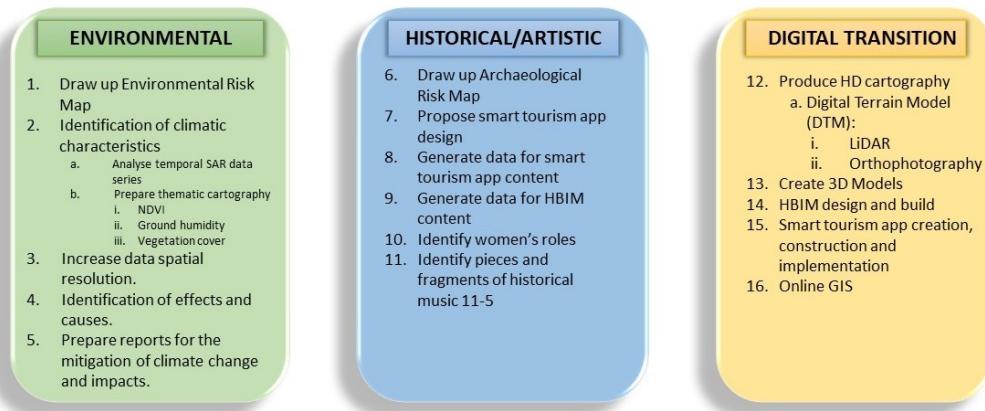
The deterioration of the buildings was presumably due more to a combination of weak roofs, inclement weather and poor materials than to problems in the wall structures. Its high location affords impressive views of Aldeaquevara and the surrounding mountains.

Aldea de Magaña in the Feligresía de Santa Elena.

The *feligresía* or parish of Santa Elena was made up of part of the districts of Vilches, Baños (both in Jaén) and El Viso del Marqués (La Mancha). Next to the forgotten Los Palacios inn was the chapel of Santa Elena or Vera Cruz, dedicated to the victory of Alfonso VIII in the Battle of Las Navas in Tolosa in 1212. These two buildings served as a starting point for the village and the orientation of its streets. Santa Elena was located on the old Muradal road, on a branch that led to Vilches, and was separated from the Puerto del Rey royal road, where two new population points were founded in 1768: Miranda del Rey and Magaña, both taking old inns as a reference. Finally, the construction of the new section of the Despeñaperros pass on the same Muradal road between 1779 and 1783 led to the progressive depopulation of both villages as the inhabitants moved to Santa Elena, on the route of the new royal road designed by the military engineer Carlos Lemaur.

Figure 7. 3D image of the present-day condition of Aldea de Magaña. Source: the authors.

The parish was finally constituted with the addition of the village of Magaña (Fig. 7). This situation continued until 1782, when the status of the parish was once again reduced to that of a village, becoming once again, together with Magaña, part of Santa Elena. The main reasons would have been the construction of the new royal road and the growing depopulation. The loss of colonists from Magaña was progressive, although it was never completely abandoned.


At the end of the 18th century, the parish was made up of Santa Elena and three villages: Miranda del Rey, Magaña and Venta Nueva. Magaña resisted with a small group of inhabitants, who remained in the area until the 1960s, after which it was completely abandoned. Today it lies in ruins (Fig. 7).

The case studies referred to here are located in non-urban country areas. Some are classified as natural parks, landscapes of interest or protected areas, etc. They are difficult to access, both for vehicles (of any type) and people. As can be seen in Figures 2 to 6, the chosen sites are in medium and/or high states of ruin or abandonment. There are no musealised and interpretive spaces, information panels, restored or consolidated architectural elements, risk prevention measures for visitors, etc.

Thus, among the objectives of this proposal is the creation of an archaeological and environmental map that reflects the current state of the heritage assets. It will also contain the factors that have caused their deterioration, and a series of measures proposed, on the one hand, to prevent further deterioration and, on the other, to improve protection of the assets. The purpose of this environmental charter is ambitious, since its intention is to detect the negative environmental effects on these places and their surroundings in order to propose solutions, such as native reforestation, runoff channelling, etc. It also aims to promote of smart tourism by digitalising the ruins and the surroundings of the buildings, as well as the virtualisation of tourist routes. At the same time, together with the definition of the effects on the heritage assets, we aim to lessen the impact of visitors and invite them to participate in the environmental questions that affect both the assets and their surroundings.

