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Abstract

The gravitational constant is equivalent to natural units in its six unit dimensions. Evaluating the
classical formulas in each of these dimensions shows that gravitational potentials are proportional to
the Planck scale by the ratio of a body’s radial density to a radial density limit in the ratio of Planck
length to Planck mass.
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1 Introduction

The gravitational constant plays an important role in both Newton’s and Einstein’s formulations of the
gravitational interaction. With a single value and six unit dimensions, the constant behaves as a function
in the classical formulas, transforming inputs of mass and radius into potentials of energy, velocity,
acceleration, force, etc.

While the computational utility of G is incontrovertible, it is not immediately clear why the function
works or what physical structure it represents. A more granular look at the formulas in each unit
dimension offers additional information about the transformations.

When Max Planck derived the natural units, he assumed that universal constants embody natural
units in their unit dimensions [1H4]. As such, the gravitational constant can be expressed as

I

i
G=—"5= L2 =6.67430 x 1071 P Jkgs?. (1)
mptP mp

An evaluation of the classical formulas in natural units shows that G can be characterized in two
parts:

1. The ratio of Planck length to Planck mass gives a computational basis or limit for quantifying the
gravitational field generated by mass M and radius r.

2. Two instances of ¢ give a computational basis for quantifying the gravitational field in terms of the
momentum and velocity of a test particle or second body.
2 Radial density

Hidden beneath the compound unit dimensions of G, the classical formulas for calculating gravitational
potentials compare a body’s mass and radius to a Planck scale basis of Planck mass and Planck length.
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Two signature inputs into the formulas—mass M in the numerator and radius r in the denominator—
produce a dimensionless ratio

z2 @)
which quantifies the gravitational field on a scale of 0 to 1, where 1 is the Planck scale. This ratio
between the radial density of a massive body and a Planck scale radial density limit /,/mp is the correct
scaling factor for quantifying gravitational potentials induced by mass M at distance r. The following
evaluation of the formulas employs Equation [2 as a radial density ratio for quantifying gravitational

potentials in proportion to the Planck scale.

2.1 Gravitational potential energy

The gravitational potential energy of a massive body given by

GMm
Uy = - (3)
r
can be stated according to Equation[T]as
[ M
Uy =- (—”cz) - (4)
mp r
Ip M
= —(—P—)mcz. (5)
r mp

Equation [5| illustrates how the radial density ratio transforms ¢* into the correct momentum and
velocity of a test particle. Setting the gravitational potential energy equal to the particle’s kinetic energy

(l—})ﬂ)mc2 = %mv2 (6)

r mp

gives a translation between the attributes of the massive body and the test particle. The formula
illustrates how the radial density of the first body influences the momentum and velocity of the test
particle and can be simplified to

2.2 Velocity

From Equation [7]we may expect to find the escape velocity by taking the square root of twice the radial
density ratio, and this is how the function works

Ve =

= ,IZZ—PM c. (10)
r mp

The versatility of the gravitational constant is evident in the manner by which the functions produce
1) the correct scaling factor for a given potential and 2) natural units in the correct unit dimensions for
each type of potential.
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2.3 Schwarzschild radius

The Schwarzschild radius formula does not quantify the momentum or velocity of a second body, so two
superfluous quantities of ¢ in the gravitational constant are removed from the equation

R, =20 (1)
_oflr A\ M
= z(mfz)/ (12)
= 2ﬂlp. (13)
mp

Furthermore, re-arranging[T3]gives a definition of the Schwarzschild radius as one-half the radial
density ratio
p M 1
—_— =, 14
Rs mp 2 ( )
This insightful relationship between the Schwarzschild radius and the density limit Ip/mp is not
immediately apparent in the compound unit dimensions of the gravitational constant.

