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Abstract. The notion of oriented set is the basic elementary concept of the theory of
changeable sets. The main motivation for the introduction of changeable sets was the sixth
Hilbert problem, that is, the problem of mathematically rigorous formulation of the funda-
mentals of theoretical physics. In the present paper the necessary and sufficient condition of
the existence of one-point time on an oriented set is established. From the intuitive point of
view, one-point time is the time associated with the evolution of a system consisting of only
one object (for example, from one material point). Namely, it is proven that the one-point
time exists on the oriented set if and only if this oriented set is a quasi-chain. Also, using
the obtained result, the problem of describing all possible images of linearly ordered sets is
solved. This problem naturally arises in the theory of ordered sets.
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1 Introductory remarks

The subject of this article is closely related to the theory of changeable sets. The main
motivation for building this theory was the sixth Hilbert problem, that is, the problem of
mathematically rigorous formulation of the fundamentals of theoretical physics. This prob-
lem was posed in 1900, but it remains very relevant today [1]. From an intuitive point of
view changeable sets are the sets of objects, which can be in process of continuous transfor-
mations. In particular, these objects can change their properties, appear or disappear, break
down into several parts or, conversely, unite into a single unit. Moreover, the evolution of a
changeable set or it’s components may depend of the area of observation or reference frame.
The problem of constructing the mathematical theory of changeable sets (that is the “sets”
possessing the properties listed above) was emerged in particular in the papers [2–6]. On the
mathematically strict level the theory of changeable sets was developed in the papers [7–10]
etc. The most complete and systematic presentation of this theory can be found in the
preprint [11].

The notion of oriented set is the basic most elementary concept of the theory of changeable
sets. Oriented sets were introduced in [7,8] as most simple abstract models of the collections
of evolving objects in the framework of one (fixed) reference frame (see also [11, Section
1]). Moreover, in the above-mentioned papers it was introduced the concept of time on
oriented sets. As well in the article [8, Theorem 4.1] the sufficient condition of existence
of one-point time for oriented sets is established (see also [11, Theorem 1.3.1]). Note that
from the intuitive point of view, one-point time should be understood as the time associated
with the evolution of a system consisting of only one object (for example, from one material
point). Emphasize that Theorem 4.1 from [8] gives only sufficient condition for existence
of one-point time. That is why in the paper [11, Problem 1.3.1] the problem of detection
necessary and sufficient condition for existence of one-point time on oriented set is posed.
Below in this paper the solution of the above problem will be presented. Namely, it will be
specified the properties for oriented set to be able to define the one-point time on it. Using
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the obtained result, the problem of describing all possible images of linearly ordered sets will
be solved. Such problem naturally arises in the theory of ordered sets.

2 On Oriented Sets and One-point Time

Definition 1. Let, 𝑀 be any non-empty set (𝑀 ̸= ∅).
An arbitrary reflexive binary relation C−− on 𝑀 (that is a relation satisfying ∀𝑥 ∈

𝑀 𝑥C−−𝑥) we name an orientation, and the pair ℳ = (𝑀,C−−) we call an oriented
set. In this case the set 𝑀 is named the basic set or the set of all elementary states of
the oriented set ℳ and it is denoted by Bs(ℳ). The relation C−− we name the directing
relation of changes (transformations) ofℳ, and denote it by ←

ℳ
.

In the case where the oriented setℳ is known in advance, the charℳ in the notation
←
ℳ

will be released, and we will use notation← instead. For the elements 𝑥, 𝑦 ∈ Bs(ℳ) the

record 𝑦←𝑥 should be understood as “the elementary state 𝑦 is the result of transformations
(or the transformation offspring) of the elementary state 𝑥”.

Letℳ be an oriented set.

Definition 2. The non-empty subset 𝑁 ⊆ Bs(ℳ) will be referred to as transitive in ℳ
if for any 𝑥, 𝑦, 𝑧 ∈ 𝑁 such, that 𝑧← 𝑦 and 𝑦←𝑥 we have 𝑧←𝑥.

The transitive subset 𝐿 ⊆ Bs(ℳ) will be referred to as chain in ℳ if for any 𝑥, 𝑦 ∈ 𝐿
at least one of the relations 𝑦←𝑥 or 𝑥← 𝑦 is true.

Oriented set ℳ will be called a chain oriented set if the set Bs(ℳ) is the chain of
ℳ, that is if the relation ← if transitive on Bs(ℳ) and for any 𝑥, 𝑦 ∈ Bs(ℳ) at least one
of the conditions 𝑥← 𝑦 or 𝑦←𝑥 is satisfied (note that in this case the oriented set ℳ is a
linearly quasi-ordered set).

Recall that linearly ordered set is an ordered pair of kind T = (T,≤) with reflexive, asym-
metric and transitive binary relation ≤ on T satisfying the following additional condition:

(LnO) for every 𝑡, 𝜏 ∈ T it is performed at least one of the correlations 𝑡 ≤ 𝜏 or 𝜏 ≤ 𝑡.

Definition 3. Letℳ be an oriented set and T = (T,≤) be a linearly ordered set. A mapping
𝜓 : T→ 2Bs(ℳ) is referred to as time onℳ if the following conditions are satisfied:

1. For any elementary state 𝑥 ∈ Bs(ℳ) there exists an element 𝑡 ∈ T such that 𝑥 ∈ 𝜓(𝑡).

2. If 𝑥1, 𝑥2 ∈ Bs(ℳ), 𝑥2←𝑥1 and 𝑥1 ̸= 𝑥2, then there exist elements 𝑡1, 𝑡2 ∈ T such that
𝑥1 ∈ 𝜓 (𝑡1), 𝑥2 ∈ 𝜓 (𝑡2) and 𝑡1 < 𝑡2 (this means that there is a temporal separateness of
successive unequal elementary states).

In this case:

∙ The elements 𝑡 ∈ T we call the moments of time

∙ The pair ℋ = (T, 𝜓) = ((T,≤) , 𝜓) we name by chronologization ofℳ

We say that an oriented set ℳ can be chronologized if there exists at least one
chronologization of ℳ. It turns out that any oriented set can be chronologized. To make
sure this we may consider any linearly ordered set T = (T,≤), which contains at least two
elements and put:

𝜓(𝑡) := Bs(ℳ), 𝑡 ∈ T.

It is easy to verify that the conditions of Definition 3 for this function 𝜓(·) are satisfied. More
non-trivial methods to chronologize an oriented set were considered, in particular, in [8].

Definition 4. Letℳ be an oriented set and T = (T,≤) be a linearly ordered set.
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1. The time 𝜓 : T → 2Bs(ℳ) will be called quasi one-point if for every 𝑡 ∈ T the set
𝜓(𝑡) is a singleton.

2. The time 𝜓 will be called one-point if the following conditions are satisfied:

(a) The time 𝜓 is quasi one-point;

(b) for any 𝑥1, 𝑥2 ∈ Bs(ℳ) the conditions 𝑥1 ∈ 𝜓(𝑡1), 𝑥2 ∈ 𝜓(𝑡2) and 𝑡1 ≤ 𝑡2, lead
to 𝑥2←𝑥1.

We say that an oriented setℳ can be chronologized quasi one-point / one-point if there
exists at least one chronologization ℋ = ((T,≤) , 𝜓) of ℳ with quasi one-point /one-
point time 𝜓 (correspondingly). In this case we name the chronologization ℋ as quasi
one-point /one-point (correspondingly).

Example 1. Let us consider the arbitrary mapping 𝑓 : ℐ → R𝑑 (𝑑 ∈ N), where ℐ ⊆ R is
some connected subset of Real axis R. This mapping can be interpreted as equation of motion
of single material point in the space R𝑑. This mapping 𝑓 generates the oriented setℳ𝑓 =(︂
Bs (ℳ𝑓 ) ,←

ℳ𝑓

)︂
, where Bs (ℳ𝑓 ) = R(𝑓) = {𝑓(𝑡) | 𝑡 ∈ ℐ} ⊆ R𝑑 and for 𝑥, 𝑦 ∈ Bs (ℳ𝑓 ),

the correlation 𝑦 ←
ℳ𝑓

𝑥 is valid if and only if there exist 𝑡1, 𝑡2 ∈ ℐ such, that 𝑥 = 𝑓 (𝑡1),

𝑦 = 𝑓 (𝑡2) and 𝑡1 ≤ 𝑡2. It is easy to verify, that the following mapping is a one-point time
onℳ𝑓 :

𝜓𝑓 (𝑡) = {𝑓(𝑡)} ⊆ Bs(ℳ), 𝑡 ∈ ℐ.
Example 1 makes clear the definition of one-point time. It is evident, that any one-point

time is quasi one-point. Examples contained in the paper [8] show that the inverse statement
is not true in the general case (see also [11, Example 1.3.2]).

Theorem 1 (ZF+LO, [8]). Any oriented set can be quasi one-point chronologized.

Note that proof of Theorem 1 can be found also in [11, Theorem 1.3.2].

Remark 1. Proof of Theorem 1 uses the Linear Ordering principle (LO) in addition to
Zermelo–Fraenkel axiomatic system (ZF). This principle asserts that any set can be lin-
early ordered. It is evident that the above principle follows from the famous well-ordering
Zermelo’s theorem, and therefore, from the axiom of choice (AC). But it is known that
LO-principle also follows from Ultrafilter Theorem of Tarski and, moreover, it is logically
weaker than this theorem and therefore than the axiom of choice [12, pages 17,18]. On the
relationship between LO and AC see, also, [13].

Theorem 2 ( [8]). Any chain oriented set can be one-point chronologized.

Note that the proof of Theorem 2 can be found also in [11]. It turns out that Theorem 2
is not reversible. And the next example demonstrates the existence of non-chain oriented
sets, which can be one-point chronologized.

Example 2. Consider the function 𝑓 0 : [0, 2𝜋]→ R2, defined by the formula:

𝑓 0(𝑡) = (cos 𝑡, sin 𝑡) (𝑡 ∈ [0, 2𝜋]) .

According to Example 1, using this function, we may construct the oriented setℳ𝑓0
. This

oriented set can be one-point chronologized by mens of the time:

𝜓𝑓0
(𝑡) = {𝑓 0 (𝑡)} (𝑡 ∈ [0, 2𝜋]).

At the same time, this oriented set is not a chain, because the binary relation ←−−−
ℳ𝑓0

is

not transitive on Bs
(︀
ℳ𝑓0

)︀
. Indeed, consider the points: x1 := (0,−1) = 𝑓 0

(︀
3
2
𝜋
)︀
, x2 :=

(1, 0) = 𝑓 0 (0) = 𝑓 0 (2𝜋), x3 := (0, 1) = 𝑓 0

(︀
𝜋
2

)︀
. For these points we have: x1, x2, x3 ∈

R (𝑓 0) = Bs
(︀
ℳ𝑓0

)︀
and x2←−−−

ℳ𝑓0

x1, x3←−−−
ℳ𝑓0

x2 but x3 ↚−−−
ℳ𝑓0

x1.
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The above facts generate the following problem:

Problem 1. Find necessary and sufficient conditions of existence of one-point chronologiza-
tion for oriented set.

Note that Problem 1 was also posed in [11, Problem 1.3.1]. The main aim of the present
paper is to give the solution of Problem 1.

3 Quasi-chain Oriented Sets and Formulation of Main Theorem

Notation 1. On any oriented setℳ we introduce the following additional binary relation:

I For every 𝑥, 𝑦 ∈ Bs(ℳ) we note 𝑦
+←
ℳ
𝑥 if and only if:

𝑦←
ℳ
𝑥 and 𝑥 ̸↚

ℳ
𝑦.

I In the cases where it does not lead to misunderstanding we use the notation 𝑦
+←𝑥 instead

of the record 𝑦
+←
ℳ
𝑥.

Notation 2. Let M be an arbitrary set and R1, R2, . . . , R𝑛 ⊆ M2 (𝑛 ∈ N) be any binary
relations on M. Further for 𝑥0, . . . , 𝑥𝑛 ∈M we use the abbreviated notation:

𝑥0R1𝑥1R2𝑥2 . . . 𝑥𝑛−1R𝑛𝑥𝑛

for indication the fact that:

(𝑥0R1𝑥1)& (𝑥1R2𝑥2)& . . .&(𝑥𝑛−1R𝑛𝑥𝑛) .

Assertion 1. Letℳ be an oriented set, T = (T,≤) be a linearly ordered set and 𝜓 : T→
2Bs(ℳ) be one-point time onℳ. Then for any 𝑥1, 𝑥2 ∈ Bs(ℳ) the conditions:

𝑥1 ∈ 𝜓 (𝑡1) , 𝑥2 ∈ 𝜓 (𝑡2) and 𝑥2
+←𝑥1

lead to the inequality:

𝑡1 < 𝑡2.

Proof. Indeed, suppose thatℳ is an oriented set, T = (T,≤) is a linearly ordered set and
𝜓 : T→ 2Bs(ℳ) is an one-point time onℳ. Let the elements 𝑥1, 𝑥2 ∈ Bs(ℳ) be such that

𝑥1 ∈ 𝜓 (𝑡1), 𝑥2 ∈ 𝜓 (𝑡2) and 𝑥2
+←𝑥1. Assume the contrary: 𝑡2 ≤ 𝑡1. Then, according to

Definition 4 (item 2), from the conditions 𝑥1 ∈ 𝜓 (𝑡1), 𝑥2 ∈ 𝜓 (𝑡2) and 𝑡2 ≤ 𝑡1 it follows that

𝑥1←𝑥2. But the last correlation is in contradiction to the condition 𝑥2
+←𝑥1. Hence the

assumption about 𝑡2 ≤ 𝑡1 is false. Therefore we have 𝑡1 < 𝑡2.

Definition 5. The oriented set ℳ is called quasi-chain if and only if the following con-
ditions are satisfied:

(QL1) For any 𝑥1, 𝑥2 ∈ Bs(ℳ) it holds at least one from the correlations 𝑥2←𝑥1 or
𝑥1←𝑥2.

(QL2) For every 𝑥0, 𝑥1, 𝑥2, 𝑥3 ∈ Bs(ℳ) the condition 𝑥3
+←𝑥2←𝑥1

+←𝑥0 ensures the cor-

relation 𝑥3
+←𝑥0 (quasi-transitivity).
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Remark 2. It is easy to prove that the transitivity of the binary relation ← on the oriented
setℳ implies its quasi-transitivity. It turns out that the inverse statement in general is not
valid. Example 2 shows that there exist the oriented setℳ =ℳ𝑓0

such that the relation
←
ℳ

is quasi-transitive but not transitive. So quasi-chain oriented set need not be chain.

The main result of this paper is the following theorem.

Theorem 3 (ZF+AC). The orientedℳ set can be one-point chronologized if and only if it
is a quasi-chain.

Remark 3. We emphasize that proof of the necessity for Theorem 3 does not require the
axiom of choice (AC). This axiom is needed only for the proof of sufficiency of the condition,
pointed out in Theorem 3.

The proof of Theorem 3 is divided into two main lemmas. Lemma 1 in the next section
assures the necessity for Theorem 3, whereas Lemma 3 (see below) provides the sufficiency.

4 Proof of Necessity for Theorem 3

The main aim of this section is to prove the following lemma, which ensures the necessity
for Theorem 3.

Lemma 1. If the oriented setℳ can be one-point chronologized then it is a quasi-chain.

Proof. Let T = (T,≤) be a linearly ordered set and 𝜓 : T→ 2Bs(ℳ) be an one-point time
on the oriented setℳ.
V 1. First we will validate the condition (QL1). Chose any 𝑥1, 𝑥2 ∈ Bs(ℳ). By

Definition 3 the time points 𝑡1, 𝑡2 ∈ T must exist such, that 𝑥1 ∈ 𝜓 (𝑡1), 𝑥2 ∈ 𝜓 (𝑡2). Since
T = (T,≤) is a linearly ordered set then for 𝑡1, 𝑡2 ∈ T at least one of the inequalities must
be fulfilled 𝑡1 ≤ 𝑡2 or 𝑡2 ≤ 𝑡1. In Accordance with Definition 4, in the case 𝑡1 ≤ 𝑡2 we obtain
𝑥2←𝑥1. Similarly in the case 𝑡2 ≤ 𝑡1 we deduce 𝑥1←𝑥2.
V 2. Now we validate the condition (QL2). Consider any elements 𝑥0, 𝑥1, 𝑥2, 𝑥3 ∈

Bs(ℳ) such, that 𝑥3
+←𝑥2←𝑥1

+←𝑥0. Consider any 𝑡0, 𝑡3 ∈ T such, that 𝑥0 ∈ 𝜓 (𝑡0),

𝑥3 ∈ 𝜓 (𝑡3) (by Definition 3 such 𝑡0, 𝑡3 exist). Since 𝑥2←𝑥1, then, according to Definition 3
the time points 𝑡1, 𝑡2 ∈ T must exist such that 𝑥1 ∈ 𝜓 (𝑡1), 𝑥2 ∈ 𝜓 (𝑡2) and 𝑡1 ≤ 𝑡2. Taking

into account the correlations 𝑥0 ∈ 𝜓 (𝑡0), 𝑥1 ∈ 𝜓 (𝑡1) and 𝑥1
+←𝑥0, as well as Assertion 1,

we obtain, 𝑡0 < 𝑡1. Similarly from the correlations 𝑥2 ∈ 𝜓 (𝑡2), 𝑥3 ∈ 𝜓 (𝑡3) and 𝑥3
+←𝑥2 we

deduce 𝑡2 < 𝑡3. Therefore the following inequalities are performed:

𝑡0 < 𝑡1 ≤ 𝑡2 < 𝑡3.

