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Abstract. The notion of oriented set is the basic elementary concept of the theory of
changeable sets. The main motivation for the introduction of changeable sets was the sixth
Hilbert problem, that is, the problem of mathematically rigorous formulation of the funda-
mentals of theoretical physics. In the present paper the necessary and sufficient condition of
the existence of one-point time on an oriented set is established. From the intuitive point of
view, one-point time is the time associated with the evolution of a system consisting of only
one object (for example, from one material point). Namely, it is proven that the one-point
time exists on the oriented set if and only if this oriented set is a quasi-chain. Also, using
the obtained result, the problem of describing all possible images of linearly ordered sets is
solved. This problem naturally arises in the theory of ordered sets.
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1 Introductory remarks

The subject of this article is closely related to the theory of changeable sets. The main
motivation for building this theory was the sixth Hilbert problem, that is, the problem of
mathematically rigorous formulation of the fundamentals of theoretical physics. This prob-
lem was posed in 1900, but it remains very relevant today [1]. From an intuitive point of
view changeable sets are the sets of objects, which can be in process of continuous transfor-
mations. In particular, these objects can change their properties, appear or disappear, break
down into several parts or, conversely, unite into a single unit. Moreover, the evolution of a
changeable set or it’s components may depend of the area of observation or reference frame.
The problem of constructing the mathematical theory of changeable sets (that is the “sets”
possessing the properties listed above) was emerged in particular in the papers [2-6]. On the
mathematically strict level the theory of changeable sets was developed in the papers [7—10]
etc. The most complete and systematic presentation of this theory can be found in the
preprint [11].

The notion of oriented set is the basic most elementary concept of the theory of changeable
sets. Oriented sets were introduced in [7,8] as most simple abstract models of the collections
of evolving objects in the framework of one (fixed) reference frame (see also [11, Section
1]). Moreover, in the above-mentioned papers it was introduced the concept of time on
oriented sets. As well in the article [8, Theorem 4.1] the sufficient condition of existence
of one-point time for oriented sets is established (see also [11, Theorem 1.3.1]). Note that
from the intuitive point of view, one-point time should be understood as the time associated
with the evolution of a system consisting of only one object (for example, from one material
point). Emphasize that Theorem 4.1 from [8] gives only sufficient condition for existence
of one-point time. That is why in the paper [11, Problem 1.3.1] the problem of detection
necessary and sufficient condition for existence of one-point time on oriented set is posed.
Below in this paper the solution of the above problem will be presented. Namely, it will be
specified the properties for oriented set to be able to define the one-point time on it. Using

© 2022 by the author(s). Distributed under a Creative Commons CC BY license.


https://doi.org/10.20944/preprints202212.0075.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 December 2022 d0i:10.20944/preprints202212.0075.v1

the obtained result, the problem of describing all possible images of linearly ordered sets will
be solved. Such problem naturally arises in the theory of ordered sets.

2 On Oriented Sets and One-point Time

Definition 1. Let, M be any non-empty set (M # ().

An arbitrary reflexive binary relation <— on M (that is a relation satisfying Vx €
M x<—z) we name an orientation, and the pair M = (M, <) we call an oriented
set. In this case the set M is named the basic set or the set of all elementary states of
the oriented set M and it is denoted by Bs(M). The relation <— we name the directing
relation of changes (transformations) of M, and denote it by o

In the case where the oriented set M is known in advance, the char M in the notation
< will be released, and we will use notation < instead. For the elements =,y € Bs(M) the

record y < x should be understood as “the elementary state y is the result of transformations
(or the transformation offspring) of the elementary state x”.
Let M be an oriented set.

Definition 2. The non-empty subset N C Bs(M) will be referred to as transitive in M
if for any x,y,z € N such, that z <y and y < x we have z + x.

The transitive subset L C Bs(M) will be referred to as chain in M if for any x,y € L
at least one of the relations y<—x or x <y is true.

Oriented set M will be called a chain oriented set if the set Bs(M) is the chain of
M, that is if the relation < if transitive on Bs(M) and for any z,y € Bs(M) at least one
of the conditions x <y or y<—x is satisfied (note that in this case the oriented set M is a
linearly quasi-ordered set).

Recall that linearly ordered set is an ordered pair of kind T = (T, <) with reflexive, asym-
metric and transitive binary relation < on T satisfying the following additional condition:

(LnO) for every t,7 € T it is performed at least one of the correlations t < 7 or 7 < t.

Definition 3. Let M be an oriented set and T = (T, <) be a linearly ordered set. A mapping
Y T — 2B5M) s referred to as time on M if the following conditions are satisfied:

1. For any elementary state x € Bs(M) there exists an element t € T such that x € (t).

2. If 1,19 € Bs(M), 194+ 21 and x1 # xo, then there exist elements t1,ty € T such that
x1 €Y (t1), 2 € Y (ta) and t; < ty (this means that there is a temporal separateness of
successive unequal elementary states).

In this case:

o The elementst € T we call the moments of time
o The pair H = (T,v) = ((T,<),v) we name by chronologization of M

We say that an oriented set M can be chronologized if there exists at least one
chronologization of M. It turns out that any oriented set can be chronologized. To make
sure this we may consider any linearly ordered set T = (T, <), which contains at least two
elements and put:

P(t) .= Bs(M), teT.

It is easy to verify that the conditions of Definition 3 for this function ¢ (-) are satisfied. More
non-trivial methods to chronologize an oriented set were considered, in particular, in [8].

Definition 4. Let M be an oriented set and T = (T, <) be a linearly ordered set.
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1. The time v : T — 2%M) will be called quasi one-point if for every t € T the set
¥(t) is a singleton.

2. The time 1 will be called one-point if the following conditions are satisfied:
(a) The time v is quasi one-point;

(b) for any x1, x5 € Bs(M) the conditions x1 € P(t1), xo € Y(t2) and t; < to, lead
to x9 < 21.

We say that an oriented set M can be chronologized quasi one-point / one-point if there
exists at least one chronologization H = ((T,<),®) of M with quasi one-point /one-
point time ¢ (correspondingly). In this case we name the chronologization H as quasi
one-point /one-point (correspondingly).

Ezample 1. Let us consider the arbitrary mapping f : Z — R? (d € N), where Z C R is
some connected subset of Real axis R. This mapping can be interpreted as equation of motion
of single material point in the space RY. This mapping f generates the oriented set M; =

(‘Bs (Mf)’/f;)’ where Bs (M;) = R(f) = {f(t) |t € Z} C R? and for z,y € Bs (M),
!
the correlation y b is valid if and only if there exist t,to € Z such, that x = f (1),
!
y = f(t2) and t; < ty. It is easy to verify, that the following mapping is a one-point time
on Mg:
() ={f()} S Bs(M), teT

Example 1 makes clear the definition of one-point time. It is evident, that any one-point
time is quasi one-point. Examples contained in the paper [8] show that the inverse statement
is not true in the general case (see also [11, Example 1.3.2]).

Theorem 1 (ZF+LO, [8]). Any oriented set can be quasi one-point chronologized.

Note that proof of Theorem 1 can be found also in [11, Theorem 1.3.2].

Remark 1. Proof of Theorem 1 uses the Linear Ordering principle (LO) in addition to
Zermelo—Fraenkel axiomatic system (ZF). This principle asserts that any set can be lin-
early ordered. It is evident that the above principle follows from the famous well-ordering
Zermelo’s theorem, and therefore, from the axiom of choice (AC). But it is known that
LO-principle also follows from Ultrafilter Theorem of Tarski and, moreover, it is logically
weaker than this theorem and therefore than the axiom of choice [12, pages 17,18]. On the
relationship between LO and AC see, also, [13].

Theorem 2 ( [8]). Any chain oriented set can be one-point chronologized.

Note that the proof of Theorem 2 can be found also in [11]. It turns out that Theorem 2
is not reversible. And the next example demonstrates the existence of non-chain oriented
sets, which can be one-point chronologized.

Ezample 2. Consider the function f : [0, 27] — R?, defined by the formula:
fo(t) = (cost, sint) (t €10,27]).

According to Example 1, using this function, we may construct the oriented set Mg . This
oriented set can be one-point chronologized by mens of the time:

V() ={fo ()}  (t€]0,27]).
At the same time, this oriented set is not a chain, because the binary relation T is
fo
not transitive on Bs (./\/lfo). Indeed, consider the points: x; := (0,—1) = f, (gw), Xg 1=
(1,0) = £, (0) = fo(2m), x3 := (0,1) = f,(3). For these points we have: xi,Xs,X3 €

g{(fo) = Bs (Mfo) and Xg X1, X3¢ X9 but XgﬁLXl.
M, Mz Mg,
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The above facts generate the following problem:

Problem 1. Find necessary and sufficient conditions of existence of one-point chronologiza-
tion for oriented set.

Note that Problem 1 was also posed in [11, Problem 1.3.1]. The main aim of the present
paper is to give the solution of Problem 1.

3 Quasi-chain Oriented Sets and Formulation of Main Theorem

Notation 1. On any oriented set M we introduce the following additional binary relation:

» For every x,y € Bs(M) we note y(AiAx if and only if:

TR and T 4Ly,
M M

» In the cases where it does not lead to misunderstanding we use the notation y & 2 instead

th dy< .
of the recor yi e

Notation 2. Let M be an arbitrary set and Ry, Ry, ..., R, € M? (n € N) be any binary
relations on M. Further for xq,...,x, € M we use the abbreviated notation:

J]()Rl.fl RQCL’Q e l‘n_an.Tn
for indication the fact that:
(l’oRll’l) & (QflRQZL'Q) &... & (Jin_anl’n) .

Assertion 1. Let M be an oriented set, T = (T, <) be a linearly ordered set and ¢ : T —
2%5M) be one-point time on M. Then for any 1, x5 € Bs(M) the conditions:

x1 €Y (t1), T €Y (t3) and Ty -1y
lead to the inequality:
t1 < to.

Proof. Indeed, suppose that M is an oriented set, T = (T, <) is a linearly ordered set and
Y. T — 2%M) is an one-point time on M. Let the elements x1, 75 € B5(M) be such that

r1 € ¥ (t1), 2 € ¥ (t2) and Ty - x,. Assume the contrary: ty < t;. Then, according to
Definition 4 (item 2), from the conditions x1 € v (t1), 3 € 1 (t2) and ty < ¢; it follows that
T1 < T9. But the last correlation is in contradiction to the condition x, <ia:1. Hence the

assumption about ty < t; is false. Therefore we have t; < t,. O

Definition 5. The oriented set M is called quasi-chain if and only if the following con-
ditions are satisfied:

(QL1) For any xi,z9 € Bs(M) it holds at least one from the correlations xo<—1x1 or
T1 < To.

(QL2) For every xg,x1,x2,x3 € Bs(M) the condition x; & 2y a1y & 2y ensures the cor-

relation x5 <z (quasi-transitivity).
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Remark 2. Tt is easy to prove that the transitivity of the binary relation < on the oriented
set M implies its quasi-transitivity. It turns out that the inverse statement in general is not
valid. Example 2 shows that there exist the oriented set M = My such that the relation
</\_/l is quasi-transitive but not transitive. So quasi-chain oriented set need not be chain.

The main result of this paper is the following theorem.

