Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 December 2022 d0i:10.20944/preprints202212.0093.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

A novel phase-field based formulation of interface evolution during

mechanical compaction of sedimentary basins

Kunal Bhagat ! Zirou Jin ? Shiva Rudraraju >

Abstract

A novel phase-field method based numerical approach to modeling the compaction process of sedi-
ments is presented. Water-logged rock or soil sediments are deposited on the water basins over time
and the increasing volume of the sediment compacts under its own weight and external pressure.
Coupled evolution of mass conservation, Darcy flow, and the viscoelastic constitutive response, in
conjunction with the evolution of porosity and permeability, make this problem highly non-linear
and involve moving boundaries. We adopt a phase-field approach to represent the moving sediment
interface, and the underlying multiphasic model permits for studying compaction in dynamically
evolving sediments. This approach does not necessitate a change of domain sizes as is the case of
existing traditional models of sedimentation but rather treats sedimentation growth as a problem of
interface motion. We first model a classical compaction problem in 1D to compare with existing
results in the literature, and then extend the framework to 2D to model the compaction process
taking place under the influence of gravity. The model is then extensively applied to understand the
effect of the sediment initial state and the sediment material properties on the compaction process
and its spatiotemporal evolution. Lastly, a strong validation of our phase-field treatment results
against predictions from traditional methods of solving open boundary sediment compaction prob-
lems, and a good agreement between the conventional understanding and the numerical predictions
of porosity dependence on the fluid pore pressure for various cases of geological interest, are used to
demonstrate the applicability and scalability of this novel numerical framework to model more

advanced sediment compaction problems and geometries.
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1 Introduction

The consolidation of sediments like rock, sand, clay, or shales is an important natural process that
takes place at a geological time scale [I]. Sediments slowly deposit through erosion and trans-
port processes aided by wind, flowing water and ice. The consolidation and compaction of these
materials are caused by the increasing pressure exerted by the weight of the overlying deposits.
Further, mechanical compaction results in partial expulsion of fluid from the pores in these sed-
imentary materials. As a result, high pore pressure is experienced by the trapped fluid in the
pores if the fluid is constrained from draining out. The knowledge of the sediment compaction and
abnormal pore pressure existing in rocks is significant for success of drilling in the oil exploration
industry [2]. Damaged rocks around major fault zones also undergo cycles of damage creation
and healing/compaction [3], where the associated pore pressure changes can have significant con-
sequences on the stability of the seismogenic faults. In a grander context, understanding sediment
compaction is also relevant to climate change studies as any major subsidence in coastal areas can
potentially compound the risks associated with rising sea levels [4].

An academic inquiry into the behavior of soils and the sediments under loading can be traced
back to the work on soil subsidence under the effect of positive effective stress by Terzaghi [5].
Poroelasticity model for rocks and modification to the concept of effective pressure was introduced
in the work of Biot [6]. The work of Gibson [7] on the clay consolidation was instrumental in this
field. The author dealt with the one-dimensional consolidation of the clay layer using linear integral
equations. Further investigation into the process of creation of abnormally high pore pressure in the
sediments was done by Bredehoeft et al. [§] using linear integral equation solutions. A breakthrough
numerical model studying the shale compaction and high pore fluid pressure was formulated by
Smith [9]. Their model accounted for permeability-porosity dependence, Darcy law, and variable
pore fluid viscosity.

The growing consensus in the community was that abnormally high pore fluid pressure was a
result of not only the mechanical compaction, but several physical and chemical processes were
also at play. An asymptotic and numerical analysis of compaction in the sedimentary basin was
carried out by Audet et al. [10]. In their work, they formulated a generalized model, building on the
work of previous authors by outlining rheological, thermal, and diagenetic aspects of the sediment
compaction process. The limits of the non-linear behavior of porosity and effective pressure at
greater depth and consideration of pressure solution were highlighted in the work of Fowler et
al. [11]. Mechanical and mechano-chemical compaction of the sedimentary basin was studied by
Schneider et al. [I2] to show porosity dependence on time and temperature. They numerically
solved the model considering the elastoplastic model, temperature-dependent sediment viscosity,
and porosity effective stress rheology relationships. On a similar ground, the analytical work by
Yang [13] is relevant. A Maxwell type viscoelastic constitutive model of the sediment, coupled with

a non-linear relation between the effective pressure and porosity were the key features adopted in
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the subsequent numerical works.

The focus of most literature in this field is on formulating more rigorous constitutive models.
The complexity of these models then limits the possibility of closed-form solutions and hence
numerical methods are desired. This was studied rigorously in the work of Bethke et al. [14]
and it was shown that analytical solution exist for the linear problem and a numerical solution
is sought when the governing equations are non-linear when representing more realistic geological
conditions. The characteristic sediment compaction process is an open boundary problem due to
the involvement of sediment deposition. The finite difference method and the finite element method
are the most common numerical techniques used to solve the governing equations of the compaction
problem. The consolidation of soil using the theory presented by Biot [0] is studied using a finite
layer method by Mei et al. [15]. Their model can be successfully applied to estimate immediate and
final soil settlement as well as consolidation settlement of cross-anisotropic soil. Nogami et al. [16]
developed a meshfree numerical method for studying consolidation of lumpy clay. A finite difference
method based numerical model by Keith et al. [I7] is an important model that was used to study
overpressuring in shales, along with a moving boundary representation. Suetnova and Vasseuret
al. [18] uses the finite difference method to solve the open boundary problem, but the treatment of
the growing sediment height follows conventional methods of changing the computational domain.
Morency et al. [19] developed a 2D numerical model for studying compaction using viscoplastic
deformation in the context of disequilibrium compaction and delta stability. They use the finite
element method and present a comparison of their results with published results on 1D compaction.
Their treatment of the moving boundary was the same as in Suetnova and Vasseur[I8]. Mechanical
compaction is considered using a finite poro-plasticity model and solved using the finite element
method by Bernaudet al. [20]. They developed a numerical model where activation-deactivation of
a region is enforced, thereby turning an open system into a closed one. In the work of Maghous et
al. [21], a relatively better version of activation-deactivation is applied to model sedimentary basin
growth by modifying the solid and fluid density within the mesh elements. Wangen et al. [22] made
use of toggle switch cellular automation method to model fluid expulsion along with local micro-
fracturing and redistribution of pore fluid. In this context, the numerical model we propose in
this work is more sophisticated and accurate, as we get rid of explicit bookkeeping of the boundary
location and no explicit activation/deactivation of any region or modifications of material properties
in the mesh elements is needed. Further, our model does not require an initial small sediment height
to begin computations as opposed to many of the conventional methods described above.