That is why 𝑡0 < 𝑡3. Thus we have:

∀ 𝑡0, 𝑡3 ∈ T ((𝑥0 ∈ 𝜓 (𝑡0))& (𝑥3 ∈ 𝜓 (𝑡3))⇒ (𝑡0 < 𝑡3)) . (1)

In accordance with the statement, proven in the item 1, at least one from the correlations
𝑥0←𝑥3 or 𝑥3←𝑥0 must hold. Assume, that 𝑥0←𝑥3. Then, by Definition 3 the elements̃︀𝑡0,̃︀𝑡3 ∈ T must exist such that 𝑥0 ∈ 𝜓

(︀̃︀𝑡0)︀, 𝑥3 ∈ 𝜓 (︀̃︀𝑡3)︀ and ̃︀𝑡3 ≤ ̃︀𝑡0. But the last inequality
is in a contradiction to (1). Hence, the correlation 𝑥0←𝑥3 is impossible. Thus the only

possible one it remains the correlation 𝑥3
+←𝑥0, that it was necessary to prove.

The proof of the sufficiency for Theorem 3 is much more complicated. First of all we need
to work out some auxiliary technical results for this purpose. This work will be done in the
next section.
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5 Some Auxiliary Technical Results

5.1 Some Additional Properties of Quasi-chain Oriented Sets

Assertion 2. Let,ℳ be a quasi-chain oriented set and 𝑥0, 𝑥1, 𝑥2, 𝑥3 ∈ Bs(ℳ) be arbitrary
elementary states ofℳ. Then the following properties are performed:

(QL3) If 𝑥3←𝑥2
+←𝑥1←𝑥0 then 𝑥3←𝑥0.

(QL4) If 𝑥3
+←𝑥2←𝑥1 then 𝑥3←𝑥1.

(QL5) If 𝑥3←𝑥2
+←𝑥1 then 𝑥3←𝑥1.

(QL6) If 𝑥3
+←𝑥2

+←𝑥1 then 𝑥3
+←𝑥1.

Proof. The proofs of the properties (QL3)–(QL6) are listed below.

V (QL3). Let 𝑥0, 𝑥1, 𝑥2, 𝑥3 ∈ Bs(ℳ) and 𝑥3←𝑥2
+←𝑥1←𝑥0. Assume that 𝑥3 ̸↚ 𝑥0.

Then, taking into account the fact that the oriented setℳ is quasi-chain, we get 𝑥0
+←𝑥3.

Thus, we have, 𝑥0
+←𝑥3←𝑥2

+←𝑥1. Hence, by Definition 5 (condition (QL2)) we get, 𝑥0
+←𝑥1,

which is in acontradiction to the correlation 𝑥1←𝑥0. Therefore assumption about 𝑥3 ̸↚ 𝑥0
is false. So we have 𝑥3←𝑥0.

V (QL4). Suppose that 𝑥1, 𝑥2, 𝑥3 ∈ Bs(ℳ) and 𝑥3
+←𝑥2←𝑥1. Then, by Definition 1,

we have, 𝑥3←𝑥3
+←𝑥2←𝑥1. Thence, using Property (QL3), we obtain 𝑥3←𝑥1.

V (QL5). If we assume that 𝑥3←𝑥2
+←𝑥1, then we will have 𝑥3←𝑥2

+←𝑥1←𝑥1. Thence,

applying Property (QL3), we obtain 𝑥3←𝑥1.

V (QL6). If we suppose that 𝑥3
+←𝑥2

+←𝑥1, then we will deliver 𝑥3
+←𝑥2←𝑥2

+←𝑥1.

Thence, by Definition 5 (condition (QL2)), we deduce 𝑥3
+←𝑥1.

Notation 3. For any oriented setℳ we introduce the following additional binary relations:

V For any 𝑥, 𝑦 ∈ Bs(ℳ) we will note 𝑦
+−←
ℳ
𝑥 if and only if there exists the element ̃︀𝑥 ∈

Bs(ℳ) such that 𝑦
+← ̃︀𝑥←𝑥.

V For arbitrary 𝑥, 𝑦 ∈ Bs(ℳ) we will write 𝑦
−+←
ℳ
𝑥 if and only if there exists the element

̃︀𝑥 ∈ Bs(ℳ) such that 𝑦← ̃︀𝑥 +←𝑥.

Further in the cases, where the oriented setℳ is known in advance, we will use the notations

𝑦
+−← 𝑥 and 𝑦

−+← 𝑥 instead of 𝑦
+−←
ℳ
𝑥 and 𝑦

−+←
ℳ
𝑥 (correspondingly).

Assertion 3. Let, ℳ be a quasi-chain oriented set and 𝑥1, 𝑥2, 𝑥3 ∈ Bs(ℳ) be arbitrary
elementary states ofℳ. Then the following properties are holding:

(QL7) If 𝑥3←𝑥2
+−← 𝑥1 then 𝑥3←𝑥1.

(QL8) If 𝑥3
−+← 𝑥2←𝑥1 then 𝑥3←𝑥1.

(QL9) If 𝑥3
+←𝑥2

−+← 𝑥1 then 𝑥3
+←𝑥1.

(QL10) If 𝑥3
+−← 𝑥2

+←𝑥1 then 𝑥3
+←𝑥1.
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(QL11) If 𝑥2
+−← 𝑥1 or 𝑥2

−+← 𝑥1 then 𝑥2←𝑥1.

(QL12) If 𝑥2
+←𝑥1 then 𝑥2

+−← 𝑥1 and 𝑥2
−+← 𝑥1.

(QL13) If 𝑥3
−+← 𝑥2

+−← 𝑥1 then 𝑥3←𝑥1.

(QL14) If 𝑥3
+−← 𝑥2

+−← 𝑥1 then 𝑥3
+−← 𝑥1.

(QL15) If 𝑥3
−+← 𝑥2

−+← 𝑥1 then 𝑥3
−+← 𝑥1.

(QL16) If 𝑥3
+←𝑥2

+−← 𝑥1 then 𝑥3
+−← 𝑥1.

(QL17) If 𝑥3
−+← 𝑥2

+←𝑥1 then 𝑥3
−+← 𝑥1.

Proof. Properties (QL7)–(QL10) follow from Assertion 2 and Definition 5. In particular
(QL7) and (QL8) follow from (QL3), as well as (QL9) and (QL10) follow from (QL2).

Property (QL11) follows from properties (QL4) and (QL5) of Assertion 2.

Now we are going to prove (QL12). If 𝑥2
+←𝑥1 then by Definition 1, we obtain,

𝑥2
+←𝑥1←𝑥1 and 𝑥2←𝑥2

+←𝑥1. So, according to Notation 3, we have 𝑥2
+−← 𝑥1 and 𝑥2

−+← 𝑥1.

(QL13) follows from (QL6) and (QL3).
(QL14)–(QL15) are caused by inequality (QL2) or (QL3).
(QL16)–(QL17) foloow from (QL6).

5.2 Finite-repeating Time on Oriented Sets

Definition 6. Let T = (T,≤) be a linearly ordered set andℳ be an oriented set.

V The time 𝜓 : T → 2Bs(ℳ) will be named as finite-repeating if and only if for every
𝑥 ∈ Bs(ℳ) the following condition is fulfilled:

card
(︀{︀
𝑡 ∈ T

⃒⃒
𝑥 ∈ 𝜓 (𝑡)

}︀)︀
< ℵ0

(where card (M) is the cardinality of a set M). Moreover, the number:

Rp𝑥 (𝜓) = card
(︀{︀
𝑡 ∈ T

⃒⃒
𝑥 ∈ 𝜓 (𝑡)

}︀)︀
will be refered to as repeatability of the time 𝜓 relatively the element 𝑥 ∈ Bs(ℳ).

V We name the time 𝜓 as bounded-repeating if and only if the time 𝜓 is finite-repeating
and there exists the number 𝐾 ∈ N such that the inequality Rp𝑥 (𝜓) < 𝐾 is performed
for each 𝑥 ∈ Bs(ℳ). In this case the number:

Rp (𝜓) = max
𝑥∈Bs(ℳ)

Rp𝑥 (𝜓)

is named as maximal repeatability of the time 𝜓.

V Let 𝑛 ∈ N. The time 𝜓 is named as 𝑛-repeating, if and only if the time 𝜓 is finite-
repeating and

∀𝑥 ∈ Bs(ℳ) (Rp𝑥 (𝜓) = 𝑛) .

Notation 4. Let 𝜓 : T → 2Bs(ℳ) be a finite-repeating time on the oriented set ℳ. For
every 𝑥 ∈ Bs(ℳ) we note: ̂︀𝜓+ (𝑥) := max

(︀{︀
𝑡 ∈ T

⃒⃒
𝑥 ∈ 𝜓 (𝑡)

}︀)︀
;̂︀𝜓− (𝑥) := min

(︀{︀
𝑡 ∈ T

⃒⃒
𝑥 ∈ 𝜓 (𝑡)

}︀)︀
,

where maximum and minimum should be understood it the sense of the linearly ordered set
T = (T,≤).
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Assertion 4. Let T = (T,≤) be a linearly ordered set and 𝜓 : T → 2Bs(ℳ) be a finite-
repeating one-point time on the oriented set ℳ. Then for any 𝑥, 𝑥1, 𝑥2 ∈ Bs(ℳ) the fol-
lowing properties are holding:

(FR1) ̂︀𝜓− (𝑥) ≤ ̂︀𝜓+ (𝑥). If, in addition, Rp𝑥 (𝜓) ≥ 2 then ̂︀𝜓− (𝑥) < ̂︀𝜓+ (𝑥).

(FR2) The correlation 𝑥2←𝑥1 is true if and only if ̂︀𝜓− (𝑥1) ≤ ̂︀𝜓+ (𝑥2). If, in addition,

𝑥1 ̸= 𝑥2 then 𝑥2←𝑥1 if and only if ̂︀𝜓− (𝑥1) < ̂︀𝜓+ (𝑥2).

(FR3) 𝑥2
+←𝑥1 if and only if ̂︀𝜓+ (𝑥1) < ̂︀𝜓− (𝑥2).

(FR4) If 𝑥2
+−← 𝑥1 then ̂︀𝜓− (𝑥1) < ̂︀𝜓− (𝑥2).

(FR5) If 𝑥2
−+← 𝑥1 then ̂︀𝜓+ (𝑥1) < ̂︀𝜓+ (𝑥2).

(FR6) If, in addition, the time 𝜓 is 𝑛-repeating with 𝑛 ≥ 2 then 𝑥2←𝑥1 if and only if̂︀𝜓− (𝑥1) < ̂︀𝜓+ (𝑥2).

Proof. V (FR1): Let 𝑥 ∈ Bs(ℳ). Then according to Notation 4, we have ̂︀𝜓− (𝑥) =

min
(︀{︀
𝑡 ∈ T

⃒⃒
𝑥 ∈ 𝜓 (𝑡)

}︀)︀
≤ max

(︀{︀
𝑡 ∈ T

⃒⃒
𝑥 ∈ 𝜓 (𝑡)

}︀)︀
= ̂︀𝜓+ (𝑥). If, in addition, Rp𝑥 (𝜓) ≥ 2

then the set
{︀
𝑡 ∈ T

⃒⃒
𝑥 ∈ 𝜓 (𝑡)

}︀
contains at least two elements. So minimum of this set is

less then maximum.

V (FR2): Suppose that 𝑥1, 𝑥2 ∈ Bs(ℳ) and 𝑥2←𝑥1. Then in the case 𝑥1 = 𝑥2 we have

the inequality ̂︀𝜓− (𝑥1) ≤ ̂︀𝜓+ (𝑥2) according to Property (FR1). Hence we will consider that
𝑥1 ̸= 𝑥2. Since 𝑥2←𝑥1 and 𝑥1 ̸= 𝑥2, then, by Definition 3, the time points 𝑡1, 𝑡2 ∈ T exist
such that 𝑥1 ∈ 𝜓 (𝑡1), 𝑥2 ∈ 𝜓 (𝑡2) and 𝑡1 < 𝑡2. Therefore:̂︀𝜓− (𝑥1) = min

(︀{︀
𝑡 ∈ T

⃒⃒
𝑥1 ∈ 𝜓 (𝑡)

}︀)︀
≤ 𝑡1 < 𝑡2 ≤ max

(︀{︀
𝑡 ∈ T

⃒⃒
𝑥2 ∈ 𝜓 (𝑡)

}︀)︀
= ̂︀𝜓+ (𝑥2) .

So, for every 𝑥1, 𝑥2 ∈ Bs(ℳ) it is performed the following implication:

(𝑥2←𝑥1)& (𝑥1 ̸= 𝑥2)⇒
(︁̂︀𝜓− (𝑥1) < ̂︀𝜓+ (𝑥2)

)︁
. (2)

Thus, in the both cases for any 𝑥1, 𝑥2 ∈ Bs(ℳ) we have the implication:

(𝑥2←𝑥1)⇒
(︁̂︀𝜓− (𝑥1) ≤ ̂︀𝜓+ (𝑥2)

)︁
. (3)

Conversely, suppose that ̂︀𝜓− (𝑥1) ≤ ̂︀𝜓+ (𝑥2). Put:̂︀𝑡1 := ̂︀𝜓− (𝑥1) , ̂︀𝑡2 := ̂︀𝜓+ (𝑥2) .

Then in accordance with Notation 4, we have, 𝑥1 ∈ 𝜓
(︀̂︀𝑡1)︀, 𝑥2 ∈ 𝜓 (︀̂︀𝑡2)︀ and ̂︀𝑡1 ≤ ̂︀𝑡2. Hence,

by Definition 4, we deduce 𝑥2←𝑥1. Thus for every 𝑥1, 𝑥2 ∈ Bs(ℳ) we have the implication:(︁̂︀𝜓− (𝑥1) ≤ ̂︀𝜓+ (𝑥2)
)︁
⇒ (𝑥2←𝑥1) (4)

The implications (3) and (4) assure the desired equivalence: (𝑥2←𝑥1) ⇔(︁̂︀𝜓− (𝑥1) ≤ ̂︀𝜓+ (𝑥2)
)︁
.

If we assume that, in addition, 𝑥1 ̸= 𝑥2 then from (2) and (4) we deliver the equivalence:

(𝑥2←𝑥1)⇔
(︁̂︀𝜓− (𝑥1) < ̂︀𝜓+ (𝑥2)

)︁
.

V (FR3): Let 𝑥2
+←𝑥1. Assume that ̂︀𝜓− (𝑥2) ≤ ̂︀𝜓+ (𝑥1). Then according to Prop-

erty (FR2), we obtain the correlation 𝑥1←𝑥2, which contradicts to 𝑥2
+←𝑥1. Therefore,̂︀𝜓+ (𝑥1) < ̂︀𝜓− (𝑥2).
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Conversely, suppose that ̂︀𝜓+ (𝑥1) < ̂︀𝜓− (𝑥2). Then, applying Property (FR1), we deliver̂︀𝜓− (𝑥1) ≤ ̂︀𝜓+ (𝑥1) < ̂︀𝜓− (𝑥2) ≤ ̂︀𝜓+ (𝑥2). Hence, according to Property (FR2), we obtain
𝑥2←𝑥1. Assume that the condition 𝑥1←𝑥2 also is performed. Then by Property (FR2), we

get the inequality ̂︀𝜓− (𝑥2) ≤ ̂︀𝜓+ (𝑥1), which contradicts to the inequality ̂︀𝜓+ (𝑥1) < ̂︀𝜓− (𝑥2).

That is the assumption about 𝑥1←𝑥2 is wrong. That is why we have 𝑥2
+←𝑥1.

V (FR4): Let 𝑥1, 𝑥2 ∈ Bs(ℳ) and 𝑥2
+−← 𝑥1. Then there exists the element ̃︀𝑥 ∈ Bs(ℳ)

such, that 𝑥2
+← ̃︀𝑥←𝑥1. Therefore, using Properties (FR2) and (FR3), we obtain ̂︀𝜓− (𝑥1) ≤̂︀𝜓+ (̃︀𝑥) < ̂︀𝜓− (𝑥2), that is ̂︀𝜓− (𝑥1) < ̂︀𝜓− (𝑥2).

V (FR5): Let 𝑥1, 𝑥2 ∈ Bs(ℳ) and 𝑥2
−+← 𝑥1. Then there exists the element ̃︀𝑥 ∈ Bs(ℳ)

such, that 𝑥2← ̃︀𝑥 +←𝑥1. Hence, using Properties (FR2) and (FR3), we get, ̂︀𝜓+ (𝑥1) <̂︀𝜓− (̃︀𝑥) ≤ ̂︀𝜓+ (𝑥2).

V (FR6): In the case 𝑥1 ̸= 𝑥2 Property (FR6) follows from Property (FR2). In the case
𝑥1 = 𝑥2 this property follows from Property (FR1).

5.3 Strict Supremum and Strict Infimum in Linearly Ordered Sets

Definition 7. Let T = (T,≤) be a linearly ordered set and 𝒰 ⊆ T be nonempty subset of
T.

V 1) Element 𝜏 ∈ T is said to be strict upper bound (lower bound) of the set 𝒰 if and
only if for each element 𝑡 ∈ 𝒰 it is valid the inequality 𝑡 < 𝜏 (𝜏 < 𝑡) correspondingly.

V 2) Element 𝜏 ∈ T is named by strict supremum (strict infimum) of the set u 𝒰 if
and only if:

– 𝜏 is strict upper (strict lower) bound of the set 𝒰 .
– For every strict upper (strict lower) bound ̃︀𝜏 of the set 𝒰 it is perfrmed the inequality

𝜏 ≤ ̃︀𝜏 (̃︀𝜏 ≤ 𝜏) correspondingly.

Directly from Definition 7 it follows the following assertion:

If strict supremum (strict infimum) of the subset 𝒰 ⊆ T exists then it is unique.