Theorem 3 (ZF+AC). The oriented M set can be one-point chronologized if and only if it
1S a quasi-chain.

Remark 3. We emphasize that proof of the necessity for Theorem 3 does not require the
axiom of choice (AC). This axiom is needed only for the proof of sufficiency of the condition,
pointed out in Theorem 3.

The proof of Theorem 3 is divided into two main lemmas. Lemma 1 in the next section
assures the necessity for Theorem 3, whereas Lemma 3 (see below) provides the sufficiency.

4 Proof of Necessity for Theorem 3

The main aim of this section is to prove the following lemma, which ensures the necessity
for Theorem 3.

Lemma 1. If the oriented set M can be one-point chronologized then it is a quasi-chain.

Proof. Let T = (T, <) be a linearly ordered set and ¢ : T — 2%*) be an one-point time
on the oriented set M.

= 1. First we will validate the condition (QL1). Chose any z1,zo € Bs(M). By
Definition 3 the time points t1,t, € T must exist such, that x; € 9 (¢1), 2 € ¥ (¢2). Since
T = (T, <) is a linearly ordered set then for ¢;,t, € T at least one of the inequalities must
be fulfilled t; < t5 or t5 < t;. In Accordance with Definition 4, in the case t; < t, we obtain
Zg < x1. Similarly in the case to < t; we deduce x1 < 5.

= 2. Now we validate the condition (QL2). Consider any elements xzg,x;, 2,23 €
Bs(M) such, that < xq< 21 ¢ x9. Consider any to,t3 € T such, that =y € 1 (to),
x3 € ¥ (t3) (by Definition 3 such to, t3 exist). Since xq <— x1, then, according to Definition 3
the time points ¢1,t; € T must exist such that z1 € 9 (¢1), x2 € ¢ (t2) and t; < t5. Taking

into account the correlations =g € ¥ (to), 21 € ¥ (t1) and 1 <=z, as well as Assertion 1,

we obtain, t, < ;. Similarly from the correlations z, € ¥ (t2), x5 € ¥ (t3) and 3 <o we

deduce ty < t3. Therefore the following inequalities are performed:
tg < t1 <1y < 3.
That is why ¢ty < t3. Thus we have:

vto,t'g, eT ((.CEO < w (to)) & (.273 € ¢ (tg)) = (to < t3)) . (1)

In accordance with the statement, proven in the item 1, at least one from the correlations
o4 x3 or x3 < xo must hold. Assume, that zg < x3. Then, by Definition 3 the elements
tNo,tNg, € T must exist such that zy € ¥ (tNO), T3 € 1Y (tNg,) and tNg, < tNO. But the last inequality
is in a contradiction to (1). Hence, the correlation xg<— 3 is impossible. Thus the only

. . . . + .
possible one it remains the correlation xs<— x(, that it was necessary to prove. O

The proof of the sufficiency for Theorem 3 is much more complicated. First of all we need
to work out some auxiliary technical results for this purpose. This work will be done in the
next section.


https://doi.org/10.20944/preprints202212.0075.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 December 2022 d0i:10.20944/preprints202212.0075.v1

5 Some Auxiliary Technical Results

5.1 Some Additional Properties of Quasi-chain Oriented Sets

Assertion 2. Let, M be a quasi-chain oriented set and xq, 1, T2, v3 € Bs(M) be arbitrary
elementary states of M. Then the following properties are performed:

(QL3) ]fx3<—a72<ix1 —x then 3+ xy.
(QL4) Ifx3¢x2<—x1 then x3 < .
(QL5) [fx3<—x2<ix1 then s+ xy.
(QL6) Ifx;;@xﬂixl then x5 - x,.

Proof. The proofs of the properties (QL3)—(QL6) are listed below.
= (QL3). Let zg,z1, 29,23 € Bs(M) and xg%xgéxl + x9. Assume that xz <~ xg.
Then, taking into account the fact that the oriented set M is quasi-chain, we get xg <i:1:3.

Thus, we have, xg &gy &y Hence, by Definition 5 (condition (QL2)) we get, xg & x1,

which is in acontradiction to the correlation xy <— xy. Therefore assumption about z3 <+ xg
is false. So we have x3 < x.

= (QL4). Suppose that x, s, x5 € Bs(M) and 23 4= x5 < 21. Then, by Definition 1,
we have, x5+ x3 &y Thence, using Property (QL3), we obtain x3 7.

= (QL5). If we assume that z3 < o & x1, then we will have x5+ x5 & 1 < 21. Thence,
applying Property (QL3), we obtain x3 < z;.
= (QL6). If we suppose that xj &g - x1, then we will deliver x3 &g w2y,

Thence, by Definition 5 (condition (QL2)), we deduce x5 < 1. O

Notation 3. For any oriented set M we introduce the following additional binary relations:

= For any x,y € Bs(M) we will note y%x if and only if there exists the element T €
Bs(M) such that y <7 .

= For arbitrary x,y € Bs(M) we will write y?/\—:x if and only if there exists the element

T € Bs(M) such that y T < x.

Further in the cases, where the oriented set M is known in advance, we will use the notations
Y 2 and Y <1 instead of y % x and y _<A—: x (correspondingly).

Assertion 3. Let, M be a quasi-chain oriented set and x1,xe,x3 € Bs(M) be arbitrary
elementary states of M. Then the following properties are holding:

(QLT) Ifxg%xgir—_ml then x5+ ;.
(QLS8) If:c3<_—+x2<—x1 then x5 4 ;.
(QL9) Ifxgixzzixl then :E3<ix1.

(QL10) Ifxgj—_xﬂixl then xgéxl.
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(QL11) Ifa:QJf—_xl Or Ty <X 2y then Ty ¢ 1.
(QL12) Ifx2<i.r1 then o9 2= 1 and Ty < 1.
(QL13) Ifxgﬁxgtxl then x3 < ;.
(QL14) Ifxgtxgt:cl then x3J<r—_:c1.
(QL15) Ifx3<_—+ac2<_—+a:1 then $3<_—+x1.
(QL16) If..'['g(il'gtl'l then ._'L'3J<:ZL'1.
(QL17) [fxgﬁxgixl then x5 < 1.

Proof. Properties (QL7)—(QL10) follow from Assertion 2 and Definition 5. In particular
(QL7) and (QLS) follow from (QL3), as well as (QL9) and (QL10) follow from (QL2).
Property (QL11) follows from properties (QL4) and (QL5) of Assertion 2.

Now we are going to prove (QL12). If x, & 21 then by Definition 1, we obtain,
To & T1 4 21 and X < To & x1. So, according to Notation 3, we have x5 pa 1 and x s 1.

(QL13) follows from (QL6) and (QL3).
(QL14)—(QL15) are caused by inequality (QL2) or (QL3).
(QL16)—(QL17) foloow from (QL6). O

5.2 Finite-repeating Time on Oriented Sets

Definition 6. Let T = (T, <) be a linearly ordered set and M be an oriented set.

= The time ¢ : T — 2BM) will be named as finite-repeating if and only if for every
x € Bs(M) the following condition is fulfilled:

card ({t e T|z € v (t)}) <Ng
(where card (M) is the cardinality of a set M ). Moreover, the number:
Rp, () = card ({t € T|z € (t)})
will be refered to as repeatability of the time 1 relatively the element x € Bs(M).

= We name the time 1 as bounded-repeating if and only if the time 1 is finite-repeating
and there exists the number K € N such that the inequality Rp, (v) < K 1is performed
for each x € Bs(M). In this case the number:

Rp () = dnax Rp, ()

s named as maximal repeatability of the time .

= Letn € N. The time 1 is named as n-repeating, if and only if the time 1 is finite-
repeating and

vz € Bs(M) (Rp, () =n).

Notation 4. Let ¢ : T — 2%M) pe ¢ finite-repeating time on the oriented set M. For
every x € Bs(M) we note:

@//?L (x) = max({tET’mG@b(t)});
V() = min({tET}xE@b(t)}),

where mazximum and minimum should be understood it the sense of the linearly ordered set

T = (T, <).
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Assertion 4. Let T = (T,<) be a linearly ordered set and 1p : T — 2B5M) pe g finite-
repeating one-point time on the oriented set M. Then for any x,x1,x9 € Bs(M) the fol-
lowing properties are holding:

(FR1) @‘( ) < QZJF( ). If, in addition, Rp, (¢) > 2 then 12_(

) <
(FR2) The correlation xo<—xq is true zf and only zfz/J (r1) <
21 # x5 then xo < 21 if and only if ¥~ (r1) < ot (x2).

(FR3) x5 <~z if and only if ¥ (z1) < ¢~ (22).

<9 (@),
)t (x2). If, in addition,

(FRA) If 23 & 2y then ¢ (21) < b (xq).

(FR5) If 25 < 21 then 0" (21) < ¢ (22).
(FR6) If, in addition, the time 1) is n-repeating with n > 2 then xs < x1 if and only if
P~ (21) <Y (32).

Proof. = (FR1): Let x € Bs(M). Then according to Notation 4, we have b (x) =
min ({t € T ! ze(t)}) <max({te€T | zep(t)}) = bt (x). If, in addition, Rp, (¢0) > 2
then the set {t eT | x €Y (t)} contains at least two elements. So minimum of this set is
less then maximum.

= (FR2): Suppose that z1, 9 € Bs(M) and x5 < 1. Then in the case 1 = xo we have

the inequality 1~ (1) < ot (x2) according to Property (FR1). Hence we will consider that
1 # x9. Since xg4—x1 and x; # o, then, by Definition 3, the time points t1,t, € T exist
such that x1 € ¥ (t1), x2 € ¥ (t3) and t; < ty. Therefore:

7 (w) =min({teT|mep)}) <t <ty <max({t e T|zs €y (t)}) =" (a2).
So, for every z1,x9 € Bs(M) it is performed the following implication:
(22 - 2) & (21 £ 02) = (6 (1) < 0 (22) 2)
Thus, in the both cases for any x;, x5 € Bs(M) we have the implication:
(w2 1) = (07 (a1) S 67 (1)) 3)
Conversely, suppose that {D\* (r1) < TZJF (z2). Put:

B0 (1),  fhi= 0 ().

Then in accordance with Notation 4, we have, 1 € ¥ (%\1), Ty € 1 (%\2) and %\1 < ;5\2 Hence,
by Definition 4, we deduce x5 <— 1. Thus for every xy, x5 € Bs(M) we have the implication:

(47 (@) < 0% (@) = (@2 e-m) (®)

The implications (3) and (4) assure the desired equivalence: (x941z1) <

(97 (1) < 0% (22)).

If we assume that, in addition, x; # x5 then from (2) and (4) we deliver the equivalence:
(9 ¢ 71) & (127 (x1) < O+ (%))

= (FR3): Let 2p4-2;. Assume that - (x9) < ot (x1). Then according to Prop-
erty (FR2), we obtain the correlation z; <— x2, which contradicts to z; <ix1. Therefore,

1% (z1) < 12_ (z2).
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Conversely, suppose that ot (x1) < - (z2). Then, applying Property (FR1), we deliver
- (x1) < ot (x1) < - (x9) < ot (x9). Hence, according to Property (FR2), we obtain
T < x1. Assume that the condition z <— x5 also is performed. Then by Property (FR2), we
get the inequality 12* (r2) < 12} (1), which contradicts to the inequality ’Q/ZJ\JF (r1) < Q/ﬁ\* (z2).

