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Abstract: In this age of mass media and, in particular, social media-driven perception of reality,
coupling disease and prophylactic opinion dynamics models can provide better insights into disease
evolution than using a disease model alone. We develop in this work two disease-opinion dynamics
models based on the epidemiology of the new coronavirus disease (COVID-19) and the availability
or not of imperfect vaccines. We assume that susceptibility to infection decreases with the level of
prophylactic attitude (personal hygiene, social distancing), and changes in prophylactic attitudes of
susceptible individuals occur in response to perceived disease prevalence and vaccination coverage
and efficacy in the population. We derive and discuss the disease-free equilibriums and reproduction
numbers in the introduced models. We further assess the impacts of the distribution of opinions at
disease introduction, the ability to detect presymptomatic, asymptomatic and symptomatic positive
COVID-19 cases, the behavioural responses to the outbreak and the introduction of vaccination, and
the effects of distortions of disease prevalence by public policy and mass media on disease dynamics.
The insights highlighted from the proposed models are expected to make informative contributions
to public policy in a context of opinion fluxes in response to perceived disease prevalence.

Keywords: COVID-19; Disease-behaviour dynamics model; Prophylactic attitude; Vaccination;
Perceived disease prevalence

1. Introduction
The emergence in late 2019 of the new coronavirus disease (COVID-19) caused by the

pathogen SARS-CoV-2 is an example of highly contagious emerging infectious diseases in
response to increases in the magnitude and rate of overexploitation, habitat loss, global
loss of biodiversity and climate change that many studies have warned against during
the last decades [1–4]. The COVID-19 pandemic has impacted social and cultural habits,
recreational and economic activities, laws and rights, among other aspects of human
civilization. Increases in personal hygiene and social distancing from perceived sources
of infection have shown significant potential to reduce the transmission and, thereby, the
spread of COVID-19. But the spread of a contagious disease in this era of mass media and
highly connected populations is inevitably concomitant with the dissemination of antagonist
information and opinions on the related pathogen, disease, and prophylactic measures [5–8].

Modeling disease dynamics is the unique route to circumventing, containing, anticipat-
ing, and preventing or reducing the ravages of deadly emerging or re-emerging infectious
diseases. The numerous recent epidemic outbreaks (e.g., MERS, SARS, Ebola) have indeed
urged the development of mathematical and statistical models for the spread dynamics
of particular diseases. Many such models include opinions regarding vaccination [9–11].
Indeed, vaccines’ safety and use have always and everywhere raised controversial issues
[12–14]. For instance, controversies about COVID-19 vaccines have been widely spread once
the safety and effectiveness assessment trials started, especially in highly connected social
networks [15–20]. The opinions and the related attitudes toward vaccines have obvious
consequences in the spread of diseases and their ability to cause epidemics [21]. However,
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opinions on other prophylactic measures have been less considered, although they can
directly impact transmission dynamics and attitudes toward vaccination. In the COVID-19
pandemic context, the dynamics of these other prophylactic behaviours can substantively
differ from the dynamics of attitudes toward vaccination [22].

The recent development of models coupling disease, economic and opinion dynamics [23–
36] provides headways towards effective joint modeling of health-related beliefs and attitudes,
economic constraints, disease dynamics, and their interactions. However, most of the current
models primarily rely on quite simplistic assumptions such as the SIS [23,37], SIR [22,38–40]
and SEIV models [41] for disease dynamics. For instance, the world’s reactions to the COVID-
19 outbreaks generally involved isolating some infectious individuals from the susceptible
population, making the distinction of ”quarantined” individuals from other infectious
individuals crucial for sound modeling of this disease [42]. In addition, the epidemiology
of COVID-19 indicates even more complex disease dynamics involving presymptomatic,
asymptomatic, and symptomatic infectious states [43–50]. In such situations, using too
simplistic models can neglect crucial characteristics of target diseases and confound some
distinct disease-opinion interactions important for decision-making.

To tackle this background, this study proposes (1) a disease-opinion dynamics model
that accounts for basic prophylactic measures against emerging infectious diseases, the related
beliefs and behaviours, and important disease states based on COVID-19 epidemiology, and
(2) a joint model integrating attitudes toward vaccination and other prophylactic measures
with disease dynamics. The objectives of the work are (i) to determine the disease-free and
endemic equilibria and the reproduction numbers of the disease-opinion dynamics models,
and (ii) to assess the impacts of the initial distribution of behaviours, nature of behavioural
responses, vaccination rate and efficacy, rates of detection and isolation (“quarantining”),
and perceived disease prevalence on disease dynamics. The use of the proposed models is
expected to make informative contributions to public policy in a context of opinion fluxes
in response to perceived disease prevalence.

2. The Disease-Opinion Dynamics Models
We develop a generalization of the SIR–Opinion dynamics model [22] to suit the

epidemiology of the pathogen SARS-CoV-2, the related coronavirus disease (COVID-19),
and the availability of imperfect COVID-19 vaccines. On the one hand, we consider a disease
evolution model distinguishing the infectious population into presymptomatic, asymptomatic
and symptomatic individuals, and possibly the susceptible population into unvaccinated and
vaccinated individuals. On the other hand, we extend the prophylactic opinion spectrum of
Tyson et al. [22], introducing a prophylactic opinion field where attitudes/opinions toward
both standard prophylactic measures (e.g. personal hygiene, face mask wearing and social
distancing) and vaccination, and their interactions are integrated.

2.1. Disease dynamics
We describe disease evolution using a compartmental model in which the target popu-

lation is basically structured into Susceptible (S), Exposed (E), Infectious (I), Quarantined
(Q), and Recovered individuals (R) [51–53]. But the infectious population is further dis-
tinguished into presymptomatic (Ip), asymptomatic (Ia), and symptomatic infectious (Is)
individuals, whereas the susceptible population (S) is distinguished into unvaccinated and
completely susceptible individuals (U), and vaccinated and partially immunized individuals
(V ). The sizes of the susceptible and the infectious compartments satisfy respectively
S(t) = U(t) + V (t) and I(t) = Ip(t) + Ia(t) + Is(t) at time t, and the total population
size N(t) is given by

N(t) = U(t) + V (t) +E(t) + Ip(t) + Ia(t) + Is(t) +Q(t) +R(t). (1)

In a vaccination-free context (e.g. for a new emerging disease), the size of the vaccinated
population is zero (V (t) = 0) and the susceptible population consists of only unvaccinated
individuals (S(t) = U(t)). In this case, we have a SEIQR model, which is appropriate for
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the early phase of the COVID-19 pandemic. When vaccines become available, we have the
more general UVEIQR model.

For simplicity, the susceptible population (S) is assumed homogeneous concerning
factors such as age and medical conditions. We account for natural human demography, i.e.
we include a natural death rate (µ) for the whole population, and assume a constant timely
number of new births and net immigration (η) entering the class S of susceptibles (i.e. there
is no immigration of infectives). Moreover, since the isolated infectious individuals do not
mix actively with other classes, we assume that they do not have contacts sufficient for
transmission with susceptible individuals [54–56]. Under the corresponding “quarantine-
adjusted incidence” mechanism [57], the force of infection (i.e. the rate at which new
infections (E) are produced) is given at time t for a completely susceptible individual by

λo(t) =
βpIp(t) + βaIa(t) + βsIs(t)

N(t) −Q(t)
, (2)

where βp, βa and βs are baseline rates of contacts sufficient for transmission by presymp-
tomatic, asymptomatic, and symptomatic infectious individuals, respectively. The available
vaccines are considered imperfect, with an average efficacy of vaccine-induced protection
κ ∈ (0, 1). In other words, contacts between a V individual and Ip, Ia or Is individuals
can be sufficient for transmission, but the force of infection is reduced to (1 − κ)λo(t). A
detailed description of both the SEIQR and the UVEIQR disease dynamics models in line
with the known epidemiology of COVID-19 is given in Appendix A, along with graphical
representations and mathematical descriptions based on nonlinear differential equations.