Indeed, assume that 𝜏, 𝜏 ′ are two strict supremums of the set 𝒰 . Then, by Definition 7
both of the inequalities 𝜏 ≤ 𝜏 ′ and 𝜏 ′ ≤ 𝜏 must be fulfilled. Hence 𝜏 = 𝜏 ′.

V For strict supremum of the set 𝒰 ⊆ T (if it exists) we will use the notation:

sup *
T 𝒰 .

V For strict infimum of the set 𝒰 ⊆ T (if it exists) we use the notation:

inf *T 𝒰 .

Notation 5. Let T1 = (T1,≤1), T2 = (T2,≤2) be linearly ordered sets. We will write
T1 ⊑ T2 if and only if the following conditions are fulfilled:

1) T1 ⊆ T2;

2) For arbitrary 𝑡, 𝜏 ∈ T1 the inequality 𝑡 ≤2 𝜏 is performed if and only if 𝑡 ≤1 𝜏 .

Assertion 5. Let T1 = (T1,≤1) be a linearly ordered set, 𝒰 ⊆ T1 be any nonempty subset of
T1 and 𝑡0 be an arbitrary element such, that 𝑡0 /∈ T1. Then there exists the linearly ordered
set T = (T,≤), satisfying the following conditions:
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1. T1 ⊑ T;
2. T = T1 ∪ {𝑡0};
3. sup *

T 𝒰 = 𝑡0.

Proof. We put:

T−
1 :=

{︀
𝜏 ∈ T1

⃒⃒
∃ 𝑡 ∈ 𝒰 (𝜏 ≤1 𝑡)

}︀
; (5)

T+
1 :=

{︀
𝜏 ∈ T1

⃒⃒
@ 𝑡 ∈ 𝒰 (𝜏 ≤1 𝑡)

}︀
=

{︀
𝜏 ∈ T1

⃒⃒
∀ 𝑡 ∈ 𝒰 (𝑡 <1 𝜏)

}︀
=

=
{︀
𝜏 ∈ T1

⃒⃒
𝜏 is strict upper bound of the set 𝒰 in T1

}︀
, (6)

where <1 is the strict linear order, generated by the non-strict order ≤1. It is easy to verify
that the sets T−

1 and T+
1 possess the following properties:

T+
1 ∩T−

1 = ∅; (7)

T+
1 ∪T−

1 = T1; (8)

∀ 𝑡+ ∈ T+
1 ∀ 𝑡− ∈ T−

1

(︀
𝑡− <1 𝑡

+
)︀
. (9)

Properties (7)–(9) stipulate the following properties:

If 𝑡 ∈ T+
1 and 𝑡 ≤1

̃︀𝑡 then ̃︀𝑡 ∈ T+
1 ; (10)

If 𝑡 ∈ T−
1 and ̃︀𝑡 ≤1 𝑡 then ̃︀𝑡 ∈ T−

1 . (11)

Denote:
T := T1 ∪ {𝑡0} . (12)

On the set T we introduce the order relation. Namely, for every 𝑡, 𝑡′ ∈ T1 we write 𝑡 ≤ 𝑡′

if and only if one of the following conditions is satisfied:

𝑡, 𝑡′ ∈ T1 and 𝑡 ≤1 𝑡
′; (13)

𝑡 = 𝑡0 and 𝑡′ ∈ T+
1 ; (14)

𝑡 ∈ T−
1 and 𝑡′ = 𝑡0; (15)

𝑡 = 𝑡′ = 𝑡0. (16)

It is not hard to prove that T = (T,≤) is the linearly ordered set.
The formula (12) leads to the correlation T1 ⊆ T, whereas from the formulas (13)–(16)

it follows that for any 𝑡, 𝜏 ∈ T1 the condition 𝑡 ≤ 𝜏 is fulfilled if and only if 𝑡 ≤1 𝜏 . Hence,
corresponding to Notation 5, we have:

T1 ⊑ T. (17)

Now our aim is to prove that sup *
T 𝒰 = 𝑡0. From the formula (5) it follows the inclusion

𝒰 ⊆ T−
1 . Hence, according to the formula (15), for every 𝜏 ∈ 𝒰 we get 𝜏 ≤ 𝑡0. Since 𝒰 ⊆ T1

and 𝑡0 /∈ T1, then we have 𝜏 ̸= 𝑡0 for each 𝜏 ∈ 𝒰 . Therefore:
∀ 𝜏 ∈ 𝒰 (𝜏 < 𝑡0) (18)

Assume that for some element 𝑡′0 ∈ T such that 𝑡′0 ̸= 𝑡0 it is performed the condition:

∀ 𝜏 ∈ 𝒰 (𝜏 < 𝑡′0) . (19)

Then the inequality 𝑡′0 ̸= 𝑡0 ensures the correlation 𝑡′0 ∈ T1. So, according to (13), we
obtain, ∀ 𝜏 ∈ 𝒰 (𝜏 <1 𝑡

′
0). This means that 𝑡′0 is a strict upper bound of 𝒰 in T1. Hence

in accordance with (6), we get 𝑡′0 ∈ T+
0 . Thence, by the condition (14), we deduce 𝑡0 ≤ 𝑡′0.

Thus the condition (18) is performed and, moreover, if some element 𝑡′0 ∈ T satisfies the
condition (19) then we have 𝑡0 ≤ 𝑡′0. That is why 𝑡0 is strict supremum of the set 𝒰 in T, ie:

sup *
T 𝒰 = 𝑡0. (20)

From the formulas (17), (12) and (20) it follows that the linearly ordered set T satisfies
conditions 1, 2, 3 of Assertion 5.
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Using the Duality principle (see [14, page 14]) we deduce the following assertion from
Assertion 5:

Assertion 6. Let T1 = (T1,≤1) be a linearly ordered set, 𝒰 ⊆ T1 be any nonempty subset of
T1 and 𝑡0 be an arbitrary element such, that 𝑡0 /∈ T1. Then there exists the linearly ordered
set T = (T,≤), satisfying the following conditions:

1. T1 ⊑ T;
2. T = T1 ∪ {𝑡0};
3. inf *T 𝒰 = 𝑡0.

Applying assertions 5 and 6 successively we obtain the following assertion:

Assertion 7. Let T1 = (T1,≤1) be a linearly ordered set, 𝒰1,𝒰2 ⊆ T1 be arbitrary two
nonempty subsets of T1 such, that

∀ 𝜏1 ∈ 𝒰1 ∀ 𝜏2 ∈ 𝒰2 ( 𝜏1 <1 𝜏2 ) , (21)

and 𝑡
(1)
0 , 𝑡

(2)
0 be any two elements such, that 𝑡

(1)
0 , 𝑡

(2)
0 /∈ T1 and 𝑡

(1)
0 ̸= 𝑡

(2)
0 . Then there exists

the linearly ordered set T = (T,≤), possessing the following properties:

1. T1 ⊑ T;

2. T = T1 ∪
{︁
𝑡
(1)
0 , 𝑡

(2)
0

}︁
;

3. sup *
T 𝒰1 = 𝑡

(1)
0 , inf *T 𝒰2 = 𝑡

(2)
0 .

Proof. According to Assertion 5, the linearly ordered set T* = (T*,≤*) exists such that:

1.1) T1 ⊑ T*;

1.2) T* = T1 ∪
{︁
𝑡
(1)
0

}︁
;

1.3) sup *
T* (𝒰1) = 𝑡

(1)
0 .

Taking into account that T1 ⊑ T* as well as condition (21), we see that for every elements
𝜏1 ∈ 𝒰1 and 𝜏2 ∈ 𝒰2 the inequality 𝜏1 <* 𝜏2 holds, where <* is the strict linear order,
generated by the non-strict order ≤*. Hence any element 𝜏2 ∈ 𝒰2 is a strict upper bound of

the set 𝒰1 in the linearly ordered set T*. And since 𝑡
(1)
0 = sup *

T* (𝒰1), we have the inequality:

𝑡
(1)
0 ≤* 𝜏2 (∀𝜏2 ∈ 𝒰2) .

But since 𝑡
(1)
0 /∈ T1 and 𝒰2 ⊆ T1, the equality 𝑡

(1)
0 = 𝜏2 is impossible for each 𝜏2 ∈ 𝒰2.

Therefore:
𝑡
(1)
0 <* 𝜏2 (∀𝜏2 ∈ 𝒰2) . (22)

In accordance with Assertion 6 the linearly ordered set T = (T,≤) exists such that:

2.1) T* ⊑ T;

2.2) T = T* ∪
{︁
𝑡
(2)
0

}︁
= T1 ∪

{︁
𝑡
(1)
0 , 𝑡

(2)
0

}︁
;

2.3) inf *T (𝒰2) = 𝑡
(2)
0 .

To complete the proof, it is necessary to make sure that sup *
T (𝒰1) = 𝑡

(1)
0 . By condition

of the assertion we have T* ⊑ T. So in the correlation (22) the sign <* may be replaced

by <. Therefore from the formula (22) as well as equality inf *T (𝒰2) = 𝑡
(2)
0 it follows the
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inequality 𝑡
(1)
0 ≤ 𝑡

(2)
0 . But, by condition of the assertion we have 𝑡

(1)
0 ̸= 𝑡

(2)
0 . Thus we obtain

the strict inequality:

𝑡
(1)
0 < 𝑡

(2)
0 (23)

Since sup *
T* (𝒰1) = 𝑡

(1)
0 , then for every 𝜏1 ∈ 𝒰1 we have the inequality 𝜏1 <* 𝑡

(1)
0 . Thence,

taking into account the correlation T* ⊑ T, we deliver:

𝜏1 < 𝑡
(1)
0 (∀ 𝜏1 ∈ 𝒰1) .

Hence 𝑡
(1)
0 is a strict upper bound of the set 𝒰1 relatively the linearly ordered set T as well.

Let ̃︀𝑡0 be other element of T such that:

𝜏1 < ̃︀𝑡0 (∀ 𝜏1 ∈ 𝒰1) . (24)

If we assume that ̃︀𝑡0 ∈ T*, then, taking into account the equality 𝑡
(1)
0 = sup *

T* (𝒰1), we
obtain the inequality 𝑡

(1)
0 ≤* ̃︀𝑡0, and therefore (since T* ⊑ T) we get the inequality:

𝑡
(1)
0 ≤ ̃︀𝑡0. (25)

So it remains to consider only the case ̃︀𝑡0 = 𝑡
(2)
0 . But in this case the inequality (25) follows

from (23). Thus the inequality (25) holds for each element ̃︀𝑡0 ∈ T, satisfying condition (24).
Consequently:

𝑡
(1)
0 = sup *

T (𝒰1) .

5.4 Evolutionary maximums and evolutionary minimums of oriented sets

Definition 8. V We name an element 𝑥* ∈ Bs(ℳ) by evolutionary maximum of
the oriented set ℳ if and only if for any element 𝑥 ∈ Bs(ℳ) the following condition is
performed:

𝑥 = 𝑥* or 𝑥*
+←𝑥.

V We name an element 𝑥* ∈ Bs(ℳ) as evolutionary minimum of the oriented set
ℳ, if and only if for every element 𝑥 ∈ Bs(ℳ) the following condition holds:

𝑥 = 𝑥* or 𝑥
+←𝑥*.

Assertion 8. If evolutionary maximum (evolutionary minimum) of the oriented setℳ exists
then it is unique.

Proof. Let 𝑥* and 𝑥** be two evolutionary maximums of the oriented setℳ. Suppose that

𝑥* ̸= 𝑥**. Then by Definition 8, we obtain 𝑥**
+←𝑥* and 𝑥*

+←𝑥**, which is impossible.

Hence, 𝑥* = 𝑥**. Similarly it can be proven the uniqueness of evolutionary minimum.

Notation 6. If 𝑥* is an evolutionary maximum (𝑥* is an evolutionary minimum) of the
oriented setℳ we will write:

𝑥* = max*(ℳ) (𝑥* = min*(ℳ))

correspondingly.

Definition 9.
V An oriented set ℳ will be named evolutionary bounded if and only if max*(ℳ)

and min*(ℳ) exist.
V An oriented set ℳ will be named strictly evolutionary bounded if and only if it

is evolutionary bounded and card (Bs(ℳ)) ≥ 2.
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Assertion 9. If the oriented set ℳ is strictly evolutionary bounded then max* (ℳ) ̸=
min* (ℳ) and, moreover, max* (ℳ)

+←min* (ℳ).

Proof. Let ℳ be strictly evolutionary bounded oriented set. Assume that max* (ℳ) =
min* (ℳ) = 𝑥*. Since the oriented set ℳ is strictly evolutionary bounded, we have,
card (Bs(ℳ)) ≥ 2 (by Definition 9). Hence there exist an element 𝑥 ∈ Bs(ℳ) such
that 𝑥 ̸= 𝑥*. Then, using equality max* (ℳ) = min* (ℳ) = 𝑥* as well as Definition 8, we

conclude that 𝑥
+←𝑥* and 𝑥*

+←𝑥, which is impossible. Thus max* (ℳ) ̸= min* (ℳ) and, by

Definition 8, we deduce that max* (ℳ)
+←min* (ℳ).

5.5 Partial one-point chronologizations of oriented sets

In this section it will be introduced one more auxiliary technical concept necessary to for-
mulate the main lemma, needed for the proof of main result.

Notation 7. Let ℳ be an oriented set and M1 ⊆ Bs(ℳ) be arbitrary nonempty subset
of Bs(ℳ). Henceforth the record ℳ�M1 will mean the oriented set, satisfying the following
conditions:

∙ Bs (ℳ�M1) = M1;

∙ For every 𝑥, 𝑦 ∈ Bs (ℳ�M1) = M1 the correlation 𝑦←−−−
ℳ�M1

𝑥 is performed if and only if

𝑦←
ℳ
𝑥.

Further we will adhere to the following convention:

Convention. In the cases, where we simultaneously deal with the oriented setℳ as well

as some its “oriented subset”ℳ�M1, for 𝑥, 𝑦 ∈ M1 the records 𝑦
+−← 𝑥 and 𝑦

−+← 𝑥 always will

mean that 𝑦
+−←
ℳ
𝑥 and 𝑦

−+←
ℳ
𝑥 (but not 𝑦

+−←−−−
ℳ�M1

𝑥 or 𝑦
−+←−−−

ℳ�M1

𝑥).

It turns out that it is simpler to prove the existence of exactly 2-repeating one-point time
on every quasi-chain oriented set. This fact serves as a motivation for the following auxiliary
technical definition.

Definition 10. Let ℳ be any oriented set and N ⊆ Bs(ℳ) be arbitrary nonempty subset
of Bs(ℳ).

By partial 2-repeating one-point chronologization of the oriented set ℳ with re-
spect to the subset N we will understand the ordered pair (T, 𝜓), which satisfies the following
conditions:

1. T = (T,≤) is a linearly ordered set.

2. 𝜓 is a mapping of type 𝜓 : T→ 2Bs(ℳ�N), moreover it is one-point 2-repeating time on
the oriented setℳ�N.

3. For every 𝑥, 𝑦 ∈ Bs (ℳ�N) = N the following implications are performed:

3.1
(︁
𝑦

+−← 𝑥
)︁
⇒

(︁ ̂︀𝜓− (𝑥) < ̂︀𝜓− (𝑦)
)︁
;

3.2
(︁
𝑦

−+← 𝑥
)︁
⇒

(︁ ̂︀𝜓+ (𝑥) < ̂︀𝜓+ (𝑦)
)︁
.

Remark 4. According to the convention, accepted in Notation 7, the conditions 3.1 and 3.2
of Definition 10 are essential and they do not follow from Assertion 4 (items (FR4) and

(FR5)). Indeed, by this convention the records 𝑦
+−← 𝑥 and 𝑦

−+← 𝑥 must be understood as

𝑦
+−←
ℳ
𝑥 and 𝑦

−+←
ℳ
𝑥 (but not 𝑦

+−←−−−
ℳ�N

𝑥 or 𝑦
−+←−−−
ℳ�N

𝑥).
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Remark 5. Further for conciseness we will use the term “partial 2-chronologization”
instead of “partial 2-repeating one-point chronologization”.

6 The main lemma

The next main lemma is needed for the proof of sufficiency for Theorem 3.

Lemma 2. Suppose the following:

1. An oriented setℳ is strictly evolutionary bounded and quasi-chain.

2. (T1, 𝜓1) = ((T1,≤1) , 𝜓1) is a partial 2-chronologization of ℳ relatively a subset N ⊆
Bs(ℳ) such that min* (ℳ) , max* (ℳ) ∈ N.

3. 𝑥0 ∈ Bs(ℳ) ∖ N.

4. 𝑡0, 𝑡
′
0 are arbitrary elements such that 𝑡0, 𝑡

′
0 /∈ T1 and 𝑡0 ̸= 𝑡′0.

Then there exists the partial 2-chronologization (T, 𝜓) = ((T,≤) , 𝜓) of the oriented set ℳ
relatively the subset N ∪ {𝑥0} satisfying the following conditions:

a) T1 ⊑ T.

b) T = T1 ∪ {𝑡0, 𝑡′0}.

c) ∀𝑡 ∈ T1 (𝜓 (𝑡) = 𝜓1 (𝑡) ).

Proof. 1. Introduce the following notations:

N+ :=
{︁
𝑥 ∈ N

⃒⃒
𝑥

−+← 𝑥0

}︁
, (26)

N− :=
{︁
𝑥 ∈ N

⃒⃒
𝑥0

+−← 𝑥
}︁
, (27)

𝑥* := max* (ℳ) ; 𝑥* := min* (ℳ) .

Since the oriented set ℳ is strictly evolutionary bounded then, by Assertion 9, we get
𝑥* ̸= 𝑥*.