2. Materials and Methods

Given the multidisciplinary nature of the project, in order to achieve the aforementioned objectives, we consider it necessary place them in groups, depending on the thematic area to which they are addressed. Therefore we have classified them in three main groups of objectives: Environmental, Historical-Archaeological and Digital Transition (Fig. 8).

Figure 8. Scheme of the proposed objectives.

2.1. Environmental objectives

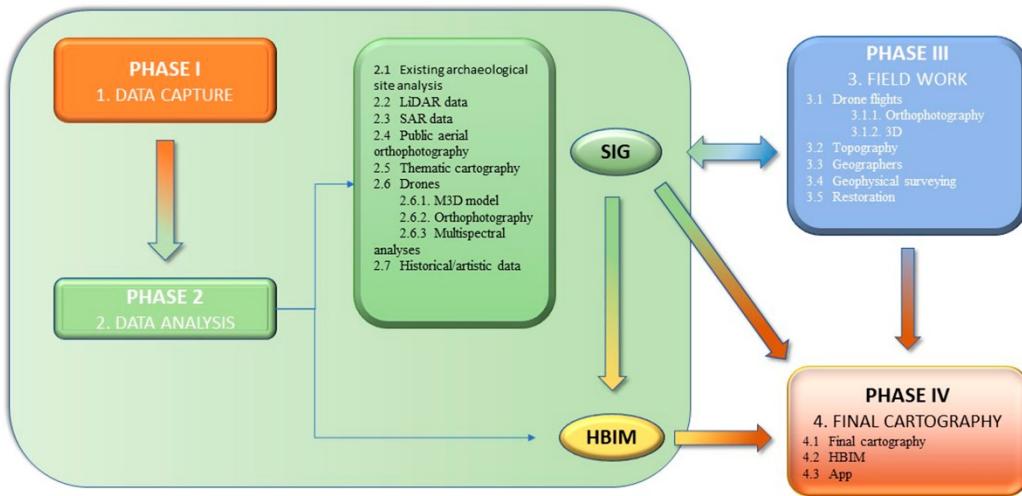
2.1.1. Preparation of an Environmental Risk Map

- a. Determination of the geological characteristics of the environment and its recent and current natural dynamics.
- b. Definition and application of objective indicators for assessing the state of conservation of the natural environment, evidence of deterioration, foreseeable impacts due to the enhancement of the natural space, and present geological risks, both for the elements it is aimed to highlight and for the people who visit the sites.
- c. Characterisation of the geological landscape of the sites and their surroundings (areas viewed from the surroundings) and their enhancement by presenting geological and landscape information with a view to their exploitation for tourism.

2.1.2. Identify the climate characteristics

- d. Analyse SAR time series data
- e. Prepare thematic cartography

2.2. History and archaeology objectives


1. Draw up the Archaeological Risk Map
2. Build and develop a Smart Tourism App
3. Generate data to provide content for the Smart Tourism App
4. Generate data to provide content for the HBIM
5. Visibility of women with information and inclusive language

2.3. Digital transition objectives

1. Produce HD cartography. A. Digital Terrain Model (DTM):
 - A. 1. LiDAR.
 - A. 2. Orthophotography
2. Designing and building of 3D models and use of HBIM
3. Online GIS
4. Creation, construction and implementation of the Smart Tourism App

3. Methodology

The methodology we propose has been designed taking into account its optimisation for the achievement of the objectives in their three aspects. It is, therefore, a truly multi-disciplinary and complex project (Fig. 9).

Figure 9. Scheme of the proposed methodology.

3.1. Data acquisition

This phase is oriented towards obtaining all the publicly available data that will be used during the project. They range from the environmental objectives (climatological, geological, etc.) to the geographical, historical and archaeological objectives (conservation, restoration, orthophotography, historical cartography, LiDAR and SAR data, printed and manuscript documentary sources, travel literature, historical geographical descriptions, archaeological finds, etc.); even digital ones. They are all available from various archives, libraries, digitised collections, repositories, national and international institutional websites, etc.