That is the assumption about x; <— x5 is wrong. That is why we have x5 & 1.

= (FRA4): Let 21, 2, € Bs(M) and x5, < ;. Then there exists the element 7 € Bs(M)
such, that 25 <~ ¥ < 21. Therefore, using Properties (FR2) and (FR3), we obtain - (r1) <
Ut () < (22), that is 7 (1) < § (x2).

= (FR5): Let 21,25 € Bs(M) and x5 < 1. Then there exists the clement 7 € Bs(M)
such, that zs ¢ 7 ¢-z;. Hence, using Properties (FR2) and (FR3), we get, {Z} (x1) <

07 (7) < 9° (22).
= (FR6): In the case z; # x5 Property (FR6) follows from Property (FR2). In the case
x1 = x9 this property follows from Property (FR1). H

5.3 Strict Supremum and Strict Infimum in Linearly Ordered Sets

Definition 7. Let T = (T, <) be a linearly ordered set and U C T be nonempty subset of
T.

= 1) Element 7 € T is said to be strict upper bound (lower bound) of the set U if and
only if for each element t € U it is valid the inequality t < T (T < t) correspondingly.

= 2) Element 7 € T is named by strict supremum (strict infimum) of the set u U if
and only if:

— T is strict upper (strict lower) bound of the set U.

—  For every strict upper (strict lower) bound T of the set U it is perfrmed the inequality
T < 7T (T < 71) correspondingly.

Directly from Definition 7 it follows the following assertion:

If strict supremum (strict infimum) of the subset U C T exists then it is unique.

Indeed, assume that 7,7’ are two strict supremums of the set /. Then, by Definition 7
both of the inequalities 7 < 7" and 7" < 7 must be fulfilled. Hence 7 = 7.

= For strict supremum of the set & C T (if it exists) we will use the notation:
suppU.
= For strict infimum of the set &« C T (if it exists) we use the notation:
inf L U.
Notation 5. Let T, = (T1,<y), Ty = (T, <s) be linearly ordered sets. We will write
Ty C Ty if and only if the following conditions are fulfilled:
1) Tl g TZ;.
2) For arbitrary t, T € T the inequality t <, T is performed if and only if t <; T.

Assertion 5. Let Ty = (T4, <1) be a linearly ordered set, U C Ty be any nonempty subset of
T, and ty be an arbitrary element such, that to ¢ T1. Then there exists the linearly ordered
set T = (T, <), satisfying the following conditions:
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1. T, CT;
2. T =T, U {t};
3. supp U = 1.
Proof. We put:
T, = {T€T1‘E|tEU(T§1 t)}; (5)
T ={reT|ftcU (t< )} ={reTy|VteU (t< )} =

={r¢ Tl‘ 7 is strict upper bound of the set ¢/ in T, } (6)

where <7 is the strict linear order, generated by the non-strict order <;. It is easy to verify
that the sets T] and T possess the following properties:

T N'T; = 0; (7)
Ty UT; =Ty; (8)
Vit e TfVi- e Ty (t < th). (9)
Properties (7)—(9) stipulate the following properties:
If teT] and t<;t then teT]; (10)
If teT; and {<;t then ¢eTy. (11)
Denote:

On the set T we introduce the order relation. Namely, for every ¢, € T we write t < ¢/
if and only if one of the following conditions is satisfied:

t,t' € Ty and t<;t; (13)
t=ty and t € T7]; (14)
teT] and ¢ = to; (15)

t =t = t,. (16)

It is not hard to prove that T = (T, <) is the linearly ordered set.

The formula (12) leads to the correlation T; C T, whereas from the formulas (13)—(16)
it follows that for any ¢,7 € T; the condition ¢ < 7 is fulfilled if and only if ¢ <; 7. Hence,
corresponding to Notation 5, we have:

T, C T. (17)

Now our aim is to prove that sups U = ty. From the formula (5) it follows the inclusion
U C T . Hence, according to the formula (15), for every 7 € U we get 7 < to. Sinced C T,
and tg ¢ T, then we have 7 # t, for each 7 € U. Therefore:

Vrel (T <t (18)
Assume that for some element t{, € T such that ¢, # ¢, it is performed the condition:
VrelU (r<ty). (19)

Then the inequality ¢, # to ensures the correlation ¢, € T;. So, according to (13), we
obtain, V7 € U (7 <; t;). This means that ¢; is a strict upper bound of &/ in Ty. Hence
in accordance with (6), we get t;, € Ty. Thence, by the condition (14), we deduce t, < t}.
Thus the condition (18) is performed and, moreover, if some element t{ € T satisfies the
condition (19) then we have t, < t,. That is why ¢, is strict supremum of the set ¢/ in T, ie:

supy U = ty. (20)
From the formulas (17), (12) and (20) it follows that the linearly ordered set T satisfies
conditions 1, 2, 3 of Assertion 5. O]

10


https://doi.org/10.20944/preprints202212.0075.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 December 2022 d0i:10.20944/preprints202212.0075.v1

Using the Duality principle (see [14, page 14]) we deduce the following assertion from
Assertion 5:

Assertion 6. Let Ty = (T4, <y) be a linearly ordered set, U C Ty be any nonempty subset of
T, and ty be an arbitrary element such, that to ¢ T1. Then there exists the linearly ordered
set T = (T, <), satisfying the following conditions:

1. Tl C T;
2. T = T1 U {to},’

Applying assertions 5 and 6 successively we obtain the following assertion:

Assertion 7. Let Ty = (T1,<4) be a linearly ordered set, U;,Us C Ty be arbitrary two
nonempty subsets of Ty such, that

VmehVrnel (mn<im), (21)

and t((]l), tém be any two elements such, that tgl), t((f) ¢ T, and tgl) # téQ). Then there exists
the linearly ordered set T = (T, <), possessing the following properties:

1. Tl E T,’
2. T=T,U {tg”, tff’},-
3. supr Uy = t(()l), infp Uy = t(()Q).

Proof. According to Assertion 5, the linearly ordered set T* = (T*, <*) exists such that:

1.1) T, C T*;
1.2) T* = T, U {tg”};
1.3) supt. (Uy) =t

Taking into account that Ty C T* as well as condition (21), we see that for every elements
71 € U; and 75 € Uy the inequality 71 <* 7» holds, where <* is the strict linear order,
generated by the non-strict order <*. Hence any element 75 € Us is a strict upper bound of
the set U in the linearly ordered set T*. And since t(()l) = supt. (U), we have the inequality:

tél) S* T2 (VTQ € Z/{Q) .

But since tél) ¢ Ty and Uy C Ty, the equality t(()l) = 7o is impossible for each € U,.
Therefore:
t(()l) <* To (VTQ S Z/{Q) . (22)

In accordance with Assertion 6 the linearly ordered set T = (T, <) exists such that:

2.1) T*C T;
29 T= T U {2} =m0 [ 2),
2.3) infh (Us) =t

To complete the proof, it is necessary to make sure that sups (U;) = tél). By condition
of the assertion we have T* C T. So in the correlation (22) the sign <* may be replaced

by <. Therefore from the formula (22) as well as equality inf} (Us) = t(()Z) it follows the

11
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inequality tél) < t((f). But, by condition of the assertion we have tél) # téQ). Thus we obtain

the strict inequality:
1) < ¢l (23)

Since supr. (U) = t(()l), then for every 7 € U; we have the inequality 7 <* t(()l). Thence,
taking into account the correlation T* C T, we deliver:

7'1<t(()1) (\V/’Tl Gul).

Hence tél) is a strict upper bound of the set U relatively the linearly ordered set T as well.

Let E) be other element of T such that:
T1 </t:) (VTl Eul). (24)

If we assume that {, € T*, then, taking into account the equality t(()l) = supr. (Uy), we

obtain the inequality t(()l) <* 1o, and therefore (since T* C T) we get the inequality:

M < 1. (25)

So it remains to consider only the case ty = t(()z). But in this case the inequality (25) follows
from (23). Thus the inequality (25) holds for each element ¢, € T, satisfying condition (24).
Consequently:

15! = sups (th). =

5.4 Evolutionary maximums and evolutionary minimums of oriented sets

Definition 8. = We name an element x* € Bs(M) by evolutionary maximum of
the oriented set M if and only if for any element © € Bs(M) the following condition is
performed:

=1 or &
= We name an element x, € Bs(M) as evolutionary minimum of the oriented set
M, if and only if for every element x € Bs(M) the following condition holds:

_l’_
T =2y OF X4 Ty

Assertion 8. If evolutionary mazimum (evolutionary minimum) of the oriented set M exists
then it is unique.

Proof. Let * and x** be two evolutionary maximums of the oriented set M. Suppose that
x* # x**. Then by Definition 8, we obtain z** & 2% and o <ia:**, which is impossible.

Hence, x* = 2**. Similarly it can be proven the uniqueness of evolutionary minimum. O

Notation 6. If x* is an evolutionary mazimum (z. is an evolutionary minimum) of the
oriented set M we will write:

r* = max*(M) (r, = min*(M))
correspondingly.

Definition 9.

= An oriented set M will be named evolutionary bounded if and only if max*(M)
and min*(M) ewist.

= An oriented set M will be named strictly evolutionary bounded if and only if it
is evolutionary bounded and card (Bs(M)) > 2.

12
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Assertion 9. If the oriented set M is strictly evolutionary bounded then max* (M) #
min* (M) and, moreover, max* (M) ¢~ min* (M).

Proof. Let M be strictly evolutionary bounded oriented set. Assume that max* (M) =
min* (M) = z*. Since the oriented set M is strictly evolutionary bounded, we have,
card (Bs(M)) > 2 (by Definition 9). Hence there exist an element z € Bs(M) such
that x # 2*. Then, using equality max* (M) = min* (M) = z* as well as Definition 8, we
conclude that z <~ z* and z* ¢~ z, which is impossible. Thus max* (M) # min* (M) and, by

Definition 8, we deduce that max* (M) <= min* (M). O

5.5 Partial one-point chronologizations of oriented sets

In this section it will be introduced one more auxiliary technical concept necessary to for-
mulate the main lemma, needed for the proof of main result.

Notation 7. Let M be an oriented set and My C Bs(M) be arbitrary nonempty subset
of Bs(M). Henceforth the record M, will mean the oriented set, satisfying the following
conditions:

o Bs (M) = My;
o For every x,y € Bs (Mm,) = My the correlation y(M— x 1is performed if and only if
My
— .
Yy v
Further we will adhere to the following convention:

Convention. In the cases, where we simultaneously deal with the oriented set M as well
as some its “oriented subset” Myw,, for x,y € My the records ytm and yﬁx always will
mean that y <=z and y <=z (but not y<——x or y+—— x).

Ay yi v v )

It turns out that it is simpler to prove the existence of exactly 2-repeating one-point time
on every quasi-chain oriented set. This fact serves as a motivation for the following auxiliary
technical definition.

Definition 10. Let M be any oriented set and N C Bs(M) be arbitrary nonempty subset
of Bs(M).

By partial 2-repeating one-point chronologization of the oriented set M with re-
spect to the subset N we will understand the ordered pair (T, ), which satisfies the following
conditions:

1. T = (T, <) is a linearly ordered set.

2. 1 is a mapping of type 1 : T — 9Bs(Mn)

the oriented set My.