In this work, we present a novel numerical approach to solve the compaction process active in
sediments. We adopt a phase-field approach to represent the moving sediment interface, and the
underlying multiphasic model permits for studying compaction in dynamically evolving sediments.
This approach does not necessitate a change of domain sizes as is the case of existing traditional

models of sedimentation but rather treats sedimentation growth as a problem of interface motion.
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We first model a classical compaction problem in 1D to compare with existing results in the litera-
ture, and then extend the framework to 2D to model the compaction process taking place under the
influence of gravity. The model is then extensively applied to understand the effect of the sediment
initial state and the sediment material properties on the compaction process and its spatiotemporal
evolution.

The manuscript is organized as follows: In Section [2| we present the mathematical basis of
sediment compaction, followed by a presentation of the governing equations under the classical
formulation of sedimentary compaction in Section 3] We then propose a novel phase-field based
numerical treatment of the sedimentary compaction process in Section [dl This is followed by the
validation studies and extensive applications of the phase-field model to understand the effect of the
sediment initial state and the sediment material properties on the compaction process in Section [5}

Finally the concluding remarks are presented in Section [6]

2 Mathematical basis of sediment compaction

In this section, we first briefly describe the physical process of sediment compaction. We then
present the classical governing equations for a purely mechanical compaction process in sediments.
As one can observe, these classical treatments involve explicit movement of the sediment interface
by changing the computational domain with time. To remove this significant drawback of evolving
the computational domain, we adopt a diffuse interface treatment of the interface, and present a

novel phase-field formulation of the sediment compaction problem and its numerical framework.

2.1 Problem description

The sediment compaction process, in general, is thermodynamically an open system due to the
(1) rising height of the sediment, (2) subsidence of the compacted sediment base, and 3) exchange
of mass across the boundaries. In the given control volume, we treat a sediment column as a
porous matrix structure. The solid part of the matrix is assumed to be made of dry sediment
material, and the pores are assumed to be filled with any type of fluid with dissolved mineral
and salts, not necessarily pure water. The sediment column height can rise due to the deposition
of the waterlogged sediments on the existing porous structure. The base of this slowly growing
column can sink due to the subsidence prevalent in the underlying geological structure. The solid
and fluid matter occupying the porous region are subjected to compressive loading exerted by
the weight of the overlying material. This porous system of sediments then undergoes significant
volumetric compaction, consolidation, and cementation, which are considered to be significant
changes to the underlying material structure of the sediment. In this section, we limit our inquiry
to purely mechanical deformation. Although the solid and fluid matter within the pores is treated

as incompressible, the pores themselves can undergo considerable shrinking and hence their can be
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a reduction in the volume of the sediment. In modeling this problem, these changes need to be
understood in the presence of spatial and temporal variations of porosity, pore fluid pressure, and
the velocity of the fluid.

2.2 Governing equations for the mechanical compaction process

In this section, we present a model considering the purely mechanical compaction process of sedi-
ments. Temperature dependence and the chemical changes are neglected in this work. The model
accounts for the three physical processes of (1) mass conversation of the solid and the fluid, (2)
Darcy’s law for fluid flow and its dependence on the permeability and pressure drop in the porous
region, and (3) a viscoelastic Maxwell rheology law as the constitutive model for the underlying

deformation.

In the mathematical expressions presented in this manuscript, bold faced symbols and operators

denote vector or tensorial quantities and operators, respectively.

2.2.1 Mass conservation

Assuming the sediment material to be a porous system, the pores are occupied by a fluid. The solid
region can consist of clay, rocks, shales, etc. Assuming no loss of either the fluid or the solid mass,
conservation of mass is described by the Equations Here ¢ denotes the porosity, py and ps
are the fluid and the solid density, respectively, and V; and V; are the fluid and the solid velocity,

respectively, and ¢ denotes time,

P00 9 - (G0rV) =0 1)
o(1 5:’)95 +V (1= ¢)psVa) =0 (2)

2.2.2 Darcy’s law

The velocity of the fluid in the porous medium is governed by the pressure differential across the
medium. The solid region is not stationery, so we consider fluid velocity with respect to the solid

velocity. Now, using the classical Darcy’s equation, we express the fluid velocity as follows:

k
Vi—Vs=———(VPr+pg 3
7 ¢>uf( 't + pg) (3)
where,
k
qd:¢(vf_‘/s) Pex:(Pf_Ph) qd:_;f(vpex)
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Here, q, is the seepage velocity, P, P, and Py are the excess fluid pressure, hydrostatic pressure

m

and the pore fluid pressure, respectively. k = ko(%) is the permeability dependent on the
porosity, and g is the gravitational acceleration. A detailed description of the domain specific

notions of excess fluid pressure and pore fluid pressure can be found in the literature on sedimentary

basins [11}, 13}, 23].