2.2. The Prophylactic Attitude Spectrum
In a vaccination–free epidemic context, we follow Tyson et al. [22], assuming for

simplicity that opinion dynamics only occur within the susceptible population S. The latter
is distinguished into three groups of individuals that can be identified based on the level of
prophylactic behaviour, which takes values in the prophylactic attitude spectrum:

P = {−1, 0, 1}. (3)

For any opinion i ∈ P, Si denotes susceptibles with attitude i: S−1 represents individuals
with the highest prophylactic behaviour (and thus the least susceptible to the disease), and
S1 corresponds to individuals with the lowest prophylactic behaviour (and thus the most
susceptible to the disease). Individuals S0 in the middle of the spectrum correspond to an
intermediate level of prophylactic behaviour. Note that if the opinion i = −1 is opposed to
i = 1, then our model includes individuals with completely neutral position (S0), unlike in
the binary voter model based spectrum used by Tyson et al. [22]. However, the spectrum
(3) simply defines the intensity of prophylactic behaviour on an ordinal scale, and high level
attitude (i = −1) is not necessarily opposed to low level attitude (i = 1). The identity
S(t) =

∑
i ∈P Si(t) holds for the susceptible population at time t.

2.3. The Source and Rate of Opinion Dynamics
Opinion dynamics result from changes in opinions and behaviours over time, for

instance, as the mass media diffuse information about disease prevalence or evolution of the
pathogen or as disease surveillance and control policies are introduced or modified. Here,
we adapt the ”influence” approach of Tyson et al. [22], opinions being updated in response
to interactions between susceptibles along the prophylactic opinion spectrum (3). In this
framework, opinion dynamics within the susceptible population are governed by the rates
(i.e. amplitudes) and the directions of mutual opinion influences.

The rate ωi at which a susceptible individual Si influences the rest of the susceptible
population is called the “influence function”. For their SIR-Opinion dynamics model, Tyson
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et al. [22] introduced linear and saturating influences as functions of the proportion of the
infectious population (I). We consider here influence functions ωi of the form

ωi(t) = wi

(
P̃ (t)

)
, (4a)

where wi are Tyson et al. [22]’s fixed-order saturating extreme influence weights, and P̃ (t)
is the “perceived disease prevalence”. The influence weights are given for x ∈ [0, 1] by

wi(x) =



wo

[
1 +w∞

x

(k̃+x)

]
if i = −1

wo

[
1 + (w∞−1)

2
x

(k̃+x)

]
if i = 0

wo

[
1 − x

(k̃+x)

]
if i = 1

, (4b)

with wo ∈ (0, 1), the baseline influence rate for extreme opinions; w∞ ≥ 1, a skewness
parameter; and k̃ > 0, a half-saturation constant (see Appendix B for a graphical overview of
wi). In Equation(4a), we have substituted a perceived disease prevalence to the proportion
of infectious (I) used by Tyson et al. [22], because, in our SEIQR model framework, the
true disease prevalence given by P (t) = [Ip(t) + Ia(t) + Is(t) +Q(t)]/N(t) is unknown to
any individual in the population (only Q(t) is observable), and estimates of P (t) reported
by the mass media are perceived as disease prevalence. The perceived disease prevalence
P̃ is a determinant of opinion dynamics [58,59], and indeed, a source of changes in the
rates of influences on and by prophylactic opinions, as implied by Equation(4a). Clearly,
the under or over-estimation and reporting of disease prevalence by media or public health
policymakers play a role in opinion dynamics.

Regarding the directions of influences, when an Si individual influences an Sj individual,
the Sj individual changes his attitude by moving one step towards i [22]. For instance, if the
two individuals are at the opposite sides of the attitude spectrum (i.e. i× j < 0), then the
Sj individual changes its attitude by moving one step towards the other side (i.e. Sj → S0).
If, on the contrary, the interacting individuals have the same opinion (i.e. i× j > 0), no
change occurs. When an Si individual at a given side of the attitude spectrum (i = ±1)
influences a moderate opinion holder S0, then S0 → Si. Finally, when an Sj individual at
a side of the spectrum (j = ±1) is influenced by an S0 individual, then Sj → S0. These
changes of opinions in the susceptible population can be summarized by the rates ξ(i,j)(t)
of outgoing flows (opinion change i → j) as:

ξ(−1,0)(t) =
ω0(t)S0(t) + ω1(t)S1(t)

N(t) −Q(t)
, (5a)

ξ(0,−1)(t) =
ω−1(t)S−1(t)

N(t) −Q(t)
, (5b)

ξ(0,1)(t) =
ω1(t)S1(t)

N(t) −Q(t)
, (5c)

ξ(1,0)(t) =
ω−1(t)S−1(t) + ω0(t)S0(t)

N(t) −Q(t)
. (5d)

2.4. The SEIQR-Opinion Dynamics Model
The proposed SEIQR-Opinion dynamics model is depicted on the flow diagram in

Figure 1. Note the use in Figure 1 of opinion-specific forces of infection (λi). Indeed,
since increased levels of personal hygiene or social distancing from perceived sources of
infection can substantively reduce both contacts and, if any, the sufficiency of contacts
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Figure 1. Flow-chart of a SEIQR-Opinion dynamics model showing the flow of humans between
different compartments. The susceptible population is distinguished into individuals with the highest level of
prophylactic behaviour (S−1), individuals with the lowest level of prophylactic behaviour (S1) and individuals with
a middle level of prophylactic behaviour (S0), E, Ip, Ia, Is, Q and R denote the exposed, the presymptomatic
infectious, the asymptomatic infectious, the symptomatic infectious, the quarantined, and the recovered populations,
respectively. The parameters of the model are described in Table 1.

for transmission, we assume that an individual’s attitude determines its susceptibility to
infection in a way such that the force of infection for Si individuals has the form

λi(t) =
βipIp(t) + βiaIa(t) + βisIs(t)

N(t) −Q(t)
, (6a)

where, for i ∈ P and j ∈ {p, a, s}, βij is the rate of contacts sufficient for transmission
from an Ij infectious to a Si susceptible. For simplicity, the dependence of infection rate on
attitude is modeled using a single parameter [22]. It is specifically assumed that, for each
infectious class Ij , the sufficient contact rate βij is given by βij = ς1−i

o βj , i.e.