2.4 Acceleration

The gravitational acceleration function combines the radial density ratio with the inverse radial distance
in natural units /p/r. These ratios quantify the velocity derivative in proportion to the Planck acceleration

g=-—75 (15)
B \M

=- — 16

(mpt%] r 1o

= —(I—PK) I—Pap. (17)
rmp|r

The formula is equivalent to calculating the orbital velocity squared and removing one unit and
dimension of distance

M 1
=—(l—P—)c2—. (18)
r mp r
2.5 Force
The formula for determining gravitational force
GM
F=22" (19)
I

combines the mass of a second body with the gravitational acceleration potential generated by the first
body in Equation[T7]according to F = ma

—mdp. (20)

Gravitational force can also be expressed as a ratio of the Planck force by taking the radial density
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ratio of both bodies. Inserting Planck mass in the numerator and denominator gives

B\ M
mptP r mp
lp M
F = (_P_) (I_P ﬂ) Fp. (22)
r mp r mp

The natural unit expression of the formula suggests that, while producing the correct result, formulas
using the gravitational constant may omit important structural information.

2.6 Gravitational binding energy
The formula for gravitational binding energy

_3GM?

U
5R

(23)

uses the radial density ratio to determine the total energy of a massive body. In the formula, the energy
limit Mc? is proportionally rescaled to 1/2Mv* depending on the body’s radial density and in agreement
with Equation|[7]

3(Ilp ,\M

U=—-|—c|— 24
S(mPC)R ( )
3(lp M )

=—-=——IM
S(Rmp) c (25)
3

= — My? 2
oMY (26)

Table [f]summarizes the classical gravitational formulas in natural units of length, mass, and time.

Table 1: A summary of certain classical gravitational formulas in natural units.

Physical property Symbol Standard formula Natural Unit Formula
2GM M
Schwarzschild radius R, > 2—Ip
c mp
2GM Ip M
Escape velocity Ve e ) (_P _) ¢
r r mp
- . GM Ip M
Gravitational potential energy U, - " - (_” _) ﬂEp
r r mp | mp
M M
Gravitational acceleration g —G—2 - (I—P —) lﬁap
r rmpj)r
GM Ip M \(I
Gravitational force F 2m (_” _) (_” ﬂ) Fp
r r mp r mp
- - 3GM? 3(lp M\ M
Gravitational binding ener U - (2 =
vitati inding ay R S(Rmp)mp
Hawking radiation kgT he? ! (m”)E
9 ? 81GM sr\m )"
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3 Radial density limit

The formulas discussed in Section [2quantify gravitational potentials in proportion to the ratio of Planck
length to Planck mass, making this ratio an important physical constant
l
L =7.42616 x 1072 m/kg. (27)
mp
An interesting property of the limit is how it relates to mass density as a body grows larger. While
each natural unit increment of radius accommodates no more than one natural unit of mass, the area
and volume of the body continue to grow in accordance with known properties of black holes.
Since the Schwarzschild radius is defined by equation[T4]in relation to the radial density limit, the
formulas in Table[T]can also be stated in terms of the Schwarzschild radius. Separating /p/r into two

parts
Ip Ip R,
L£_E 28
r Rgr (28)
and plugging into Equation 2| gives
IpM IpR; M
—— = (29)
rmp Ry r mp
From the Schwarzschild radius definition in Equation[T4} the formula can be reduced to
M R,
kM _ —. (30)
rmp 2r

Table [2summarizes the classical gravitational potentials in terms of the ratio between one-half the
Schwarzschild radius and distance r.

Table 2: Classical gravitational potentials stated in terms of the Schwarzschild radius.

Physical property Symbol Simple formula Natural unit formula
. R, R, 1
Escape velocity Ve = - /=2
r r tp
R Ry
Gravitational potential energy U, ——me? Mg,
2r 2r mp
i e . R_g- C2 Rs lp
Gravitational acceleration g -—— -——ap
2r r 2r r
R, mc? R 1
Gravitational force F S me S M op
2r r 2r r mp
Gravitational binding ener U R pe2 R M o
g ensroy R WRmp "

4 Proportionality

The equations in Section |2 require just two ratios to quantify classical gravitational potentials as a
function of radial density: one ratio of radius to the Planck length and a second ratio of mass to the
Planck mass. These two ratios offer a simple method for analyzing how the strength of gravity is related
to the properties of massive bodies. Tables [3] and [4] simplify this analysis by restating the classical
formulas in terms of these ratios where M is the mass of a first body and my is the mass of a neutron
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(33)

These dimensionless ratios act as coefficients in the formulas, diluting Planck scale gravitational
potentials based on the distribution of mass of the two bodies. Table [3|displays the coefficients for
several massive bodies and a neutron test particle indicating the degree to which gravitational
potentials are reduced from the Planck scale.