2.2.3 Constitutive model for mechanical deformation

Following the works of [13| [I8 19], we choose the Maxwell viscoelastic rheology as the relevant
constitutive model for this compaction problem. The porous structure of the sediment undergoes
deformation which is accounted for in the volumetric strain, and the total volumetric strain is a
sum of the volumetric strains generated from the elastic response and the viscous response. The
total pressure felt by the porous structure is balanced by the pressure in the solid matrix and the
fluid pressure in the pores. Thus we have, as the total pressure, P, = P, + Py, where P, is the
effective pressure that results in the deformation of the sediment [24]. The porosity of the system is
given by ¢ = g—;, where 0y and Qr are the pore fluid volume and the total bulk volume. Assuming
the solid medium is incompressible and the volume change is reflected in the decrease of the pore
volume, we have Q0 = Qf + Q, and dQ7 = dQ;. With this background, we now present a brief

derivation of the relevant viscoelastic constitutive law.

dQdy dQp  dQy dQp dQr
=, oz T Or or ~U 9%,
but considering bulk compressibility, 8, = —Ql—T(%%F), we have
d¢ = —(1— ¢)BpOFe
do dP,
= —=—(1-
7 (1—0)B o
Further, the bulk compressibility and pore compressibility are related as 3, = ¢3,, where pore
compressibility is given by 3, = —Qip (g—%). From this, we get:
1 d¢ dP,
A—oya - %Pra

Now the constitutive creep law describing the evolution of the volumetric strain rate caused by the

effective pressure can be be written as follows:

1 d¢ P
(1—9)dt 3
where £ = % is the viscosity of the porous structure, and 7 is the solid viscosity. As can be seen,

the volumetric strain rate is expressed here in terms of the change in porosity. Finally, combining
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the mechanical compaction of pores and the viscous creep, we get the following Maxwell model

formulation,
1 d¢ _
(1—¢)dt ‘WP dt ¢7 @

Equations are the governing equations for modeling mechanical compaction in any general

domain geometry. However, as we will see in the following section, analytical solutions are only
available for the one dimensional equivalent of this model. Thus, to validate our phase-field frame-
work for modeling mechanical compaction during sedimentation using classical analytical solutions,
we reduce the above governing equations into their one dimensional equivalent in Section This
reduction to a one dimensional domain is only for the purpose of validation, and later, removing
these restriction, we present results for 2D geometry. It is important to note that, one dimensional
models of mechanical compaction are the standard in the sedimentary compaction field, and they

have traditionally been relied on for gaining important insights into the compaction process.

3 Classical formulation of sedimentary compaction

Equations are the general governing equations for modeling the mechanical compaction process.
In these equations, ¢, Vi, Vi, P, Py and P; are the unknown variables. As stated in the problem
description in Section we have a moving boundary in this problem. The deposition of the
waterlogged sediments with a known deposition velocity, Vp, from the top. The base of the sediment
sinks with known subsidence velocity, V;. Using the incompressibility of the solid and the fluid
matter, their densities, ps and py, are assumed to be constant. Adding Equations |I| and EI, and
assuming that the fluid and solid matter are sinking with the same velocity at the bottom of the

sediment column, i.e. V; = V; = Vj (a constant), we have

OVi6 , IVi(l—9)

0y dy =0

:>Vf¢+‘/s(1—¢):‘/1

Vi—Vi(1-9)
¢

As can be seen from the schematic in Figure [1} the sediment height is assumed to be along the y-

:>Vf:

axis, so the velocity gradients are considered only along this sediment height direction. Considering
the typical sedimentation geometries that are numerically modeled, this widely valid assumption
of sedimentation primarily along the height direction results in a pseudo-one dimensional physical
interpretation of the model, although the governing equations and the numerical model are de-
veloped for a general 2D /3D geometry. Now, modifying Equation I by substituting for the fluid
velocity V; and eliminating the fluid pressure Py = P, — P, = —psg -y — P, we get

7
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_k
I

oP,
( oy + Apg)

+ (ps — pf)g) =

In the chosen Lagrangian frame of reference, we work with the material derivative (% = %—FVS'%).

This will result in the following modification to mass conservation, that was earlier represented by
Equation [2]

(1 - 9)
ot
0¢

= S Ve Vo (1-9)V -V, =0

+V-(1-9¢)Ve) =0

1 D¢
(1-¢) Dt

V.V ()

(VS — V1) is replaced with the relative velocity of solid in the Lagrangian frame of reference, V',
denoted as just V5 for convenience

_k 9P,

Vs = + Apg 6
G+ M) ©
With this, the Maxwell constitutive model, given earlier by Equation [4] now modifies to:
DP, 1 D
o8t =-2p - L D¢
Dt n (1-¢) Dt
DP, 10)
- _*Pe - Vs
W pp = PV V. (")

We now pose the above governing equations in a non-dimensional form. In the context of these
equations, the dimensionless form is helpful for the subsequent numerical modeling, due to the
otherwise large magnitudes of the geological length and time scales involved in a dimensional form.
Choosing the appropriate scaling parameters [I8], Table 2| lists the relevant dimensionless parame-
ters. Here, L, T', P, 3, and ¢q are the characteristic - length, time, pressure, pore compressibility,
and porosity, respectively. Using these dimensionless parameters, the non-dimensional governing

equations are given by:

D - -
Di_:(a—(ﬁ)V'V; (8)
40P,
%—¢(%+D (9)
HDPe__éN T
B = —5Pe-V-V, (10)
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where (5, V, and P, are the dimensionless porosity, relative solid velocity, and effective pressure,
respectively. For completeness, here we also specify the boundary conditions for this moving in-
terface problem. At the top moving interface, P. = 0, and ¢ = 1. The new frame of reference is

attached to the base of the sediment and hence solid velocity satisfies V; = 0 at the base.

Parameter Expression Description
L \/ M Characteristic length
P ApgL Characteristic pressure
T P%g Characteristic time
3 BPoy = % Characteristic pore compressibility
N n% Non-dimensional solid viscosity
Vo % Non-dimensional interface velocity
k ko( %)m Sediment permeability
t % Non-dimensional time
\v/ %V Non-dimensional gradient operator
U ¥ Non-dimensional depth
Q % Inverse of characteristic porosity
m 3.0 Power exponent in the characteristic length
d 1.0 Factor in the characteristic length

Table 1: Characteristics quantities, dimensionless parameters and constants relevant to the sedi-

ment compaction problem.

