

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Communication

First report of *Phaeoacremonium iranianum* causing olive twig and branch dieback

Elena Petrović ¹, Karolina Vrandečić ², Jasenka Čosić ², Gabriella Kanižai Šarić ² and Sara Godena ^{2,*}

¹ Institute of Agriculture and Tourism, Karla Huguesa 8, Poreč 52440, Croatia; elena@iptpo.hr (E.P.); sara@iptpo.hr (S.G.)

² Faculty of Agrobiotechnical Sciences Osijek, Josip Juraj Strossmayer University of Osijek, Osijek 31000; kvrandecic@fazos.hr (K.V.); jcosic@fazos.hr (J.Č.), gkanizai@fazos.hr (G.K.Š.)

* Correspondence: sara@iptpo.hr

Abstract: In the olive orchard on the western part of Istria, Croatia, twig and branch dieback was observed on several olive trees from the local cultivar 'Buza'. In total, seven samples from symptomatic trees were collected. Samples were analyzed, and four fungal isolates showed morphological similarities to the species *Phaeoacremonium iranianum*. One isolate, chosen as a representative, was taken for molecular identification and pathogenicity tests. Based on DNA sequence data of ITS1/ITS4, β t2a/ β t2b, EF1-728F/EF1-986R, the isolate was identified as *P. iranianum*. Pathogenicity tests were conducted on detached olive branches and olive trees in the greenhouse, and identified fungal species was pathogenic on olive. To the best of our knowledge, this is the first report of twig and branch dieback on olive causing by phytopathogenic specie of fungus *Phaeoacremonium iranianum*.

Keywords: *Phaeoacremonium iranianum*, olive, dieback

1. Introduction

Olive (*Olea europaea* L.) is one of the most important crops in the Mediterranean part of Croatia. According to the latest statistical data, Croatian national production of olives is approximately 23 800 tones [1]. Olive trees are known to be drought-resistant and hardy, and susceptible to several major diseases [2], but recently olive is becoming more susceptible to diseases caused by phytopathogenic fungi. The main reasons are changes in cultivation methods, planting of infected plant material, increasing resistance of pathogens to fungicides, climatic extremes, etc. In recent years, there have been various occurrences of new diseases on olive trees in Istria that were unknown even to the experienced olive growers. In order to create a plant protection strategy (within the framework of sustainable olive production), the detection of the causative agents of this unusual olive diseases is crucial.

2. Materials and Methods

2.1. Sampling and fungal isolation

In 2021, olive trees, which showed signs of twigs and branches dieback (Figure 1), discoloration of the bark, and necrotic lesions, were spotted in olive orchard on western side of Istria, Croatia. The surface of the orchard was 0.43 ha and contained approximately 70 olive trees. Olive trees of the orchard (100% local cultivar 'Buza') were over 30 years old and grown on the soil where grapevine was grown beforehand. In total, seven samples of branches from symptomatic trees of 'Buza' were collected and brought into the laboratory for analysis. Small pieces of branches were rinsed under tap water, surface sterilized in 70% ethanol for one minute, rinsed two times in sterile distilled water, and placed on a sterile paper sheet in laminar flow cabinet till dry. Pieces of branches were plated on PDA

amended with 35 mg/L of penicillin and incubated. After five days of incubation at 25 °C under dark condition, isolates were transferred onto the fresh PDA medium.

Figure 1. Disease symptoms on olive branches in the orchard near Rovinj in Istria, Croatia, in the year 2021.