, moreover it is one-point 2-repeating time on

3. For every x,y € Bs (Mn) = N the following implications are performed:

~

3.1 (y&a) = (0 @< W)
3.2 <y<_—+1;) = (;b\*(x) < ¢t (y))

Remark 4. According to the convention, accepted in Notation 7, the conditions 3.1 and 3.2
of Definition 10 are essential and they do not follow from Assertion 4 (items (FR4) and

(FR5)). Indeed, by this convention the records y <=z and y <z must be understood as

+— —+ +— —+
— x and y < z (but not y +—— x or y+—— x).
Ay yi Y Ve )

13
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Remark 5. Further for conciseness we will use the term “partial 2-chronologization”
instead of “partial 2-repeating one-point chronologization”.

6 The main lemma

The next main lemma is needed for the proof of sufficiency for Theorem 3.
Lemma 2. Suppose the following:
1. An oriented set M s strictly evolutionary bounded and quasi-chain.

2. (T1,¢1) = (T4, <1),41) is a partial 2-chronologization of M relatively a subset N C
Bs(M) such that min* (M), max* (M) € N.

3. xg € %5(/\4) \ N.
4. to, ty are arbitrary elements such that to,ty, ¢ T1 and to # t;.

Then there exists the partial 2-chronologization (T,¢) = ((T,<),4) of the oriented set M
relatively the subset N U {xo} satisfying the following conditions:

a) T,CT.
b) T ="T,U{to,t,}
c) Ve Ty (¢(t)=v1(t)).
Proof. Introduce the following notations:

N, := {xEN‘x?—ero}, (26)
N_:= {xEN‘xotx}, (27)
" :=max" (M); xz,:=min" (M).

Since the oriented set M is strictly evolutionary bounded then, by Assertion 9, we get

According to condition of the lemma, we have 2% x, € N. So, since 2y ¢ N then by
Definition 8, we deduce: z* <iaco<ix*. Hence, in accordance with Assertion 3 (property

(QL12)), we get: 2% < 2o x,. Thus, we have, z, € N_ and 2* € N,. Therefore the sets

N_ and N, are nonempty.
For every x € N we put:

b =4 28
VY 4 (@) f), ;on (28)
R (121\;'_ x), To -

(. =4 29
LA PP S 2

+
where for z1,29 € Bs(M) the record xs <4 x; means that the correlation z; <ix1 is not

performed.
Now we are going to prove the following property of the functions 1/1f o and ¥y, -

14
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(Yxol) If 21 € N_ and xo € Ny then @fxo (1) <4 L/D\fxo (x2).

Indeed, consider any elements z; € N_ and =5 € N,..

+ o+ _ _
= In the case xq </ x¢ ¢~ x1, according to (26), (27), we get xo < 2o ¥ 21, Hence, by

Property (QL13) (see Assertion 3), we obtain, xs<— 2. So, taking into account that
the time 1, is 2-repeating and using the formulas (28),(29) as well as Assertion 4
(Property (FR6)), we deliver:

12;1_,3:0 (z1) = 121_ (z1) <1 @f (z9) = ll;ii_mo (2) -

+ _
= In the case @2 & 2 <+ 1, according to (27), we get, xo & 20 E 2. Hence, by Prop-

erty (QL16) (see Assertion 3), we obtain, 25 <= x;. Thence (taking into account that

(Ty,4) is a partial 2-chronologization of the oriented set M relatively N), by Defini-
tion 10 (item 3.1), we have ¥y (z1) <1 ¥y (z2). So, according to (28), (29) we obtain:

{Z;l_,zg (z1) = @Ef (z1) <1 151_ (z9) = @ZEO (z2) .

+ _
= In the case x5 <~ xg <i:c1, according to (26) we have, x5 Jxo & Hence, by Prop-
erty (QL17) (see Assertion 3), we obtain, 3 <= #;. Thence, by Definition 10 (item 3.2),

we obtain @f (1) <4 @f (x2). So, in accordance with (28), (29), we get:

121_,1«0 (z1) = TZT (z1) <1 TET (z9) = {/;ii_xo (2) -

= In the case x5 <=z ¢~ 21, according to Property (QL6) (see Assertion 2), we deduce

2y < 21. Hence, by Assertion 4 (Property (FR3)), we obtain O (21) <1 U7 (x2). So,
in accordance with (28), (29), we conclude:

~

Oray (01) = O (1) <1 0y (22) = O, (2).
Thus, in all possible cases the property have been proven.
Denote:
T = { G, @) |2 e N} (30)
T = {;E;xo ()| x € N_} . (31)
From the Property (¢x¢1) it follows that:
Vi, € Ty Vi, € TT (4 < ta). (32)

Formula (32) together with Assertion 7 ensure the existence of the linearly ordered set
T = (T, <), possessing the following properties:

(T2) T = T1 U {to, tf)},
(T3) sups (T7) =to, infy (T7) =¢,.

15
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From the formula (32) as well as Condition (T1) it follows that V¢, € Ty Vi, € T (¢ < ta).
Therefore from Condition (T3) the inequality o < ¢ is deduced. But, by conditions of the
lemma, we have ¢y # t,. Consequently:

to < tg. (33)

Below we establish some additional properties of the functions {b\f and @//)\1_ , namely the
properties (1x2)—(1xo5) (see further).

(Y202) If z € N and < xy then ty < &f (x).

Indeed, let x € N and x < xg. Let us prove that for an arbitrary element x; € N_ the
following inequality holds:

o~

Vi (1) < OF (). (34)

+
= In the case xg </ 21 according to (27) we get x < xq £ 21. So, by Property (QLT7) (see

Assertion 3), we have x <— ;. Consequently, taking into account the fact that the time
1 is 2-repeating, using formula (29) and Property (FR6) from Assertion 4, we obtain,

sz,xo (1) = 121’ (x1) <4 sz (). Thence, since Ty C T (by condition (T1)), we get the
inequality (34).

= In the case 2y - 21 we have ¢z <= 1, ie ¥ <= 2. Hence, applying the formula (29)
as well as Definition 10 (item 3.2), we get, QZI_ZO (z1) = ¢f (z1) <1 7 (2). Thence,
since Ty C T (by condition (T1)), we get the inequality (34).

Therefore in the both cases the inequality (34) had been proven. Since the inequality
(34) holds for each element x; € N_, then, by the formula (31), we have:

t<gf(z)  (VteTy).
Hence the element ¢; (z) € T; C T is a strict upper bound of the set Ty, where,
by condition (T3), sup} (Ty) = to. Thence, by Definition 7, (item 2), we obtain
the inequality ¢t < v7 (z). But, since ¢y ¢ T, (by conditions of the lemma) and

oF (r) € Ty, then the equality to = ¢} () is impossible. Thus, we obtain the desired
strict inequality to < ] (z). The property have been proven.

(Vz03) Ifz €N and o+ then ] (z) < to-

Indeed, let x € N and zy < x. Let us prove that for an arbitrary element z; € N, the
following inequality is fulfilled:

~

Ur (@) <, (21) (35)

+ _
= In the case 1 </ 2o according to (26) we get x; < 294 x. So, by Property (QLS8) (see

Assertion 3), we have, x; +— z. Consequently, taking into account the fact that the time
1 is 2-repeating, using Property (FR6) from Assertion 4 and formula (28), we obtain,
U7 (2) <1 O (1) = $f$0 (x1). Thence, since T; C T (by condition (T1)), we get the
inequality (35).

+ + . - ..
= In the case x; < xy we have x < xg < x, that is x; < x. Hence, taking into account

Definition 10 (item 3.1), as well as the formula (28), we obtain, {p\f (x) <1 121_ (x1) =
Y7, (z1). Thence, since Ty E T (by condition (T1)), we get the inequality (35).
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Therefore, in the both cases the inequality (35) have been proven. Since the inequal-
ity (35) is valid for arbitrary element z; € N, then, according to the formula (30), we
have:

oy ()<t (vteT}).

Hence the element {D\f (r) € T; C T is a strict lower bound of the set T;. Thence,
taking into account the condition (T3) (namely the equality infy (TY) = ¢{), we ob-

tain the inequality @//1\1_ (x) < t;. But since t;, ¢ T, (by condition of the lemma) and
U1 (x) € Ty, then the equality t; = ¢y (z) is impossible. So we deliver the desired
strict inequality ¢, (z) < t;. The property have been proven.

(Vo) If z € N and x4 xy then ty < 121\1_ (x).

Indeed, let x € N and xtxo. Let us prove that for an arbitrary element x; € N_ the
following inequality is fulfilled:

~

Via (1) < U7 (7). (36)
. + N
Below we consider two cases: <~ x; and g < 1.

+ _ _
= Case g ¢4 x1. In this case according to (27) we have, - 3:01 x1. Thence, by As-

sertion 3 (property (QL14)), we obtain, = 4= 21 (where 21,2 € N). Hence, by Defini-
tion 10 (item 3.1), we get ¥7 (z1) <, sz (x). Therefore, taking into account the fact
that x ;Lxl, as well as the formula (29), we deduce, Qzl_mo (z1) = ¥ (z1) <1 U7 ().
Thence, since Ty C T (by condition (T1)), we get the inequality (36).

= Case 1z <i:1:1. In this case we have, xtxo <ix1. That is, by Assertion 3 (property
(QL10)), we deliver 2 <~ z;. So, by Assertion 4 (property (FR3)), we have, ¢; (1) <3
7 (). Hence, since, o <~ 21, then according to the formula (29), we have, @1_930 (1) =
&f (x1) <1 121_ (x). Thence, since Ty C T (by condition (T1)), we get the inequality (36).

Therefore, in the both cases the inequality (36) have been proven. Since the inequal-
ity (36) is valid for arbitrary element z; € N_, then, according to the formula (31), we
obtain: N

t <y (v) (Vt e T7).

Hence the element ’Q/ZJ\I_ () € Ty C T is a strict upper bound of the set T . Thence,
taking into account the condition (T3) (namely the equality supi (Ty) = to), we
obtain the inequality ¢y < 121_ (x). But since ty ¢ Ty (by condition of the lemma) and
QZf (z) € Ty, then the equality ¢ty = QZf (x) is impossible. So we deliver the desired strict
inequality g < 7:/)\1_ (x). The property have been proven.

(W25) Ifz €N and zo <z then ¥ (z) < to-

Indeed, let, x € N and x¢ 2. Let us prove that for an arbitrary x; € N, the following

inequality is valid: R N
Ot (@) < Bty (1), (37)

+
. +
Below we consider two cases: 7 <~ xg and 7 < .
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+ _ _
= Case x1 ¢4 xo. In this case according to (26), we have, <—+x0 PRy Thence, by

Assertion 3 (property (QL15)), we obtain, x; <~ & (where z,2; € N). Hence, by
Definition 10 (item 3.2), we get, @/Z)\f (x) <4 12{“ (z1). That is why, taking into ac-

+
count the specifics of the case (ie x </ xy) as well as the formula (28), we deduce,

?,/D\f (r) <1 @/Z)\f (r1) = zEfFZ,O (z1). Thence, since Ty C T (by condition (T1)), we get the
inequality (37).