To facilitate their reuse, as well as access to the compiled documentation, as far as possible we will use free software, such as QGIS, a GIS whose power and expandability through plugins adapted to each need will allow us to process the vast majority of the data expected in this project, such as LiDAR, SAR data, MDE analysis, etc. In some cases, for example for the creation of 3D models, it will be necessary to use proprietary software such as Bentley Context Capture or Autodesk REVIT.

3.2. Geographic, historic and artistic data analysis

For the analysis of these data and especially those dedicated to the roles of women throughout the Muslim, Christian and modern periods (12th - 18th centuries), applied history and quantitative and qualitative history methodologies and **Digital Humanities** tools [3-5] will be used to explain how to apply historical knowledge to digital tools. Specifically, and in the case of the study of the surroundings of the castles of Campillo, Otiñar and Susana, and their respective new Renaissance towns (Campillo, Los Villares and Valdepeñas), the available medieval documentary collections will be studied, as well as the 16th-century land distribution books, notarial protocols, etc. For the case studies of the villages of Buenos Aires and Magaña, we will basically analyse the 16th-century *libros de repartimiento* (land distribution records) of the governor Ondeano (from 1780) and the cartographic series of Ampudia and Valdés (1792-1797).

3.3. Description and evaluation of cultural property state of conservation

This part of the project is essential for setting the guidelines to follow in future actions in the field of restoration and conservation. We intend to draw up a protocol for each case study that will serve as a base document for future action proposals and master plans. In

order to systematise data collection, with the aim of increasing its reproducibility and unifying criteria, a table of alterations will be prepared, in which the various forms of deterioration affecting the case studies will be examined. These include biodeterioration due to animal, vegetable or microorganism causes; chemical or contaminant damage; anthropogenic deterioration or vandalism; and deterioration caused by environmental actions or natural disasters. For their correct identification, it is important to take samples and perform laboratory analyses of the various factors causing biodeterioration. For this purpose, a taxonomic classification will be made using visual observation techniques through a stereoscopic binocular loupe, an optical microscope, a scanning electron microscope, and a transmission electron microscope.

3.4. Inclusion and accessibility

These are fundamental aspects to take into account in the design of the proposed smart tourism app and it would be appropriate to begin with a brief conceptual clarification. Taking the words of Llorenç Prat [6], the **concept of Cultural Heritage** “...understood as everything that is socially considered worthy of conservation regardless of its utilitarian interest. Of course, this concept also covers what is commonly known as natural heritage, to the extent that it deals with culturally selected natural elements and ensembles”.

Cultural heritage can also be defined from a humanistic and relational perspective, assuming that it is people who bestow value on goods. This brings us closer to the **concept of diversity**, understood as a wide range of people, each with their own characteristics. This could be due to their ways of thinking, acting, feeling, proceeding, being [7] or to physical or psychological limitations. In short, diversity is conceived as a continuum in which we are all included. Therefore, as we have seen, accessibility needs are diverse and vary throughout life. We all benefit from measures aimed at accessibility and inclusion that seek better physical, cognitive and sensory access. Therefore we will develop measures for cognitive and sensory accessibility, gender inclusion and effective accessibility [8-9], UNE 153101:2018 EX standard, and Accessibility Observatory [10]

3.6. Aerial orthophotography and historical cartography

For the analysis of the **five proposed archaeological sites** we will use both existing historical cartography and orthophotography, which will facilitate the characterisation of the sites to be studied. With the **LiDAR data** provided by the IGN download centre [11], we will generate Digital Terrain Models (DTM). Although their spatial resolution is relatively low (0.5 points/m²), analysed with the correct algorithms and software, such as SAILORE [12] or RVT [13] respectively, based on GIS, they can provide us with valuable information regarding the original plan of certain archaeological remains that, due to their state of conservation and the identification of new aspects in the spatial distribution, have previously gone unnoticed. This type of data is especially useful in areas covered by vegetation [12-14].

3.6. Analysis of satellite data time series

The **SAR data** will be used to monitor the **Sustainable Development Goals (SDG)**, in our specific case, Number 15, Life of Terrestrial Ecosystems, recognised in Article 76 of the 2030 Agenda for Sustainable Development, approved by the United Nations General Assembly in 2015. In the analysis we will use the data provided by the European Commission's Copernicus space programme, the objective of which is the surveillance of our planet through earth observation and monitoring, including geographic information on land cover, land use and temporal changes from the 1970s to the present [17]. Specifically, for the **study and understanding of the climate dynamics** over time in the areas under study, we will use the indicators and indices on the control and prediction of climate change that can be consulted in the Climate Change Service [18], data from the CORINE Land Cover (CLC) project on large-scale land occupation, and on a national level we will

use the data contained in SIOSE, PNOA and LiDAR and reference geographic information, such as IGR Hydrography and IGR Populations, which are part of the local component of the Copernicus programme. All of them are free to access.