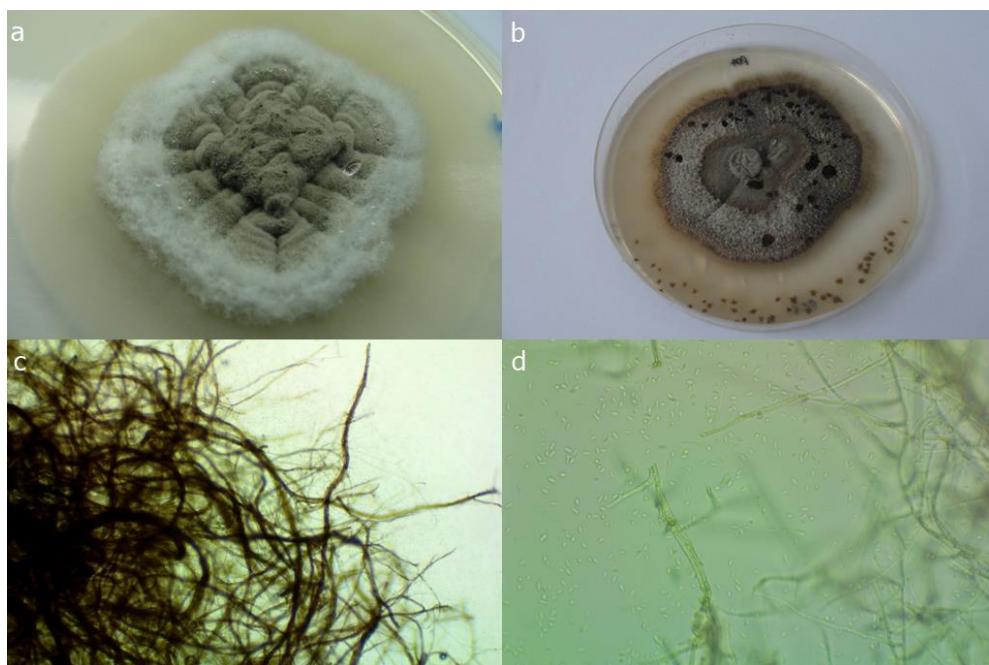
2.2. Morphological and molecular identification

After 14 days of incubation at 25 °C in dark conditions, pure fungal cultures were taken to examination. The four isolates showed morphological similarities to the species *Phaeoacremonium iranianum*. One isolate (R18 B4), chosen as representative, was taken for molecular identification. Total DNA from the isolate was extracted with Maxwell® RSC Plant DNA Kit (Promega, Madison, Wisconsin, USA). The PCR reaction was performed using ITS1/ITS4 [3], β t2a/ β t2b [4], and EF1-728F/EF1-986R [5] pair of primers. The PCR reaction mixture was composed of 12,5 μ L of EmeraldAmp® GT PCR Master Mix, 0,5 μ L of each primer, 6,5 μ L of nuclease-free water, and 5 μ L of genomic DNA. Polymerase chain reactions (PCR) (Table S1), were conducted in a SureCycler 8800 Thermal Cycler (Agilent Technologies, Santa Clara, California, USA). The PCR products were visualized on 1% agarose gel light using an iBright CL1000 Imaging System (Invitrogen, Thermo Fisher Scientific, Waltham, Massachusetts, USA). Purification of PCR products was done with the GenElute™ PCR Clean-Up Kit (Sigma-Aldrich®, Burlington, Massachusetts, USA), and sequencing (with EZ-Seq) of the PCR products was done by Macrogen Europe (Amsterdam, Netherlands). Sequences were edited in Sequencher® (Gene Codes Corporation, Ann Arbor, Michigan, USA) and compared with sequences from GenBank®.

2.3. Pathogenicity tests of isolate

Two pathogenicity tests were conducted to determine pathogenicity of isolate on olive tree: one on detached branches from cultivars 'Buza' and 'Rosinjola' in the laboratory, and another one on the four-year-old olive tree of the cultivar 'Rosinjola' in the greenhouse. Detached branches were washed with water, surface sterilized in 10% sodium hypochlorite solution for 10 minutes, rinsed with sterile distilled water for 10 minutes, and placed in laminar flow cabinet, on sterile paper, till dry. Branches were inoculated by placing a 4-mm-diameter mycelium plug from a 14-day-old PDA culture of R18 B4 isolate in a wound made with a 4-mm-diameter cork-borer. Wounds were sealed with vaseline and protected with Parafilm. Ten branches in total, per cultivar, were used. Fungal treatments were compared to the control treatment inoculated only with PDA plugs without mycelia, sealed with vaseline, and protected with Parafilm. Inoculated branches had been kept in laboratory conditions for 20 days.