4 Phase-field formulation of sedimentary compaction

In this section, we describe a novel numerical formulation that solves the sediment compaction
problem involving a moving boundary. We adopt the phase-field modeling approach that is a diffuse
interface method for treating moving phase interfaces. Phase-field modeling has traditionally found
immense application in the modeling of materials science problems [25], 26] 27], but is now used for
numerical modeling in a wide spectrum of physical disciplines. Our phase-field representation of the
sedimentary domain and its moving boundary is inspired by phase-field models in the literature that
use a structural order parameter to represent moving phase boundaries in problems like evolution

of dendrites during solidification and evolution of cracks during fracture [28],29]. The central merit
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of the phase-field approach lies in its ability to implicitly represent a boundary or interface using
an order parameter field, and thus circumventing the arduous task of explicitly tracking a moving
boundary. Using this approach, the moving sediment boundary in our case is represented with a
diffuse boundary (with a very small interface thickness compared to the height of the sediment

domain), and now its movement is dictated by the movement of a structural order parameter field,

6.

4.1 Order parameter based representation of the sedimentary domain

In our proposed treatment, we first convert an open system with an evolving boundary into a closed
system. The closed system dimensions are set by the maximum sedimentary domain height that can
potentially be achieved during the time duration of sedimentation considered in a particular Initial
Boundary Value Problem. The porous sediment region and the top boundary is then remodelled
as a porous region, diffuse interface region, and a fictitious region that represents the empty space
for accommodating potential growth of the sediment height, as depicted in Figure The three
regions are distinguished using an order parameter . For a known sediment deposition velocity
Vp, at an instant of time ¢ = ¢, we know the location of the moving interface to be at a height
of Vot from the base. The order parameter, 0, is defined such that it takes a value of 1.0 in the
sediment region and a value of 0.0 in the fictitious region. The interface between the two regions is
then determined by a 6 value of 0.5. Figure [1| shows this spatial variation of the order parameter
in relation to the compaction of the sediment.

A unique aspect of the phase field representation of the sedimentary domain proposed in this
work is that the order parameter, 0, is explicitly defined as a function of time and sediment growth
velocity, and is not solved using a separate first-order-in-time parabolic partial differential equation,
as is commonly the case with the widely used Allen-Cahn or Cahn-Hilliard formulations [25], 26].
However, we do consider an interface parameter, A, which controls the non-dimensional interface
thickness of the phase field diffuse interface. As defined, a larger value of A implies smaller interface
thickness and thus a sharp transition of # from 0.0 to 1.0. The definition of the order parameter

we propose is as follows,

9:1(1+

et —e "
) )

et +e M

(11)

where n = A(Vpt —7)

here, Vj is the magnitude of the sediment deposition velocity, so the product Vjyt gives the current
sediment height at any time instance, . Now, we non-dimensionalize the governing equations in
Equations[8] [0} and[I0]to arrive at the following governing equations that incorporate the phase-field

order parameter, 6:

10
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D -
oF = O(a — )V - V, (12)
.y 0P
V, = ¢(6g+1> (13)
MD]Se_ QZ~_ S
d)B Dl:{ __OﬁPe HV ‘/s (14)

Lastly, the general boundary conditions considered in this model are as follows: at the bottom
end of the sediment region we specify V, = 0, and at the top of the fictitious domain, P, = 0,
¢ = 1. The initial conditions of the primal fields are taken to be ¢(%,0) = 1.0, P.(¢,0) = 0.0 and

Vis(9,0) = 0 everywhere in the numerical domain.

Order parameter

variation along .
Moving boundar
the height | ! 9 v

| of the sediment |

At an intermediate state At the final state

of the sedimentation of the sedimentation
=00 1=—===——--- -

[ !

1 Fictitious |

: domain :

| |

| |

| ! /N

| |

| |

| |

Increasing porosity with height

o

0=1.0 Porous sediment

Figure 1: Schematic showing order parameter distinguishing the sediment region, the moving inter-
face and the fictitious region at an intermediate time instance of the sediment deposition process.
The red solid line is the moving interface that denotes the current height of the sediment. The
zone bounded by the dashed line represents the fictitious region that is above the current moving
interface. The right figure is a schematic representation of the porosity variation along the depth

due to compaction, with the higher density of hatch-lines representing lower porosity.

In the fictitious domain, since 6 is set to zero by construction, there is no change in the initial

values of the porosity and the effective pressure, as g‘? = 0 and BB—% = 0. As a result of this, d;
and P. do not evolve in the fictitious region. Thus, the boundary conditions at the interface are

trivially satisfied.

11
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4.2 Weak formulation of the phase-field treatment

We now pose the above governing equations in their weak form. This formulation is used to solve

these equations within a standard finite element framework. Find the primal fields {é, f/;,pe},

where,
beds S={b|d= & VXel,
Vie Sy, Sy = Vil Vo= V¥ X TV},
P.e Sy, S5 ={P.|P.= PL¥XeTh)
such that,
Vuwg e, ”//q;:{www(;:OVXEF‘z’},
Vwy €7y, 7/‘75:{10‘78]10‘75:0VX6I‘VS},
Vwp €7p, ”//pe:{wpe\wl_:,e:OVXEI‘Pe}
we have,
/Qw(g(g?_a(a—&)vxz>dvzo (15)
/Qw%.(zju&S(%%Jrl)) dV =0 (16)
/Q p€<¢5l§e+9iﬁe+w V> dV =0 (17)

The order parameter, 6, is explicitly determined at each point using Equation

4.3 Computational implementation

The phase-field formulation presented above is numerically solved using the Finite Element Method
(FEM). The computational implementation is in an in-house, C++ programing language based,
parallel code framework for finite element modeling. Standard FEM constructs are adopted, and
for all the simulations presented in this work, either a Linear or Quadratic Lagrange basis is used.

The time-stepping is based on the implicit backward Euler scheme.