The usefulness of this type of data for the discovery and exploration of archaeological sites has been demonstrated since the 1980s in studies carried out in both tropical and subtropical environments [19], as well as in arid areas [20], or more recently in the Chinese city of Luoyang [21]. On the other hand, its use for the study of climate change presents some advantages, since this type of SAR image analysis applied to the study of the alterations produced by humans in their immediate environment is becoming a basic technology to combine in different types of interventions related to cultural heritage [22]. In some cases, such studies have revealed hitherto hidden characteristics in palaeo-landscapes by registering differences in the refractance produced by archaeological remains in the ground and vegetation [23].

3.8. Geomatics and Topography

Their purpose in this project will be to georeference the data collected with drone flights, the realisation of topographic surveys in areas of special interest and the preparation of GIS, both of the current landscape and applied to the historical cartography. Thanks to their use, a thematic cartography will be drawn up with already existing data and a new one will be created to respond to the questions that arose during the development of the project. These include the historical evolution of the landscape in the areas under study and the effects caused by human beings, etc. This will allow us to understand the climatic behaviour of the studied areas, as well as to advance our knowledge of the structure of some of them.

3.9. Geology

The approach to its study will be divided into three phases:

1. Data phases.
2. Laboratory and field work: analysis of the available geological information (geological maps, reports, scientific publications).
3. Field work (geological cartography, lithological characterisation, characterisation of natural geological dynamics); geological risk analysis (erosion, landslides, floods, earthquakes); analysis of anthropogenic impacts on the geological environment (runoff modification, waste contamination, changes in topography due to land use, etc.); definition and application of indicators: geodiversity; geological heritage; risks; present and expected impacts of the proposed intervention; and the preparation of material for the dissemination of geological information for tourist use: maps, graphs, texts, panels, etc.. Integration of the material in digital applications.

3.10. Drone flights

A drone flight has been planned for each of the five case studies. They have been divided into two blocks: the methods related to field studies and the actual flights.

There are numerous cases in which the drone has proven to be a highly effective tool both for obtaining aerial orthophotography and for creating 3D models of heritage elements [24]. Thanks to their versatility, various types of sensors can be mounted to facilitate data collection, increase spatial resolution, and reduce time and cost, which indirectly reduces pollution.

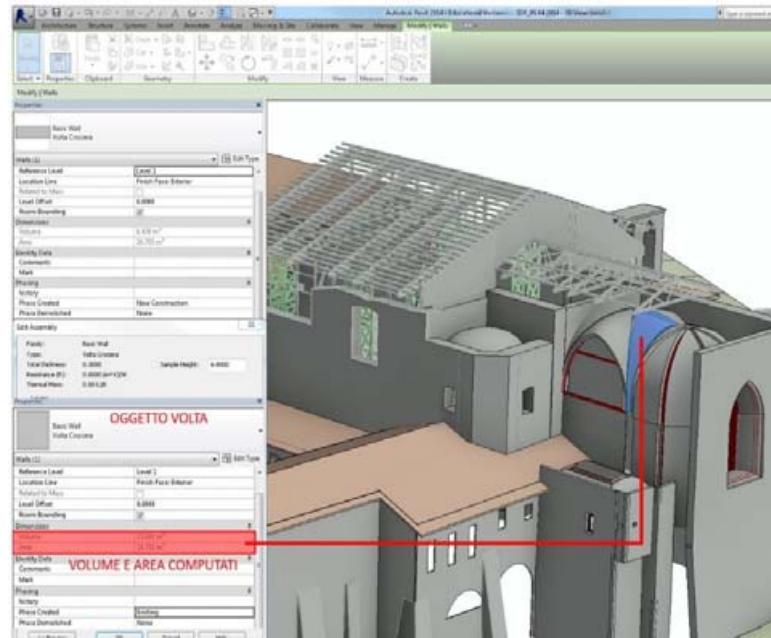


Figure 10. 3D model of the village of Buenos Aires. Source: the authors.