Randomly chosen branches from olive trees from the greenhouse were inoculated the same way as previously described for detached branches. Inoculated plants had been kept in a greenhouse for three months, from March to July 2022, and monitored for the presence of symptoms. After incubation, samples were collected, and in an attempt to fulfill Koch's postulate, small pieces of necrotic tissue from the edge of each lesion were cut and placed on PDA to recover inoculated fungus.


3. Results

3.1. Sampling and fungal isolation

In the field the symptoms of the disease on 'Buza' olive trees were wilting and die-back of twigs and branches, the same as brown internal necrosis. The symptoms such as dieback were observed on lateral branches, on one side of the trees. When the outer layer of bark from the branches was scraped away, it has been revealed that the brownish discoloration has extended on the surrounding tissue.

3.2. Morphological and molecular identification

Fungal isolates have been identified based on the colony characteristics (color, form, margin, elevation, surface, and opacity), and spores characteristics (color, presence or absence of septum, and shape). The developed fungal colonies were brownish on PDA, reverse darker brown; circular shaped with an entire edge, with aerial, opaque, and cottony mycelium, and branched septate hyphae (Figure 2). The isolate produced hyaline, unseptate, and ovoid conidia. These morphological characteristics identified the fungus as *Phaeoacremonium iranianum* L. Mostert, Gräfenhan, W. Gams & Crous, 2006 [6]. For molecular identification, consensus sequences of representative R18 B4 isolate were produced (GenBank accession numbers: OP627795 for ITS, OP684932 for TUB, and OP684933 for EF1 α gene). BLAST analysis of the sequences showed 100% similarity with *P. iranianum* (reference number MG745842 for ITS, KF179086 for TUB, and KF764625 for EF1 α gene). Phylogenetic analysis (Figure S4) was made using ITS sequence data from reference isolate, R18 B4, and isolates from GenBank. The sequences were aligned using ClustalX2 (UCD Dublin, Ireland) software, and a phylogenetic tree was made using MEGA11 (Pennsylvania State University, USA) software.



Figure 2. (a) *P. iranianum* colony, on PDA, after two weeks in the dark at 25 °C. (b) *P. iranianum* colony, on PDA, after two months. (c) Micrographs of *P. iranianum* isolate under the microscope. Scale bar = 10 μ m. (d) Hyaline, ovoid conidia.

3.3. Pathogenicity tests of isolate

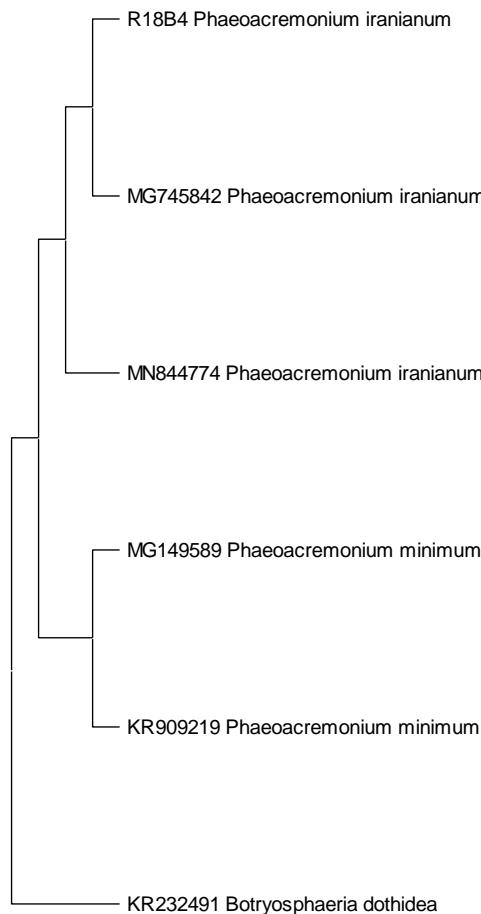
The symptoms of the disease on olive branches tested in the laboratory, and on the branches collected from olives in the greenhouse showed similar symptoms as the branch