According to condition of the lemma, we have 𝑥*, 𝑥* ∈ N. So, since 𝑥0 /∈ N then by

Definition 8, we deduce: 𝑥*
+←𝑥0

+←𝑥*. Hence, in accordance with Assertion 3 (property

(QL12)), we get: 𝑥*
−+← 𝑥0

+−← 𝑥*. Thus, we have, 𝑥* ∈ N− and 𝑥* ∈ N+. Therefore the sets

N− and N+ are nonempty.
For every 𝑥 ∈ N we put:

̂︀𝜓+
1,𝑥0

(𝑥) :=

⎧⎪⎨⎪⎩
̂︀𝜓−
1 (𝑥) , 𝑥

+←𝑥0̂︀𝜓+
1 (𝑥) , 𝑥

+

̸↚ 𝑥0
(28)

̂︀𝜓−
1,𝑥0

(𝑥) :=

⎧⎪⎨⎪⎩
̂︀𝜓+
1 (𝑥) , 𝑥0

+←𝑥̂︀𝜓−
1 (𝑥) , 𝑥0

+

̸↚ 𝑥,
(29)

where for 𝑥1, 𝑥2 ∈ Bs(ℳ) the record 𝑥2
+

̸↚ 𝑥1 means that the correlation 𝑥2
+←𝑥1 is not

performed.

Now we are going to prove the following property of the functions ̂︀𝜓+
1,𝑥0

and ̂︀𝜓−
1,𝑥0

:
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(𝜓𝑥01) If 𝑥1 ∈ N− and 𝑥2 ∈ N+ then ̂︀𝜓−
1,𝑥0

(𝑥1) <1
̂︀𝜓+
1,𝑥0

(𝑥2).

Indeed, consider any elements 𝑥1 ∈ N− and 𝑥2 ∈ N+.

V In the case 𝑥2
+

̸↚ 𝑥0
+

̸↚ 𝑥1, according to (26), (27), we get 𝑥2
−+← 𝑥0

+−← 𝑥1. Hence, by

Property (QL13) (see Assertion 3), we obtain, 𝑥2←𝑥1. So, taking into account that
the time 𝜓1 is 2-repeating and using the formulas (28), (29) as well as Assertion 4
(Property (FR6)), we deliver:

̂︀𝜓−
1,𝑥0

(𝑥1) = ̂︀𝜓−
1 (𝑥1) <1

̂︀𝜓+
1 (𝑥2) = ̂︀𝜓+

1,𝑥0
(𝑥2) .

V In the case 𝑥2
+←𝑥0

+

̸↚ 𝑥1, according to (27), we get, 𝑥2
+←𝑥0

+−← 𝑥1. Hence, by Prop-

erty (QL16) (see Assertion 3), we obtain, 𝑥2
+−← 𝑥1. Thence (taking into account that

(T1, 𝜓1) is a partial 2-chronologization of the oriented set ℳ relatively N), by Defini-

tion 10 (item 3.1), we have ̂︀𝜓−
1 (𝑥1) <1

̂︀𝜓−
1 (𝑥2). So, according to (28), (29) we obtain:

̂︀𝜓−
1,𝑥0

(𝑥1) = ̂︀𝜓−
1 (𝑥1) <1

̂︀𝜓−
1 (𝑥2) = ̂︀𝜓+

1,𝑥0
(𝑥2) .

V In the case 𝑥2
+

̸↚ 𝑥0
+←𝑥1, according to (26) we have, 𝑥2

−+← 𝑥0
+←𝑥1. Hence, by Prop-

erty (QL17) (see Assertion 3), we obtain, 𝑥2
−+← 𝑥1. Thence, by Definition 10 (item 3.2),

we obtain ̂︀𝜓+
1 (𝑥1) <1

̂︀𝜓+
1 (𝑥2). So, in accordance with (28), (29), we get:

̂︀𝜓−
1,𝑥0

(𝑥1) = ̂︀𝜓+
1 (𝑥1) <1

̂︀𝜓+
1 (𝑥2) = ̂︀𝜓+

1,𝑥0
(𝑥2) .

V In the case 𝑥2
+←𝑥0

+←𝑥1, according to Property (QL6) (see Assertion 2), we deduce

𝑥2
+←𝑥1. Hence, by Assertion 4 (Property (FR3)), we obtain ̂︀𝜓+

1 (𝑥1) <1
̂︀𝜓−
1 (𝑥2). So,

in accordance with (28), (29), we conclude:

̂︀𝜓−
1,𝑥0

(𝑥1) = ̂︀𝜓+
1 (𝑥1) <1

̂︀𝜓−
1 (𝑥2) = ̂︀𝜓+

1,𝑥0
(𝑥2) .

Thus, in all possible cases the property have been proven.

Denote:

T+
1 :=

{︁̂︀𝜓+
1,𝑥0

(𝑥)
⃒⃒
𝑥 ∈ N+

}︁
; (30)

T−
1 :=

{︁̂︀𝜓−
1,𝑥0

(𝑥)
⃒⃒
𝑥 ∈ N−

}︁
. (31)

From the Property (𝜓𝑥01) it follows that:

∀ 𝑡1 ∈ T−
1 ∀ 𝑡2 ∈ T+

1 (𝑡1 <1 𝑡2) . (32)

Formula (32) together with Assertion 7 ensure the existence of the linearly ordered set
T = (T,≤), possessing the following properties:

(T1) T1 ⊑ T;
(T2) T = T1 ∪ {𝑡0, 𝑡′0};
(T3) sup *

T
(︀
T−

1

)︀
= 𝑡0, inf *T

(︀
T+

1

)︀
= 𝑡′0.
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From the formula (32) as well as Condition (T1) it follows that ∀ 𝑡1 ∈ T−
1 ∀ 𝑡2 ∈ T+

1 (𝑡1 < 𝑡2).
Therefore from Condition (T3) the inequality 𝑡0 ≤ 𝑡′0 is deduced. But, by conditions of the
lemma, we have 𝑡0 ̸= 𝑡′0. Consequently:

𝑡0 < 𝑡′0. (33)

Below we establish some additional properties of the functions ̂︀𝜓+
1 and ̂︀𝜓−

1 , namely the
properties (𝜓𝑥02)–(𝜓𝑥05) (see further).

(𝜓𝑥02) If 𝑥 ∈ N and 𝑥←𝑥0 then 𝑡0 < ̂︀𝜓+
1 (𝑥).

Indeed, let 𝑥 ∈ N and 𝑥←𝑥0. Let us prove that for an arbitrary element 𝑥1 ∈ N− the
following inequality holds: ̂︀𝜓−

1,𝑥0
(𝑥1) < ̂︀𝜓+

1 (𝑥) . (34)

V In the case 𝑥0
+

̸↚ 𝑥1 according to (27) we get 𝑥←𝑥0
+−← 𝑥1. So, by Property (QL7) (see

Assertion 3), we have 𝑥←𝑥1. Consequently, taking into account the fact that the time
𝜓 is 2-repeating, using formula (29) and Property (FR6) from Assertion 4, we obtain,̂︀𝜓−
1,𝑥0

(𝑥1) = ̂︀𝜓−
1 (𝑥1) <1

̂︀𝜓+
1 (𝑥). Thence, since T1 ⊑ T (by condition (T1)), we get the

inequality (34).

V In the case 𝑥0
+←𝑥1 we have 𝑥←𝑥0

+←𝑥1, ie 𝑥
−+← 𝑥1. Hence, applying the formula (29)

as well as Definition 10 (item 3.2), we get, ̂︀𝜓−
1,𝑥0

(𝑥1) = ̂︀𝜓+
1 (𝑥1) <1

̂︀𝜓+
1 (𝑥). Thence,

since T1 ⊑ T (by condition (T1)), we get the inequality (34).

Therefore in the both cases the inequality (34) had been proven. Since the inequality
(34) holds for each element 𝑥1 ∈ N−, then, by the formula (31), we have:

𝑡 < ̂︀𝜓+
1 (𝑥)

(︀
∀𝑡 ∈ T−

1

)︀
.

Hence the element ̂︀𝜓+
1 (𝑥) ∈ T1 ⊆ T is a strict upper bound of the set T−

1 , where,
by condition (T3), sup *

T
(︀
T−

1

)︀
= 𝑡0. Thence, by Definition 7, (item 2), we obtain

the inequality 𝑡0 ≤ ̂︀𝜓+
1 (𝑥). But, since 𝑡0 /∈ T1 (by conditions of the lemma) and̂︀𝜓+

1 (𝑥) ∈ T1, then the equality 𝑡0 = ̂︀𝜓+
1 (𝑥) is impossible. Thus, we obtain the desired

strict inequality 𝑡0 < ̂︀𝜓+
1 (𝑥). The property have been proven.

(𝜓𝑥03) If 𝑥 ∈ N and 𝑥0←𝑥 then ̂︀𝜓−
1 (𝑥) < 𝑡′0.

Indeed, let 𝑥 ∈ N and 𝑥0←𝑥. Let us prove that for an arbitrary element 𝑥1 ∈ N+ the
following inequality is fulfilled:

̂︀𝜓−
1 (𝑥) < ̂︀𝜓+

1,𝑥0
(𝑥1) (35)

V In the case 𝑥1
+

̸↚ 𝑥0 according to (26) we get 𝑥1
−+← 𝑥0←𝑥. So, by Property (QL8) (see

Assertion 3), we have, 𝑥1←𝑥. Consequently, taking into account the fact that the time
𝜓 is 2-repeating, using Property (FR6) from Assertion 4 and formula (28), we obtain,̂︀𝜓−
1 (𝑥) <1

̂︀𝜓+
1 (𝑥1) = ̂︀𝜓+

1,𝑥0
(𝑥1). Thence, since T1 ⊑ T (by condition (T1)), we get the

inequality (35).

V In the case 𝑥1
+←𝑥0 we have 𝑥1

+←𝑥0←𝑥, that is 𝑥1
+−← 𝑥. Hence, taking into account

Definition 10 (item 3.1), as well as the formula (28), we obtain, ̂︀𝜓−
1 (𝑥) <1

̂︀𝜓−
1 (𝑥1) =̂︀𝜓+

1,𝑥0
(𝑥1). Thence, since T1 ⊑ T (by condition (T1)), we get the inequality (35).
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Therefore, in the both cases the inequality (35) have been proven. Since the inequal-
ity (35) is valid for arbitrary element 𝑥1 ∈ N+, then, according to the formula (30), we
have: ̂︀𝜓−

1 (𝑥) < 𝑡
(︀
∀𝑡 ∈ T+

1

)︀
.

Hence the element ̂︀𝜓−
1 (𝑥) ∈ T1 ⊆ T is a strict lower bound of the set T+

1 . Thence,
taking into account the condition (T3) (namely the equality inf *T

(︀
T+

1

)︀
= 𝑡′0), we ob-

tain the inequality ̂︀𝜓−
1 (𝑥) ≤ 𝑡′0. But since 𝑡′0 /∈ T1 (by condition of the lemma) and̂︀𝜓−

1 (𝑥) ∈ T1, then the equality 𝑡′0 = ̂︀𝜓−
1 (𝑥) is impossible. So we deliver the desired

strict inequality ̂︀𝜓−
1 (𝑥) < 𝑡′0. The property have been proven.

(𝜓𝑥04) If 𝑥 ∈ N and 𝑥
+−← 𝑥0 then 𝑡0 < ̂︀𝜓−

1 (𝑥).

Indeed, let 𝑥 ∈ N and 𝑥
+−← 𝑥0. Let us prove that for an arbitrary element 𝑥1 ∈ N− the

following inequality is fulfilled: ̂︀𝜓−
1,𝑥0

(𝑥1) < ̂︀𝜓−
1 (𝑥) . (36)

Below we consider two cases: 𝑥0
+

̸↚ 𝑥1 and 𝑥0
+←𝑥1.

V Case 𝑥0
+

̸↚ 𝑥1. In this case according to (27) we have, 𝑥
+−← 𝑥0

+−← 𝑥1. Thence, by As-

sertion 3 (property (QL14)), we obtain, 𝑥
+−← 𝑥1 (where 𝑥1, 𝑥 ∈ N). Hence, by Defini-

tion 10 (item 3.1), we get ̂︀𝜓−
1 (𝑥1) <1

̂︀𝜓−
1 (𝑥). Therefore, taking into account the fact

that 𝑥0
+

̸↚ 𝑥1, as well as the formula (29), we deduce, ̂︀𝜓−
1,𝑥0

(𝑥1) = ̂︀𝜓−
1 (𝑥1) <1

̂︀𝜓−
1 (𝑥).

Thence, since T1 ⊑ T (by condition (T1)), we get the inequality (36).

V Case 𝑥0
+←𝑥1. In this case we have, 𝑥

+−← 𝑥0
+←𝑥1. That is, by Assertion 3 (property

(QL10)), we deliver 𝑥
+←𝑥1. So, by Assertion 4 (property (FR3)), we have, ̂︀𝜓+

1 (𝑥1) <1̂︀𝜓−
1 (𝑥). Hence, since, 𝑥0

+←𝑥1, then according to the formula (29), we have, ̂︀𝜓−
1,𝑥0

(𝑥1) =̂︀𝜓+
1 (𝑥1) <1

̂︀𝜓−
1 (𝑥). Thence, since T1 ⊑ T (by condition (T1)), we get the inequality (36).

Therefore, in the both cases the inequality (36) have been proven. Since the inequal-
ity (36) is valid for arbitrary element 𝑥1 ∈ N−, then, according to the formula (31), we
obtain:

𝑡 < ̂︀𝜓−
1 (𝑥)

(︀
∀𝑡 ∈ T−

1

)︀
.

Hence the element ̂︀𝜓−
1 (𝑥) ∈ T1 ⊆ T is a strict upper bound of the set T−

1 . Thence,
taking into account the condition (T3) (namely the equality sup *

T
(︀
T−

1

)︀
= 𝑡0), we

obtain the inequality 𝑡0 ≤ ̂︀𝜓−
1 (𝑥). But since 𝑡0 /∈ T1 (by condition of the lemma) and̂︀𝜓−

1 (𝑥) ∈ T1, then the equality 𝑡0 = ̂︀𝜓−
1 (𝑥) is impossible. So we deliver the desired strict

inequality 𝑡0 < ̂︀𝜓−
1 (𝑥). The property have been proven.

(𝜓𝑥05) If 𝑥 ∈ N and 𝑥0
−+← 𝑥 then ̂︀𝜓+

1 (𝑥) < 𝑡′0.

Indeed, let, 𝑥 ∈ N and 𝑥0
−+← 𝑥. Let us prove that for an arbitrary 𝑥1 ∈ N+ the following

inequality is valid: ̂︀𝜓+
1 (𝑥) < ̂︀𝜓+

1,𝑥0
(𝑥1) . (37)

Below we consider two cases: 𝑥1
+

̸↚ 𝑥0 and 𝑥1
+←𝑥0.
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V Case 𝑥1
+

̸↚ 𝑥0. In this case according to (26), we have, 𝑥1
−+← 𝑥0

−+← 𝑥. Thence, by

Assertion 3 (property (QL15)), we obtain, 𝑥1
−+← 𝑥 (where 𝑥, 𝑥1 ∈ N). Hence, by

Definition 10 (item 3.2), we get, ̂︀𝜓+
1 (𝑥) <1

̂︀𝜓+
1 (𝑥1). That is why, taking into ac-

count the specifics of the case (ie 𝑥1
+

̸↚ 𝑥0) as well as the formula (28), we deduce,̂︀𝜓+
1 (𝑥) <1

̂︀𝜓+
1 (𝑥1) = ̂︀𝜓+

1,𝑥0
(𝑥1). Thence, since T1 ⊑ T (by condition (T1)), we get the

inequality (37).

V Case 𝑥1
+←𝑥0. In this case we have, 𝑥1

+←𝑥0
−+← 𝑥. So, by Assertion 3 (property (QL9)),

we deliver 𝑥1
+←𝑥 (where 𝑥, 𝑥1 ∈ N). Therefore, by Assertion 4 (property (FR3)), we

have, ̂︀𝜓+
1 (𝑥) <1

̂︀𝜓−
1 (𝑥1). That is why, taking into account the specifics of the case

(ie 𝑥1
+←𝑥0) as well as the formula (28), we deduce, ̂︀𝜓+

1 (𝑥) <1
̂︀𝜓−
1 (𝑥1) = ̂︀𝜓+

1,𝑥0
(𝑥1).

Thence, since T1 ⊑ T (by condition (T1)), we get the inequality (37).

Thus, in the both cases the inequality (37) have been proven. Since the inequality (37)
is valid for arbitrary element 𝑥1 ∈ N+, then, according to the formula (30), we obtain:

̂︀𝜓+
1 (𝑥) < 𝑡

(︀
∀𝑡 ∈ T+

1

)︀
.

Hence the element ̂︀𝜓+
1 (𝑥) ∈ T1 ⊆ T is a strict lower bound of the set T+

1 . Thence,
taking into account the condition (T3), (namely the equality inf *T

(︀
T+

1

)︀
= 𝑡′0), we

obtain the inequality ̂︀𝜓+
1 (𝑥) ≤ 𝑡′0. But since 𝑡′0 /∈ T1 (by condition of the lemma) and̂︀𝜓+

1 (𝑥) ∈ T1, then the equality 𝑡′0 = ̂︀𝜓+
1 (𝑥) is impossible. So we deliver the desired

strict inequality ̂︀𝜓+
1 (𝑥) < 𝑡′0. The property have been proven.