We will use the data obtained from the five scheduled flights to make the **3D models** [23-27] (Fig. 10). The purpose will be to establish a three-dimensional base that will allow us to use the BIM methodology, identifying both the construction aspects and the effects caused by inclement weather/climate [28-31], which need to be dealt with, as well as to work on the creation of a future smart tourism app for mobile devices. It will be essential to create a personalised cartography. To this end, high-resolution orthophotography of the areas under study has been planned. This will allow the analysis of details of the environment that would otherwise be lost, as well as a detailed study of the conditions documented in the asset. Thanks to this high-resolution model, treatments can be planned to alleviate its deterioration, as well to analyse its evolution over time.

3.11. *BIM (Building Information Modelling) methodology*

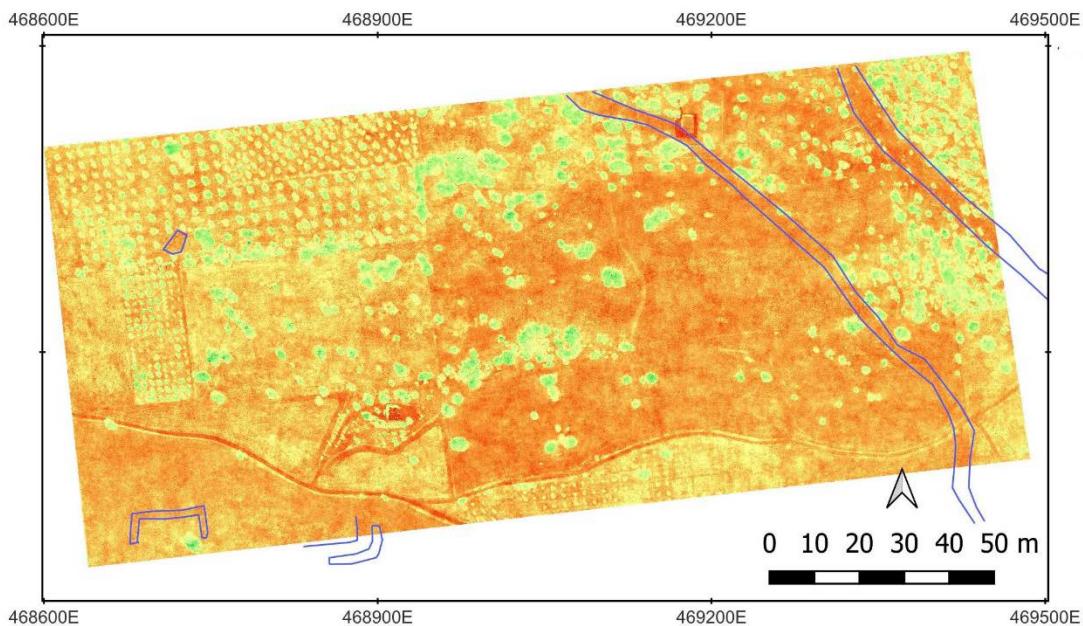

This methodology is based on the creation or construction of a central 3D model or a shared and collaborative database [34], in which the agents/stakeholders involved in the project can create and easily access the information, recreating virtualised spaces and historical environments, reducing the number of exchanges between them and avoiding losses or duplicates. When this methodology is applied to historic buildings it is known as HBIM. The ultimate purpose is to create a graphic model from data faithful to the Heesom historical reality [35] and, in our case, also climatic, since it will be fed by data obtained through the use of the GIS referred to above. This methodology allows us to make virtual recreations of the historical and environmental space and environs. In turn, it will allow us, on the one hand, to delve more deeply into the historical-artistic and conservation details of the asset and, on the other, it will allow the visitor to enjoy the history virtually and the internal background of the asset, allowing a temporal [36] and climatic approach to it. Thanks to its use, administrations will be provided with a plan with action proposals both to halt further deterioration and to facilitate the conservation of the assets under study [31].

