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Abstract

The gravitational constant is equivalent to natural units in its six unit dimensions. Evaluating the 
classical formulas in each of these dimensions shows that gravitational potentials are proportional to 
the Planck scale by the ratio of a body’s radial density to a radial density limit in the ratio of Planck 
length to Planck mass.
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1 Introduction

The gravitational constant plays an important role in both Newton’s and Einstein’s formulations of the

gravitational interaction. With a single value and six unit dimensions, the constant behaves as a function

in the classical formulas, transforming inputs of mass and radius into potentials of energy, velocity,

acceleration, force, etc.

While the computational utility of G is incontrovertible, it is not immediately clear why the function

works or what physical structure it represents. A more granular look at the formulas in each unit

dimension offers additional information about the transformations.

When Max Planck derived the natural units, he assumed that universal constants embody natural

units in their unit dimensions [1–4]. As such, the gravitational constant can be expressed as

G =
l3P

mPt2
P

=
lP

mP
c2 = 6.67430 × 10−11 m3/kgs2. (1)

An evaluation of the classical formulas in natural units shows that G can be characterized in two

parts:

1. The ratio of Planck length to Planck mass gives a computational basis or limit for quantifying the

gravitational field generated by mass M and radius r.

2. Two instances of c give a computational basis for quantifying the gravitational field in terms of the

momentum and velocity of a test particle or second body.

2 Radial density

Hidden beneath the compound unit dimensions of G, the classical formulas for calculating gravitational

potentials compare a body’s mass and radius to a Planck scale basis of Planck mass and Planck length.
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Two signature inputs into the formulas—mass M in the numerator and radius r in the denominator—

produce a dimensionless ratio
lP

r
M
mP

(2)

which quantifies the gravitational field on a scale of 0 to 1, where 1 is the Planck scale. This ratio

between the radial density of a massive body and a Planck scale radial density limit lp/mP is the correct

scaling factor for quantifying gravitational potentials induced by mass M at distance r. The following

evaluation of the formulas employs Equation 2 as a radial density ratio for quantifying gravitational

potentials in proportion to the Planck scale.

2.1 Gravitational potential energy

The gravitational potential energy of a massive body given by

Ug = −
GMm

r
(3)

can be stated according to Equation 1 as

Ug = −

(
lP

mP
c2

)
Mm

r
(4)

= −

(
lP

r
M
mP

)
mc2. (5)

Equation 5 illustrates how the radial density ratio transforms c2 into the correct momentum and

velocity of a test particle. Setting the gravitational potential energy equal to the particle’s kinetic energy(
lP

r
M
mP

)
mc2 =

1
2

mv2 (6)

gives a translation between the attributes of the massive body and the test particle. The formula

illustrates how the radial density of the first body influences the momentum and velocity of the test

particle and can be simplified to

2
lP

r
M
mP
=

v2

c2 . (7)

2.2 Velocity

From Equation 7 we may expect to find the escape velocity by taking the square root of twice the radial

density ratio, and this is how the function works

ve =

√
2GM

r
(8)

=

√
2
(

lP

mP
c2

)
M
r

(9)

=

√
2

lP

r
M
mP

c. (10)

The versatility of the gravitational constant is evident in the manner by which the functions produce

1) the correct scaling factor for a given potential and 2) natural units in the correct unit dimensions for

each type of potential.
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2.3 Schwarzschild radius

The Schwarzschild radius formula does not quantify the momentum or velocity of a second body, so two

superfluous quantities of c in the gravitational constant are removed from the equation

Rs =
2GM

c2 (11)

= 2
(

lP

mP
��c2

)
M

��c2
(12)

= 2
M
mP

lP. (13)

Furthermore, re-arranging 13 gives a definition of the Schwarzschild radius as one-half the radial

density ratio
lP

Rs

M
mP
=

1
2
. (14)

This insightful relationship between the Schwarzschild radius and the density limit lP/mP is not

immediately apparent in the compound unit dimensions of the gravitational constant.