= (ase 7; ¢ 70. In this case we have, 71 - 2o <= 2. So, by Assertion 3 (property (QL9)),
we deliver z; -« (where z, 21 € N). Therefore, by Assertion 4 (property (FR3)), we

have, @Zf () <4 {D\l_ (z1). That is why, taking into account the specifics of the case
(ie 2, <~ x0) as well as the formula (28), we deduce, i (z) <; ¢ (z1) = UV, (1)
Thence, since Ty C T (by condition (T1)), we get the inequality (37).

Thus, in the both cases the inequality (37) have been proven. Since the inequality (37)
is valid for arbitrary element x; € N, then, according to the formula (30), we obtain:

o (@) <t (VteT]).

Hence the element 9 (z) € T; C T is a strict lower bound of the set T;. Thence,
taking into account the condition (T3), (namely the equality inf} (TY) = t{), we
obtain the inequality ¢; () < ). But since tj ¢ T (by condition of the lemma) and
@f (x) € Ty, then the equality t{ = @f (x) is impossible. So we deliver the desired
strict inequality o,/b\f' (x) < ti. The property have been proven.

For each t € T we put:

L U (t) , teT,
V)= {{xo}, te {to )} (38)

Now we are going to prove that the mapping v is a time on the oriented set M nuzo} =
(NU{zo}, <) (where the symbol < in reality means the restriction of the relation o into

the set NU {zo} C Bs(M)).

2.1) From the formula (38) and the fact that i is a time on the oriented set
Min = (N, <) we conclude that Vo € NU {xo}3t € T (x € ¢ (t)) (where NU {zo} =
Bs (Mnuizy)). So the first condition of Definition 3 is satisfied for the mapping .

2.2) Let 1,29 € NU{x0}, 2221 and x7 # xo.

2.2.1. First we consider the case, where x1, 25 € N. From the fact that 1, is a time on
the oriented set My = (N, <) it follows the existence the time points t1, ¢y € Ty such that
x1 € Py (t1), T2 € ¥ (ty) and t; <y to. Thence, using the formula (38) and condition (T1)
(T; C T) we obtain that t1,ts € T, 21 € ¥ (t1), 2 € ¥ (t2), t1 < t3. Thus it only remains to
consider the cases where x1 = xy or 9 = 9. We consider these cases below.

2.2.2. Case x1 = . In this case we have, x5 <1 = xg and x9 # 77 = 9. And from the
inequality zo # z¢ if follows that x5 € N. Thence, taking into account the property (¢x(2),
we obtain the inequality, ty < 7 (z3). Denote: t; := to, to := 17 (x2). Then, applying the
formula (38) as well as Notation 4, we obtain:

x1 =70 € {20} =V (to) = ¢ (t1);
To € ¢1 (tg) = 1/) (tg) and
t1 < to.
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2.2.3. Case x9 = xg. In this case we have, xqg = z9 <21 and x; # x9 = xy. From the
inequality z; # zy if follows that z; € N. Thence, taking into account the property (¢xy3),
we obtain the inequality, 121’ (1) < ti. Denote: t; := 151’ (x1), ta :=t. Then, applying the
formula (38) as well as Notation 4, we deduce:

x1 € 1 (t) =9 (t1);
Ty =z € {20} = w(tf)) = (ta2);

and t; < to.

Therefore in all possible cases we have proven that, for every x1, 25 € NU {x¢} such that
To <— 11 and x7 # x9 there exist time points tq,ts € T such, that 21 € ¥ (t1), x2 € 1 (t2) and
t; < ty. So, the second condition of Definition 3 is also satisfied for the mapping . Thus,
the mapping ¢ is a time on the oriented set M nu(zy = (NU {zo}, ).

The next aim is to prove that the time v is one-point.

3.1) Since the time 9, is one-point, then from the formula (38) it follows that for each
t € T the set ¢ (t) is a singleton. Therefore, by Definition 4, the time 1) is quasi one-
point.

3.2) Let ty,to € T, 1,29 € NU {0}, t1 < to, 21 € ¢ (t1), 22 € ¢ (t2). Let us prove that
in this case zy < 1.

3.2.1. In the case t; = ty using the fact that (by item 3.1)) ¢ (¢) is a singleton set, we
obtain that 1 = x5. So, by Definition 1 in this case we have the desired correlation xg < z7.
Hence, further we consider that t, < ts.

3.2.2. In the case t;,t; € Ty, taking into account the formula (38) as well as condi-
tion (T1) (ie Ty C T), we get:

Y (t) =1 (th), Y (t) =1 (ta2), t1 <1 to.

And since (by conditions of the lemma) the time 1); is one-point, according to Definition 4
we obtain 9 <+ 7.

Thus it remains to consider only two cases t; € {to,%,} and ty € {t¢,?;} under additional
condition t; < t».

3.2.3. Case t; € {to, 1y} (t1 < t2). In this case, taking into account the inequality (33)
as well as the formula (38), we have:

ty <t < to, xr1 € w (tl) = ’l/} (to) , To € ’l/) (tQ) . (39)

From the condition z; € ¢ (ty), according to formula (38), it follows that z; = xy. Therefore
it needs to prove that xy < xj. Assume the contrary, ie xs <~ . Then, taking into account

that the oriented set M is quasi-chain, by Definition 5, we obtain x & 1. So, the equality

ro = X9 is impossible, that is x5 # xy. Hence x5 € N. Thus, using Assertion 3 (property
(QL12)), we obtain:

$2€N,:{5L’€N‘ZCO—(~_—_Z‘}.
Since Ty -z then, in accordance with formulas (29) and (31), we have, sz (1) =
@ixo (x9) € T . Thence we deliver:
Of (22) < supi (T7) = to. (40)

Since xo € N (ie 25 # x¢) and (according to (39)), zo € ¥ (t2), then taking into account the
fact that ¢ (to) = ¢ (t;,) = {xo}, we get to & {to,t;}. Hence, t5 € Ty. So, by formula (38),
we have 1 (t5) = 1y (), that is (according to (39)) @5 € w1 (t2). Thence, to < 7 (22).
And, taking into account condition (T1) (T; C T), as well as the inequality (40) we obtain:

t2 S Qﬁf (Ig) < t().
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The last inequality contradicts to conditions (39). Hence, the assumption, made before is
wrong. That is why we obtain, x5 < zo = 1 (ie 23 < 7). Which was to be proven.

3.2.4. Now we consider the case to € {to, %y} (t1 < t2). In this case, taking into account
the inequality (33) as well as the formula (38), we have:

t <ty < t6, xr1 € 1/} (tl) , To € w (tg) = Q,D (t{)) . (41)

Let us prove that o« x;. From the condition zo € 1) (}), according to formula (38), it
follows that xy = xy. Therefore it needs to prove that zy< x;. Assume the contrary, ie

xo 4~ x1. Then, taking into account that the oriented set M is quasi-chain, we have x; & Zo.

Therefore, the equality x¢o = x; is impossible, that is x; # z¢. Hence x; € N. Thus, using
Assertion 3 (property (QL12)) we deduce:

$1€N+:{x€N‘x?—+xo}.

Since x4y then, in accordance with formulas (28) and (30), we have, ¥; (z;) =

Jf,mo (1) € T]. Thence we deliver:
to = inf% (T7) <y (a1). (42)

Since z1 € N (ie 21 # z¢) and (according to (41)), x1 € ¥ (1), then taking into account the
fact that ¢ (to) = ¥ (ty) = {zo}, we get t1 & {to,}. Hence, t; € T;. So, by formula (38),
we have v (t;) = 11 (t1), that is (according to (41)) x; € 1y (t1). Thence, ”é/b\f (x1) <5 ty.
And, taking into account condition (T1) (T; C T), as well as the inequality (42) we obtain:

t6 < ¢; (:cl) < t.

The last inequality contradicts to conditions (41). Hence, the assumption, made before is
wrong. That is why we obtain, o = x¢ < x;. Which was to be proven.

From the items 3.2.1-3.2.4 it follows that in all possible cases the conditions 1,15 € T,
x1, 29 € NU{xo}, t1 < to, x1 € Y (t1), 22 € ¥ (t2) stipulate the correlation xg < ;.

By Definition 4, from the items 3.1), 3.2) it follows that the time ) is one-point on the
oriented set M nugzoy = (NU {z0}, ).

Since the time v, is 2-repeating, the equality (38) ensures that the time ¢ also is
2-repeating.

Now we are going to prove that for any x,y € NU{zo} = Bs (/\/l rNu{xo}) the condition

y £ 2 involves the inequality {D\_ () < 7:/}\_ (y). Hence, consider any z,y € NU {z(} such
that y gy

5.1) In the case, where 2,y € N the formula (38) delivers the equalities 1~ (z) = 7 (),

b (y) = @1’ (y). That is why in this case the desired implication follows from the fact that
(Ty,1) is a partial 2-chronologization of M relatively the subset N C ®Bs(M). Therefore it
remains to consider only the cases where © = xq or y = xy.

5.2) Consider the case © = xy. Since we have y = x, then the equality y = x is impossible
(by definition of relations <~ and <= (see notations 1 and 3)). Hence y # z, that is y # .
Thus, we have y € N and y <= 2. Thence, using property (Yxod), we obtain ty < 121_ (y).

Since y € N then the formula (38) gives ¢~ (y) = 97 (y). Thus, using the formula (38), we
obtain:

o~ ~

b (x) =% (m0) = to <%y () =0 (y).
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5.3) Now we consider the case where y = xy. Since y pim x, then we have z £ 2. Conse-

quently, z # xo, that is © € N.  Thus, we have, ZEOJ{—_ZL‘, where x € N.  Thence it follows
that x € N_ (by formula (27)). That is why, applying (38) and (29), we obtain:

V7 (2) = Y1 (1) <1y, (2)
Hence, taking into account that T, C T we deduce, )~ (x) < &;zo (), where {Zz\l_xo (x) €

{{D\f 2 (T) ’ TE N_} = T, . Therefore, according to condition (T3) as well as Definition 7,
we obtain: N N R N
Y (z) <YL, (7) <suprp (Tf) =ty =1 (w0) = (y).
Results, established in the items 5.1)-5.3) ensure that (in all possible cases) condition
y £ 2 leads to the inequality ¢~ (x) < - (y) (for arbitrary xz,y € N U {z¢}), which was to
be proven.
Let us prove that for any x,y € NU{z(} the condition y “a stipulates the inequality

I* (z) < ¥F (y). So, consider any z,y € NU {20} such that y <= z.

6.1) In the case, where x,y € N the formula (38) leads to the equalities - (x) = @1’ (x),

12_ (y) = ?Zl_ (y). That is why in this case the desired implication follows from the fact that
(T4, 1) is a partial 2-chronologization of M relatively the subset N C 8Bs(M). Therefore it
remains to consider only the cases where x = xg or y = .