β1j = βj , β0j = ςoβj , β−1j = ς2
oβj , (6b)

where βj is the baseline rate of sufficient contacts with Ij infectious (this applies to S1
susceptible individuals who have the lowest level of prophylactic behaviour), and ςo ∈ (0, 1).
From the structuring of the susceptible population S in terms of prophylactic opinions i,
the overall force of infection in the whole target population is given by the weighted average
λ̄o(t) =

1
S(t)

∑
i ∈P Si(t)λi(t). The SEIQR-Opinion dynamics model is described at time t

by the following system of nonlinear differential equations:

Ṡ−1(t) = η−1 + ξ(0,−1)(t)S0(t) − [ψ−1(t) + µ]S−1(t) + ϵ−1R(t), (7a)
Ṡ0(t) = η0 + ξ(−1,0)(t)S−1(t) + ξ(1,0)(t)S1(t) − [ψ0(t) + µ]S0(t) + ϵ0R(t), (7b)
Ṡ1(t) = η1 + ξ(0,1)(t)S0(t) − [ψ1(t) + µ]S1(t) + ϵ1R(t), (7c)
Ė(t) = λ−1(t)S−1(t) + λ0(t)S0(t) + λ1(t)S1(t) − (θ+ µ)E(t), (7d)
İp(t) = θE(t) − (σ+ µ)Ip(t), (7e)
İa(t) = (1 − τ )(1 − π)σIp(t) − (ρa + γa + µ)Ia(t), (7f)
İs(t) = τ (1 − π)σIp(t) − (ρs + γs + δs + µ)Is(t), (7g)
Q̇(t) = πσIp(t) + ρaIa(t) + ρsIs(t) − (γq + δq + µ)Q(t), (7h)
Ṙ(t) = γaIa(t) + γsIs(t) + γqQ(t) − (ϵo + µ)R(t), (7i)
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with the nonnegative initial conditions Si(0) = S0i, E(0) = E0, Ip(0) = I0p, Ia(0) = I0a,
Is(0) = I0s, Q(0) = Q0, and R(0) = R0 where (E0, I0p, I0a, I0s,Q0,R0)

⊤ ∈ [0, ∞)6, and
S0i ≥ 0 for i ∈ P. In System (7), the dots represent partial derivatives with respect to
time (t), ψi denotes the time-dependent outgoing flows rate from Si susceptibles:

ψ−1(t) = ξ(−1,0)(t) + λ−1(t), (8a)
ψ0(t) = ξ(0,−1)(t) + ξ(0,1)(t) + λ0(t), (8b)
ψ1(t) = ξ(1,0)(t) + λ1(t), (8c)∑

i ∈P ηi = η,
∑

i ∈P ϵi = ϵo, and the constant rate parameters of the model are described
in Table 1. We shall use the qualifier “disease-dependent” for any solution for which there
exists a finite time t ≥ 0 such that E(t) + Ip(t) + Ia(t) + Is(t) > 0.

Table 1: Description and values of parameters in the proposed models

Parameter Description Values Source

η Total recruitment rate (births and net immigration) 35,615.35 [54]
ηu Recruitment rate of non vaccinated individuals 0.9999η Assumed
ηv Recruitment rate of vaccinated individuals (η − ηu) 0.0001η Assumed
ηi* Recruitment rate of susceptibles with opinion i
ηil* Recruitment rate of susceptibles with opinions i and l
µ Natural death rate 0.00002 [54]
βj** Baseline transmission rate by Ij infectious (j = p, a, s)
βij** Transmission rate by Ij infectious with opinion i
ςo Prophylaxy-induced infection rate reduction factor 0.5 [22]
θ Exit rate from incubation state (inverse of duration)
σ Exit rate from presymptomatic state
π Probability of early detection (presymptomatic stage)
τ Proportion of symptomatic infectious
ρj** Detection rate of Ij infectious (j = a, s)
γj** Recovery rate of infectious (j = a, s, q)
δj** Disease-related death rate of infectious (j = s, q)
ϵo Lost rate of disease-induced immunity 0.011
ϵi* Part of recovered individuals with opinion i
ϵil* Part of recovered individuals with opinions i and l
υ Vaccination rate 0.2 Assumed
κ Average efficacy of available vaccines 0.65 Assumed
α Lost rate of vaccine-induced immunity 0.015 Assumed
wo Baseline influence rate (when disease is not perceived) 0.1 [22]
w∞ Skewness parameter of influence functions 2 Assumed
k̃ Half-influence saturation constant 0.1 [22]

Table notes: All parameters take nonnegative values. The recruitment rates η, ηu, ηv , ηi, ηil are in individuals
per day, and all other rate parameters are in day-1. *i = level of prophylactic attitude defined in Equation (3),
and l = u (unfavorable to vaccines), uv (favorable to vaccines, but unvaccinated), and l = v (favorable to vaccines
and vaccinated). **j = p (presymptomatic), a (asymptomatic), s (symptomatic), or q (quarantined) infectious.

2.5. The Prophylactic Attitude Field
In addition to preventing infectious diseases through immunisation, vaccines have

further benefits such as reduced antimicrobial resistance and herd protection for unvaccinated
individuals, including the elderly with waning immune systems and those who are too young
to be vaccinated or are immunosuppressed due to particular medical conditions [60,61].
Because these obvious advantages do not prevent controversies which feed vaccine-related
opinion dynamics, especially in highly connected social networks [15–20], a disease–opinion
dynamics model must account for the impact of vaccination on both attitudes and disease
transmissions once vaccines are introduced into an epidemic context.

Although vaccination is also a prophylactic measure, the attitude toward vaccination
may be inconsistent with other prophylactic behaviours. For instance, an individual with low
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prophylactic behaviour may get vaccinated to ignore social distancing. Likewise, an agent
with an initially high prophylactic behaviour may become overconfident after vaccination
and relax personal hygiene and social distancing, lowering its prophylactic behaviour [62].
Consequently, using one scale between two extreme opinions on prophylactic measures
is not realistic in an epidemic context involving vaccination. Hence, we consider that
the prophylactic opinion spectrum in Equation (3) excludes opinions on vaccination. A
spectrum of vaccination-related opinions is separately introduced into the model, resulting
in a bivariate field of opinions. For simplicity, we consider only two antagonists’ opinions
toward vaccines: favorable and unfavorable [11]. The bivariate attitude field is defined as

F =

{
−1u, 0u, 1u
−1v, 0v, 1v

}
, (9)

where for each element ij, i ∈ P and j ∈ {u, v}, j = u indexes individuals unfavorable to
vaccination, and j = v indexes individuals favorable to vaccination. In consequence, a class
of Si susceptibles (i ∈ P) is further structured into three groups: completely susceptible
individuals unfavorable to vaccination (Uiu), completely susceptible individuals favorable to
vaccination (Uiv), and susceptibles with active vaccine-induced immunity (Vi). The total
susceptible population is then given by S(t) = U(t) + V (t) where U(t) = Uu(t) + Uv(t)
denotes all completely susceptible individuals, Uu(t) =

∑
i∈P Uiu(t) denotes completely

susceptible individuals unfavorable to vaccination, Uv(t) =
∑

i∈P Siv(t) denotes completely
susceptible individuals favorable to vaccination, and V =

∑
i ∈P Vi(t) denotes vaccinated

individuals. The identity S(t) =
∑

i ∈P Si(t) still holds for the whole susceptible population,
and in addition, Si(t) = Ui(t) + Vi(t) where Ui(t) = Uiu(t) + Uiv(t).