12
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This framework is build on top of the deal.Il open source finite element library [30]. Following
the standard practise in our group to release all research codes as open source [31), 32 33, [34], 35],
the complete code base for this work is made available to the wider research community as an

open-source library [36].

5 Numerical results

In this section, we present the numerical studies done using the phase-field model represented by
the Equations This section is divided into three subsections. In Subsection [5.1] we present
the comparison of our phase-field model of sediment compaction with the published results obtained
from conventional numerical models with moving boundaries. Then, we present a comparison of
the phase field model results with a reduced order problem that models compaction, but with a
fixed sediment height, as this problem has an analytical solution. In Subsection [5.2] we present a
sediment compaction problem in a two-dimensional geometry. Finally, in Subsections and
we extensively demonstrate the application of our numerical method to model realistic geological
conditions, especially the impact of the material state and the impact of material properties on the

sediment compaction.

5.1 Validation studies of sediment compaction in 1D

For the phase-field model of sediment compaction to be used for studying geologically relevant open
boundary compaction problems, it needs to be validated against known analytical and numerical
results from the literature. For this purpose, we chose two types of sediment compaction problems
that are classical, and have varying complexity. The first problem is the moving boundary sediment
compaction model we developed rigorously in Section [3] For this problem, we use the phase-field
model of sediment compaction in a one-dimensional setting and compare it with results in the
literature obtained using conventional numerical methods with an evolving domain. This is covered
in Subsection [5.1.1] We then remove the complexity of the moving boundary and viscous behavior
of sediment compaction. This simplified representation is the classical poroelastic soil compaction
model which was originally presented by Terzaghi [37]. We solve this model of sediment compaction
of fixed height using our phase-field framework and present the comparison with the known 1D

analytical solution in Subsection [5.1.2

5.1.1 1D poro-viscoelastic compaction with varying sediment height

The physical phenomenon evident in sediment compaction is the expulsion of fluid from the pores.
This expulsion is driven by the action of the effective pressure on the porous sediment. Further,
we observe the sediment deformation due to changes in the pore volume, porosity, or void ratio.

The open boundary nature of this compaction problem is due to the continuous deposition of the
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sediment from the top and this increases the overburden pressure. Denoting this model as the
higher-order representation, it is pictorially represented in the first half of Figure |3l We compared
the phase-field model of the sediment compaction problem with the results published in the litera-
ture. The phase-field representation of this model is depicted in Figure[]] We particularly chose the
popular moving boundary sediment compaction studies presented by Suetnova and Vasseur [I§].
To the best of our knowledge, published results in this study are obtained by changing the com-
putational domain as the height of the sediment grows. We refer to this method of solving the
compaction problem with the varying height as the conventional model. Figure [2] shows results
obtained from our phase-field model and the corresponding results from the literature for the con-
ventional model. Figures [2al and [2b| shows the normalized height g/ H on the y-axis plotted with
the non-dimensional porosity ¢~> and the pore fluid pressure 13f on the x-axis respectively. Each solid
curve represents time instants at which §/H vs o (or ]5f) was obtained. As seen in the Figures
and the variation of ¢ and Pf with gy’ follows the pattern closely with the reported values
from the literature [1§].

1 | | | ] e | | 1| = Vasseur et al

I 2] I | [— 1D Phase-field
0.8} 1 08
_ 06] | osf
SN i S I
0.4} 1 : 0.4}
0.2 ¥ 1 0.2}
O L L L L L L L L L L L L | O |

0 02 04 06 08 1
¢ Py
(a) Sediment porosity (b) Pore fluid pressure

Figure 2: Sediment Porosity (¢~) = %) and the pore fluid pressure (]3f = Pyojid — ]56) with
! = ‘;3":) at time instant £ = 1.14, 1.82, 2.57, 3.25, 3.94, 4.68, and 5.4.
Non-dimensional phase-field model parameters : mesh points 1000, time step At = 1.0 x 1073, final
height H = 0.93, a = 0.1 , 3 ="7.14 x 1073, V;, = 0.16, 77 = 1 and quadratic FE basis.

the distance from the base (y

5.1.2 1D poroelastic compaction with fixed sediment height

In the previous subsection, we briefly described the sediment compaction due to the overburden
pressure exerted by the deposited sediment resulting in the varying height of the sediment. We
then solved this problem in a one-dimensional setting using our phase-field model and obtained an

excellent comparison with the results presented in the published literature.
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In the reduced order representation of the sediment compaction (or soil consolidation), the
sediment column is unchanged as there is no deposition of the sediment. The overburden pressure
in the higher-order model is replaced with the application of the surcharge pressure at the top of the
sediment. This surcharge pressure is the excess pressure in the fluid above its hydrostatic pressure.
Further, the compaction of the sediment is modeled using a purely poroelastic constitutive law as
opposed to poro-viscoelastic law in the higher-order model. The increase in the pressure on the
porous sediment after the application of the surcharge pressure is entirely borne by the fluid in
the pores at the start. With time, the sudden increase in the excess fluid pressure starts diffusing.
The governing equation of the excess pressure diffusion is similar to parabolic partial differential
equations of unsteady heat diffusion which are extensively studied. As a result analytical solutions
for the excess fluid pressure diffusion are well known and various types of sediment compaction
cases were covered by Terzaghi [37]. The continuous diffusion of the excess fluid pressure results
in the continuous rise in the effective pressure of the sediment. The rise of the effective pressure
causes sediment compaction. Since the solid and fluid are incompressible in porous sediment, the
compaction is manifested in the purging or escape of the fluid from the loose sediments. The extent
of compaction is also related to the permeability of the sediment. The reduced order is pictorially
represented in the second half of Figure