6.2) Consider the case © = xy. Since we have y P x, then the equality y = x is impossible
(by definition of relations & and <_—+) Hence y # x, that is y # xo. Thus, we have y € N

and y(irxo. Thence it follows that y € N, (by formula (26)). That is why, applying (28)
and (38), we obtain:

Ul (9) <101 (9) =07 ().
Hence, taking into account that T; C T, we deduce, foo (y) < ¥7 (y), where @fmo (y) €
{@f 2 () ‘ T e N+} = T} . Therefore, according to condition (T3), we obtain:

~

UF (@) = to = infy (TT) <df,, () <V* ().
And taking into account that x = 7 we have the desired inequality @ZJF () < {/J\+ (y).
6.3) Now we consider the case where y = xy. Since we have y?—er, then the equality
y = x is impossible (by definition of relations & and _@r) Hence, x # y, that is x # .
Thus, we have z € N and 7y = y <= 2. Thence, using property (Yxoh), we get the inequality
U7 (x) < t. That is why, applying (38), we obtain:
U (@) <ty =" (z0) =97 (). (43)
Taking into account that z € N, we deduce, ¢* (x) = ot (z) (by formula (38)). Hence, from
the inequality (43) we deliver the desired inequality, ¥ () < ¥ (y).
Thus, in all possible cases the conditions z,y € NU{z} and y < 2 lead to the inequality
B (1) < (9).
= Conditions (T1),(T2), equality (38), as well as results, established in the items 2-6

of the present proof assure that (T,1)) is partial 2-chronologization of the oriented set M
relatively the subset N U {z(}, satisfying the additional conditions a)-c) of this lemma. [J
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7 Proof of Sufficiency for Theorem 3

The next lemma ensures the sufficiency for Theorem 3.

Lemma 3. If the oriented set M is a quasi-chain then it can be one-point chronologized.
Moreover there exists the chronologization H = ((T, <) ,4) of M with 2-repeating one-point
time 1.

Proof. Let M be quasi-chain oriented set.
I. First we prove the lemma under the following additional assumption:
Assumption * Oriented set M s strictly evolutionary bounded.

So, suppose that Assumption * holds. Then there exist min* (M) and max* (M).
Consider an arbitrary set T, satisfying the following conditions:

1) card (7) > N, 2) card (T) > card (Bs(M)).

I.1. Introduce the set .7 of all ordered pairs of kind h = (Ty,¥n) = ((Th, <n), ¥n)
satisfying the following conditions:

1%, h is partial 2-chronologization of the oriented set M relatively a some subset Ny C

Bs(M) such, that min* (M), max* (M) € Ny,.
2. T, CT.

Note that from the item 1° it readily follows that for each chronologization h = (T, ¢y) =
((Th, <n), ¥n) € S the set N, can be expressed by the formula:

No=J vn(®). (44)

Let us prove that the set .7 is nonempty. Chose arbitrary four elements 71, 75, 73,74 € T
(where 7; # 7; for ¢ # j). Denote:

x_ := min* (M), x, := max" (M)
Nho = {33,, er} ) Tho = {Tl7 72,73, T4} :

Further for 7;,7; € Th, (4,7 € 1,4) we consider that 7; <p, 7; if and only if i < j (where <
is the standard order on the set of natural numbers). It is obviously that the ordered pair:

Ty, = (Thov Sho)
is a linearly ordered set. Denote:
{LE,}, te {7'1,7'2}
t) = teTy,).
¢h0 ( ) {{.’L'+} ’ t E {7_377_4} ( hO)

It is not hard to verify that vy, is an 2-repeating one-point time on the oriented set M[Nho,
moreover {min* (M), max* (M)} = {x_,x,} = N, and Ty, = {r, 7,73, 7a} C T.
Hence, hy € 7. That is why # # (), which was to be proven.

We introduce the following binary relation on the set ¢ :

(Ho) For any chronologizations h = (Ty, ¢¥n) = ((Th, <n), ¥n) € # and H = (Ty, ¢¥u) =
(T, <u), ¥u) € # we write h < H if and only if the following conditions are
satisfied:

Hol. Ty, C Ty (in particular from the last correlation it follows that Ty, C Th).
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Ho2. Vt € T, <¢h (t) = ¢H (t)) (16 ¢h C 77DH)

It is easy to verify that the binary relation < is a partial order (that is reflexive, asymmetric
and transitive relation) on the set of chronologizations .77 .

Now we are going to prove that in the ordered set (%” , < ) every chain has an upper
bound.
Let £ C A (£ # 0) be any chain of the ordered set (2, <”). Below we construct

some partial 2-chronologization H= (Tﬁ, dJﬁ) = ((Tﬁ7 Sﬁ) , dJﬁ) of the oriented set M.

= H1. Denote:

Ty = (J Tn (45)
he?

= H2. For arbitrary t;,t, € Ty we will write ¢; <g t, if and only if a chronologization
h € Z exists such, that t;,t; € Ty and t; <y, to.

= H3. Let t € Tg. Then, according to formula (45), there exists a chronologization h € &
such that ¢ € Ty,. Denote:

Vg () == Un (t). (46)

First of all we have to prove that the formula (46) determines the mapping 1g (t) : Ty — 2V
by a correct way, where

Ng = |J Na. (47)
Hey
Suppose that ¢t € Ty, and t € Ty, where h,;h; € .Z. To prove the correctness of definition
of the mapping g by the formula (46), it is necessary to verify the equality ¥y (t) = ¥n, (2).
Since % is a chain of the ordered set (,%” , <7 ) then .Z is a linearly ordered set under the
relation <”. Hence for the elements h, h; € £ at least one of the correlations h <” h; or
h; <” h must hold. But in the both cases, according to the item Ho2 of definition (Ho) of
order <”'| we obtain the equality, ¥y, () = ¥y, (t), which was to be proven.
I.2. Now the aim is to prove that the triple H = (Tﬁ,@/}ﬁ) = ((Tﬁ, Sﬁ) , @bﬁ), con-
structed above, is a partial 2-chronologization of the oriented set M relatively the subset
Ng € Bs(M), determined by the formula (47).

I.2.1. Let us prove that Ty = (Tﬁ, Sﬁ) is a linearly ordered set.

I.2.1.a) Consider any element ¢ € Tg. By the formula (45), there exist the chronol-
ogization h = (Ty,¥n) = ((Th, <n), ¥n) € £ such, that ¢ € Ty. So, since
Ty = (Th, <pn) is a linearly ordered set, we have ¢t <y, , and, according to the item

H2 (see above), we get t <g t. Hence, the reflexivity of the relation <g has been
proven.
I.2.1.b) Assume that for elements ¢,7 € Ty inequalities ¢ <z 7 and 7 < ¢ hold.

Then, by the item H2 (see above), the chronologizations hy, hy € £ exist such,
that t,7 € Ty, (1 € 1,2), ¢t <y, 7 and 7 <p, t. Since £ is a chain of the ordered
set (%, ij) the element h, € {h;, hy} must exist such that h; < h, and
h, < h,. Indeed, to verify the existence of such element h, it is sufficient to put:

h o hy, hy <7 hy
" lhy, hy < h.

According to the item Hol of the definition (Ho) of the order relation <7 the

correlations h; <” h, and hy, <’ h, provide the correlations Th, C Ty, and
Ty, E Th,. Hence (according to Notation 5), we deliver the inclusions Ty, C Ty,
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and Ty, C Th,. So, taking into account that t,7 € Ty, (i € 1,2), we obtain
t,7 € Ty,. Since Ty,,Tyn, T Th,, then the inequalities ¢t <y, 7 and 7 <y, t,
lead to the inequalities ¢ <j, 7 and 7 <y, ¢ (see Notation 5). But from the last
inequalities, taking into account the fact that (Th,, <p,) is a linearly ordered set,
we obtain the equality ¢ = 7. Thus, the asymmetry of the relation <g has been
proven.

I.2.1.c) Let elements ti,t5,t3 € Tg, be such that t; <g ¢, and t, <g t3. Then,
according to the item H2 (see above), there exist the chronologizations hyy, hyy € &
such, that t1,%o € Th,,, to,t3 € Thys, t1 <ny, t2 and to <p,, t3. Since £ is a chain
of the ordered set (% , <7 ) the element hys € {hjs, hos} must exist such that
hiy <7 hy3 and hys <7 hy3. According to the item Hol of the definition (Ho),
the correlations hys <? hy; and has <” hj; lead to the correlations Th,, € Thy,
and Ty,, € Ty,,. So, taking into account that ¢1,to € Ty, and to,t3 € Th,,,
we get tq,ts,t3 € Thy,. Since Th,,, Thy, T Th,,, then the inequalities t; <j,, o
and ty <p,, t3 assure the inequalities t; <y, to and ty <j,, t3 (in accordance
with Notation 5). But, since (Th,,, <n,;) is a linearly ordered set, the last two
inequalities ensure the inequality ¢; <p,, t3. Thus, we have t;,t3 € Th,, and
t1 <ny; t3. Thence by the item H2 (see above), we deduce ¢; < t3. Hence, the
transitivity of the relation <z has been proven.

I.2.1.d) Consider any elements t;,t, € Tg. From the formula (45) it follows the
existence of chronologizations hy, hy € .Z such that t; € Ty, ty € Ty,. Since .Z
is a chain of the ordered set (%, <”) the element h, € {hy,hy} must exist such
that hy <” h, and hy, <” h,. According to the item Hol of the definition (Ho),
the correlations hy < h, and h, <” h, lead to the correlations Ty, C Ty,
and Ty, C Ty,. That is why, taking into account that ¢; € Ty, (i € 1,2), we
get t1,ts € Th,. Thence, since (Ty,, <p,) is a linearly ordered set, it follows that
at least one of the inequalities t; <y, t or to <y, t; must be performed. But,
in accordance with the item H2 (see above), the inequality t; <p, ¢ leads to
the inequality t; <g t» as well as the inequality t; <y, t; ensures the inequality
to <g t1. Thus for every t;,%, € T at least one of the correlations t; <g t2 or
to <g t1 must be true. Hence the ordering < is a linear, and so (Tﬁ, gﬁ) is a
linearly ordered set, which was to be proven.

1.2.2. Now we are going to prove that the mapping ¢ (t) : Ty — 2V& is a time on the
oriented set My = (Nﬁ, <—).

I.2.2.a) Let z € Ng = Bs (Mmﬁ)- Then by the formula (47), there exist the chronol-
ogization h € % such, that x € Ny. Thence, according to the formula (44), it
follows the existence of the element ¢ € Ty, such, that = € iy, (t). Since t € Ty,
then, by the formula (45), we get t € Tg, as well, according to the formula (46),
we obtain g (t) = ¥n (t). Therefore we have x € g (t), where t € Tg. Thus,
we have proven that for an arbitrary element z € Bs (M[Nﬁ) the element ¢t € Ty
exists such that x € 9g (t).

I.2.2.b) Let 21,2, € Ny = Bs (./\/lmﬁ), To< 11 and xy # x9. Then according to
the formula (47), there exist the chronologizations hy, hy € Z such, that x; € Ny,
x9 € Np,. Since .Z is a chain of the ordered set (%ﬂ, S%j) the element h, € {h;, hy}
must exist such that hy < h, and hy, <” h,. According to the item Hol of the
definition (Ho), the correlations hy < h, and hy, < h, lead to the correlation
Th,, Th, C Th,. Consequently, applying the formulas (44) and (46) for i € 1,2 we

deduce:
Nhi = U whi (t) = U wﬁ (t> C U ¢ﬁ (t) = Ny,

tGThi tEThi t€Th,
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Hence we have 1,79 € Ny,, where h, = ((Th,,<n.), ¥n,) € £ is a partial
2-chronologization of the oriented set M relatively the subset Np, C Bs(M),
moreover rs<4—x7; and x; # x3. And since vy, is a time on the oriented set
Min,, = (Nn,, <), then (by Definition 3) there exist elements t;,%, € Ty, such,
that x; € tYn, (t1), 2 € Yn, (t2) and t; <p, to. Since ty,ty € Ty,, where
h, € &, then, by the formula (45), we have ti,t, € Tgz. Taking into ac-
count that h, € £ and t;,t, € Ty, and using the formula (46), we obtain,
Un, (t1) = g (t1), Un, (t2) = g (t2). According to the item H2 (see above), the
inequality ¢; <p, fo stipulates the inequality ¢; <g ?2. Hence we have, t;,t, € T,
1 € Vg (t1), ©2 € ¥ (t2) and t; <f to. Thus, we have proven that for arbi-
trary x1,xy € ‘Bs (M[Nﬁ), satisfying zo <— 21 and x; # xg, there exist elements
t1,10 € Tﬁ SUCh, that x; € wﬁ (tl), To € wﬁ (tg) and #; <g to.