samples collected from the field survey. Brown streaking in cross-section was detected (Figure 3), and when the outer layer of bark from branches was scraped away, brown discoloration extended around the affected tissue. The pathogen had been consistently reisolated from affected pieces of wood, while the controls remained healthy. To fulfill Koch's postulate, one isolate, chosen as a representative, was carried out for molecular identification, as previously described, using an ITS5/ITS4 [7] pair of primers. Purification and sequencing of the PCR products were done by Macrogen Europe (Amsterdam, Netherlands). BLAST analysis of the ITS5 and ITS4 sequences showed 100% similarity with *P. iranianum* (reference number MG745842).

Figure 3. (a-d) Disease symptoms on branches used in pathogenicity tests from March to July 2022.

4. Discussion

There are several species from the *Phaeoacremonium* genus associated with olive diseases worldwide: *Phaeoacremonium africanum* [8,9], *P. alvesii* [10], *P. italicum* [10-12], *P. minimum* [8-14], *P. oleae* [8,9], *P. parasiticum* [8-11,15], *P. prunicola* [8,9], *P. scolytii* [8-12], *P. spadicum* [8,9], and *P. sicilianum* [10,11]. *P. iranianum* is a species from the family *Togniniaceae*, named after the country, Iran, from which the majority of strains were collected [6]. It was previously described as a plant pathogen on several species of woody plants, including almond trees [16,17], citrus trees [18], cypress trees [19], forest trees [20], grapevine [20-27], pome fruit (apple, quince, hawthorn, pear) [28], and prunus trees [29]. It's mostly associated with Petri and Esca diseases, one of the most destructive declining diseases of grapevine [22]. As the observed infected olive trees were grown on the ground where grapevines were previously grown, and since olive and grapevine share common pathogens such as phytopathogenic fungi from the *Botryosphaeriaceae* family, there is a high risk of transmission of *P. iranianum* between grapevines and olives [26]. Aerial spores can be dispersed between vineyards that were near each other and those established in close proximity to fruit orchards, ornamental trees, or numerous other woody hosts [26]. This poses a danger to olive trees, especially in the Mediterranean part of Croatia, where vines and olives are often grown together. To the best of our knowledge, this is the first report of *Phaeoacremonium iranianum* causing olive twig and branch dieback on olive trees.


Supplementary materials:

ITS4 and ITS5 sequences from Koch's postulate.

 PIKOCHB_ITS_ITS4.t
 PIKOCHB_ITS_ITS5.t
 xt xt

Table S1. PCR amplification program set according to Alves et al. (2006) [30].

Hot Start 95 °C	Denaturation 94 °C	Annealing 55 °C	Elongation 72 °C	Elongation 72 °C
Start Cy- cle				End Cycle
5 minutes	30 times	30 seconds	45 seconds	1 minute and 30 sec- onds
				10 minutes

Figure S4. Phylogenetic tree based on internal transcribed spacer (ITS) sequences alignment generated from neighbor-joining tree.