In the reduced order model, the sediment is confined to a column whose width is irrelevant in
the one-dimensional setting. Along the width, the variation of the field variables is neglected. The
height of the sediment column is taken as constant and denoted by H. At time t=0, a surcharge
pressure Py is applied on the top surface. The system is then allowed to settle under the application
of the surcharge pressure. This settlement process involves a change in the volume of the sediment,
expulsion of the fluid from the voids, and the consolidation of the loose sediment. We allow the
temporal variation of the porosity. Sediment permeability and material properties of the solid and
fluid are taken as constant. The bottom surface is impervious and does not allow fluid from the
pores to escape. At the top surface, effective pressure is taken to be zero and fluid can drain
from this surface. This reduced order model of sediment compaction is modeled in our phase-
field framework, but with a non-evolving order parameter distribution to mimic the fixed sediment
height, and compared with the analytical solution given by Terzaghi [37]. The solution from the
finite element (FE) model is in excellent agreement with the known analytical solution from the

literature, as can be seen in Figure [4]

5.2 Phase-field model of compaction on a 2D geometry

In this section, we demonstrate the capability of the model to simulate sedimentation and com-
paction in a 2D geometry. The nature of sediment compaction we are dealing with in this paper is
along the direction of gravity. Thus, the solid or fluid velocity, sediment porosity, and pore pressure

variation can be seen only along the direction of gravity. Figure [5]shows two-dimensional sediment
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Figure 3: Schematic showing the higher order model and the reduced order model of sediment

compaction.

column and the porosity ¢ and order parameter  with the column height. The order parame-
ter contours clearly distinguish the porous sediment (in red), interface region (in green), and the
fictitious region (in blue). With time, the interface moves along the Z direction, representing the
deposition of the sediment. The porosity, &, is overlaid as a black solid line. There is no variation
of porosity perpendicular to the Z direction. Porosity takes a value of one in the fictitious region,
and varies non-linearly in the bulk sediment region. It is nearly constant in the interface region

and decreases as we move along the depth in the sediment region.

5.3 Investigation of the effect of the material state on the compaction process

The phase-field model of compaction was successfully validated with the published results obtained
using the conventional models of compaction in Subsection [5.1.1] The scalability of the phase-field
model of compaction to 2D (and, if needed, to 3D) was shown in Subsection In this subsection,
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Figure 4: One dimensional sediment compaction problem with excess hydrostatic pressure a
0.05,0.1,0.15,0.25,0.5,0.6,0.7,0.8,0.9 using analytical solution from [37] and FE model for
& =1.0, H=10, Py=1.0, At =0.01 , Az = 0.01, and linear FE basis.

tt=
T:

we demonstrate the applicability of the model by simulating the different compaction scenarios,
interpret the results, and make connections to the classical understanding of the compaction process,
where needed. This subsection specifically deals with understanding the effect of change in the
material state and how it impacts the sediment porosity and the pore fluid pressure. The material
state can be referred to as the deposition rate of the water-logged sediment or the characteristic
porosity of the sediment material. In our model, the material state is associated with the interface

moving velocity Vj or the initial porosity of the system o = %

Parameter Value Unit
Final height H 4 % 103 m
Fluid viscosity u 2.6 x 1074 Pa-s
Solid viscosity 0 5.0 x 10?2 Pa-s

Solid density ps 2.65 x 103 %

.. . 3 k
Liquid density p; 1.0 x 10 -

Permeability ko 1.0 x 10716 m?
Compressibility 5 1.0 x 107 ﬁ
Deposition rate Vi 1.0 x 10711 =
Characteristic ¢9 1.0 x 107! Constant
Characteristic ng 5.0 x 10%° Pa-s

Power exponent m 3.0 x 10°  Constant
Numerical factor d 1.0 x 10°  Constant

Table 2: Material properties and characteristics parameters of the water-logged sediments [I§]
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Figure 5: Contours representing the porous region (in red), the diffuse interface (in green), and
the fictitious region (in blue). Gravity acts along the Z-axis from right to left. Solid black line
represents normalized porosity, </~>, variation along the Z-axis. From bottom to top, the simulation
time is ¢ = 0.2,0.7,1.2 and 1.7. Uniform mesh with Az = 0.016, and time step At = 1073,
Non-dimensional domain of size 2.77 x 0.5, a = 2.5, B =227x1073, =1, and A = 10.0

5.3.1 Impact of the sediment deposition rate

For this study, we chose sediment properties given in Table To be specific, we simulated four
scenarios of the sediment compaction where we varied the water-logged sediment deposition rate
by changing the interface moving velocity Vp = 5.0 x 10712, 1.0 x 10~,5.0 x 107%,1.0 x 10710 =
In the course of sediment deposition, when the column height H = 4000 m is attained, we stopped
the simulation. It is useful to note that final height is achieved earlier when Vj is greater. Thus the
four scenarios shown in the Figure [6] refer to different time instant at which distribution of ¢ and
Py is reported. We showed the variation of absolute porosity (¢) and the pore fluid pressure (Py)
with the height from the base of the column in the Figures [6a] and [6b] The overburden pressure
due to the weight of the sediment and the hydrostatic fluid pressure is also shown in the Figure [6b]
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The Figure [6a] shows the variation of porosity at a height from the base for four cases of the 4.
The porosity at the top of the sediment column is always chosen to be ¢y = 0.1. This indicates
the volume of the sediment is not changed in the absence of deposited sediments. As we move
downwards in the direction of the base, the porosity reduces non-linearly for all cases of Vj. Since
the solid section of the sediment and the fluid are incompressible, the compaction of the sediment
is manifested as the drop in the porosity, ¢. Simultaneously, the fluid occupying the volume inside
the pores is squeezed out in the process of compaction. The largest drop in the porosity is seen for
the case with the slower sediment deposition rate. This variation is captured at the time instant
of t = 8.0 x 10™s. In the case with the largest deposition rate, we presented the data at the time
instant of t = 4.0 x 10'3s so compaction takes place to a lesser extent.