For each 𝑡 ∈ T we put:

𝜓 (𝑡) :=

{︃
𝜓1 (𝑡) , 𝑡 ∈ T1

{𝑥0} , 𝑡 ∈ {𝑡0, 𝑡′0} .
(38)

2. Now we are going to prove that the mapping 𝜓 is a time on the oriented setℳ�N∪{𝑥0} =
(N ∪ {𝑥0} ,←) (where the symbol ← in reality means the restriction of the relation ←

ℳ
into

the set N ∪ {𝑥0} ⊆ Bs(ℳ)).
2.1) From the formula (38) and the fact that 𝜓1 is a time on the oriented set

ℳ�N = (N,←) we conclude that ∀𝑥 ∈ N ∪ {𝑥0} ∃ 𝑡 ∈ T (𝑥 ∈ 𝜓 (𝑡)) (where N ∪ {𝑥0} =
Bs

(︀
ℳ�N∪{𝑥0}

)︀
). So the first condition of Definition 3 is satisfied for the mapping 𝜓.

2.2) Let 𝑥1, 𝑥2 ∈ N ∪ {𝑥0}, 𝑥2←𝑥1 and 𝑥1 ̸= 𝑥2.
2.2.1. First we consider the case, where 𝑥1, 𝑥2 ∈ N. From the fact that 𝜓1 is a time on

the oriented setℳ�N = (N,←) it follows the existence the time points 𝑡1, 𝑡2 ∈ T1 such that
𝑥1 ∈ 𝜓1 (𝑡1), 𝑥2 ∈ 𝜓 (𝑡2) and 𝑡1 <1 𝑡2. Thence, using the formula (38) and condition (T1)
(T1 ⊑ T) we obtain that 𝑡1, 𝑡2 ∈ T, 𝑥1 ∈ 𝜓 (𝑡1), 𝑥2 ∈ 𝜓 (𝑡2), 𝑡1 < 𝑡2. Thus it only remains to
consider the cases where 𝑥1 = 𝑥0 or 𝑥2 = 𝑥0. We consider these cases below.

2.2.2. Case 𝑥1 = 𝑥0. In this case we have, 𝑥2←𝑥1 = 𝑥0 and 𝑥2 ̸= 𝑥1 = 𝑥0. And from the
inequality 𝑥2 ̸= 𝑥0 if follows that 𝑥2 ∈ N. Thence, taking into account the property (𝜓𝑥02),

we obtain the inequality, 𝑡0 < ̂︀𝜓+
1 (𝑥2). Denote: 𝑡1 := 𝑡0, 𝑡2 := ̂︀𝜓+

1 (𝑥2). Then, applying the
formula (38) as well as Notation 4, we obtain:

𝑥1 = 𝑥0 ∈ {𝑥0} = 𝜓 (𝑡0) = 𝜓 (𝑡1) ;

𝑥2 ∈ 𝜓1 (𝑡2) = 𝜓 (𝑡2) and

𝑡1 < 𝑡2.
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2.2.3. Case 𝑥2 = 𝑥0. In this case we have, 𝑥0 = 𝑥2←𝑥1 and 𝑥1 ̸= 𝑥2 = 𝑥0. From the
inequality 𝑥1 ̸= 𝑥0 if follows that 𝑥1 ∈ N. Thence, taking into account the property (𝜓𝑥03),

we obtain the inequality, ̂︀𝜓−
1 (𝑥1) < 𝑡′0. Denote: 𝑡1 := ̂︀𝜓−

1 (𝑥1), 𝑡2 := 𝑡′0. Then, applying the
formula (38) as well as Notation 4, we deduce:

𝑥1 ∈ 𝜓1 (𝑡1) = 𝜓 (𝑡1) ;

𝑥2 = 𝑥0 ∈ {𝑥0} = 𝜓 (𝑡′0) = 𝜓 (𝑡2) ;

and 𝑡1 < 𝑡2.

Therefore in all possible cases we have proven that, for every 𝑥1, 𝑥2 ∈ N∪ {𝑥0} such that
𝑥2←𝑥1 and 𝑥1 ̸= 𝑥2 there exist time points 𝑡1, 𝑡2 ∈ T such, that 𝑥1 ∈ 𝜓 (𝑡1), 𝑥2 ∈ 𝜓 (𝑡2) and
𝑡1 < 𝑡2. So, the second condition of Definition 3 is also satisfied for the mapping 𝜓. Thus,
the mapping 𝜓 is a time on the oriented setℳ�N∪{𝑥0} = (N ∪ {𝑥0} ,←).

3. The next aim is to prove that the time 𝜓 is one-point.
3.1) Since the time 𝜓1 is one-point, then from the formula (38) it follows that for each

𝑡 ∈ T the set 𝜓 (𝑡) is a singleton. Therefore, by Definition 4, the time 𝜓 is quasi one-
point.

3.2) Let 𝑡1, 𝑡2 ∈ T, 𝑥1, 𝑥2 ∈ N ∪ {𝑥0}, 𝑡1 ≤ 𝑡2, 𝑥1 ∈ 𝜓 (𝑡1), 𝑥2 ∈ 𝜓 (𝑡2). Let us prove that
in this case 𝑥2←𝑥1.

3.2.1. In the case 𝑡1 = 𝑡2 using the fact that (by item 3.1)) 𝜓 (𝑡) is a singleton set, we
obtain that 𝑥1 = 𝑥2. So, by Definition 1 in this case we have the desired correlation 𝑥2←𝑥1.
Hence, further we consider that 𝑡1 < 𝑡2.

3.2.2. In the case 𝑡1, 𝑡2 ∈ T1, taking into account the formula (38) as well as condi-
tion (T1) (ie T1 ⊑ T), we get:

𝜓 (𝑡1) = 𝜓1 (𝑡1) , 𝜓 (𝑡2) = 𝜓1 (𝑡2) , 𝑡1 <1 𝑡2.

And since (by conditions of the lemma) the time 𝜓1 is one-point, according to Definition 4
we obtain 𝑥2←𝑥1.

Thus it remains to consider only two cases 𝑡1 ∈ {𝑡0, 𝑡′0} and 𝑡2 ∈ {𝑡0, 𝑡′0} under additional
condition 𝑡1 < 𝑡2.

3.2.3. Case 𝑡1 ∈ {𝑡0, 𝑡′0} (𝑡1 < 𝑡2). In this case, taking into account the inequality (33)
as well as the formula (38), we have:

𝑡0 ≤ 𝑡1 < 𝑡2, 𝑥1 ∈ 𝜓 (𝑡1) = 𝜓 (𝑡0) , 𝑥2 ∈ 𝜓 (𝑡2) . (39)

From the condition 𝑥1 ∈ 𝜓 (𝑡0), according to formula (38), it follows that 𝑥1 = 𝑥0. Therefore
it needs to prove that 𝑥2←𝑥0. Assume the contrary, ie 𝑥2 ̸↚ 𝑥0. Then, taking into account

that the oriented setℳ is quasi-chain, by Definition 5, we obtain 𝑥0
+←𝑥2. So, the equality

𝑥0 = 𝑥2 is impossible, that is 𝑥2 ̸= 𝑥0. Hence 𝑥2 ∈ N. Thus, using Assertion 3 (property
(QL12)), we obtain:

𝑥2 ∈ N− =
{︁
𝑥 ∈ N

⃒⃒
𝑥0

+−← 𝑥
}︁
.

Since 𝑥0
+←𝑥2 then, in accordance with formulas (29) and (31), we have, ̂︀𝜓+

1 (𝑥2) =̂︀𝜓−
1,𝑥0

(𝑥2) ∈ T−
1 . Thence we deliver:̂︀𝜓+

1 (𝑥2) < sup *
T
(︀
T−

1

)︀
= 𝑡0. (40)

Since 𝑥2 ∈ N (ie 𝑥2 ̸= 𝑥0) and (according to (39)), 𝑥2 ∈ 𝜓 (𝑡2), then taking into account the
fact that 𝜓 (𝑡0) = 𝜓 (𝑡′0) = {𝑥0}, we get 𝑡2 /∈ {𝑡0, 𝑡′0}. Hence, 𝑡2 ∈ T1. So, by formula (38),

we have 𝜓 (𝑡2) = 𝜓1 (𝑡2), that is (according to (39)) 𝑥2 ∈ 𝜓1 (𝑡2). Thence, 𝑡2 ≤1
̂︀𝜓+
1 (𝑥2).

And, taking into account condition (T1) (T1 ⊑ T), as well as the inequality (40) we obtain:

𝑡2 ≤ ̂︀𝜓+
1 (𝑥2) < 𝑡0.
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The last inequality contradicts to conditions (39). Hence, the assumption, made before is
wrong. That is why we obtain, 𝑥2←𝑥0 = 𝑥1 (ie 𝑥2←𝑥1). Which was to be proven.

3.2.4. Now we consider the case 𝑡2 ∈ {𝑡0, 𝑡′0} (𝑡1 < 𝑡2). In this case, taking into account
the inequality (33) as well as the formula (38), we have:

𝑡1 < 𝑡2 ≤ 𝑡′0, 𝑥1 ∈ 𝜓 (𝑡1) , 𝑥2 ∈ 𝜓 (𝑡2) = 𝜓 (𝑡′0) . (41)

Let us prove that 𝑥2←𝑥1. From the condition 𝑥2 ∈ 𝜓 (𝑡′0), according to formula (38), it
follows that 𝑥2 = 𝑥0. Therefore it needs to prove that 𝑥0←𝑥1. Assume the contrary, ie

𝑥0 ̸↚ 𝑥1. Then, taking into account that the oriented setℳ is quasi-chain, we have 𝑥1
+←𝑥0.

Therefore, the equality 𝑥0 = 𝑥1 is impossible, that is 𝑥1 ̸= 𝑥0. Hence 𝑥1 ∈ N. Thus, using
Assertion 3 (property (QL12)) we deduce:

𝑥1 ∈ N+ =
{︁
𝑥 ∈ N

⃒⃒
𝑥

−+← 𝑥0

}︁
.

Since 𝑥1
+←𝑥0 then, in accordance with formulas (28) and (30), we have, ̂︀𝜓−

1 (𝑥1) =̂︀𝜓+
1,𝑥0

(𝑥1) ∈ T+
1 . Thence we deliver:

𝑡′0 = inf *T
(︀
T+

1

)︀
< ̂︀𝜓−

1 (𝑥1) . (42)

Since 𝑥1 ∈ N (ie 𝑥1 ̸= 𝑥0) and (according to (41)), 𝑥1 ∈ 𝜓 (𝑡1), then taking into account the
fact that 𝜓 (𝑡0) = 𝜓 (𝑡′0) = {𝑥0}, we get 𝑡1 /∈ {𝑡0, 𝑡′0}. Hence, 𝑡1 ∈ T1. So, by formula (38),

we have 𝜓 (𝑡1) = 𝜓1 (𝑡1), that is (according to (41)) 𝑥1 ∈ 𝜓1 (𝑡1). Thence, ̂︀𝜓−
1 (𝑥1) ≤1 𝑡1.

And, taking into account condition (T1) (T1 ⊑ T), as well as the inequality (42) we obtain:

𝑡′0 <
̂︀𝜓−
1 (𝑥1) ≤ 𝑡1.

The last inequality contradicts to conditions (41). Hence, the assumption, made before is
wrong. That is why we obtain, 𝑥2 = 𝑥0←𝑥1. Which was to be proven.

From the items 3.2.1–3.2.4 it follows that in all possible cases the conditions 𝑡1, 𝑡2 ∈ T,
𝑥1, 𝑥2 ∈ N ∪ {𝑥0}, 𝑡1 ≤ 𝑡2, 𝑥1 ∈ 𝜓 (𝑡1), 𝑥2 ∈ 𝜓 (𝑡2) stipulate the correlation 𝑥2←𝑥1.

By Definition 4, from the items 3.1), 3.2) it follows that the time 𝜓 is one-point on the
oriented setℳ�N∪{𝑥0} = (N ∪ {𝑥0} ,←).

4. Since the time 𝜓1 is 2-repeating, the equality (38) ensures that the time 𝜓 also is
2-repeating.

5. Now we are going to prove that for any 𝑥, 𝑦 ∈ N∪{𝑥0} = Bs
(︀
ℳ�N∪{𝑥0}

)︀
the condition

𝑦
+−← 𝑥 involves the inequality ̂︀𝜓− (𝑥) < ̂︀𝜓− (𝑦). Hence, consider any 𝑥, 𝑦 ∈ N ∪ {𝑥0} such

that 𝑦
+−← 𝑥.

5.1) In the case, where 𝑥, 𝑦 ∈ N the formula (38) delivers the equalities ̂︀𝜓− (𝑥) = ̂︀𝜓−
1 (𝑥),̂︀𝜓− (𝑦) = ̂︀𝜓−

1 (𝑦). That is why in this case the desired implication follows from the fact that
(T1, 𝜓1) is a partial 2-chronologization ofℳ relatively the subset N ⊆ Bs(ℳ). Therefore it
remains to consider only the cases where 𝑥 = 𝑥0 or 𝑦 = 𝑥0.

5.2) Consider the case 𝑥 = 𝑥0. Since we have 𝑦
+−← 𝑥, then the equality 𝑦 = 𝑥 is impossible

(by definition of relations
+← and

+−← (see notations 1 and 3)). Hence 𝑦 ̸= 𝑥, that is 𝑦 ̸= 𝑥0.

Thus, we have 𝑦 ∈ N and 𝑦
+−← 𝑥0. Thence, using property (𝜓𝑥04), we obtain 𝑡0 < ̂︀𝜓−

1 (𝑦).

Since 𝑦 ∈ N then the formula (38) gives ̂︀𝜓− (𝑦) = ̂︀𝜓−
1 (𝑦). Thus, using the formula (38), we

obtain: ̂︀𝜓− (𝑥) = ̂︀𝜓− (𝑥0) = 𝑡0 < ̂︀𝜓−
1 (𝑦) = ̂︀𝜓− (𝑦) .
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5.3) Now we consider the case where 𝑦 = 𝑥0. Since 𝑦
+−← 𝑥, then we have 𝑥0

+−← 𝑥. Conse-

quently, 𝑥 ̸= 𝑥0, that is 𝑥 ∈ N. Thus, we have, 𝑥0
+−← 𝑥, where 𝑥 ∈ N. Thence it follows

that 𝑥 ∈ N− (by formula (27)). That is why, applying (38) and (29), we obtain:̂︀𝜓− (𝑥) = ̂︀𝜓−
1 (𝑥) ≤1

̂︀𝜓−
1,𝑥0

(𝑥) .

Hence, taking into account that T1 ⊑ T we deduce, ̂︀𝜓− (𝑥) ≤ ̂︀𝜓−
1,𝑥0

(𝑥), where ̂︀𝜓−
1,𝑥0

(𝑥) ∈{︁̂︀𝜓−
1,𝑥0

(̃︀𝑥) ⃒⃒ ̃︀𝑥 ∈ N−

}︁
= T−

1 . Therefore, according to condition (T3) as well as Definition 7,

we obtain: ̂︀𝜓− (𝑥) ≤ ̂︀𝜓−
1,𝑥0

(𝑥) < sup *
T
(︀
T−

1

)︀
= 𝑡0 = ̂︀𝜓− (𝑥0) = ̂︀𝜓− (𝑦) .

Results, established in the items 5.1)–5.3) ensure that (in all possible cases) condition

𝑦
+−← 𝑥 leads to the inequality ̂︀𝜓− (𝑥) < ̂︀𝜓− (𝑦) (for arbitrary 𝑥, 𝑦 ∈ N ∪ {𝑥0}), which was to

be proven.

6. Let us prove that for any 𝑥, 𝑦 ∈ N∪{𝑥0} the condition 𝑦
−+← 𝑥 stipulates the inequalitŷ︀𝜓+ (𝑥) < ̂︀𝜓+ (𝑦). So, consider any 𝑥, 𝑦 ∈ N ∪ {𝑥0} such that 𝑦
+−← 𝑥.

6.1) In the case, where 𝑥, 𝑦 ∈ N the formula (38) leads to the equalities ̂︀𝜓− (𝑥) = ̂︀𝜓−
1 (𝑥),̂︀𝜓− (𝑦) = ̂︀𝜓−

1 (𝑦). That is why in this case the desired implication follows from the fact that
(T1, 𝜓1) is a partial 2-chronologization ofℳ relatively the subset N ⊆ Bs(ℳ). Therefore it
remains to consider only the cases where 𝑥 = 𝑥0 or 𝑦 = 𝑥0.

6.2) Consider the case 𝑥 = 𝑥0. Since we have 𝑦
−+← 𝑥, then the equality 𝑦 = 𝑥 is impossible

(by definition of relations
+← and

−+←). Hence 𝑦 ̸= 𝑥, that is 𝑦 ̸= 𝑥0. Thus, we have 𝑦 ∈ N

and 𝑦
−+← 𝑥0. Thence it follows that 𝑦 ∈ N+ (by formula (26)). That is why, applying (28)

and (38), we obtain: ̂︀𝜓+
1,𝑥0

(𝑦) ≤1
̂︀𝜓+
1 (𝑦) = ̂︀𝜓+ (𝑦) .

Hence, taking into account that T1 ⊑ T, we deduce, ̂︀𝜓+
1,𝑥0

(𝑦) ≤ ̂︀𝜓+ (𝑦), where ̂︀𝜓+
1,𝑥0

(𝑦) ∈{︁̂︀𝜓+
1,𝑥0

(̃︀𝑥) ⃒⃒ ̃︀𝑥 ∈ N+

}︁
= T+

1 . Therefore, according to condition (T3), we obtain:

̂︀𝜓+ (𝑥0) = 𝑡′0 = inf *T
(︀
T+

1

)︀
< ̂︀𝜓+

1,𝑥0
(𝑦) ≤ ̂︀𝜓+ (𝑦) .

And taking into account that 𝑥 = 𝑥0 we have the desired inequality ̂︀𝜓+ (𝑥) < ̂︀𝜓+ (𝑦).

6.3) Now we consider the case where 𝑦 = 𝑥0. Since we have 𝑦
−+← 𝑥, then the equality

𝑦 = 𝑥 is impossible (by definition of relations
+← and

−+←). Hence, 𝑥 ̸= 𝑦, that is 𝑥 ̸= 𝑥0.