2.6. Changes in Prophylactic Attitudes in the Presence of Vaccination
We still assume that opinion dynamics only occur within the susceptible population

(S), including Uu, Uv and V individuals. Changes in opinion on prophylactic behaviours
(excluding vaccination) are determined within Uu, Uv or V individuals by an “influence”
process. Assuming for simplicity that the influence rates are ceteris paribus the same
within the pro-vaccine and anti-vaccine susceptible populations as well as in the vaccinated
population, the rates ξ̃(i,j)(t) of outgoing flows (opinion change i → j) are defined by
analogy to Equations (5a)–(5d) as:

ξ̃(−1,0)(t) =
ω̃0(t)S0(t) + ω̃1(t)S1(t)

N(t) −Q(t)
, (10a)

ξ̃(0,−1)(t) =
ω̃−1(t)S−1(t)

N(t) −Q(t)
, (10b)

ξ̃(0,1)(t) =
ω̃1(t)S1(t)

N(t) −Q(t)
, (10c)

ξ̃(1,0)(t) =
ω̃−1(t)S−1(t) + ω̃0(t)S0(t)

N(t) −Q(t)
, (10d)

where ω̃i are influence functions. As the vaccination-free influence function ωi defined
in Equation (4a), the influence function ω̃i depends on the perceived disease prevalence
P̃ . However, in a vaccination-dependent epidemic context, the proportion of vaccinated
individuals widely publicised in the mass media is also expected to impact prophylactic
behaviours. It appears that when the influence of an individual with an opinion i increases
with P̃ , then it will likely decrease with the proportion of V individuals (see e.g. [62]) and
vice-versa. Assuming independence between the relative importance of P̃ and V in ω̃i, the
influence rate is given the form

ω̃i(t) = wo
V (t)

N(t)
+

[
1 − V (t)

N(t)

]
wi

(
P̃ (t)

)
(10e)
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so that ω̃i(t) = ωi(t) if V (t) = 0, i.e. Equation (10e) is reduced to Equation (4a) in a
vaccination-free context, and irrespective of the proportion V (t)/N(t), wo remains the initial
influence rate of an extreme opinion holder when the disease is not perceived (P̃ (t) = 0,
i.e. an actual disease-free context, or a failure to detect any infectious individual although
I(t) > 0). It is worth noting that the basic influence wi is a decreasing function for i > 0
and an increasing function for i < 0 (see graphics in Appendix B, see also Figure 1 in
[22]). As a result, the influence ω̃i of a high level prophylactic attitude (i = −1) increases
with the perceived disease prevalence P̃ (t) but decreases with the proportion V (t)/N(t) of
vaccinated individuals. Conversely, the influence of a low level prophylactic attitude (i = 1)
decreases with P̃ (t) but increases with V (t)/N(t). It also stems from Equation (10e) that
vaccination (V (t) > 0) reduces the slope of the influence rate for all prophylactic opinions.
Specifically, when x% of the population is immunized through vaccination, the influences
of prophylactic opinions become (100 − x)% less responsive to changes in the perceived
disease prevalence P̃ , as compared to the response in a vaccination-free context.

2.7. Changes in Attitudes Towards Vaccination
We consider that changes in opinion on vaccination among Ui individuals (Uiu and

Uiv) are also governed by an ”influence” process. Assuming that changes of attitude toward
vaccines are independent of the level i of prophylactic behaviour, the rate ζ(v,u)(t) at which
Uiv individuals lose conviction to vaccination benefits and return to the class Uiu, and the
rate ζ(u,v)(t) at which Uiu individuals become favourable to vaccines and enter the class
Uiv are given for any opinion i ∈ P by

ζ(v,u)(t) =
ω̃u(t)Uu(t)

N(t) −Q(t)
, (11a)

ζ(u,v)(t) =
ω̃v(t)[Uv(t) + V (t)]

N(t) −Q(t)
, (11b)

where ω̃u and ω̃v are influence functions related to opinions on vaccination. Note that
individuals with vaccine-induced immunity (V ) are all assumed to be favourable to vaccines
(at least until the temporary immunity vanishes). To obtain simple expressions for the
influence functions ω̃u and ω̃v, we assume that there is no change in vaccine-related opinions
when the disease is not perceived (P̃ (t) = 0), and the influence rates of pro-vaccine and
anti-vaccine susceptibles are also constants when V (t) = 0, i.e. there is no shift in vaccine-
related opinions until vaccination begins (note that this assumption is not as restrictive as
it may first appear, because we have V (t) > 0 once trials for vaccine safety and efficacy
start in the population, or even when only ηv > 0, i.e. vaccinated individuals only flow
in from abroad). We also assume that an increase of either P̃ (t) or V (t)/N(t) leads to
an increase in the influence of pro-vaccine susceptibles but a decrease in the influence of
anti-vaccine susceptibles. These assumptions result in the influence functions:

ω̃u(t) = wo

[
1 − P̃ (t)

]
+ P̃ (t)w1

(
V (t)

N(t)

)
, and (11c)

ω̃v(t) = wo

[
1 − P̃ (t)

]
+ P̃ (t)w−1

(
V (t)

N(t)

)
. (11d)

2.8. The UVEIQR-Opinion Dynamics Model
We build a Disease-Opinion dynamics model by integrating prophylactic behaviours

and vaccine-related opinions into the UVEIQR model. With the vaccination process, pro-
vaccine susceptibles who have the prophylactic opinion i (Uiv) get vaccinated (and enter
the class Vi) at the same rate υ (irrespective of i). Likewise, the vaccinated individuals
in Vi lose their immunity and return to the class Uiv at the rate α. We also assume that
anti-vaccine susceptibles (Uu) do not get vaccinated.
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The opinion-specific force of infection λi is given by Equation (6a) for Ui individuals,
and is (1 − κ)λi for Vi individuals. The overall force of infection in the whole population is
then given by the weighted average

λ̄(t) =
1

S(t)

∑
i ∈P

[Ui(t) + (1 − κ)Vi(t)]λi(t). (12)

The flow diagram of the UVEIQR-Opinion dynamics model is shown in Figure 2. Let φil

Figure 2. Flow-chart of a UVEIQR-Opinion dynamics model showing the flow of humans
between different compartments. Susceptibles are distinguished into the unvaccinated (completely susceptible)
population (U) and individuals with vaccine-induced partial immunity (V ); the subscripts u (unfavourable) and
v (favourable) indicate the attitude of U individuals toward vaccination, the subscripts i = −1, 0, 1 indicate the
level of prophylactic attitude (i = −1 is the highest level of prophylactic behaviour, i = 1 is the lowest level of
prophylactic behaviour, and i = 0 is a middle level of prophylactic behaviour); E, Ip, Ia, Is, Q and R denote
respectively the exposed, the presymptomatic, the asymptomatic, and the symptomatic infectious, the quarantined,
and the recovered populations. The parameters of the model are as described in Table 1.

denote for l ∈ {u,uv, v} the opinion-related incoming flows for susceptible states:

φ−1u(t) = ξ̃(0,−1)(t)U0u(t) + ζ(v,u)(t)U−1v(t), (13a)
φ0u(t) = ξ̃(−1,0)(t)U−1u(t) + ξ̃(1,0)(t)U1u(t) + ζ(v,u)(t)U0v(t), (13b)
φ1u(t) = ξ̃(0,1)(t)U0u(t) + ζ(v,u)(t)U1v(t), (13c)

φ−1uv(t) = ξ̃(0,−1)(t)U0v(t) + ζ(u,v)(t)U−1u(t) + αV−1(t), (13d)
φ0uv(t) = ξ̃(−1,0)(t)U−1v(t) + ξ̃(1,0)(t)U1v(t) + ζ(u,v)(t)U0u(t) + αV0(t), (13e)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 December 2022                   doi:10.20944/preprints202212.0067.v1

https://doi.org/10.20944/preprints202212.0067.v1


10 of 36

φ1uv(t) = ξ̃(0,1)(t)U0v(t) + ζ(u,v)(t)U1u(t) + αV1(t), (13f)
φ−1v(t) = ξ̃(0,−1)(t)V0(t) + υU−1v(t), (13g)
φ0v(t) = ξ̃(−1,0)(t)V−1(t) + ξ̃(1,0)(t)V1(t) + υU0v(t), (13h)
φ1v(t) = ξ̃(0,1)(t)V0v(t) + υU1v(t), (13i)

and ψil denote the time-dependent outgoing flow rates:

ψ−1u(t) = ξ̃(−1,0)(t) + ζ(u,v)(t) + λ−1(t), (13j)
ψ0u(t) = ξ̃(0,−1)(t) + ξ̃(0,1)(t) + ζ(u,v)(t) + λ0(t), (13k)
ψ1u(t) = ξ̃(1,0)(t) + ζ(u,v)(t) + λ1(t), (13l)

ψ−1uv(t) = ξ̃(−1,0)(t) + ζ(v,u)(t) + λ−1(t), (13m)
ψ0uv(t) = ξ̃(0,−1)(t) + ξ̃(0,1)(t) + ζ(v,u)(t) + λ0(t), (13n)
ψ1uv(t) = ξ̃(1,0)(t) + ζ(v,u)(t) + λ1(t), (13o)
ψ−1v(t) = ξ̃(−1,0)(t) + (1 − κ)λ−1(t), (13p)
ψ0v(t) = ξ̃(0,−1)(t) + ξ̃(0,1)(t) + (1 − κ)λ0(t), (13q)
ψ1v(t) = ξ̃(1,0)(t) + (1 − κ)λ1(t). (13r)

The proposed model is described at time t by the following system of differential equations:

U̇−1u(t) = η−1u + φ−1u(t) − [ψ−1u(t) + µ]U−1u(t) + ϵ−1uR(t), (14a)
U̇0u(t) = η0u + φ0u(t) − [ψ0u(t) + µ]U0u(t) + ϵ0uR(t), (14b)
U̇1u(t) = η1u + φ1u(t) − [ψ1u(t) + µ]U1u(t) + ϵ1uR(t), (14c)
U̇−1v(t) = η−1uv + φ−1uv(t) − [ψ−1uv(t) + υ+ µ]U−1v(t) + ϵ−1uvR(t), (14d)
U̇0v(t) = η0uv + φ0uv(t) − [ψ0uv(t) + υ+ µ]U0v(t) + ϵ0uvR(t), (14e)
U̇1v(t) = η1uv + φ1uv(t) − [ψ1uv(t) + υ+ µ]U1v(t) + ϵ1uvR(t), (14f)
V̇−1(t) = η−1v + φ−1v(t) − [ψ−1v(t) + α + µ]V−1(t), (14g)
V̇0(t) = η0v + φ0v(t) − [ψ0v(t) + α+ µ]V0(t), (14h)
V̇1(t) = η1v + φ1v(t) − [ψ1v(t) + α+ µ]V1(t), (14i)
Ė(t) = λ̄(t)S(t) − (θ+ µ)E(t), (14j)
İp(t) = θE(t) − (σ+ µ)Ip(t), (14k)
İa(t) = (1 − τ )(1 − π)σIa(t) − (ρa + γa + µ)Ia(t), (14l)
İs(t) = τ (1 − π)σIp(t) − (ρs + γs + δs + µ)Is(t), (14m)
Q̇(t) = πσIp(t) + ρaIa(t) + ρsIs(t) − (γq + δq + µ)Q(t), (14n)
Ṙ(t) = γaIa(t) + γsIs(t) + γqQ(t) − (ϵo + µ)R(t), (14o)

with the nonnegative initial conditions Uil(0) = U0il, Vi(0) = V0i, E(0) = E0, Ip(0) = I0p,
Ia(0) = I0a, Is(0) = I0s, Q(0) = Q0, and R(0) = R0 where U0il ≥ 0 and V0i ≥ 0 for i ∈ P
and l ∈ {u,uv, v}, and (E0, I0p, I0a, I0s,Q0,R0)

⊤ ∈ [0, ∞)6. In Equations (14a)–(14o),∑
i ∈P

∑
l=u,uv,v ηil = η,

∑
i ∈P

∑
l=u,uv ϵil = ϵo (e.g. ϵil = ϵo/6 for an equal repartition;

or ϵ0l = ϵo/4 and ϵ−1l = ϵ1l = ϵo/8 assuming that 50% of recovered individuals have
a moderate prophylactic attitude), and the constant rate parameters of the model are
described in Table 1.

Note that in the special case υ = 0 and V0i = ηiv = 0 for i ∈ P , model (14) is reduced
to the vaccination-free model (7) where Si susceptibles are divided into Uiu and Uiv with
constant mutual influence rates ω̃u(t) = ω̃v(t) = wo (but with no incidence on disease
dynamics or basic prophylactic opinion dynamics).
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3. Analytical Results
The first important property of any mathematical model for a biological process is, of

course, biological meaningfulness. The following result guarantees that the UVEIQR-Opinion
model always has a biological interpretation.

Lemma 1 (Non-negativity and Boundedness). Under the nonnegative initial conditions
Uiu(0) ≥ 0, Uiv(0) ≥ 0, Vi(0) ≥ 0 for i ∈ P, E(0) ≥ 0, Ip(0) ≥ 0, Ia(0) ≥ 0, Is(0) ≥ 0,
Q(0) ≥ 0 and R(0) ≥ 0, all solutions of Systems (14) remain nonnegative and are bounded
at any time t > 0. The total population size N(t) is in particular bounded as 0 ≤ N(t) ≤ N̂

where N̂ = max{N(0),N c} with N c = η/µ the carrying capacity in disease–free conditions.

Since System (7) is a special case of System (14), Lemma 1 also assures that all
solutions of the SEIQR-Opinion model (7) are biologically meaningful. In the remainder
of this section, we present some important properties of disease-opinion dynamics in a
population described by the introduced models. The similar mathematical properties of the
models with no differential opinion are given in Appendix A.3, and the proofs of all results
are given in Appendix C. Unlike in Lemma 1, we start for clarity with the properties of
the simpler model (7) without vaccination (υ = 0 and V0i = ηiv = 0 for i ∈ P) and then
discuss the changes induced by the introduction of vaccines in both disease and opinion
dynamics in the model (14).

3.1. Vaccination–free Disease–free Equilibrium and Reproduction Numbers
To summarize the dynamics of a population described by the SEIQR-Opinion model (7),

we find the disease-free equilibrium (DFE) of the model and use it to obtain the effective
reproduction number by the next-generation matrix approach [63]. We further derive critical
detection rates to achieve disease eradication in the long-run.

Proposition 1 (Vaccination–free DFE & Reproduction Number). The SEIQR-Opinion
model (7) has a unique DFE given for wo > 0 by

Xc = (Sc
−1,Sc

0,Sc
1, 0, 0, 0, 0, 0, 0)⊤ where (15a)

Sc
−1 =

η−1
µ

− 1
2

(
Sc

0 − η0
µ

)
, (15b)

Sc
0 = η

(
1
µ
+

1
wo

)
−

√
4ηη1
µwo

+

(
η1 − η−1

µ
− η

wo

)2
, (15c)

Sc
1 =

η1
µ

− 1
2

(
Sc

0 − η0
µ

)
. (15d)

When wo = 0, we have Sc
i = ηi

µ for i ∈ P. Moreover, for a population described by
System (7), the basic reproduction number is given by

R0(π, ρa, ρs,wo) =
∑
i∈P

∑
j=p,a,s

R0ij where (16a)

R0ij =
θ

(θ+ µ)(σ+ µ)

Sc
i ς

1−i
o

N c
βjmj

is the contribution of Si susceptibles and Ij infectious to R0, with mp = 1, ma = (1−τ )(1−π)σ
ρa+γa+µ ,

and ms = τ (1−π)σ
ρs+γs+δs+µ . Furthermore, the basic reproduction number R0 decreases with the

baseline influence rate wo (provided that the prophylaxis-induced infection rate reduction
factor ςo satisfies ςo < 1). The time-varying effective reproduction number is given by

Rt =
θ

(θ+ µ)(σ+ µ)

∑
i∈P

Si(t)ς1−i
o

N(t) −Q(t)

∑
j=p,a,s

βjmj . (16b)
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Remark 1. In the absence of opinion dynamics (wo = 0), each class of susceptibles Si

approaches its carrying capacity ηi
µ .