Table 3: Ratios in the table act as coefficients, collectively diluting Planck scale gravitational potentials on a scale

of 0to 1
Massive body Body type Br Bu Br Bu Bm
4 M b M m
r mp r mp mp
Sagittarius A*  Supermassive BH  1.32x10™%  3.80 x 10* 0.50 7.70 x 10720
GRO J1655-40  StellermassBH  1.03x 107  4.85x 103 0.50 7.70 x 10720
4U 1820-30 Neutron star 1.78x1073° 144 x10% 0.26 7.70 x 10720
Sirius B White dwarf 276x 1072 945x 107 2.61x10™*  7.70x 10720
Sun Star 232x107%  9.14x 107 2.12x10°  7.70x 10720
Earth Planet 254x 107 2.74x 102 6.96x 10710 7.70 x 10720

The coefficients in Tablg3]are plugged into the natural unit formulas in Table [4]to give the correct
gravitational potentials as a proportion of the Planck scale.

Table 4: The coefficients in Tablequantify gravitational potentials in proportion to the Planck scale.

Massive body  Schwarzschild Escape Potential Gravitational Gravitational
radius velocity energy acceleration force
28u Ip V2B Buc  BrBuBnEr  BrBuBrar  BrBu B u Fr
m m/s kgm2 /% m/s? kgm/ §2
Planck scale potential ~ 1.62x 1073 299,792,458 -196x10° 556 x 10°! 1.21 x 104
Sagittarius A* 1.23 x 1010 -299,792,458 =753 x 1071 —3.66 x 10° 6.14 x 10721
GRO J1655-40 15,682 -299,792,458 -7.53x 1071 —2.87x 1012 480x 1071
4U 1820-30 4,666 —214,676,872  -3.86x 107" —2.53x 10'2 424 x 1071
Sirius B 3,054 -6,850,855  -3.93x107%  —-4.01 x 10° 6.72 x 10721
Sun 2,953 —617,482 -3.19x 10716 -273.85 459 x 107>
Earth 0.0089 ~11,186 -1.05x 1071° -9.82 1.64 x 10726

The formulas in Table [4| show that gravity is not necessarily a weak force but its magnitude is
determined by the size, density, and distance between massive bodies. In order for a pair of bodies
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to generate a force comparable to the Planck force, each of the bodies must have the Planck mass
at a distance of one Planck length between them. As the tables demonstrate, these values produce
coefficients of 1 yielding the Planck force as a result. The relatively weak strength of gravity in an
earth-like environment by comparison is due to the size and density of massive bodies and distances
between them.

5 Conclusion

The gravitational constant is a versatile number for quantifying classical gravitational potentials. However,
re-stating the constant in natural units provides greater resolution to the formulas and deeper insight
into the relationship between the distribution of mass and the gravitational potential it generates.

Natural unit formulas highlight the essential role of the Planck scale in quantifying classical gravita-
tional field strengths. The radial density on one side of the equation and the resulting field potential on
the other are both quantified in relation to these natural units.

The radial density limit described by the formulas—the ratio of Planck length to Planck mass—qgives
a radius of one-half the Schwarzschild radius and permits no more than one natural unit of mass per
natural unit of radial distance.

The Planck scale basis in the formulas suggests that gravity may have the same potential as the
other forces; however, the formulas give no indication whether the extreme conditions required to
produce Planck scale gravitational potentials are physically possible.
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