Taking into account the results, obtained in the items 1.2.2.a) and 1.2.2.b), as well as
Definition 3, we see that the mapping ¢ (t) : T — 2Va is a time on the oriented set
Min,,, which was to be proven.

I.2.3. Now we prove that the time g is one-point on the oriented set Mn_ .

I.2.3.a) From the formula (46) as well as the fact that 1y, is an one-point time on the
oriented set My, (for each h € &) it follows that for every t € T the set g (%)
is a singleton.

I23.b) Let tl,tg € Tﬁ, X1,T2 € NI’_‘I = Bs (M[Nﬁ), tl Sﬁ tg, xr € Q/JI’_‘I (tl), To €
Yy (t2). The aim is to prove that in this case it is true that xs <— 1. Since t; <g t2
then, by the item H?2 (see above), the chronologization h € % exists such, that
t1,ta € Ty and t; <y ty. Since t1,ty € Ty, then the formula (46) stipulates the
equalities, ¥ (t1) = ¥n (t1), Vg (t2) = ¥n (t2). Therefore we have:

ti,to € Th, t1 <nta, 1 €Yn(t1), x2€ Yn(ta). (48)

Since h is a partial 2-chronologization of the oriented set M relatively the subset
Nn € Bs(M), then 1y, is a one-point time on the oriented set My, . That is
why, by Definition 4, the correlations (48) deliver the desired correlations xq <— ;.
Thus, for arbitrary ¢,%, € Tg, 21,72 € Ng = Bs (./\/l [Nﬁ) the conditions t; < to,
r1 € P (t1), x2 € Yy (t2) stipulate the correlation xg < ;.

By Definition 4, results, established in the items 1.2.3.a) and 1.2.3.b), imply that
¥g 1s an one-point time on the oriented set Mn ., which was to be proven.

I.2.4. The next aim is to prove that the time ¢ is 2-repeating. Let x € Ng. Then, by
the formula (47), there exists the chronologization h = ((Th, <n), ¥n) € -Z such, that
x € Np. According to the item 19 (see the definition of the the set % above), h is
a partial 2-chronologization of the oriented set M relatively the subset N, C Bs(M).
That is why the time vy, is 2-repeating and so by Definition 6, two elements t1,t, € T}
(t; # t2) must exist such that x € ¢y, (t1) and x € ¢y, (t2). Since h € £ and t1,ty € Ty,
then, by the formula (45) we have t,¢, € T, as well by the formula (46), we obtain
Un (t1) = g (t1), ¥n (t2) = ¢ (t2). Hence, we have proven that there exist the elements
t1,ty € Tg such that t; # to and = € g (t1) N Yy (t2). Consequently, by Definition 6,
we ensure:

Rp, (V) =card ({t € Ty |z € ¥z (1)}) > 2. (49)

Now we assume that there exist the elements x € Ng and ¢;,%5,13 € T such, that
t; £t fori#j (i,5 € 1,3) and x € Yy (t1) Ny (f2) NYg (t3). In accordance with the
formula (45), the correlation t1,t,,t3 € Tg provides the existence of chronologizations
hy, hy, hy € % such, that t; € Ty, (Vi € 1,3). Since £ is a chain of the ordered set
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(#£,<”) the element hy € {h;, hy, hs} must exist such that h; < hy (Vi € 1,3).
According to the item Hol of the definition (Ho), the correlations h; <* hy (i € 1,3),
lead to the correlations Ty, C Ty, (¢ € 1,3). Therefore, we have, t1,ty,t3 € Th,.
Thence, by the formula (46), we ensure ¢ (t;) = vn, (t;), (¢ € 1,3). Thus, we get
x e who (t1> N who (tg) N Q/Jho (tg), where t1,t0,t3 € Tho and t; 7& tj for i 7&] (Z,j c 1,_3)
Hence, by Definition 6, we have, Rp,, (¢,) = card ({t € T |z € ¥y, (t)}) > 3. But the
last inequality is in a contradiction to the fact that hy = ((Th,, <n,), ¥n,) a partial 2-
chronologization of the oriented set M (ie to the fact that the time vy, is 2-repeating).
Thus the assumption, made before, leads to a contradiction. Consequently, there do
not exist the elements « € Ng and ¢y, s, t5 € Tg such, that ¢; # ¢; for i # j (i,j € 1,3)
and x € ¥y (t1) Ny (t2) Ny (t3). According to Definition 6, this means, that:

Rp, (V) =card ({t € Ty |z € ¥z (1)}) < 2. (50)
From the inequalities (49) and (50) it follows that the equality Rp, (¢g) = 2 holds for
each x € Ng. That is why the time 1 is 2-repeating, which was to be proven.

I.2.5. Let us prove that for every h € . and x € Ny, the following equalities are performed:

-~ -~

Uy (@) =1z (2), Oy (@) = 0L (x).
Indeed, let h € .Z and = € Ny. Denote:
b=y (2),  tyo= 0y (2).

Then, by Notation 4 (taking into account that the time y, : Ty, — 2V» is an one-point
and 2-repeating), we obtain:

t-l—at— € Th> @Z)h (t—) :%bh (t-i—) = {£}7 - <n t—l—-
Thence, using the formulas (45) and (46), as well as item H2 (see above), we ensure:

byt € Tﬁ? wﬁ (t—) = 1/11:1 (t-i-) = {‘T}7 t_ <u by

According to the result, established in the item 1.2.4, the time g is 2-repeating. Hence
we have:

Y= (z) =min ({t e T|z ey (t)}) =t_,

which was to be proven.

Ok (x) = max ({t € T |z € ¥ (1)}) =t

I.2.6. The next aim is to prove that for arbitrary =,y € Ng = Bs (M[Nﬁ) the correla-
tion y =z leads to the inequality {D\Ii{ () <g 12111 (y). Let z,y € Ng and yE 2. In
accordance with the equality (47), the correlation x,y € Ny assures the existence of
chronologizations h,,h, € £ such, that x € Ny, y € Ny,,. Since .Z is a chain of the or-
dered set (%” <7 ) the element h,, € {h,, h,} C % must exist such that h, < h,,,
h, <” h,,. Then, from the item Hol of the definition (Ho), we deduce the inclusions
Ty, € Th,,, Th, € Th,,. Hence, using the formula (44) as well as the item Ho2 of the
definition (Ho) we deliver:

No. = U v @)= | ¥n, S |J ¥n, (#) =Ni,. Nu, CNi,.

tE’I‘hz tEThZ tETha:y
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Therefore, the chronologization h,, = ((Thly, Shzy) , whzy) € & satisfies the condition
x,y € Np,,, while the time ¢y, , : Th,, — oNhay is an one-point, 2-repeating and
satisfying the condition 3.1 of Definition 10, that is:

U, (%) <hs, Un,, (1)

Thence, applying result, established in the item 1.2.5, we obtain the inequality
wﬁ (7) <n,, wﬁ (y), which together with the item H2 (see above), provides the de-
sired inequality:

~ ~

Vg (2) <g ¥ ()
I.2.7. Now we prove that for arbitrary z,y € N = Bs (M(Nﬁ) the correlation y 2 leads

to the inequality "Jg () <g 12;51 (y). Let, z,y € Ng and y < z. In accordance with

the equality (47), the correlation x,y € Ng ensures the existence of chronologizations
h,, h, € Z such, that x € Ny, y € Ny,,. Since £ is a chain of the ordered set (%, S‘%)
the element h,, € {h,,h,} C % must exist such that h, <” h,,, h, <’ h,,. Then,
from the item Hol of the definition (Ho), we get the inclusions T}y, C Thmy, Thy g Th,,-
Hence, using the formula (44) as well as the item #Ho2 of the definition (Ho) we deliver:

Np, € Ny, Np, € Ny,

xy )

So, the chronologization h,, = ((Thw, thy) , ¢hmy) € % satisfies the condition x,y €
Np,,, Whereas the time ¢y, , : Ty, — oNnzy is an one-point, 2-repeating and satisfying
the condition 3.2 of Definition 10, that is:

U, (2) <ng, U, ().

Thence, applying result, established in the item 1.2.5, we obtain the inequality
w;ﬁl (2) <n,, zﬁ;EI( ), which together with the item H2 (see above), provides the de-
sired inequality:

O (2) <g UL ().

From the facts, established in the items 1.2.1-1.2.7 it follows that the triple H= (’]I‘ﬁ, ¢ﬁ) =
((Tﬁ, Sﬁ) , wﬁ) is a partial 2-chronologization of the oriented set M relatively the subset

I':I.
1.3. Since for each chronologization h € £ it is fulfilled the condition
min* (M), max* (M) € Ny, then, according to the formula (47), we obtain:

min® (M), max* (M) € Ng.

I.4. Taking into account the item 2° of the definition of the chronologization set .7
as well as the including . C 77, we conclude that for every chronologization h € .Z the
inclusion T}, € 7 holds. That is why, based on the formula (45), we deduce:

Tz = UThQT.

he?

From the facts, established in the items 1.2—1.4 it follows that He 7.
I.5. Now the aim is to prove that the chronologization H is an upper bound of the chain
Z relatively the ordered set (%, S'%O). Chose any h € .Z. Let us prove that h < H.

I.5.1. Formula (45) provides the inclusion:

T, C U Tu = Tg. (51)
He¥?
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Consider arbitrary ti,ty € Ty. Suppose, that t; <j t5. Then using the item H2 (see
above), we get, t; <g t2. Conversely, suppose, that t; <g to. If we assume that t, <y, t1,
then, according to the item H2 (see above), we will obtain the inequality ¢, <g t1,
which contradicts to the start assumption that ¢; <g f,. Hence, since Ty, = (Th, <n)
is a linearly ordered set, we ensure the inequality ¢; <y 5. Thus we have:

Vi, o € Th (b <nta) & (b1 <gt2)). (52)
In accordance with Notation 5, the correlations (51) and (52) lead to the correlation:
Ty, C Tﬁ.

I.5.2. From the formula (46) it follows that
Vit e Th (Yn(t) = vy (t)).

From the results, established in the items .5.1 and 1.5.2 it follows that h < ﬁ, moreover
the last inequality is valid for each chronologization h € .Z. Therefore H is an upper bound
of the chain .Z relatively the ordered set (,%” , < ), which was to be proven.