Remark 2. The stationary sizes of S−1 and S1 susceptibles decrease with the baseline
influence rate wo whereas S0 increases with wo. Indeed, the mutual influences of S0 and Si

individuals (i = ±1) balance and cancel each other, whereas interactions between individuals
on the opposite sides of the attitude spectrum lead to positive flows into S0. As a result,
if the recruitment rates are equal across susceptible states (ηi = η/3), then more than a
third of the long-run population will have a moderate prophylactic attitude in the absence
of disease. The decay of the basic reproduction number R0 as a function of the baseline
influence rate wo is another consequence of this stationary dynamics.

Remark 3. The basic reproduction number R0 accounts for the implementation of a disease
surveillance mechanism, if any (i.e. the detection rates π, ρa and ρs can be positive even
in a disease-free context). In an emerging disease context (e.g. right before the report
in late December 2020 of the first confirmed COVID-19 case), some symptoms might be
unknown, and test kits might not be yet developed or available. In the special case where
π ≈ ρa ≈ ρs ≈ 0, the basic reproduction number is

Ro =
θ

(θ+ µ)(σ+ µ)

[
βp +

(1 − τ )σ

γa + µ
βa +

τσ

γs + δs + µ
βs

]
µ

η

∑
i∈P

Sc
i ς

1−i
o (17)

which satisfies Ro ≥ R0(π, ρa, ρs,wo) ≥ R0(1, ρa, ρs,wo) ceteris paribus.

The first measures implemented after the epidemic outbreak of a contagious disease
is the identification and isolation of infectious individuals. The detection/isolation effort
(targeting and testing of most susceptible groups, contact tracing, voluntary mass testing
campaign, systematic testing) is critical to the control of the propagation of the disease in
the absence of vaccination. Such measures can sufficiently contain an epidemic under some
conditions detailed in the following corollary of Proposition 1.

Corollary 1 (Critical Detection Rates). Suppose that R0(1, ρa, ρs,wo) < 1.
If R0(0, ρa, ρs,wo) > 1, then the critical (minimal) early detection probability required

to sufficiently lower R0 and ensure disease eradication in the long run is

π∗(ρa, ρs,wo) = 1 −

(θ+µ)(σ+µ)η

θµ
(∑

i∈P Sc
i ς1−i

o

) − βp

σ
[

(1−τ )βa

ρa+γa+µ + τβs
ρs+γs+δs+µ

] (18a)

which decreases with the baseline influence rate wo, and the detection rates ρa of asymp-
tomatic infectious and ρs of symptomatic infectious. If R0(π, 1, ρs,wo)<1<R0(π, 0, ρs,wo),
then the critical (minimal) detection rate of asymptomatic infectious is

ρ∗
a(π, ρs,wo) =

 (1 − π)(1 − τ )σβa

(θ+µ)(σ+µ)η

θµ
(∑

i∈P Sc
i ς1−i

o

) − βp − (1−π)τσβs

ρs+γs+δs+µ

 − γa − µ (18b)

which decreases with π, ρs, and wo. Likewise, if R0(π, ρa, 1,wo)<1<R0(π, ρa, 0,wo), then
the critical (minimal) detection rate of asymptomatic infectious is

ρ∗
s(π, ρs,wo) =

 (1 − π)τσβs

(θ+µ)(σ+µ)η

θµ
(∑

i∈P Sc
i ς1−i

o

) − βp − (1−π)(1−τ )σβa

ρa+γa+µ

 − γs − δs − µ (18c)

which decreases with π, ρa, and wo.
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It appears that if R0 < 1 in a hypothetical scenario where all infectious individuals are
isolated at the presymptomatic stage, then mass testing and quarantining can be sufficient
to ensure that an epidemic is unsustainable in the target population. If R0(1, ρa, ρs,wo) > 1,
then it is not possible to contain the epidemic of the target contagious disease using isolation
measures only. It remains, however, likely to break the transmission dynamics by reducing
exposition to the disease, i.e. the rate of sufficient contact between potentially infectious
and susceptible individuals (for COVID-19, this included, e.g. social distancing, face
mask wearing, school closing, curfew, ban of gatherings, lockdown). The introduction of
vaccination is the ultimate solution to reduce transmissions while alleviating the social and
economic drawbacks of the first containment measures.

3.2. Disease–free Equilibrium and Reproduction Numbers in a Vaccination Context
We find the disease-free equilibrium for a population described by the UVEIQR-Opinion

model (14), and compute the related control reproduction number. We further discuss the
critical vaccination rate to ensure disease eradication in the long-run.

Proposition 2 (Disease–free Equilibrium & Reproduction Number). The UVEIQR-Opinion
model (14) admits a unique disease-free equilibrium given for wo > 0 by

Xc =
(
(Sc)⊤, 0, 0, 0, 0, 0, 0

)⊤
, (19a)

where Sc =
(
U c

−1u,U c
0u,U c

1u,U c
−1v,U c

0v,U c
1v,V c

−1,V c
0 ,V c

1
)⊤ is given by

Sc = M−1η with (19b)

η = (η−1u, η0u, η1u, η−1uv, η0uv, η1uv, η−1v, η0v, η1v)
⊤,

M =
wo

N c

 Mu −U c
uI3 0

−(U c
v + V c)I3 Muv −Nc

wo
αI3

0 −Nc

wo
υI3 Mv

 + µI9, (19c)

U c
u =

ηηuu(α+ µ)

woµ(ηv + υU c
v ) + ηµ(α+ µ)

, (19d)

U c
v =


woC

(α+µ)η+woηv
if υ = 0

√
B2+4AC−B

2A if υ ̸= 0
, (19e)

V c =
ηv + υU c

v

α+ µ
, (19f)

Mu = M0 + (U c
v + V c)I3,

Muv = M0 +

(
U c

u +
N c

wo
υ

)
I3,

Mv = M0 +
N c

wo
αI3,

M0 =

 Sc
0 + Sc

1 −Sc
−1 0

−(Sc
0 + Sc

1) Sc
−1 + Sc

1 −(Sc
−1 + Sc

0)
0 −Sc

1 Sc
−1 + Sc

0

,

where we have set A = υ
(

1 + υ
α+µ

)
, B = ηu

(
α+υ+µ

wo
− υ

µ

)
+ ηv

(
1 + α+υ+µ

wo
+ υ(µ−α)

µ(α+µ)

)
and C = ηηuv

α+µ
woµ + ηv

µ

(
ηu + α

α+µηv +
α

wo
η
)

, ηuu =
∑

i ∈P ηiu, ηu =
∑

i ∈P (ηiu + ηiuv),
ηv =

∑
i ∈P ηiv, and In denotes the n × n identity matrix. In the absence of opinion
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dynamics (wo = 0), we have U c
iu = ηiu