Thus, we have 𝑥 ∈ N and 𝑥0 = 𝑦
−+← 𝑥. Thence, using property (𝜓𝑥05), we get the inequalitŷ︀𝜓+

1 (𝑥) < 𝑡′0. That is why, applying (38), we obtain:̂︀𝜓+
1 (𝑥) < 𝑡′0 =

̂︀𝜓+ (𝑥0) = ̂︀𝜓+ (𝑦) . (43)

Taking into account that 𝑥 ∈ N, we deduce, ̂︀𝜓+ (𝑥) = ̂︀𝜓+
1 (𝑥) (by formula (38)). Hence, from

the inequality (43) we deliver the desired inequality, ̂︀𝜓+ (𝑥) < ̂︀𝜓+ (𝑦).

Thus, in all possible cases the conditions 𝑥, 𝑦 ∈ N∪{𝑥0} and 𝑦
−+← 𝑥 lead to the inequalitŷ︀𝜓+ (𝑥) < ̂︀𝜓+ (𝑦).

V Conditions (T1), (T2), equality (38), as well as results, established in the items 2-6
of the present proof assure that (T, 𝜓) is partial 2-chronologization of the oriented set ℳ
relatively the subset N ∪ {𝑥0}, satisfying the additional conditions a)-c) of this lemma.
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7 Proof of Sufficiency for Theorem 3

The next lemma ensures the sufficiency for Theorem 3.

Lemma 3. If the oriented set ℳ is a quasi-chain then it can be one-point chronologized.
Moreover there exists the chronologization ℋ = ((T,≤) , 𝜓) ofℳ with 2-repeating one-point
time 𝜓.

Proof. Letℳ be quasi-chain oriented set.

I. First we prove the lemma under the following additional assumption:

Assumption * Oriented setℳ is strictly evolutionary bounded.

So, suppose that Assumption * holds. Then there exist min* (ℳ) and max* (ℳ).
Consider an arbitrary set 𝒯 , satisfying the following conditions:

1) card (𝒯 ) ≥ ℵ0, 2) card (𝒯 ) > card (Bs(ℳ)) .

I.1. Introduce the set H of all ordered pairs of kind h = (Th, 𝜓h) = ((Th,≤h) , 𝜓h)
satisfying the following conditions:

10. h is partial 2-chronologization of the oriented set ℳ relatively a some subset Nh ⊆
Bs(ℳ) such, that min* (ℳ) , max* (ℳ) ∈ Nh.

20. Th ⊆ 𝒯 .

Note that from the item 10 it readily follows that for each chronologization h = (Th, 𝜓h) =
((Th,≤h) , 𝜓h) ∈H the set Nh can be expressed by the formula:

Nh =
⋃︁
𝑡∈Th

𝜓h (𝑡) . (44)

Let us prove that the set H is nonempty. Chose arbitrary four elements 𝜏1, 𝜏2, 𝜏3, 𝜏4 ∈ 𝒯
(where 𝜏𝑖 ̸= 𝜏𝑗 for 𝑖 ̸= 𝑗). Denote:

𝑥− := min* (ℳ) ,

Nh0 := {𝑥−,𝑥+} ,
𝑥+ := max* (ℳ)

Th0 := {𝜏1, 𝜏2, 𝜏3, 𝜏4} .

Further for 𝜏𝑖, 𝜏𝑗 ∈ Th0 (𝑖, 𝑗 ∈ 1, 4) we consider that 𝜏𝑖 ≤h0 𝜏𝑗 if and only if 𝑖 ≤ 𝑗 (where ≤
is the standard order on the set of natural numbers). It is obviously that the ordered pair:

Th0 = (Th0 ,≤h0)

is a linearly ordered set. Denote:

𝜓h0 (𝑡) :=

{︃
{𝑥−} , 𝑡 ∈ {𝜏1, 𝜏2}
{𝑥+} , 𝑡 ∈ {𝜏3, 𝜏4}

(𝑡 ∈ Th0) .

It is not hard to verify that 𝜓h0 is an 2-repeating one-point time on the oriented setℳ�Nh0
,

moreover {min* (ℳ) , max* (ℳ)} = {𝑥−,𝑥+} = Nh0 and Th0 = {𝜏1, 𝜏2, 𝜏3, 𝜏4} ⊆ 𝒯 .
Hence, h0 ∈H . That is why H ̸= ∅, which was to be proven.

We introduce the following binary relation on the set H :

(ℋ𝑜) For any chronologizations h = (Th, 𝜓h) = ((Th,≤h) , 𝜓h) ∈H and H = (TH, 𝜓H) =
((TH,≤H) , 𝜓H) ∈ H we write h ≤H H if and only if the following conditions are
satisfied:

ℋ𝑜1. Th ⊑ TH (in particular from the last correlation it follows that Th ⊆ TH).
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ℋ𝑜2. ∀ 𝑡 ∈ Th (𝜓h (𝑡) = 𝜓H (𝑡)) (ie 𝜓h ⊆ 𝜓H).

It is easy to verify that the binary relation ≤H is a partial order (that is reflexive, asymmetric
and transitive relation) on the set of chronologizations H .

Now we are going to prove that in the ordered set
(︀
H ,≤H

)︀
every chain has an upper

bound.
Let L ⊆ H (L ̸= ∅) be any chain of the ordered set

(︀
H ,≤H

)︀
. Below we construct

some partial 2-chronologization ̃︀H =
(︀
T ̃︀H, 𝜓 ̃︀H)︀ = (︀(︀

T ̃︀H,≤ ̃︀H)︀ , 𝜓 ̃︀H)︀ of the oriented setℳ.

V ̃︀H1. Denote:

T ̃︀H =
⋃︁
h∈L

Th. (45)

V ̃︀H2. For arbitrary 𝑡1, 𝑡2 ∈ T ̃︀H we will write 𝑡1 ≤ ̃︀H 𝑡2 if and only if a chronologization
h ∈ L exists such, that 𝑡1, 𝑡2 ∈ Th and 𝑡1 ≤h 𝑡2.

V ̃︀H3. Let 𝑡 ∈ T ̃︀H. Then, according to formula (45), there exists a chronologization h ∈ L
such that 𝑡 ∈ Th. Denote:

𝜓 ̃︀H (𝑡) := 𝜓h (𝑡) . (46)

First of all we have to prove that the formula (46) determines the mapping 𝜓 ̃︀H (𝑡) : T ̃︀H → 2N ̃︀H
by a correct way, where

N ̃︀H =
⋃︁

H∈L

NH. (47)

Suppose that 𝑡 ∈ Th and 𝑡 ∈ Th1 , where h,h1 ∈ L . To prove the correctness of definition
of the mapping 𝜓 ̃︀H by the formula (46), it is necessary to verify the equality 𝜓h (𝑡) = 𝜓h1 (𝑡).
Since L is a chain of the ordered set

(︀
H ,≤H

)︀
then L is a linearly ordered set under the

relation ≤H . Hence for the elements h,h1 ∈ L at least one of the correlations h ≤H h1 or
h1 ≤H h must hold. But in the both cases, according to the item ℋ𝑜2 of definition (ℋ𝑜) of
order ≤H , we obtain the equality, 𝜓h (𝑡) = 𝜓h1 (𝑡), which was to be proven.

I.2. Now the aim is to prove that the triple ̃︀H =
(︀
T ̃︀H, 𝜓 ̃︀H)︀ =

(︀(︀
T ̃︀H,≤ ̃︀H)︀ , 𝜓 ̃︀H)︀, con-

structed above, is a partial 2-chronologization of the oriented set ℳ relatively the subset
N ̃︀H ⊆ Bs(ℳ), determined by the formula (47).

I.2.1. Let us prove that T ̃︀H =
(︀
T ̃︀H,≤ ̃︀H)︀ is a linearly ordered set.

I.2.1.a) Consider any element 𝑡 ∈ T ̃︀H. By the formula (45), there exist the chronol-
ogization h = (Th, 𝜓h) = ((Th,≤h) , 𝜓h) ∈ L such, that 𝑡 ∈ Th. So, since
Th = (Th,≤h) is a linearly ordered set, we have 𝑡 ≤h 𝑡, and, according to the item̃︀H2 (see above), we get 𝑡 ≤ ̃︀H 𝑡. Hence, the reflexivity of the relation ≤ ̃︀H has been
proven.

I.2.1.b) Assume that for elements 𝑡, 𝜏 ∈ T ̃︀H inequalities 𝑡 ≤ ̃︀H 𝜏 and 𝜏 ≤ ̃︀H 𝑡 hold.

Then, by the item ̃︀H2 (see above), the chronologizations h1,h2 ∈ L exist such,
that 𝑡, 𝜏 ∈ Th𝑖

(𝑖 ∈ 1, 2), 𝑡 ≤h1 𝜏 and 𝜏 ≤h2 𝑡. Since L is a chain of the ordered
set

(︀
H ,≤H

)︀
the element h* ∈ {h1,h2} must exist such that h1 ≤H h* and

h2 ≤H h*. Indeed, to verify the existence of such element h* it is sufficient to put:

h* :=

{︃
h2, h1 ≤H h2

h1, h2 <
H h1.

According to the item ℋ𝑜1 of the definition (ℋ𝑜) of the order relation ≤H , the
correlations h1 ≤H h* and h2 ≤H h* provide the correlations Th1 ⊑ Th* and
Th2 ⊑ Th* . Hence (according to Notation 5), we deliver the inclusions Th1 ⊆ Th*
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and Th2 ⊆ Th* . So, taking into account that 𝑡, 𝜏 ∈ Th𝑖
(𝑖 ∈ 1, 2), we obtain

𝑡, 𝜏 ∈ Th* . Since Th1 ,Th2 ⊑ Th* , then the inequalities 𝑡 ≤h1 𝜏 and 𝜏 ≤h2 𝑡,
lead to the inequalities 𝑡 ≤h* 𝜏 and 𝜏 ≤h* 𝑡 (see Notation 5). But from the last
inequalities, taking into account the fact that (Th* ,≤h*) is a linearly ordered set,
we obtain the equality 𝑡 = 𝜏 . Thus, the asymmetry of the relation ≤ ̃︀H has been
proven.

I.2.1.c) Let elements 𝑡1, 𝑡2, 𝑡3 ∈ T ̃︀H, be such that 𝑡1 ≤ ̃︀H 𝑡2 and 𝑡2 ≤ ̃︀H 𝑡3. Then,

according to the item ̃︀H2 (see above), there exist the chronologizations h12,h23 ∈ L
such, that 𝑡1, 𝑡2 ∈ Th12 , 𝑡2, 𝑡3 ∈ Th23 , 𝑡1 ≤h12 𝑡2 and 𝑡2 ≤h23 𝑡3. Since L is a chain
of the ordered set

(︀
H ,≤H

)︀
the element h13 ∈ {h12,h23} must exist such that

h12 ≤H h13 and h23 ≤H h13. According to the item ℋ𝑜1 of the definition (ℋ𝑜),
the correlations h12 ≤H h13 and h23 ≤H h13 lead to the correlations Th12 ⊆ Th13

and Th23 ⊆ Th13 . So, taking into account that 𝑡1, 𝑡2 ∈ Th12 and 𝑡2, 𝑡3 ∈ Th23 ,
we get 𝑡1, 𝑡2, 𝑡3 ∈ Th13 . Since Th12 ,Th23 ⊑ Th13 , then the inequalities 𝑡1 ≤h12 𝑡2
and 𝑡2 ≤h23 𝑡3 assure the inequalities 𝑡1 ≤h13 𝑡2 and 𝑡2 ≤h13 𝑡3 (in accordance
with Notation 5). But, since (Th13 ,≤h13) is a linearly ordered set, the last two
inequalities ensure the inequality 𝑡1 ≤h13 𝑡3. Thus, we have 𝑡1, 𝑡3 ∈ Th13 and

𝑡1 ≤h13 𝑡3. Thence by the item ̃︀H2 (see above), we deduce 𝑡1 ≤ ̃︀H 𝑡3. Hence, the
transitivity of the relation ≤ ̃︀H has been proven.

I.2.1.d) Consider any elements 𝑡1, 𝑡2 ∈ T ̃︀H. From the formula (45) it follows the
existence of chronologizations h1,h2 ∈ L such that 𝑡1 ∈ Th1 , 𝑡2 ∈ Th2 . Since L
is a chain of the ordered set

(︀
H ,≤H

)︀
the element h* ∈ {h1,h2} must exist such

that h1 ≤H h* and h2 ≤H h*. According to the item ℋ𝑜1 of the definition (ℋ𝑜),
the correlations h1 ≤H h* and h2 ≤H h* lead to the correlations Th1 ⊆ Th*

and Th2 ⊆ Th* . That is why, taking into account that 𝑡𝑖 ∈ Th𝑖
(𝑖 ∈ 1, 2), we

get 𝑡1, 𝑡2 ∈ Th* . Thence, since (Th* ,≤h*) is a linearly ordered set, it follows that
at least one of the inequalities 𝑡1 ≤h* 𝑡2 or 𝑡2 ≤h* 𝑡1 must be performed. But,

in accordance with the item ̃︀H2 (see above), the inequality 𝑡1 ≤h* 𝑡2 leads to
the inequality 𝑡1 ≤ ̃︀H 𝑡2 as well as the inequality 𝑡2 ≤h* 𝑡1 ensures the inequality
𝑡2 ≤ ̃︀H 𝑡1. Thus for every 𝑡1, 𝑡2 ∈ T ̃︀H at least one of the correlations 𝑡1 ≤ ̃︀H 𝑡2 or
𝑡2 ≤ ̃︀H 𝑡1 must be true. Hence the ordering ≤ ̃︀H is a linear, and so

(︀
T ̃︀H,≤ ̃︀H)︀ is a

linearly ordered set, which was to be proven.

I.2.2. Now we are going to prove that the mapping 𝜓 ̃︀H (𝑡) : T ̃︀H → 2N ̃︀H is a time on the
oriented setℳ�N ̃︀H =

(︀
N ̃︀H,←)︀

.

I.2.2.a) Let 𝑥 ∈ N ̃︀H = Bs
(︀
ℳ�N ̃︀H

)︀
. Then by the formula (47), there exist the chronol-

ogization h ∈ L such, that 𝑥 ∈ Nh. Thence, according to the formula (44), it
follows the existence of the element 𝑡 ∈ Th such, that 𝑥 ∈ 𝜓h (𝑡). Since 𝑡 ∈ Th

then, by the formula (45), we get 𝑡 ∈ T ̃︀H, as well, according to the formula (46),
we obtain 𝜓 ̃︀H (𝑡) = 𝜓h (𝑡). Therefore we have 𝑥 ∈ 𝜓 ̃︀H (𝑡), where 𝑡 ∈ T ̃︀H. Thus,
we have proven that for an arbitrary element 𝑥 ∈ Bs

(︀
ℳ�N ̃︀H

)︀
the element 𝑡 ∈ T ̃︀H

exists such that 𝑥 ∈ 𝜓 ̃︀H (𝑡).

I.2.2.b) Let 𝑥1, 𝑥2 ∈ N ̃︀H = Bs
(︀
ℳ�N ̃︀H

)︀
, 𝑥2←𝑥1 and 𝑥1 ̸= 𝑥2. Then according to

the formula (47), there exist the chronologizations h1,h2 ∈ L such, that 𝑥1 ∈ Nh1 ,
𝑥2 ∈ Nh2 . Since L is a chain of the ordered set

(︀
H ,≤H

)︀
the element h* ∈ {h1,h2}

must exist such that h1 ≤H h* and h2 ≤H h*. According to the item ℋ𝑜1 of the
definition (ℋ𝑜), the correlations h1 ≤H h* and h2 ≤H h* lead to the correlation
Th1 ,Th2 ⊆ Th* . Consequently, applying the formulas (44) and (46) for 𝑖 ∈ 1, 2 we
deduce:

Nh𝑖
=

⋃︁
𝑡∈Th𝑖

𝜓hi
(𝑡) =

⋃︁
𝑡∈Th𝑖

𝜓 ̃︀H (𝑡) ⊆
⋃︁

𝑡∈Th*

𝜓 ̃︀H (𝑡) = Nh* .
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Hence we have 𝑥1, 𝑥2 ∈ Nh* , where h* = ((Th* ,≤h*) , 𝜓h*) ∈ L is a partial
2-chronologization of the oriented set ℳ relatively the subset Nh* ⊆ Bs(ℳ),
moreover 𝑥2←𝑥1 and 𝑥1 ̸= 𝑥2. And since 𝜓h* is a time on the oriented set
ℳ�Nh*

= (Nh* ,←), then (by Definition 3) there exist elements 𝑡1, 𝑡2 ∈ Th* such,
that 𝑥1 ∈ 𝜓h* (𝑡1), 𝑥2 ∈ 𝜓h* (𝑡2) and 𝑡1 <h* 𝑡2. Since 𝑡1, 𝑡2 ∈ Th* , where
h* ∈ L , then, by the formula (45), we have 𝑡1, 𝑡2 ∈ T ̃︀H. Taking into ac-
count that h* ∈ L and 𝑡1, 𝑡2 ∈ Th* and using the formula (46), we obtain,

𝜓h* (𝑡1) = 𝜓 ̃︀H (𝑡1), 𝜓h* (𝑡2) = 𝜓 ̃︀H (𝑡2). According to the item ̃︀H2 (see above), the
inequality 𝑡1 <h* 𝑡2 stipulates the inequality 𝑡1 < ̃︀H 𝑡2. Hence we have, 𝑡1, 𝑡2 ∈ T ̃︀H,
𝑥1 ∈ 𝜓 ̃︀H (𝑡1), 𝑥2 ∈ 𝜓 ̃︀H (𝑡2) and 𝑡1 < ̃︀H 𝑡2. Thus, we have proven that for arbi-
trary 𝑥1, 𝑥2 ∈ Bs

(︀
ℳ�N ̃︀H

)︀
, satisfying 𝑥2←𝑥1 and 𝑥1 ̸= 𝑥2, there exist elements

𝑡1, 𝑡2 ∈ T ̃︀H such, that 𝑥1 ∈ 𝜓 ̃︀H (𝑡1), 𝑥2 ∈ 𝜓 ̃︀H (𝑡2) and 𝑡1 < ̃︀H 𝑡2.