2.4 Acceleration

The gravitational acceleration function combines the radial density ratio with the inverse radial distance

in natural units lP/r. These ratios quantify the velocity derivative in proportion to the Planck acceleration

g = −
GM
r2 (15)

= −

 l3P
mPt2

P

 M
r2 (16)

= −

(
lP

r
M
mP

)
lP

r
aP. (17)

The formula is equivalent to calculating the orbital velocity squared and removing one unit and

dimension of distance

= −

(
lP

r
M
mP

)
c2 1

r
. (18)

2.5 Force

The formula for determining gravitational force

F =
GMm

r2 (19)

combines the mass of a second body with the gravitational acceleration potential generated by the first

body in Equation 17 according to F = ma

F = ma = −
(

lP

r
M
mP

)
lP

r
maP. (20)

Gravitational force can also be expressed as a ratio of the Planck force by taking the radial density
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ratio of both bodies. Inserting Planck mass in the numerator and denominator gives

F =
 l3P

mPt2
P

 Mm
r2

(
mP

mP

)
(21)

F =
(

lP

r
M
mP

) (
lP

r
m
mP

)
FP. (22)

The natural unit expression of the formula suggests that, while producing the correct result, formulas

using the gravitational constant may omit important structural information.

2.6 Gravitational binding energy

The formula for gravitational binding energy

U =
3GM2

5R
(23)

uses the radial density ratio to determine the total energy of a massive body. In the formula, the energy

limit Mc2 is proportionally rescaled to 1/2Mv2 depending on the body’s radial density and in agreement

with Equation 7

U =
3
5

(
lP

mP
c2

)
M2

R
(24)

=
3
5

(
lP

R
M
mP

)
Mc2 (25)

=
3

10
Mv2 (26)

Table 1 summarizes the classical gravitational formulas in natural units of length, mass, and time.

Table 1: A summary of certain classical gravitational formulas in natural units.

Physical property Symbol Standard formula Natural Unit Formula

Schwarzschild radius Rs
2GM

c2 2
M
mP

lP

Escape velocity ve −

√
2GM

r
−

√
2
(

lP

r
M
mP

)
c

Gravitational potential energy Ug −
GMm

r
−

(
lP

r
M
mP

)
m
mP

EP

Gravitational acceleration g −
GM
r2 −

(
lP

r
M
mP

)
lP

r
aP

Gravitational force F
GMm

r2

(
lP

r
M
mP

) (
lP

r
m
mP

)
FP

Gravitational binding energy U −
3GM2

5R
−

3
5

(
lP

R
M
mP

)
M
mP

EP

Hawking radiation kBT
~c3

8πGM
1

8π

(mP

M

)
EP
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3 Radial density limit

The formulas discussed in Section 2 quantify gravitational potentials in proportion to the ratio of Planck

length to Planck mass, making this ratio an important physical constant

lP

mP
= 7.42616 × 10−28 m/kg. (27)

An interesting property of the limit is how it relates to mass density as a body grows larger. While

each natural unit increment of radius accommodates no more than one natural unit of mass, the area

and volume of the body continue to grow in accordance with known properties of black holes.

Since the Schwarzschild radius is defined by equation 14 in relation to the radial density limit, the

formulas in Table 1 can also be stated in terms of the Schwarzschild radius. Separating lP/r into two

parts
lP

r
=

lP

Rs

Rs

r
(28)

and plugging into Equation 2 gives
lP

r
M
mP
=

lP

Rs

Rs

r
M
mP

. (29)

From the Schwarzschild radius definition in Equation 14, the formula can be reduced to

lP

r
M
mP
=

Rs

2r
. (30)

Table 2 summarizes the classical gravitational potentials in terms of the ratio between one-half the

Schwarzschild radius and distance r.

Table 2: Classical gravitational potentials stated in terms of the Schwarzschild radius.

Physical property Symbol Simple formula Natural unit formula

Escape velocity ve −

√
Rs

r
c −

√
Rs

r
lP

tP

Gravitational potential energy Ug −
Rs

2r
mc2 −

Rs

2r
m
mP

EP

Gravitational acceleration g −
Rs

2r
c2

r
−

Rs

2r
lP

r
aP

Gravitational force F
Rs

2r
mc2

r
Rs

2r
lP

r
m
mP

FP

Gravitational binding energy U −
Rs

2R
Mc2 −

Rs

2R
M
mP

EP

4 Proportionality

The equations in Section 2 require just two ratios to quantify classical gravitational potentials as a

function of radial density: one ratio of radius to the Planck length and a second ratio of mass to the

Planck mass. These two ratios offer a simple method for analyzing how the strength of gravity is related

to the properties of massive bodies. Tables 3 and 4 simplify this analysis by restating the classical

formulas in terms of these ratios where M is the mass of a first body and m0 is the mass of a neutron
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test particle

βr =
lP

r
(31)

βM =
M
mP

(32)

βm =
m0

mP
. (33)

These dimensionless ratios act as coefficients in the formulas, diluting Planck scale gravitational

potentials based on the distribution of mass of the two bodies. Table 3 displays the coefficients for

several massive bodies [5–7] and a neutron test particle indicating the degree to which gravitational

potentials are reduced from the Planck scale.