Figure [6b] shows the variation of pore fluid pressure, overburden pressure, and the hydrostatic
pressure with the height from the base of the sediment column. The pore pressure is zero near the
surface of the basin which is the top of the sediment column. As we move towards the base of the
column, the Py increases for all four cases of Vj. At any time instant and height from the base,
the value of Py always lies between the hydrostatic and the overburden pressure value. The pore
pressure of the fluid P; deviates from the hydrostatic value and reaches an abnormally high value
closer to the overburden pressure. For Vj = 5x 1072 and 1 x 10~ m/s, the drop in the ¢ is higher
as compared to rest of the two cases. The Py starts from zero at the top surface with a pressure
gradient equal to the hydrostatic gradient. As we move down, the Py increases in a non-linear
fashion until porosity is drastically reduced at which point, Py increases with pressure gradient
equal to that of overburden gradient. For the case, Vi = 1.0 x 1071%mn/s, the drop in the porosity
is lowest and thus the fluid in the pores does not experience the maximum possible compressive
force resulting in the pore pressure value less than that for the case for Vo = 5.0 x 1072m/s at the

lower end of the sediment column.

5.3.2 Impact of the initial porosity of the water-logged sediment

In this subsection, we understand how the overall compaction process is influenced in the light of
changing the characteristics porosity ¢g. In our model, we chose initial porosity value to be ¢ = ¢g
(or gg = 1.0). The effect on the compaction process is then studied by observing the variation
of porosity (¢) and pore pressure (Ps) with height as shown in the Figure[7]] We chose material
properties and the characteristics quantities from the Table 2l For this particular study, we varied
¢ = 0.05,0.1,0.2 and 0.4. As the V5 = 1.0 x 107''m/s is same for all four cases, we stopped the
simulation when ¢ = 4 x 10'¥s and the final height H = 4000m is attained. Figure shows the
variation of ¢ with the height from the base of the sediment for different ¢g values. It is understood
that the ¢ = ¢y near the basin surface at 4000 m. If we move downward the compaction of the
sediment is understood by the decreasing value of ¢. The maximum relative percentage change
near base is found to be 94%, 97%, 99% and 99% for the case ¢g = 0.05,0.1,0.2,0.4 respectively.
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Figure 6: Variation of a porosity ¢ and the pore fluid pressure P; as function of height y for
different deposition rate Vg such as V;/V, = 0.5,1.0,5.0,10.0 where V;, = 1.0 x 107''m/s. The
equations were solved in a non-dimensional framework with a time step size At = 1.0 x 1073,
A = 200 and quadratic FE basis for all four cases. Subscript ‘b’ refers to the base case here and in
the subsequent figures. P,, = psg(H — y) is the overburden pressure, and Pyyq = pig(H — y) is

the hydrostatic pressure in this and the subsequent figures.

We can then conclude that the maximum possible compaction have taken place in the sediment in
all the four cases for the chosen set of parameters.

Figure |7_5| shows the pore fluid pressure Py with a height from the base. As observed previously
in Figure I@, the pore fluid pressure P; is zero near the basin surface at 4000m for all four cases of
¢o0- The Py increases non-linearly as we move away from the top of the sediment column. However,
near the base of the sediment column, the non-linear variation of P, changes to linear variation
with a constant slope equal to that of the overburden pressure gradient. Since the absolute porosity
is comparable from base to height of 3000m, the pores fluid in all four the cases experiences similar

overburden pressure resulting in the similar pore fluid pressure.

5.4 Investigation of the effect of the material properties on the compaction

process

In the Subsection [5.3] we understood the extent of the compaction process brought out by changing
the water-logged sediment deposition rate Vjj and the characteristics porosity ¢g. In this subsection,
we use the phase-field model to inspect how the material properties of the sediment impact the
compaction of the sediment. Specifically, we check how the pore compressibility £, solid viscosity

7, and the sediment permeability ko affects the overall compaction process. In the forthcoming
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Figure 7: Variation of a porosity ¢ and the pore fluid pressure P; as function of height y for
different initial porosity % = 0.5,1.0,2.0,4.0 where ¢, = 0.1. The equations were solved in a
non-dimensional framework with a time step size At = 1.0 x 1073, A = 200 and quadratic FE basis

for all four cases. P, is the overburden pressure, and Pj,q is the hydrostatic pressure.

analysis, we varied one material properties at a time keeping everything else fixed. We then plotted

the sediment porosity and pore fluid pressure when the final height H=4000m is attained.

5.4.1 Impact of the pore compressibility, 5, of the sediment

In this analysis, we simulated four scenarios of the compaction process with the different pore
compressibility 5 value. We kept the other material properties fixed as given in the Table 2] The
pore compressibility were taken as f = 10710,1079,107%,10~" Pa~!. The Figure shows the
variation of the sediment porosity ¢ and the pore pressure Py with the height from the base. The
maximum percent change in the porosity at the bottom end of the sediment is 97.3%, 97.2%, 97.1%
and 96.8% for the four cases of 3 respectively. It can be inferred that the large change in the pore
compressibility parameter brings about an identical change in the porosity distribution. Further,
the fluid pressure distribution is similar in all four cases. It is then implied that the sediment
material when subjected to the loading is not sensitive to the change in the pore compressibility.

Sediment material is thus behaving less elastically as learned from this analysis.