Taking into account the results, obtained in the items I.2.2.a) and I.2.2.b), as well as
Definition 3, we see that the mapping 𝜓 ̃︀H (𝑡) : T ̃︀H → 2N ̃︀H is a time on the oriented set
ℳ�N ̃︀H , which was to be proven.

I.2.3. Now we prove that the time 𝜓 ̃︀H is one-point on the oriented setℳ�N ̃︀H .
I.2.3.a) From the formula (46) as well as the fact that 𝜓h is an one-point time on the

oriented setℳ�Nh
(for each h ∈ L ) it follows that for every 𝑡 ∈ T ̃︀H the set 𝜓 ̃︀H (𝑡)

is a singleton.

I.2.3.b) Let 𝑡1, 𝑡2 ∈ T ̃︀H, 𝑥1, 𝑥2 ∈ N ̃︀H = Bs
(︀
ℳ�N ̃︀H

)︀
, 𝑡1 ≤ ̃︀H 𝑡2, 𝑥1 ∈ 𝜓 ̃︀H (𝑡1), 𝑥2 ∈

𝜓 ̃︀H (𝑡2). The aim is to prove that in this case it is true that 𝑥2←𝑥1. Since 𝑡1 ≤ ̃︀H 𝑡2
then, by the item ̃︀H2 (see above), the chronologization h ∈ L exists such, that
𝑡1, 𝑡2 ∈ Th and 𝑡1 ≤h 𝑡2. Since 𝑡1, 𝑡2 ∈ Th, then the formula (46) stipulates the
equalities, 𝜓 ̃︀H (𝑡1) = 𝜓h (𝑡1), 𝜓 ̃︀H (𝑡2) = 𝜓h (𝑡2). Therefore we have:

𝑡1, 𝑡2 ∈ Th, 𝑡1 ≤h 𝑡2, 𝑥1 ∈ 𝜓h (𝑡1) , 𝑥2 ∈ 𝜓h (𝑡2) . (48)

Since h is a partial 2-chronologization of the oriented setℳ relatively the subset
Nh ⊆ Bs(ℳ), then 𝜓h is a one-point time on the oriented set ℳ�Nh

. That is
why, by Definition 4, the correlations (48) deliver the desired correlations 𝑥2←𝑥1.
Thus, for arbitrary 𝑡1, 𝑡2 ∈ T ̃︀H, 𝑥1, 𝑥2 ∈ N ̃︀H = Bs

(︀
ℳ�N ̃︀H

)︀
the conditions 𝑡1 ≤ ̃︀H 𝑡2,

𝑥1 ∈ 𝜓 ̃︀H (𝑡1), 𝑥2 ∈ 𝜓 ̃︀H (𝑡2) stipulate the correlation 𝑥2←𝑥1.

By Definition 4, results, established in the items I.2.3.a) and I.2.3.b), imply that
𝜓 ̃︀H is an one-point time on the oriented setℳ�N ̃︀H , which was to be proven.

I.2.4. The next aim is to prove that the time 𝜓 ̃︀H is 2-repeating. Let 𝑥 ∈ N ̃︀H. Then, by
the formula (47), there exists the chronologization h = ((Th,≤h) , 𝜓h) ∈ L such, that
𝑥 ∈ Nh. According to the item 10 (see the definition of the the set H above), h is
a partial 2-chronologization of the oriented setℳ relatively the subset Nh ⊆ Bs(ℳ).
That is why the time 𝜓h is 2-repeating and so by Definition 6, two elements 𝑡1, 𝑡2 ∈ Th

(𝑡1 ̸= 𝑡2) must exist such that 𝑥 ∈ 𝜓h (𝑡1) and 𝑥 ∈ 𝜓h (𝑡2). Since h ∈ L and 𝑡1, 𝑡2 ∈ Th,
then, by the formula (45) we have 𝑡1, 𝑡2 ∈ T ̃︀H, as well by the formula (46), we obtain
𝜓h (𝑡1) = 𝜓 ̃︀H (𝑡1), 𝜓h (𝑡2) = 𝜓 ̃︀H (𝑡2). Hence, we have proven that there exist the elements
𝑡1, 𝑡2 ∈ T ̃︀H such that 𝑡1 ̸= 𝑡2 and 𝑥 ∈ 𝜓 ̃︀H (𝑡1) ∩ 𝜓 ̃︀H (𝑡2). Consequently, by Definition 6,
we ensure:

Rp𝑥
(︀
𝜓 ̃︀H)︀ = card

(︀{︀
𝑡 ∈ T ̃︀H ⃒⃒

𝑥 ∈ 𝜓 ̃︀H (𝑡)
}︀)︀
≥ 2. (49)

Now we assume that there exist the elements 𝑥 ∈ N ̃︀H and 𝑡1, 𝑡2, 𝑡3 ∈ T ̃︀H such, that
𝑡𝑖 ̸= 𝑡𝑗 for 𝑖 ̸= 𝑗 (𝑖, 𝑗 ∈ 1, 3) and 𝑥 ∈ 𝜓 ̃︀H (𝑡1)∩𝜓 ̃︀H (𝑡2)∩𝜓 ̃︀H (𝑡3). In accordance with the
formula (45), the correlation 𝑡1, 𝑡2, 𝑡3 ∈ T ̃︀H provides the existence of chronologizations
h1,h2,h3 ∈ L such, that 𝑡𝑖 ∈ Th𝑖

(∀𝑖 ∈ 1, 3). Since L is a chain of the ordered set
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(︀
H ,≤H

)︀
the element h0 ∈ {h1,h2,h3} must exist such that h𝑖 ≤H h0 (∀𝑖 ∈ 1, 3).

According to the item ℋ𝑜1 of the definition (ℋ𝑜), the correlations h𝑖 ≤H h0 (𝑖 ∈ 1, 3),
lead to the correlations Th𝑖

⊆ Th0 (𝑖 ∈ 1, 3). Therefore, we have, 𝑡1, 𝑡2, 𝑡3 ∈ Th0 .
Thence, by the formula (46), we ensure 𝜓 ̃︀H (𝑡𝑖) = 𝜓h0 (𝑡𝑖), (𝑖 ∈ 1, 3). Thus, we get
𝑥 ∈ 𝜓h0 (𝑡1) ∩ 𝜓h0 (𝑡2) ∩ 𝜓h0 (𝑡3), where 𝑡1, 𝑡2, 𝑡3 ∈ Th0 and 𝑡𝑖 ̸= 𝑡𝑗 for 𝑖 ̸= 𝑗 (𝑖, 𝑗 ∈ 1, 3).
Hence, by Definition 6, we have, Rp𝑥 (𝜓h0) = card

(︀{︀
𝑡 ∈ T

⃒⃒
𝑥 ∈ 𝜓h0 (𝑡)

}︀)︀
≥ 3. But the

last inequality is in a contradiction to the fact that h0 = ((Th0 ,≤h0) , 𝜓h0) a partial 2-
chronologization of the oriented setℳ (ie to the fact that the time 𝜓h0 is 2-repeating).
Thus the assumption, made before, leads to a contradiction. Consequently, there do
not exist the elements 𝑥 ∈ N ̃︀H and 𝑡1, 𝑡2, 𝑡3 ∈ T ̃︀H such, that 𝑡𝑖 ̸= 𝑡𝑗 for 𝑖 ̸= 𝑗 (𝑖, 𝑗 ∈ 1, 3)
and 𝑥 ∈ 𝜓 ̃︀H (𝑡1) ∩ 𝜓 ̃︀H (𝑡2) ∩ 𝜓 ̃︀H (𝑡3). According to Definition 6, this means, that:

Rp𝑥
(︀
𝜓 ̃︀H)︀ = card

(︀{︀
𝑡 ∈ T ̃︀H ⃒⃒

𝑥 ∈ 𝜓 ̃︀H (𝑡)
}︀)︀
≤ 2. (50)

From the inequalities (49) and (50) it follows that the equality Rp𝑥
(︀
𝜓 ̃︀H)︀ = 2 holds for

each 𝑥 ∈ N ̃︀H. That is why the time 𝜓 ̃︀H is 2-repeating, which was to be proven.

I.2.5. Let us prove that for every h ∈ L and 𝑥 ∈ Nh the following equalities are performed:

̂︀𝜓−
h (𝑥) = ̂︀𝜓−̃︀H (𝑥) , ̂︀𝜓+

h (𝑥) = ̂︀𝜓+̃︀H (𝑥) .

Indeed, let h ∈ L and 𝑥 ∈ Nh. Denote:

𝑡− := ̂︀𝜓−
h (𝑥) , 𝑡+ := ̂︀𝜓+

h (𝑥) .

Then, by Notation 4 (taking into account that the time 𝜓h : Th → 2Nh is an one-point
and 2-repeating), we obtain:

𝑡+, 𝑡− ∈ Th, 𝜓h (𝑡−) = 𝜓h (𝑡+) = {𝑥} , 𝑡− <h 𝑡+.

Thence, using the formulas (45) and (46), as well as item ̃︀H2 (see above), we ensure:

𝑡+, 𝑡− ∈ T ̃︀H, 𝜓 ̃︀H (𝑡−) = 𝜓 ̃︀H (𝑡+) = {𝑥} , 𝑡− < ̃︀H 𝑡+.

According to the result, established in the item I.2.4, the time 𝜓 ̃︀H is 2-repeating. Hence
we have: ̂︀𝜓+̃︀H (𝑥) = max

(︀{︀
𝑡 ∈ T

⃒⃒
𝑥 ∈ 𝜓 ̃︀H (𝑡)

}︀)︀
= 𝑡+;̂︀𝜓−̃︀H (𝑥) = min

(︀{︀
𝑡 ∈ T

⃒⃒
𝑥 ∈ 𝜓 ̃︀H (𝑡)

}︀)︀
= 𝑡−,

which was to be proven.

I.2.6. The next aim is to prove that for arbitrary 𝑥, 𝑦 ∈ N ̃︀H = Bs
(︀
ℳ�N ̃︀H

)︀
the correla-

tion 𝑦
+−← 𝑥 leads to the inequality ̂︀𝜓−̃︀H (𝑥) < ̃︀H ̂︀𝜓−̃︀H (𝑦). Let 𝑥, 𝑦 ∈ N ̃︀H and 𝑦

+−← 𝑥. In

accordance with the equality (47), the correlation 𝑥, 𝑦 ∈ N ̃︀H assures the existence of
chronologizations h𝑥,h𝑦 ∈ L such, that 𝑥 ∈ Nh𝑥 , 𝑦 ∈ Nh𝑦 . Since L is a chain of the or-

dered set
(︀
H ,≤H

)︀
the element h𝑥𝑦 ∈ {h𝑥,h𝑦} ⊆ L must exist such that h𝑥 ≤H h𝑥𝑦,

h𝑦 ≤H h𝑥𝑦. Then, from the item ℋ𝑜1 of the definition (ℋ𝑜), we deduce the inclusions
Th𝑥 ⊆ Th𝑥𝑦 , Th𝑦 ⊆ Th𝑥𝑦 . Hence, using the formula (44) as well as the item ℋ𝑜2 of the
definition (ℋ𝑜) we deliver:

Nh𝑥 =
⋃︁

𝑡∈Th𝑥

𝜓h𝑥 (𝑡) =
⋃︁

𝑡∈Th𝑥

𝜓h𝑥𝑦 (𝑡) ⊆
⋃︁

𝑡∈Th𝑥𝑦

𝜓h𝑥𝑦 (𝑡) = Nh𝑥𝑦 , Nh𝑦 ⊆ Nh𝑥𝑦 .
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Therefore, the chronologization h𝑥𝑦 =
(︀(︀
Th𝑥𝑦 ,≤h𝑥𝑦

)︀
, 𝜓h𝑥𝑦

)︀
∈ L satisfies the condition

𝑥, 𝑦 ∈ Nh𝑥𝑦 , while the time 𝜓h𝑥,𝑦 : Th𝑥𝑦 → 2Nh𝑥𝑦 is an one-point, 2-repeating and
satisfying the condition 3.1 of Definition 10, that is:̂︀𝜓−

h𝑥𝑦
(𝑥) <h𝑥𝑦

̂︀𝜓−
h𝑥𝑦

(𝑦) .

Thence, applying result, established in the item I.2.5, we obtain the inequalitŷ︀𝜓−̃︀H (𝑥) <h𝑥𝑦
̂︀𝜓−̃︀H (𝑦), which together with the item ̃︀H2 (see above), provides the de-

sired inequality: ̂︀𝜓−̃︀H (𝑥) < ̃︀H ̂︀𝜓−̃︀H (𝑦) .

I.2.7. Now we prove that for arbitrary 𝑥, 𝑦 ∈ N ̃︀H = Bs
(︀
ℳ�N ̃︀H

)︀
the correlation 𝑦

−+← 𝑥 leads

to the inequality ̂︀𝜓+̃︀H (𝑥) < ̃︀H ̂︀𝜓+̃︀H (𝑦). Let, 𝑥, 𝑦 ∈ N ̃︀H and 𝑦
−+← 𝑥. In accordance with

the equality (47), the correlation 𝑥, 𝑦 ∈ N ̃︀H ensures the existence of chronologizations
h𝑥,h𝑦 ∈ L such, that 𝑥 ∈ Nh𝑥 , 𝑦 ∈ Nh𝑦 . Since L is a chain of the ordered set

(︀
H ,≤H

)︀
the element h𝑥𝑦 ∈ {h𝑥,h𝑦} ⊆ L must exist such that h𝑥 ≤H h𝑥𝑦, h𝑦 ≤H h𝑥𝑦. Then,
from the itemℋ𝑜1 of the definition (ℋ𝑜), we get the inclusionsTh𝑥 ⊆ Th𝑥𝑦 , Th𝑦 ⊆ Th𝑥𝑦 .
Hence, using the formula (44) as well as the item ℋ𝑜2 of the definition (ℋ𝑜) we deliver:

Nh𝑥 ⊆ Nh𝑥𝑦 , Nh𝑦 ⊆ Nh𝑥𝑦 .

So, the chronologization h𝑥𝑦 =
(︀(︀
Th𝑥𝑦 ,≤h𝑥𝑦

)︀
, 𝜓h𝑥𝑦

)︀
∈ L satisfies the condition 𝑥, 𝑦 ∈

Nh𝑥𝑦 , whereas the time 𝜓h𝑥,𝑦 : Th𝑥𝑦 → 2Nh𝑥𝑦 is an one-point, 2-repeating and satisfying
the condition 3.2 of Definition 10, that is:̂︀𝜓+

h𝑥𝑦
(𝑥) <h𝑥𝑦

̂︀𝜓+
h𝑥𝑦

(𝑦) .

Thence, applying result, established in the item I.2.5, we obtain the inequalitŷ︀𝜓+̃︀H (𝑥) <h𝑥𝑦
̂︀𝜓+̃︀H (𝑦), which together with the item ̃︀H2 (see above), provides the de-

sired inequality: ̂︀𝜓+̃︀H (𝑥) < ̃︀H ̂︀𝜓+̃︀H (𝑦) .

From the facts, established in the items I.2.1–I.2.7 it follows that the triple ̃︀H =
(︀
T ̃︀H, 𝜓 ̃︀H)︀ =(︀(︀

T ̃︀H,≤ ̃︀H)︀ , 𝜓 ̃︀H)︀ is a partial 2-chronologization of the oriented setℳ relatively the subset
N ̃︀H.

I.3. Since for each chronologization h ∈ L it is fulfilled the condition
min* (ℳ) , max* (ℳ) ∈ Nh, then, according to the formula (47), we obtain:

min* (ℳ) , max* (ℳ) ∈ N ̃︀H.
I.4. Taking into account the item 20 of the definition of the chronologization set H

as well as the including L ⊆ H , we conclude that for every chronologization h ∈ L the
inclusion Th ⊆ 𝒯 holds. That is why, based on the formula (45), we deduce:

T ̃︀H =
⋃︁
h∈L

Th ⊆ 𝒯 .

From the facts, established in the items I.2–I.4 it follows that ̃︀H ∈H .

I.5. Now the aim is to prove that the chronologization ̃︀H is an upper bound of the chain

L relatively the ordered set
(︀
H ,≤H

)︀
. Chose any h ∈ L . Let us prove that h ≤H ̃︀H.

I.5.1. Formula (45) provides the inclusion:

Th ⊆
⋃︁

H∈L

TH = T ̃︀H. (51)
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Consider arbitrary 𝑡1, 𝑡2 ∈ Th. Suppose, that 𝑡1 ≤h 𝑡2. Then using the item ̃︀H2 (see
above), we get, 𝑡1 ≤ ̃︀H 𝑡2. Conversely, suppose, that 𝑡1 ≤ ̃︀H 𝑡2. If we assume that 𝑡2 <h 𝑡1,

then, according to the item ̃︀H2 (see above), we will obtain the inequality 𝑡2 < ̃︀H 𝑡1,
which contradicts to the start assumption that 𝑡1 ≤ ̃︀H 𝑡2. Hence, since Th = (Th,≤h)
is a linearly ordered set, we ensure the inequality 𝑡1 ≤h 𝑡2. Thus we have:

∀ 𝑡1, 𝑡2 ∈ Th

(︀
(𝑡1 ≤h 𝑡2)⇔

(︀
𝑡1 ≤ ̃︀H 𝑡2

)︀ )︀
. (52)

In accordance with Notation 5, the correlations (51) and (52) lead to the correlation:

Th ⊑ T ̃︀H.
I.5.2. From the formula (46) it follows that

∀ 𝑡 ∈ Th

(︀
𝜓h (𝑡) = 𝜓 ̃︀H (𝑡)

)︀
.