Table 3: Ratios in the table act as coefficients, collectively diluting Planck scale gravitational potentials on a scale
of 0 to 1

Massive body Body type βr βM βr βM βm

lP
r

M
mP

lP
r

M
mP

m
mP

Sagittarius A* Supermassive BH 1.32 × 10−45 3.80 × 1044 0.50 7.70 × 10−20

GRO J1655-40 Steller mass BH 1.03 × 10−39 4.85 × 1038 0.50 7.70 × 10−20

4U 1820-30 Neutron star 1.78 × 10−39 1.44 × 1038 0.26 7.70 × 10−20

Sirius B White dwarf 2.76 × 10−42 9.45 × 1037 2.61 × 10−4 7.70 × 10−20

Sun Star 2.32 × 10−44 9.14 × 1037 2.12 × 10−6 7.70 × 10−20

Earth Planet 2.54 × 10−42 2.74 × 1032 6.96 × 10−10 7.70 × 10−20

The coefficients in Table3 are plugged into the natural unit formulas in Table 4 to give the correct

gravitational potentials as a proportion of the Planck scale.

Table 4: The coefficients in Table 3 quantify gravitational potentials in proportion to the Planck scale.

Massive body Schwarzschild Escape Potential Gravitational Gravitational
radius velocity energy acceleration force

2 βM lP
√

2 βr βM c βr βM βm EP βr βM βr aP βr βM βr βm FP

m m/s kgm2/s2 m/s2 kgm/s2

Planck scale potential 1.62 × 10−35 −299, 792, 458 −1.96 × 109 −5.56 × 1051 1.21 × 1044

Sagittarius A* 1.23 × 1010 −299, 792, 458 −7.53 × 10−11 −3.66 × 106 6.14 × 10−21

GRO J1655-40 15, 682 −299, 792, 458 −7.53 × 10−11 −2.87 × 1012 4.80 × 10−15

4U 1820-30 4, 666 −214, 676, 872 −3.86 × 10−11 −2.53 × 1012 4.24 × 10−15

Sirius B 3, 054 −6, 850, 855 −3.93 × 10−14 −4.01 × 106 6.72 × 10−21

Sun 2, 953 −617, 482 −3.19 × 10−16 −273.85 4.59 × 10−25

Earth 0.0089 −11, 186 −1.05 × 10−19 −9.82 1.64 × 10−26

The formulas in Table 4 show that gravity is not necessarily a weak force but its magnitude is

determined by the size, density, and distance between massive bodies. In order for a pair of bodies
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to generate a force comparable to the Planck force, each of the bodies must have the Planck mass

at a distance of one Planck length between them. As the tables demonstrate, these values produce

coefficients of 1 yielding the Planck force as a result. The relatively weak strength of gravity in an

earth-like environment by comparison is due to the size and density of massive bodies and distances

between them.

5 Conclusion

The gravitational constant is a versatile number for quantifying classical gravitational potentials. However,

re-stating the constant in natural units provides greater resolution to the formulas and deeper insight

into the relationship between the distribution of mass and the gravitational potential it generates.

Natural unit formulas highlight the essential role of the Planck scale in quantifying classical gravita-

tional field strengths. The radial density on one side of the equation and the resulting field potential on

the other are both quantified in relation to these natural units.

The radial density limit described by the formulas—the ratio of Planck length to Planck mass—gives

a radius of one-half the Schwarzschild radius and permits no more than one natural unit of mass per

natural unit of radial distance.

The Planck scale basis in the formulas suggests that gravity may have the same potential as the

other forces; however, the formulas give no indication whether the extreme conditions required to

produce Planck scale gravitational potentials are physically possible.
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