Author Contributions: Conceptualization, E.P. and S.G.; methodology, E.P and S.G.; investigation, E.P. and S.G., writing—original draft preparation, E.P.; writing—review and editing, S.G., K.V., J.Ć., G.K.Š. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Croatian Science Foundation Installation Research Project "Natural bioactive compounds as a source of potential antimicrobial agents in the control of bacterial and other fungal pathogens of olives", Anti-Mikrobi-OL (AMO), UIP-2020-02-7413.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All sequences data for isolate R18 B4 are available in NCBI GenBank following the accession numbers in the manuscript. Sequences data from Koch's postulate, PCR amplification program, and phylogenetic tree are available in Supplementary materials.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Croatian Bureau of Statistics. Available online: <https://podaci.dzs.hr/2021/hr/10118> (accessed on 25 10 2022).
2. Phillips, A. J. L.; Rumbos, I. C.; Alves, A.; Correia, A. Morphology and phylogeny of *Botryosphaeria dothidea* causing fruit rot of olives. *Mycopathologia* **2005**, *159*, 433-439.
3. White, T. J.; Bruns, T.D.; Lee, S.B.; Taylor, J.W. 38 - Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. In *PCR - Protocols and Applications – A Laboratory Manual*; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Academic Press, Inc., 1990; pp. 315-322.
4. Glass, N.L.; Donaldson, G.C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. *Applied and Environmental Microbiology* **1995**, *61*, 1323-1330.
5. Carbone, I.; Kohn, L.M. A Method for Designing Primer Sets for Speciation Studies in Filamentous Ascomycetes. *Mycologia* **1995**, *91*, 553-556.
6. Mostert, L.; Groenewald, J.Z.; Summerbell, R.C.; Gams, W.; Crous, P.W. Taxonomy and Pathology of Togninia (*Diaporthales*) and its *Phaeoacremonium* Anamorphs. *Studies in Mycology* **2006**, *54*, 1-115.
7. European and Mediterranean Plant Protection Organization (EPPO). PM 7/129 (1) DNA barcoding as an identification tool for a number of regulated pests. *Bulletin OEPP/EPPO Bulletin* **2016**, *46*, 501-537.
8. van Dyk, M.; Spies, C.F.J.; Mostert L.; van der Rijst, M.; du Plessis, I.L.; Moyo, P.; van Jaarsveld, W.J.; Halleen, F. Pathogenicity Testing of Fungal Isolates Associated with Olive Trunk Diseases in South Africa. *Plant Disease* **2022**, *105*, 4060-4073.
9. Spies, C.F.J.; Mostert, L.; Carlucci, A.; Moyo, P.; van Jaarsveld, W.J.; du Plessis, I.L.; van Dyk, M.; Halleen, F. Dieback and decline pathogens of olive trees in South Africa. *Persoonia* **2020**, *45*, 195-220.
10. Carlucci, A.; Lops, F.; Cibelli, F.; Raimondo, M.L. *Phaeoacremonium* species associated with olive wilt and decline in southern Italy. *European Journal of Plant Pathology* **2015**, *141*, 717-729.
11. Raimondo, M.L.; Lops, F.; Carlucci, A. First Report of *Phaeoacremonium oleae* and *P. viticola* Associated with Olive Trunk Diseases in Italy. *Plant Disease* **2022**, *106*, 331.
12. Agusti-Brisach, C.; Jimenez-Urbano, J.P.; Raya, M.D.; Lopez-Moral, A.; Trapero, A. Vascular Fungi Associated with Branch Dieback of Olive in Super-High-Density Systems in Southern Spain. *Plant Disease* **2021**, *106*, 797-818.
13. Carlucci, A.; Raimondo, M.L.; Cibelli, F.; Phillips, A.J.L.; Lops, F. *Pleurostomophora richardsiae*, *Neofusicoccum parvum*, and *Phaeoacremonium aleophilum* associated with a decline of olives in southern Italy. *Phytopathologia mediterranea* **2013**, *52*, 517-527.
14. Urbez-Torres, J. R.; Peduto, F.; Vossen, P.M.; Krueger, W.H.; Gubler, W.D. Olive Twig and Branch Dieback: Etiology, Incidence, and Distribution in California. *Plant Disease* **2013**, *97*, 231-244.
15. van Dyk, M.; Spies, C.F.J.; Mostert, L.; Halleen, F. Survey of Trunk Pathogens in South African Olive Nurseries. *Plant Disease* **2021**, *105*, 1630-1639.
16. Gramaje D.; Agustí-Brisach C.; Pérez-Sierra A.; Moralejo, E.; Olmo, D.; Mostert, L.; Damm, U.; Armengol, J. Fungal trunk pathogens associated with wood decay of almond trees on Mallorca (Spain). *Persoonia* **2012**, *28*, 1-13.
17. Olmo, D.; Armengol, J.; Leon, M.; Gramaje, D. Pathogenicity testing of lesser-known fungal trunk pathogens associated with wood decay of almond trees. *Europaen Journal of Plant Pathology* **2015**, *143*, 607-611.
18. Espargham, N.; Mohammadi, H.; Gramaje, D. A Survey of Trunk Disease Pathogens within Citrus Trees in Iran. *Plant-Basel* **2020**, *9*, 754.
19. Mohamadi, H.; Kazemi, S.; Farahmand, H. *Phaeoacremonium* and *Botryosphaeriaceae* species associated with cypress (*Cupressus sempervirens* L.) decline in Kerman province (Iran). *Phytopathologia Mediterranea* **2014**, *53*, 27-39.
20. Kazemzadeh Chakusary, M.; Mohammadi, H.; Khodaparast, S.A. Decline-associated *Phaeoacremonium* species occurring on forest trees in the north of Iran. *Forest Pathology* **2017**, *47*, e12368.
21. Gramaje, D.; Armengol, J.; Colino, M.I.; Santiago, R.; Moralejo, E.; Olmo, D.; Luque, J.; Mostert, L. First Report of *Phaeoacremonium inflatipes*, *P. iranianum*, and *P. sicilianum* Causing Petri Disease of Grapevine in Spain. *Plant Disease* **2009**, *93*, 964-965.