From the results, established in the items I.5.1 and I.5.2 it follows that h ≤H ̃︀H, moreover

the last inequality is valid for each chronologization h ∈ L . Therefore ̃︀H is an upper bound
of the chain L relatively the ordered set

(︀
H ,≤H

)︀
, which was to be proven.

Taking into account the arbitrariness of choice of chain L ⊆ H , we have seen that in
the ordered set

(︀
H ,≤H

)︀
every chain has an upper bound. Therefore, according to Zorn’s

lemma, this ordered set contains a maximal element.
I.6. Let chronologization h* = (Th* , 𝜓h*) = ((Th* ,≤h*) , 𝜓h*) ∈ H be a maximal

element of the ordered set
(︀
H ,≤H

)︀
. Let us prove that Nh* = Bs(ℳ), where Nh* =⋃︀

𝑡∈Th*

𝜓h* (𝑡) is the set, determined by the formula (44). It is evidently that Nh* ⊆ Bs(ℳ).

Assume, that Nh* ̸= Bs(ℳ). Then the element 𝑥0 ∈ Bs(ℳ) exists such, that 𝑥0 /∈ Nh* .
We will estimate the cardinality of the set Th* . Since 𝜓h* is an one-point time, then, by
Definition 4, the correlation 𝑥 ∈ 𝜓h* (𝑡) is equivalent to the correlation 𝜓h* (𝑡) = {𝑥} (for
any 𝑥 ∈ Nh* and 𝑡 ∈ Th*). Hence, since the time 𝜓h* is 2-repeating, by Definition 6, for
each 𝑥 ∈ Nh* we obtain:

card
(︁
𝜓

[−1]
h* ({𝑥})

)︁
= card

(︀{︀
𝑡 ∈ Th*

⃒⃒
𝜓h* (𝑡) = {𝑥}

}︀)︀
=

= card
(︀{︀
𝑡 ∈ Th*

⃒⃒
𝑥 ∈ 𝜓h* (𝑡)

}︀)︀
= Rp𝑥 (𝜓h*) = 2.

Thence we deduce that for every 𝑥 ∈ Nh* it is valid the equality:

𝜓
[−1]
h* ({𝑥}) =

{︁̂︀𝜓−
h* (𝑥) , ̂︀𝜓+

h* (𝑥)
}︁
. (53)

Since the time 𝜓h* is one-point, then for any 𝑡 ∈ Th* the set 𝜓h* (𝑡), being singleton, is

non-empty. Hence it is performed the equality, Th* =
⋃︀

𝑥∈Nh*

𝜓
[−1]
h* ({𝑥}). Thence, applying

the equality (53), we obtain:

Th* =
⋃︁

𝑥∈Nh*

𝜓
[−1]
h* ({𝑥}) =

⋃︁
𝑥∈Nh*

{︁̂︀𝜓−
h* (𝑥) , ̂︀𝜓+

h* (𝑥)
}︁
=

=

⎛⎝ ⋃︁
𝑥∈Nh*

{︁̂︀𝜓−
h* (𝑥)

}︁⎞⎠ ∪
⎛⎝ ⋃︁

𝑥∈Nh*

{︁̂︀𝜓+
h* (𝑥)

}︁⎞⎠ =

=
{︁̂︀𝜓−

h* (𝑥)
⃒⃒
𝑥 ∈ Nh*

}︁
∪
{︁̂︀𝜓+

h* (𝑥)
⃒⃒
𝑥 ∈ Nh*

}︁
. (54)

Taking into account the fact that the set 𝒯 is infinite and satisfying the condition, card (𝒯 ) >
card (Bs(ℳ)), we deduce:

card
(︁{︁̂︀𝜓−

h* (𝑥)
⃒⃒
𝑥 ∈ Nh*

}︁)︁
≤ card (Nh*) ≤ card (Bs(ℳ)) < card (𝒯 ) ;

card
(︁{︁̂︀𝜓+

h* (𝑥)
⃒⃒
𝑥 ∈ Nh*

}︁)︁
< card (𝒯 ) .
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Thence, using the equality (54), we conclude:

card (Th*) < card (𝒯 ) .

So, since the set 𝒯 is infinite (card (𝒯 ) ≥ ℵ0), there exist the elements 𝑡0, 𝑡
′
0 ∈ 𝒯

such, that 𝑡0, 𝑡
′
0 /∈ Th* and 𝑡0 ̸= 𝑡′0 . According to condition of the lemma as well as

additional assumption “Assumption *”, the oriented setℳ is strictly evolutionary bounded
and quasi-chain. And, since the chronologization h* belongs to the chronologization set H ,
then all conditions of Lemma 2 are fulfilled. Consequently, according to this lemma, there
exists the partial 2-chronologization h*

1 =
(︀
Th*

1
, 𝜓h*

1

)︀
=

(︀(︀
Th*

1
,≤h*

1

)︀
, 𝜓h*

1

)︀
of the oriented

set ℳ relatively the subset N ∪ {𝑥0} such, that Th* ⊑ Th*
1
, Th*

1
= Th* ∪ {𝑡0, 𝑡′0} and

∀𝑡 ∈ Th*
(︀
𝜓h*

1
(𝑡) = 𝜓h* (𝑡)

)︀
. Then from the definition of the set H we conclude that

h*
1 ∈H , as well as the definition (ℋ𝑜) of the ordering ≤H results that h* ≤H h*

1. Further
from the condition Th*

1
= Th* ∪ {𝑡0, 𝑡′0} it follows that h* ̸= h*

1. Therefore, we deliver

h* <H h*
1. Thus the assumption about the existence of element 𝑥0 ∈ Bs(ℳ) satisfying

𝑥0 /∈ Nh* leads to the existence of chronologization h*
1 ∈ H such, that h* <H h*

1, which
contradicts to the fact that the chronologization h* ∈H maximal element of the ordered set(︀
H ,≤H

)︀
. That is why, the assumption, made above is false, ie Nh* = Bs(ℳ). Thence we

conclude that the time 𝜓h* is an one-point, and 2-repeating on the oriented setℳ, that is
the oriented setℳ can be chronologized by means of some 2-repeating and one-point time.

Thus, under additional assumption “Assumption *” the lemma had been proven.

II. Now we consider any quasi-chain oriented set ℳ, which which is not necessarily
strictly evolutionarily bounded (ie the the conditions of Assumption * may be not satisfied).
Let, 𝑥* and 𝑦* be arbitrary elements (ie mathematical objects) such, that 𝑥*, 𝑦* /∈ Bs(ℳ)
and 𝑥* ̸= 𝑦*. We construct the oriented setℳ* by the following way.

We denote:
Bs (ℳ*) := Bs(ℳ) ∪ {𝑥*, 𝑦*}

and for 𝑥, 𝑦 ∈ Bs (ℳ*) we write 𝑦 ←
ℳ*

𝑥 if and only if at least one of the following conditions

is fulfilled:

1. 𝑥, 𝑦 ∈ Bs(ℳ) and 𝑦←
ℳ
𝑥;

2. 𝑥 = 𝑥*;

3. 𝑦 = 𝑦*.

From the above conditions 1, 2, 3 it follows that for each ̃︀𝑥 ∈ Bs (ℳ*) such, that ̃︀𝑥 ̸= 𝑥*

it is performed the condition ̃︀𝑥 +←
ℳ*

𝑥*, as well for each ̃︀𝑦 ∈ Bs (ℳ*) such, that ̃︀𝑦 ̸= 𝑦* it is

performed the condition 𝑦*
+←
ℳ*

̃︀𝑦. So, by Definition 8, we have:

min* (ℳ*) = 𝑥*, max* (ℳ*) = 𝑦*. (55)

Therefore, according to Definition 9, the oriented setℳ* is strictly evolutionary bounded.
We are going to prove that it is a quasi-chain.

Let, 𝑥, 𝑦 ∈ Bs (ℳ*). Since the oriented set ℳ is quasi-chain, then in the case, where
𝑥, 𝑦 ∈ Bs(ℳ) from the condition 1 we conclude that at least one of the conditions 𝑦 ←

ℳ*
𝑥

or 𝑥←
ℳ*

𝑦 is valid. In the cases, where 𝑥 ∈ {𝑥*, 𝑦*} or 𝑦 ∈ {𝑥*, 𝑦*} due to the conditions 2, 3

we deduce that 𝑦 ←
ℳ*

𝑥 or 𝑥←
ℳ*

𝑦. Hence, condition (QL1) of Definition 5 is fulfilled for the

oriented setℳ*.

Assume that 𝑥0, 𝑥1, 𝑥2, 𝑥3 ∈ Bs (ℳ*) and 𝑥3
+←
ℳ*

𝑥2 ←
ℳ*

𝑥1
+←
ℳ*

𝑥0. Since the oriented set

ℳ is quasi-chain, then in the case, where 𝑥0, 𝑥1, 𝑥2, 𝑥3 ∈ Bs(ℳ), we have 𝑥3
+←
ℳ
𝑥0, and
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consequently, in accordance with the item 1, we get, 𝑥3
+←
ℳ*

𝑥0. In the case 𝑥0 = 𝑥* the equality

𝑥3 = 𝑥* is impossible, because the correlation 𝑥3 = 𝑥*
+←
ℳ*

𝑥2 is nonsensical according to the

conditions 1, 2, 3. Therefore we have, 𝑥3 ̸= 𝑥* = 𝑥0. Consequently, from the equalities (55)

we conclude that 𝑥3
+←
ℳ*

𝑥* = 𝑥0. The cases 𝑥1 = 𝑥*, 𝑥3 = 𝑥* are impossible since in these

cases the correlations 𝑥* = 𝑥1
+←
ℳ*

𝑥0 or 𝑥* = 𝑥3
+←
ℳ*

𝑥2 are nonsensical in accordance with (55).

Case 𝑥2 = 𝑥* also is impossible, because in this case the conditions 1, 2, 3 together with the
correlation 𝑥2 ←

ℳ*
𝑥1 (ie 𝑥* ←

ℳ*
𝑥1) lead to the equality 𝑥1 = 𝑥*, which is impossible according

to the case, explained before. In the case 𝑥3 = 𝑦* the equality 𝑥0 = 𝑦* is impossible, because

the correlation 𝑥1
+←
ℳ*

𝑥0 = 𝑦* is nonsensical according to the conditions 1, 2, 3. Therefore

we have got, 𝑥3 = 𝑦* ̸= 𝑥0. Consequently, from the equalities (55), we conclude that

𝑥3 = 𝑦*
+←
ℳ*

𝑥0. The cases 𝑥2 = 𝑦*, 𝑥0 = 𝑦* are impossible since in these cases the correlations

𝑥3
+←
ℳ*

𝑥2 = 𝑦* or 𝑥1
+←
ℳ*

𝑥0 = 𝑦* are nonsensical in accordance with (55). The case 𝑥1 = 𝑦*

also is impossible, because in this case the conditions 1, 2, 3 together with the correlation
𝑥2 ←

ℳ*
𝑥1 (ie 𝑥2 ←

ℳ*
𝑦*) lead to the equality 𝑥2 = 𝑦*, which is impossible according to the case,

explained before. Hence in all possible cases the condition 𝑥3
+←
ℳ*

𝑥2 ←
ℳ*

𝑥1
+←
ℳ*

𝑥0 ensures the

correlation 𝑥3
+←
ℳ*

𝑥0. Consequently, the condition (QL2) of Definition 5 also is satisfied for

the oriented setℳ*.
Thus, by Definition 5, the oriented setℳ* is a quasi-chain, which was to be proven.
From the equalities (55) we see, that the quasi-chain oriented setℳ* satisfies conditions

of Assumption *. Hence, in accordance with result, proven in the item I, the oriented setℳ*
can be one-point chronologized by means of 2-repeating one-point time, that is there exist
a linearly ordered set T* = (T*,≤) and an 2-repeating one-point time 𝜓* : T* → 2Bs(ℳ*).
Since the time 𝜓* is one-point, then for an arbitrary 𝑡 ∈ T* the element 𝑥𝑡 ∈ Bs (ℳ*) exists
such, that 𝜓*(𝑡) = {𝑥𝑡}. Moreover, using definition of time (see Definition 3), we deliver:{︀

𝑥𝑡
⃒⃒
𝑡 ∈ T*

}︀
=

⋃︁
𝑡∈T*

{𝑥𝑡} =
⋃︁
𝑡∈T*

𝜓*(𝑡) = Bs (ℳ*) . (56)

Denote:
T :=

{︀
𝑡 ∈ T*

⃒⃒
𝑥𝑡 ∈ Bs(ℳ)

}︀
.

Since Bs(ℳ) ̸= ∅ and Bs(ℳ) ⊆ Bs (ℳ*) then the equality (56) involves that T ̸= ∅.
Denote:

𝜓(𝑡) := 𝜓*(𝑡) = {𝑥𝑡} (𝑡 ∈ T) .

It is not hard to verify that the map 𝜓 : T → 2Bs(ℳ) is an 2-repeating one-point time on
the oriented setℳ.

Now Theorem 3 follows from Lemma 1 and Lemma 3.

8 On images of linearly ordered sets

In this short section we deduce one interesting corollary from Theorem 3 in the theory of
ordered sets. Namely it will be obtained the description of all oriented sets, which can be
represented as images of linearly ordered sets. First of all we formulate the definition of
image of linearly ordered set.

Letℳ be an oriented set and U : Bs(ℳ)→ 𝒳 be a mapping from Bs(ℳ) to 𝒳 . Then
we can introduce the binary relation ←(1) on the set 𝑀1 = U [Bs(ℳ)] = R (U) by the
following rule:
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I For ̃︀𝑥, ̃︀𝑦 ∈ 𝑀1 we note ̃︀𝑦←(1) ̃︀𝑥 if and only if there exist 𝑥, 𝑦 ∈ Bs(ℳ) such, that̃︀𝑥 = U (𝑥), ̃︀𝑦 = U (𝑦) and 𝑦←𝑥.

It is not difficult to verify that the ordered pairℳ1 =
(︀
𝑀1,←(1)

)︀
is an oriented set, moreover

Bs (ℳ1) =𝑀1 and ←
ℳ1

=←(1).

Definition 11. An oriented set ℳ1 is referred to as image of the oriented set ℳ under
the mapping U : Bs(ℳ)→ 𝒳 if and only if:

1. Bs (ℳ1) = U [Bs(ℳ)] = R (U).

2. For ̃︀𝑥, ̃︀𝑦 ∈ Bs (ℳ1) the correlation ̃︀𝑦←
ℳ1

̃︀𝑥 holds if and only if there exist 𝑥, 𝑦 ∈ Bs(ℳ)

such, that ̃︀𝑥 = U (𝑥), ̃︀𝑦 = U (𝑦) and 𝑦←
ℳ
𝑥.

It is apparently that for each mapping U : Bs(ℳ) → 𝒳 there exists an unique image
under the mapping U. We will use the notation U [[ℳ]] for the image of the oriented set
ℳ under the mapping U : Bs(ℳ)→ 𝒳 .

It is evidently that every linearly ordered set T = (T,≤) is an oriented set with:

Bs (T) = T, ←
T
=≤ .

Therefore, it is meaningful to consider the image of the linearly ordered set T = (T,≤)
under some mapping of kind U : T→ 𝒳 . And the image of the linearly ordered set T is the
oriented set U [[T]]. That is why the following problem naturally arises:

Problem 2. Can an arbitrary oriented set be represented as the image U [[T]] of some
linearly ordered set T? If it can not, describe all oriented sets that can be represented as an
image of some linearly ordered set.

The key for solution of Problem 2 gives the following Assertion.

Assertion 10. An oriented setℳ can be represented as image of some linearly ordered set
if and only ifℳ can be one-point chronologized.

Proof. Indeed, suppose that the ordered setℳ can be represented in the formℳ = U [[T]],
where T = (T,≤) is a linearly ordered set. So, U is the mapping of kind U : T→ Bs(ℳ)
with R (U) = Bs(ℳ). Here we denote by ≥ the binary relation, inverse to ≤ (ie for 𝑥, 𝑦 ∈ T
the condition 𝑦 ≥ 𝑥 holds if and only if 𝑥 ≤ 𝑦). According to Duality Principle (see [14, page
14]), the ordered pair

T≥ = (T,≥) (57)

is the linearly ordered set as well. It is not difficult to verify that the mapping:

T ∋ 𝑡 ↦→ 𝜓 (𝑡) = {U(𝑡)} ⊆ Bs(ℳ)

is an one-point time onℳ (relatively the linearly ordered set T≥). Conversely, let T = (T,≤)
be a linearly ordered set and 𝜓 : T → 2Bs(ℳ) be one-point time on the oriented set ℳ.
Then, by Definition 4, for every time point 𝑡 ∈ T the element 𝑥(𝑡) ∈ Bs(ℳ) exists such,

that 𝜓 (𝑡) =
{︀
𝑥(𝑡)

}︀
. Consider the mapping:

T ∋ 𝑡 ↦→ U(𝑡) = 𝑥(𝑡) ∈ Bs(ℳ).

It is easy to verify that for this mapping U it is performed the equalityℳ = U [[T≥]], where
the linearly ordered set T≥ is determined by the formula (57).

Assertion 10 together with Theorem 3 stipulate the following corollary.

Corollary 1. An oriented set ℳ can be represented as image of some linearly ordered set
if and only if it is a quasi-chain.

Note that Theorem 3 was announced in [15].

This research was partially supported by Budget program “Support to the development
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