Figure 11. HBIM image with the file containing the information on an element. Source: D. Oreni, R. Brumana, S. della Torre, and F. Banfi, "Survey, HBIM and conservation plan of a monumental building damaged by earthquake," in International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, May 2017, vol. 42, no. 5W1, pp. 337–342. doi: 10.5194/isprs-archives-XLII-5-W1-337-2017.

3.12. Multispectral analyses

This type of analysis is fundamental in the approach we propose. The maximum spatial resolution that can be freely accessed with the Copernicus mission data is 10 m/pix. in the Red, Green, Blue bands. This is very useful for understanding the environmental dynamics of the cultural asset's surroundings, but is insufficient for the study of an area as precise as the one we propose. For this reason, we aim to use a multispectral camera that will allow the analysis of the same range of the electromagnetic spectrum (Red, Green, Blue, NIR, etc.). It will be mounted on a drone and will increase exponentially the precision of the data obtained, reaching a resolution of at least 8 cm/pix, allowing the identification of any anomaly in the electromagnetic spectrum related to both the climate and the presence of archaeological remains (Fig. 12). This methodology is similar to that used in precision agriculture to study the health status of crops, the presence of plant diseases, etc.

Figure 12. Multispectral image taken in the village of Buenos Aires, Sierra Morena, in which we can appreciate the presence of two palaeo-channels. Source: the authors.

4. Discussion

The focus of the proposal is novel in the field of Modern History (16th - 18th centuries) and, therefore, the expected scientific-technical and socio-economic impact of the project is high. The studies of Spatial Archaeology or Applied History in Spain during the centuries of the Modern Age are minority or infrequent, even more so taking into account the climatic conditions of the environment. The joint interpretation of a corpus of data in which architectural and environmental values are integrated to facilitate both the conservation of the asset and its landscape environment has been practically non-existent. The use of drone flights over constructions is more frequent, although not for the analysis and morphological study of the territory in which the archaeological remains are located. In this respect, the results will have a high impact. Letters of interest and collaboration from different European geo-historical laboratories could be added to these actions. Particularly notable in this case are those from Italy, due to the similarities between the Italian and Spanish methodologies, thus guaranteeing international impact. We can cite the *Osservatorio Geopolitico Internazionale sulle citta' di fondazione* of the municipality of Saubadia (Latina); the *Centro Italiano per gli Studi Storico-Geografici* of the Dipartimento di Studi Umanistici, Università degli Studi Roma Tre; the *Centro Geo-Cartografico di Studio e Documentazione GeCo* of the Università di Trento; the *Laboratorio Geocartografico "Giuseppe Caraci"* of the Università di Roma Tre; and the Geographic Research and Application Laboratory (GREAL) of the Università Europea di Roma (letters kept in the UJA Vice-Rectorate for Research).

Author Contributions: Conceptualisation, A.J.O.V. and J.M.D.B.; formal analysis, A.J.O.V. and J.M.D.B.; investigation, A.J.O.V. and J.M.D.B.; methodology, A.J.O.-V. and J.M.D.B.; project administration, J.M.D.B.; resources, A.J.O.-V.; software, A.J.O.-V.; validation, A.J.O.-V. and J.M.D.B.; visualisation J.M.D.B.; writing—original draft, A.J.O.-V. and J.M.D.B.; All authors have read and agreed to the published version of the manuscript.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. “<https://listaroja.hispanianostra.org/>.”
2. J. M. Delgado Barrado, F. J. Pérez Fernández, and J. M. Castillo Martínez, “El proyecto de las nuevas poblaciones de Sierra Morena en el mapa de 1768,” *MAGALLÁNICA, Re-vista de Historia Moderna*, vol. 7, no. 13, pp. 315–352, 2020.