µ , U c
iv = ηiuv

µ , and V c
i = ηiv

µ for i ∈ P. Moreover, for
a population described by System (14), the control reproduction number is given by

Rc(υ,κ,α,wo) =
∑
i∈P

∑
j=p,a,s

Rcij where (20a)

Rcij =
θ

(θ+ µ)(σ+ µ)

[U c
i + (1 − κ)V c

i ]ς
1−i
o

N c
βjmj

is the contribution of Si susceptibles and Ij infectious to Rc, with U c
i = U c

iu + U c
iv. The

control reproduction number Rc decreases with the vaccination rate υ and the baseline
influence rate wo, and satisfies

(1 − κ)R0 ≤ Rc(υ,κ,α,wo) ≤ R0. (20b)

The time-varying effective reproduction number is given by

Rct(υ,κ,α,wo) =
∑
i∈P

∑
j=p,a,s

Rcijt where (20c)

Rcijt =
θ

(θ+ µ)(σ+ µ)

[Ui(t) + (1 − κ)Vi(t)]ς1−i
o

N(t) −Q(t)
βjmj .

Remark 4. The expression of Sc in matrix notation given by Equation (19b) is developed
in Appendix D where a formula is provided for each of the nine elements of Sc.

It appears from Equation (20a) that, as expected, Rc decreases with both vaccination
rate (υ) and average vaccine efficacy (κ) but increases with the immunity lost rate (α).
Inequality (20b) recognizes that vaccine efficacy is an important parameter in disease control:
Rc cannot fall under (1 − κ)R0 even for a large vaccination rate υ. On setting

κ∗ =
R0 − 1

R0
(21)

for R0 > 1, a necessary condition for disease eradication is that the average vaccine efficacy
must satisfy κ > κ∗ (ensuring (1 − κ)R0 < 1). The following corollary gives the critical
vaccination rate to eradicate the disease for a fixed average vaccine efficacy κ.

Corollary 2 (Critical Vaccination Rate). If R0 > 1 and κ > κ∗, then the critical (minimal)
vaccination rate required to sufficiently lower Rc and ensure disease eradication in the
long-run is

υ∗(κ,α) = (α+ µ)(R0 − 1) − κpvµR0
1 − (1 − κ)R0

(22a)

which increases with the immunity lost rate α decreases with κ and satisfies

υ∗ > (α+ µ)(R0 − 1) − pvµR0. (22b)

3.3. Persistence of the Disease
If Rc > 1, then any introduction of infectious individuals has the potential to kick off

and maintain an epidemic outbreak, as per the next proposition.

Proposition 3 (Persistence of the Disease). For the UVEIQR-Opinion model (14).
If Rc > 1, then the disease persists uniformly, i.e. there exists a positive real con-
stant ϱ independent of the initial data, such that for any disease-dependent solution
X = (U−1u,U0u,U1u,U−1v,U0v,U1v,V−1,V0,V1,E, Ip, Ia, Is,Q,R)⊤, we have:

lim
t→∞

x(t) ≥ ϱ for x ∈ {U−1u,U0u,U1u,U−1v,U0v,U1v,E, Ip, Ia, Is,Q,R}, (23a)
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lim
t→∞

Vi(t) ≥ ϱ when ηv > 0 or υ > 0, and (23b)

lim
t→∞

Vi(t) = 0 when ηv = υ = 0. (23c)

4. Limits and Perspectives
Because of the relatively large number of possible states in the models introduced for

disease-opinion dynamics, some simple assumptions were made in the model construction to
reduce the number of model parameters on the one hand and primarily to obtain a minimum
of analytical closed form results on the other hand. Ahead is the use of a unique class
of exposed individuals, irrespective of the vaccination status of the individuals before the
exposition. Although this assumption may hold for some diseases, it is not realistic in the
ongoing COVID-19 pandemic context since the effects of the currently available COVID-19
vaccines are beyond a mere reduction in the force of infection. Indeed, the vaccines also
reduce the risk of severe forms of the disease (requiring respiratory assistance), transmission
from vaccinated infected, risk of long-term sequels, and disease-related mortality [64,65] so
that the paths from exposition to recovery should be different for vaccinated individuals as
compared to non-vaccinated individuals. In addition, no age structure is included in the
proposed models, although COVID-19 transmission and mortality rates and vaccination
scenarios are highly age-dependent [66–69]. Another source of complexity we did not account
for is the co-existence of many variants of SARS-CoV-2 with different transmission and
mortality rates in a target human population [70,71].

Many strong assumptions were also made regarding opinion dynamics. The strongest
one is likely that opinion dynamics only occur in the susceptible population. As in Tyson
et al. [22], this assumption greatly simplifies model equations. Though, all individuals
in disease-dependent states, including the non-mixing population Q (which can interact
with susceptibles by, e.g. phone, social media, ...), can obviously influence the opinions
of susceptibles. For instance, the prophylactic opinions of physically isolated (Q) and
recovered (R) individuals can change in response to being aware of their current or past
infectious state. These opinion dynamics can then contribute to the overall influence of
a given opinion i holders on susceptibles with a different opinion j ̸= i. Clearly, as for
susceptibles, disease-dependent classes should also be differentiated according to opinions,
and their interactions with other classes allowed to influence, to some extent, the attitude
of susceptible individuals. Another strong assumption is considering only one prophylactic
attitude level for each prophylactic opinion. This hypothesis supposes that all individuals
with a given opinion have the same prophylactic attitude level (same degree of opinion) and
thereby hides interactions between like-minded individuals. Consequently, the assumption
neglects amplification of opinion, a phenomenon which can substantially impact opinion
dynamics [22].

Another important assumption is that all individuals have the same baseline influence
rate wo in disease-free conditions, irrespective of prophylactic opinion. Instead of Equa-
tion (4b), the basic influence weights wi can have, for x ∈ [0, 1], the more general form

wi(x) =



wo

[
1 +w∞

x

(k̃+x)

]
if i = −1

wo

[
ϕ+ (w∞−ϕ)

2
x

(k̃+x)

]
if i = 0

wo

[
1 − x

(k̃+x)

]
if i = 1,

(24a)

where ϕ ∈ (0, 1] is a baseline influence rate reduction factor for a moderate opinion. In
Equation (24a), the parameter ϕ allows to reduce the influence rate of moderate prophylactic
opinion holders (i = 0) relative to extreme opinion holders (i = ±1). The model presented
in Section 2 corresponds to the special case ϕ = 1. In this modified influence process based
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on Equations (24a) and (24b), Equation (10e) defining influence rates in a vaccination-
dependent context becomes

ω̃i(t) = woϕ
1−|i| V (t)

N(t)
+

[
1 − V (t)

N(t)

]
wi

(
P̃ (t)

)
. (24b)

The resulting extended SEIQR-Opinion model admits, for wo > 0 and ϕ < 1, disease-free
equilibriums of the form Xc =

(
Sc

−1,Sc
0,Sc

1, 0, 0, 0, 0, 0, 0
)⊤ where

Sc
−1 =

η−1
µ

− 1
2

[
N c +

η

wo
−

√
∆ − (1 − ϕ)Sc

0

[
1 + wo(η1 − η−1)

µ[η−wo(1 − ϕ)Sc
0]

]
− η0
µ

]
, (25a)

Sc
0 =

1
1 − ϕ

[
η

wo
− Proot(a)

]
, (25b)