22. White, C.L.; Halleen, F.; Fischer, M.; Mostert, L. Characterisation of the fungi associated with esca diseased grapevines in South Africa. *Phytopathologia mediterranea* **2011**, *50*, S204-S223.

23. Urbez-Torres, J.R.; Haag, P.; Bowen, P.; O'Gorman, D. T. Grapevine Trunk Diseases in British Columbia: Incidence and Characterization of the Fungal Pathogens Associated with Esca and Petri Diseases of Grapevine. *Plant Disease* **2014**, *98*, 469-482.

24. Baloyi, M.A.; Mostert, L.; Halleen, F. Pathogenicity of ten *Phaeoacremonium* species associated with esca and Petri disease of grapevine. *Phytopathologia Mediterranea* **2018**, *57*, 538-546.

25. Agusti-Brisach, C.; Lopez-Moral, A.; Raya-Ortega, M.C.; Franco, R.; Roca-Castillo, L.F.; Trapero, A. Occurrence of grapevine trunk diseases affecting the native cultivar Pedro Ximenez in southern Spain. *European Journal of Plant Pathology* **2019**, *153*, 599-625.

26. Halleen, F.; Baloyi, M.A.; Bester, M.C.; Mostert, L. Aerial inoculum patterns of Petri disease pathogens in South African vineyards and rootstock mother blocks. *Phytopathologia Mediterranea* **2020**, *59*, 515-536.

27. Aigoun-Mouhous W.; Mahamedi A.E.; León M.; Chaouia C.; Zitouni A.; Barankova K.; Eichmeier A.; Armengol J.; Gramaje D.; Berraf-Tebbal A. *Cadophora sabaouae* sp. nov. and *Phaeoacremonium* Species Associated with Petri Disease on Grapevine Propagation Material and Young Grapevines in Algeria. *Plant Disease* **2021**, *105*, 3657-3668.

28. Sami, S.; Mohammadi, H.; Heydarnejad, J. *Phaeoacremonium* species associated with necrotic wood of pome fruit trees in Iran. *Journal of Plant Pathology* **2014**, *96*, 487-495.

29. Damm, U.; Mostert, L.; Crous, P.W.; Fourie, P.H. Novel *Phaeoacremonium* species associated with necrotic wood of *Prunus* trees. *Persoonia* **2008**, *20*, 87-102.

30. Alves, A.; Correia, A.; Phillips, A.J.L. Multi-gene genealogies and morphological data support *Diplodia cupressi* sp. nov., previously recognized as *D. pinea* f. sp. *cupressi*, as a distinct species. *Fungal Diversity* **2006**, *23*, 1-15.