3. D. Alonso and A. C. Solana, "TIEMPOS MODERNOS 26 (2013/1) MONOGRÁFICO: Historia Moderna y Sistemas de Información Geográfica La Historia geográficamente integrada y los SIG: concepto y retos metodológicos La Historia geográficamente integrada y los Sistemas de Información Geográfica (SIG): concepto y retos metodológicos 1".
4. A. Pons, *El desorden digital: guía para historiadores y humanistas*, Siglo XXI. 2013. Accessed: Oct. 28, 2022. [Online]. Available: https://www.sigloxxieditores.com/libro/el-desorden-digital_17868/
5. M. Toscano, A. Rabadán, S. Ros, and E. González-Blanco, "Digital humanities in Spain: Historical perspective and current scenario," *Profesional de la información*, vol. 29, no. 6, pp. 1–22, Dec. 2020, doi: 10.3145/EPI.2020.NOV.01.
6. L. Prats, "El Concepto de Patrimonio Cultural," *Cuadernos de Antropología Social*, vol. 11, pp. 115–136, 2000.
7. A. García, "EL CONCEPTO DE DIVERSIDAD ENTENDIDO POR LOS FUTUROS DOCENTES," 2016.
8. S. Gil González, *Cómo hacer "Apps" accesibles*, vol. 1. 2013. [Online]. Available: www.ceapat.es
9. S. Marín-Cepeda, S. García-Ceballos, C. Gómez-Redondo, N. Vicent, and I. Gillate, "Educación Patrimonial Inclusiva en OEPE: Un estudio prospectivo," *Revista de Educacion*, vol. 2017, no. 375, pp. 110–135, Jan. 2017, doi: 10.4438/1988-592X-RE-2016-375-337.
10. Gobierno de España. Porta de Administración Electrónica, "Observatorio de Accesibilidad Web," 2020. https://administracionelectronica.gob.es/pae/Home/pae_Estrategias/pae_Accesibilidad/pae_Observatorio_de_Accesibilidad.html (accessed Nov. 02, 2022).
11. Organismo Autónomo Centro Nacional de Información Geográfica, "Centro de Descargas del IGN," 1988. <https://centrodedescargas.cnig.es/CentroDescargas/index.jsp> (accessed Jun. 05, 2020).
12. Ž. Kokalj and M. Somrak, "Why not a single image? Combining visualizations to facilitate fieldwork and on-screen mapping," *Remote Sens (Basel)*, vol. 11, no. 7, 2019, doi: 10.3390/rs11070747.
13. Ž. Kokalj, K. Zaksek, K. Oštir, and K. Čotar, "Relief Visualization Toolbox, version 1.3, Manual Special Issue 'Applications of Micro-and Nano-Satellites for Earth Observation' View project," 2013. [Online]. Available: <http://iaps.zrc-sazu.si/en/rvt>
14. A. Chase *et al.*, "Airborne LiDAR, Archaeology, and the ancient Maya landscape at Caracol, Belize," *J Archaeol Sci*, vol. 38, pp. 387–398, 2011.
15. R. Hesse, "LiDAR-derived local relief models-a new tool for archaeological prospection," *Archaeol Prospect*, 2010, doi: 10.1002/arp.374.
16. L. Berrocal-Rangel, P. Paniego Díaz, L. Ruano, and G. R. Manglano Valcárcel, "Aplicaciones LiDAR a la topografía arqueológica: El Castro de Irueña (Fuenteguinaldo, Salamanca) / LiDAR applications to the archaeological topography: The Irueña Hillfort (Fuenteguinaldo, Salamanca)," *Cuadernos de Prehistoria y Arqueología*, vol. 43, no. 2017, 2017, doi: 10.15366/cupauam2017.43.007.
17. <https://www.copernicus.eu/es>, "Copernicus. Europe Eye on Earth."
18. "Climate Change Service." <https://climate.copernicus.eu/>
19. R. E. W. a Adams, W. E. b Brown Jr., and T. c Patrick Culbert, "Radar mapping, archeology, and ancient Maya land use," *Science* (1979), vol. 213, no. 4515, pp. 1457–1463, 1981.
20. C. Elachi, L. E. Roth, and G. G. Schaber, "Spaceborne Radar Subsurface Imaging in Hyperarid Regions," *IEEE Transactions on Geoscience and Remote Sensing*, vol. GE-22, no. 4, pp. 383–388, 1984.
21. G. Cheng and J. Han, "A survey on object detection in optical remote sensing images," *ISPRS Journal of Photogrammetry and Remote Sensing*. 2016. doi: 10.1016/j.isprsjprs.2016.03.014.
22. F. Chen, R. Lasaponara, and N. Masini, "An overview of satellite synthetic aperture radar remote sensing in archaeology: From site detection to monitoring," *J Cult Herit*, 2017, doi: 10.1016/j.culher.2015.05.003.
23. G. Verhoeven, "BRDF and its Impact on Aerial Archaeological Photography," *Archaeol Prospect*, vol. 24, no. 2, pp. 133–140, Apr. 2017, doi: 10.1002/arp.1559.
24. J. de Reu *et al.*, "Towards a three-dimensional cost-effective registration of the archaeological heritage," *J Archaeol Sci*, vol. 40, no. 2, pp. 1108–1121, Feb. 2013, doi: 10.1016/j.jas.2012.08.040.
25. F. Galeazzi, "Towards the definition of best 3D practices in archaeology: Assessing 3D documentation techniques for intra-site data recording," *J Cult Herit*, vol. 17, pp. 159–169, Jan. 2016, doi: 10.1016/j.culher.2015.07.005.
26. A. Sarris, "Best Practices of GeoInformatic Technologies for the Mapping of Archaeolandscapes".
27. F. Soler, F. J. Melero, and M. V. Luzón, "A complete 3D information system for cultural heritage documentation," *J Cult Herit*, vol. 23, pp. 49–57, Jan. 2017, doi: 10.1016/J.CULHER.2016.09.008.
28. D. Tapete, V. Banks, L. Jones, M. Kirkham, and D. Garton, "Contextualising archaeological models with geological, airborne and terrestrial LiDAR data: The Ice Age landscape in Farndon Fields, Nottinghamshire, UK," *J Archaeol Sci*, vol. 81, pp. 31–48, May 2017, doi: 10.1016/J.JAS.2017.03.007.
29. M. D. Willis, C. W. Koenig, S. L. Black, and A. M. Castañeda, "ARCHEOLOGICAL 3D MAPPING: THE STRUCTURE FROM MOTION REVOLUTION," 2016. [Online]. Available: <http://youtu.be/TuHJUS2olyc>
30. N. Megahed, "Towards a Theoretical Framework for HBIM Approach in Historic Preservation and Management," *International Journal of Architectural Research: ArchNet-IJAR*, vol. 9, no. 3, p. 130, Nov. 2017, doi: 10.26687/archnet-ijar.v9i3.737.