5.4.2 Impact of the solid viscosity, 7, of the sediment

For the viscoelastic constitutive model chosen, we studied the impact of the pore compressibility
B on the compaction process in a parametric study carried out in the preceding subsection. In

this subsection, we focus on the impact seen in the compaction process when the solid viscosity
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Figure 8: Variation of a porosity ¢ and the pore fluid pressure P; as function of height y for
different pore compressibility % = 0.10,1.0,10.0,100 where 8, = 1.0 x 1079Pa~!. The equations
were solved in a non-dimensional framework with a time step size At = 1.0 x 1073, X\ = 200 and
quadratic FE basis for all four cases. F,, is the overburden pressure, and F},q is the hydrostatic

pressure.

value of the sediment is changed. For the current analysis, we fixed characteristic solid viscosity
no = 5.0 x 10%° Pa-s and varied solid viscosity 7 = 1.0 x 10%°,5.0 x 10%°,2.5 x 10?! and 1.25 x 10?2
Pa-s. The rest of the parameters are kept the same as given in the Table We plotted the
porosity ¢ and the pore fluid Py as a function of height from the base of the sediment in Figure E
As seen in Figure [9a] the ¢ decreases as we go along the depth of the sediment for all four values
of solid viscosity considered. The maximum percentage in the porosity at the base was found to be
98%, 97%, 64% and 9% for solid viscosity of = 1.0 x 10%°,5.0 x 10?°,2.5 x 10%!, and 1.25 x 10%2.
In the Figure @, the compaction of the sediment is most evident for the case of = 1.0 x 10?° and
n = 5.0 x 10%° Pa-s while the compaction is least in the case of n = 1.25 x 10?2 Pa-s. The viscous
response of the sediment is more pronounced in the viscoelastic constitutive model we used in this
paper. The fluid pressure Py as a function of distance from the base is shown in the Figure @
Like all the pressure plots, we can see the fluid pressure for all four cases lies between hydrostatic
pressure and the overburden pressure. As we increase the solid viscosity, the compaction of the
sediment is reduced with pores retaining more fluid. Thus, the fluid pressure moves away from the

overburden value towards the hydrostatic value as there is less overall compaction.
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Figure 9: Variation of a porosity ¢ and the pore fluid pressure P; as function of height y for
different solid viscosity % =0.2,1.0, 5,25 where n, = 5.0 x 102°Pa — s. The equations were solved
in a non-dimensional framework with a time step size At = 1.0 x 1073, A = 200 and quadratic FE

basis for all four cases. F,, is the overburden pressure, and P4 is the hydrostatic pressure.

5.4.3 Impact of the permeability coefficient, &y, of the sediment

In this subsection, we gauge the impact the permeability coefficient ky has on the compaction
process. In this analysis, we change the permeability coefficient ky = 1.0 x 10717,1.0 x 10716, 1.0 x
1071 and 1.0 x 10~™m?2. The rest of the parameters are kept the same as given in the Table
Figure [10] shows the variation of porosity ¢ and fluid pressure Py with the height from the base
of the sediment column. The variation of the porosity and fluid pressure is as per the compaction
process as discussed in the previous sections. In the Figure [I0a] the porosity is seen as decreasing
along with the depth for all cases of permeability considered. The compaction is more evident
in the cases with a relatively higher kg values. Thus the sediments with higher permeability are
compacted easily than the sediments with lower permeability. The permeability of a porous medium
is associated with the amount of fluid passing through it. A high permeability porous system allows
more fluid to pass through it as compared to the low permeability porous system. Thus, with better
expulsion of fluid from the pores, the system compacts easily when the system is more permeable.
In the Figure the pore fluid pressure for the smallest kg = 0.1k; is closer to the overburden
pressure. The pore fluid pressure for the other cases of kg is more closer to the hydrostatic pressure
value near the top region of the sediment and approaches the abnormally high value closer to the

overburden pressure near the bottom region of the sediment.
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Figure 10: Variation of a porosity ¢ and the pore fluid pressure Py as a function of height y for
different permeability kﬁb =0.1,1.0,10.0, 100 where k, = 10~'5m?2. The equations were solved in a
non-dimensional framework with a time step size At = 1.0 x 1073, A = 200 and quadratic FE basis

for all four cases. P, is the overburden pressure, and Pj,q is the hydrostatic pressure.

6 Conclusion

In this work, we solved the sediment compaction problem by proposing a novel phase-field treatment
and its numerical implementation. The water-logged rock or soil sediments are deposited on the
water basins over time and the increasing volume of the sediments starts to compact under their
weight. The physics of this process is mathematically formulated to fit into a moving interface
phase-field model where an order parameter can be used to evolve the moving boundary and the
underlying sediment. The governing equations of the phase-field model are solved using a standard
finite element framework, and the computational implementation is made available as an open
source code. Validation studies were carried out wherein we first compare our novel phase-field
model of compaction with the results obtained using traditional sediment models published in the
literature. We also consider a reduced-order representation of the poroelastic sediment compaction
process under the application of surcharge pressure and the fixed sediment column height. The
solutions of the phase-field framework for the reduced-order model were in excellent agreement with
the known analytical solution for this problem. Having validated our numerical method with the
results in the literature and a known analytical solution, we then demonstrated the application of
the phase-field approach to a two-dimensional case of sediment compaction.

The phase-field model of sediment compaction was then used to simulate sediment compaction
phenomena under various conditions of geological interest. Particularly, we look at the extent of

pore pressure development, and the extent of the compaction under the initial material state and
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the material properties of the sediment. For studies on the effect of the initial material state, we
investigated the effect for slower and faster sediment deposition rates, and at different characteristic
porosities of the sediment. Further, we also conducted studies to understand the effect of change
in the permeability, viscosity, and compressibility of the porous sediment on the pore pressure and
porosity evolution.

The parametric studies reveal a good dependence between porosity ¢ and pore fluid pressure Py,
and thus follow existing conventional understanding. A high pore fluid pressure is associated with
regions of low porosity. In the compaction of low permeability coefficient sediments, the expulsion of
the fluid from the pores is restricted and pore pressures can increase. Further, sediment compaction
is much more pronounced when the sediment deposition velocity and initial porosity are relatively
smaller or if the permeability is higher. The deformation of the sediment is found to be less sensitive
to the changes in the pore compressibility values when considering the viscoelastic constitutive law.

In conclusion, (1) The strong validation of our phase-field treatment results against predictions
from traditional methods of solving open boundary sediment compaction problems, albeit with-
out the limiting burden of evolving the numerical domain, and (2) The good agreement between
the porosity dependence numerical studies on the fluid pore pressure for various cases and the
existing conventional understanding, strongly support the applicability and scalability of this novel

numerical framework to model more advanced sediment compaction problems and geometries.
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