Taking into account the arbitrariness of choice of chain . C #, we have seen that in
the ordered set (%ﬂ , < ) every chain has an upper bound. Therefore, according to Zorn’s
lemma, this ordered set contains a maximal element.

I.6. Let chronologization h* = (Tp«, ¥p<) = ((The, <n+), ¥n+) € H be a maximal
element of the ordered set (%ﬂ , <7 ) Let us prove that Np« = Bs(M), where Ny =

U ¢n- (t) is the set, determined by the formula (44). It is evidently that Ny« C Bs(M).
teET =

Assume, that Ny« # Bs(M). Then the element zq € Bs(M) exists such, that xg & Np-.
We will estimate the cardinality of the set Ty«. Since ¥y« is an one-point time, then, by
Definition 4, the correlation z € ¥y« (t) is equivalent to the correlation ¢y« (t) = {x} (for
any © € Np« and ¢ € Ty+). Hence, since the time vy« is 2-repeating, by Definition 6, for
each z € Ny« we obtain:

card (wL_*H ({x})) = card ({t € Tp-| Yu (t) = {z}}) =
= card ({t € Th+| = € Yp- (t)}) =Rp, (V) =2
Thence we deduce that for every = € Ny« it is valid the equality:
o (o)) = {dn (@), 5 (@)} (53)

Since the time 1y« is one-point, then for any ¢ € Ty« the set 1y- (f), being singleton, is

non-empty. Hence it is performed the equality, Ty = J ¢L:1] ({z}). Thence, applying
.’I?GNh*

the equality (53), we obtain:

T = J ui' = U {oe @, dk @)} =

€Ny« €N

(U {m@} vl U (G} -

TENy* €Ny *

— {{p\}: (z)|z € Nh*} U {12{{ () |z € Nh*} . (54)

Taking into account the fact that the set 7T is infinite and satisfying the condition, card (7)) >
card (Bs(M)), we deduce:

card ({@g () |z € Nh*}) < card (Ny:) < card (Bs(M)) < card (7)) ;
card ({QZIJ[ () |z € Nh*}> < card (7).
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Thence, using the equality (54), we conclude:
card (Ty,+) < card (7).

So, since the set T is infinite (card (7) > W), there exist the elements ¢y, t;, € T
such, that ¢,t, ¢ Tu« and ty # t,. According to condition of the lemma as well as
additional assumption “Assumption*”, the oriented set M is strictly evolutionary bounded
and quasi-chain. And, since the chronologization h* belongs to the chronologization set .77,
then all conditions of Lemma 2 are fulfilled. Consequently, according to this lemma, there
exists the partial 2-chronologization h] = (’]I‘hal«,z/zh»{) = ((ThT= §h1«) , ¢hi) of the oriented
set M relatively the subset N U {xo} such, that Ty T Tp:, Thr = The U {to,%;} and
Vt € T (¢n: (t) = ¢n- (£)). Then from the definition of the set . we conclude that
h; € 27, as well as the definition (Ho) of the ordering <” results that h* <” h}. Further
from the condition Tp: = Tp- U {to, %y} it follows that h* # hj. Therefore, we deliver
h* <” hi. Thus the assumption about the existence of element zy € Bs(M) satisfying
zo ¢ Ny« leads to the existence of chronologization h} € J# such, that h* <# hj, which
contradicts to the fact that the chronologization h* € J# maximal element of the ordered set
(%ﬂ , < ) That is why, the assumption, made above is false, ie Ny« = Bs(M). Thence we
conclude that the time 1y« is an one-point, and 2-repeating on the oriented set M, that is
the oriented set M can be chronologized by means of some 2-repeating and one-point time.

Thus, under additional assumption “Assumption*” the lemma had been proven.

II. Now we consider any quasi-chain oriented set M, which which is not necessarily
strictly evolutionarily bounded (ie the the conditions of Assumption * may be not satisfied).
Let, x, and y, be arbitrary elements (ie mathematical objects) such, that x,,y. ¢ Bs(M)
and z, # y,. We construct the oriented set M, by the following way.

We denote:

Bs (M,) == Bs(M) U{z.,y.}

and for x,y € Bs (M,) we write y A<7 x if and only if at least one of the following conditions
is fulfilled: )

1. z,y € Bs(M) and Y

2. T =1y

3. Y = Ys.
From the above conditions 1, 2,3 it follows that for each € Bs (M.) such, that T # x.
it is performed the condition x & z,, as well for each y € Bs (M,) such, that y # y, it is

*

performed the condition y, ﬁ y. So, by Definition 8, we have:

min* (M,) = z,, max* (M) = y.. (55)

Therefore, according to Definition 9, the oriented set M, is strictly evolutionary bounded.
We are going to prove that it is a quasi-chain.

Let, z,y € Bs(M.,). Since the oriented set M is quasi-chain, then in the case, where
z,y € Bs(M) from the condition 1 we conclude that at least one of the conditions y /\7 x

or x4y is valid. In the cases, where x € {z,,y.} or y € {z.,y.} due to the conditions 2,3
we deduce that y fLrora iy Hence, condition (QL1) of Definition 5 is fulfilled for the
oriented set M,.

Assume that zg, 1, 29,23 € Bs(M,) and l’gﬁ .172/\(7 xlﬁ Zo. Since the oriented set

. . . . +
M is quasi-chain, then in the case, where zg,x1, 22,23 € Bs(M), we have x3+< z(, and
M
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consequently, in accordance with the item 1, we get, x3 /\% xo. In the case vy = x, the equality

xr3 = x, is impossible, because the correlation z3 = z, A<7 T is nonsensical according to the

conditions 1,2, 3. Therefore we have, x3 # x, = xy. Consequently, from the equalities (55)

+ . . . .
we conclude that x5 < x, = xg. The cases x1 = x,, r3 = x, are impossible since in these

*

. + + . )
cases the correlations =, = z; /\<7 Lo OF T, = T3 /\(7 x9 are nonsensical in accordance with (55).

Case ro = x, also is impossible, because in this case the conditions 1,2, 3 together with the
correlation xo H x1 (e z. /\<7 x1) lead to the equality x; = x,, which is impossible according
to the case, explained before. In the case 3 = y, the equality x¢ = y, is impossible, because
the correlation z ﬁ To = Ys is nonsensical according to the conditions 1,2,3. Therefore

we have got, 3 = y. # xo. Consequently, from the equalities (55), we conclude that

+ . . . . .
T3 = Yx <— xo. The cases xo = y,, 9 = Y, are impossible since in these cases the correlations

:L‘3/\<7 Ty = Yy O Ty <— xo = Y. are nonsensical in accordance with (55). The case 71 = y.

also is impossible, because in this case the conditions 1,2,3 together with the correlation
To /\<7 z1 (ie z9 ﬁ y«) lead to the equality xo = y,, which is 1mp0881b1e according to the case,

. . : o + +
explained before. Hence in all possible cases the condition z3 /\<7 T /\ﬁ 1 /\7 T ensures the

*

correlation 3 <— xg. Consequently, the condition (QL2) of Definition 5 also is satisfied for

the oriented set /\/l

Thus, by Definition 5, the oriented set M, is a quasi-chain, which was to be proven.

From the equalities (55) we see, that the quasi-chain oriented set M., satisfies conditions
of Assumption *. Hence, in accordance with result, proven in the item I, the oriented set M.,
can be one-point chronologized by means of 2-repeating one-point time, that is there exist
a linearly ordered set T, = (T,, <) and an 2-repeating one-point time 1, : T, — 9Bs(M.)
Since the time 1), is one-point, then for an arbitrary ¢t € T, the element x; € Bs (M., exists
such, that 1. (t) = {x;}. Moreover, using definition of time (see Definition 3), we deliver:

{zteT.} = [ {m} = | ¢u(t) = Bs (M.). (56)

teT, teT,
Denote:
T = (M)} .
Since Bs(M) # () and Bs(M) C (/\/l*) then the equality (56) involves that T = ().
Denote:

Y(t) == u(t) = {2} (teT).
It is not hard to verify that the map 1 : T — 2%M) is an 2-repeating one-point time on
the oriented set M. O

Now Theorem 3 follows from Lemma 1 and Lemma 3.

8 On images of linearly ordered sets

In this short section we deduce one interesting corollary from Theorem 3 in the theory of
ordered sets. Namely it will be obtained the description of all oriented sets, which can be
represented as images of linearly ordered sets. First of all we formulate the definition of
image of linearly ordered set.

Let M be an oriented set and U : Bs(M) — X be a mapping from Bs(M) to X'. Then
we can introduce the binary relation <y on the set M; = U [Bs(M)] = R (U) by the
following rule:
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» For 7,y € M; we note y<—q)7 if and only if there exist x,y € Bs(M) such, that
2=U(z),y=U(y) and y+ .

It is not difficult to verify that the ordered pair M; = (M 1, %(1)) is an oriented set, moreover
Bs (Ml) = M1 and /<v_( = <—(1).
1

Definition 11. An oriented set M is referred to as vmage of the oriented set M under
the mapping U : Bs(M) — X if and only if:
1. Bs (M) = U [Bs(M)] =R (U).
2. Forz,y € Bs (M) the correlation j]/ﬁl T holds if and only if there exist x,y € Bs(M)
such, that T = U (x), y = U (y) and v

It is apparently that for each mapping U : Bs(M) — X there exists an unique image
under the mapping U. We will use the notation U [[M]] for the image of the oriented set

M under the mapping U : Bs(M) — X.
It is evidently that every linearly ordered set T = (T, <) is an oriented set with:

Bs (T) =T, < =<.

Therefore, it is meaningful to consider the image of the linearly ordered set T = (T, <)
under some mapping of kind U : T — X. And the image of the linearly ordered set T is the
oriented set U [[T]]. That is why the following problem naturally arises:

Problem 2. Can an arbitrary oriented set be represented as the image U [[T]] of some
linearly ordered set T? If it can not, describe all oriented sets that can be represented as an
1mmage of some linearly ordered set.

The key for solution of Problem 2 gives the following Assertion.

Assertion 10. An oriented set M can be represented as image of some linearly ordered set
if and only if M can be one-point chronologized.

Proof. Indeed, suppose that the ordered set M can be represented in the form M = U [[T]],
where T = (T, <) is a linearly ordered set. So, U is the mapping of kind U : T — Bs(M)
with R (U) = Bs(M). Here we denote by > the binary relation, inverse to < (ie for x,y € T
the condition y > z holds if and only if x < y). According to Duality Principle (see [14, page
14]), the ordered pair

T, = (T, 2) (57)

is the linearly ordered set as well. It is not difficult to verify that the mapping:
T5 v (t) = {U(t)} S Bs(M)
is an one-point time on M (relatively the linearly ordered set Tx). Conversely, let T = (T, <)
be a linearly ordered set and 1 : T — 2%5M) be one-point time on the oriented set M.
Then, by Definition 4, for every time point ¢ € T the element xy) € Bs(M) exists such,
that ¢ (t) = {@()}. Consider the mapping;
To>t— U(t) =y € %E(M)

It is easy to verify that for this mapping U it is performed the equality M = U [[Ts]], where
the linearly ordered set T is determined by the formula (57). O]

Assertion 10 together with Theorem 3 stipulate the following corollary.

Corollary 1. An oriented set M can be represented as image of some linearly ordered set
if and only if it s a quasi-chain.

Note that Theorem 3 was announced in [15].
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