31. D. Oreni, R. Brumana, S. della Torre, and F. Banfi, "Survey, HBIM and conservation plan of a monumental building damaged by earthquake," in *International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives*, May 2017, vol. 42, no. 5W1, pp. 337–342. doi: 10.5194/isprs-archives-XLII-5-W1-337-2017.
32. C. Palestini, A. Basso, and L. Graziani, "Integrated photogrammetric survey and bim modelling for the protection of school heritage, applications on a case study," in *International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives*, 2018, vol. 42, no. 2. doi: 10.5194/isprs-archives-XLII-2-821-2018.
33. G. Vacca, E. Quaquero, D. Pili, and M. Brandolini, "GIS-HBIM integration for the management of historical buildings," in *International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives*, May 2018, vol. 42, no. 2, pp. 1129–1135. doi: 10.5194/isprs-archives-XLII-2-1129-2018.
34. M. J. Hermoso-Orzáez, J. M. Camacho Sánchez, C. Estepa Cantero, and J. Terrados-Cepeda, "IMPLEMENTATION OF THE BIM MANAGER FIGURE WITH CYPE'S TOOL BIM SERVER CENTER IN THE DESIGN, MODELING, DIRECTION AND PROJECT MANAGEMENT-UNIVERSIDAD DE JAÉN," *EDULEARN21 Proceedings*, vol. 1, pp. 2337–2347, Jul. 2021, doi: 10.21125/EDULEARN.2021.0518.
35. D. Heesom, P. Boden, A. Hatfield, S. Rooble, K. Andrews, and H. Berwari, "Developing a collaborative HBIM to integrate tangible and intangible cultural heritage," *International Journal of Building Pathology and Adaptation*, vol. 39, no. 1, pp. 72–95, Feb. 2021, doi: 10.1108/IJBPA-04-2019-0036.
36. M. Castellano-Román and F. Pinto-Puerto, "Dimensions and Levels of Knowledge in Heritage Building Information Modelling, HBIM: The model of the Charterhouse of Jerez (Cádiz, Spain)," *Digital Applications in Archaeology and Cultural Heritage*, vol. 14, p. e00110, Sep. 2019, doi: 10.1016/j.daach.2019.e00110.