Sc
1 =

η1
µ

− 1
2

[
N c +

η

wo
−

√
∆ − (1 − ϕ)Sc

0

[
1 − wo(η1 − η−1)

µ[η−wo(1 − ϕ)Sc
0]

]
− η0
µ

]
, (25c)

where ∆ = 2N c
(

η−1+η1
wo

)
+

[
η

wo
− (1 − ϕ)Sc

0

]2
+

[
η−1−η1

µ−(1−ϕ)woSc
0/Nc

]2
, Proot(·) returns the

positive roots of the polynomial defined for x as
∑5

k=1 akx
k−1, with ak the kth element of

the vector a, a1 = (1 −ϕ)2
(

Nc

wo

)2 (η1−η−1)2

3−2ϕ , a2 = 0, a4 = 2(2−ϕ)
3−2ϕ

[
(1 − ϕ)N c − η

wo

]
, a5 = 1,

and a3 = 1
3−2ϕ

[[
(1 − ϕ)N c − η

wo

]2
− 2(1 − ϕ)2N c

(
η−1+η1

wo

)]
. For ϕ < 1, Remark 2 does

not hold in general. Indeed, it turns out that the extended model can admit up to three
DFEs, so that, as in the SIR-Opinion model of Tyson et al. [22], the basic reproduction
number depends on the initial distribution of the population along the attitude spectrum.
Nevertheless, in the special case η−1 = η1 (i.e. when the recruitment rates of individuals
holding the two extreme opinions have the same shares in the total recruitment rate η) with
opinion dynamics (wo > 0), the extended SEIQR-Opinion model has a unique DFE where
we have Sc

−1 = Sc
1 = 1

2 (N
c − Sc

0) and Equation (25b) is simplified to

Sc
0 =

1
3 − 2ϕ

[
(2 − ϕ)N c +

η

wo
−

√
D0

]
(25d)

with D0 = [(2 − ϕ)N c + η/wo]
2 − (3 − 2ϕ)N c(N c + 2η0/wo). Here, the number Sc

0 of
moderate opinion holders at the DFE increases not only with the baseline influence rate
wo (as in Remark 2) but also with the influence rate reduction factor ϕ. Hence the basic
reproduction number R0 decreases with both wo and ϕ. The study of the extended model
can thus uncover interesting changes in opinion and disease dynamics.
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Appendix A. The Disease Dynamics Models
Appendix A.1. The Extended SEIQR Model

The models considered for disease dynamics distinguish two different states during
the pathogen incubation period when exposed individuals do not develop any COVID-19
symptoms: the simple Exposed (E) state for non-infectious individuals and the presymp-
tomatic state (Ip) for infectious individuals. The simple exposition period lasts 1/θ (up to
14 days [46], but generally short, i.e. about six days) and is followed by the presymptomatic
period (which lasts 1/σ) during which incubating individuals become infectious but remain
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without symptom [45–50]. Contacts between susceptibles and presymptomatic infectious
(Ip) can be sufficient for transmission (see e.g. [43] and [44]). When control measures such
as contact tracing and systematic tests on target groups are implemented, some presymp-
tomatic infectious are detected with probability π and “quarantined” (i.e. isolated) at
home, hospitals or dedicated places. The remaining (undetected) presymptomatic infectious
individuals evolve into two groups based on the development or not of COVID-19 symptoms:
100τ% symptomatic infectious (Is) and 100(1 − τ )% asymptomatic infectious (Ia). Some
symptomatic infectious individuals self-isolate or are detected and enter the class Q of
quarantined at the rate ρs. Again, contact tracing and systematic tests on target groups
can lead to the detection and isolation of some asymptomatic infectious individuals at the
rate ρa. Symptomatic infectious (Is) and isolated individuals (Q) die of COVID-19 at
the rates δs and δq respectively. The alive asymptomatic, symptomatic, and quarantined
infectious individuals finally recover from COVID-19, at the rates γa, γs and γq respectively,
and form the class of recovered individuals (R) who acquire a temporary immunity to
SARS-CoV-2. Recovered individuals lose their immunity at the rate ϵo and become again
susceptible to the pathogen. The flow diagram of the SEIQR model is depicted in Figure
A1. The total population size N(t) at time t ≥ 0 is given by

N(t) = S(t) +E(t) + Ip(t) + Ia(t) + Is(t) +Q(t) +R(t). (A1)

Figure A1. Flow-chart of a SEIQR model showing the flow of humans between different
compartments. The susceptible population is denoted by S, and E, Ip, Ia, Is, Q, and R denote the exposed, the
presymptomatic, the asymptomatic, the symptomatic, the quarantined infectious, and the recovered populations,
respectively. The parameters of the model are described in Table 1.

The SEIQR model is described at time t by the following system of differential equations:

Ṡ(t) = η− λo(t)S(t) − µS(t) + ϵoR(t), (A2a)
Ė(t) = λo(t)S(t) − (θ+ µ)E(t), (A2b)
İp(t) = θE(t) − (σ+ µ)Ip(t), (A2c)
İa(t) = (1 − τ )(1 − π)σIp(t) − (ρa + γa + µ)Ia(t), (A2d)
İs(t) = τ (1 − π)σIp(t) − (ρs + γs + δs + µ)Is(t), (A2e)
Q̇(t) = πσIp(t) + ρaIa(t) + ρsIs(t) − (γq + δq + µ)Q(t), (A2f)
Ṙ(t) = γaIa(t) + γsIs(t) + γqQ(t) − (ϵo + µ)R(t), (A2g)
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with the nonnegative initial conditions S(0) = S0, E(0) = E0, Ip(0) = I0p, Ia(0) = I0a,
Is(0) = I0s, Q(0) = Q0, and R(0) = R0 where (S0,E0, I0p, I0a, I0s,Q0,R0)

⊤ ∈ [0, ∞)7.
In System (A2), λo(t) is the force of infection, and the constant rate parameters of the
model are described in Table 1.

Appendix A.2. The UVEIQR Model
Since many COVID-19 vaccines are currently distributed at various rates worldwide, we

allow the disease dynamics model to account for vaccine-induced immunity. For simplicity,
we do not distinguish age groups, although COVID-19 vaccination is widely implemented
with different strategies and at different rates for children and adults [72–74]. Vaccines are
primarily designed to prevent infectious diseases through the immunisation of vaccinated
individuals [75,76], and thus increase the heterogeneity of the susceptible population S.
Specifically, susceptible individuals are distinguished into an unvaccinated (and completely
susceptible) population (U), which gets vaccinated at the rate υ, and a vaccinated (with
active vaccine-induced partial immunity) susceptible population (V ), which loses vaccine-
induced immunity at the rate α (the so-called re-susceptibility probability [77,78]). The
timely number of net immigration (and new births) which enters the class of susceptibles
is accordingly distinguished into unvaccinated (ηu) and vaccinated individuals (ηv) such
that η = ηu + ηv. The flow diagram of the UVEIQR model is shown in Figure A2 and the
disease dynamic is described by the following system of differential equations:

Figure A2. Flow-chart of a UVEIQR model showing the flow of humans between different
compartments. U is the unvaccinated (completely susceptible) population, V is the healthy vaccinated but
partially susceptible population, E, Ip, Ia, Is, Q and R denote respectively the exposed, the presymptomatic
infectious, the asymptomatic infectious, the symptomatic infectious, the quarantined, and the recovered populations.
The parameters of the model are described in Table 1.

U̇(t) = ηu − υU(t) + αV (t) − λo(t)U(t) − µU(t) + ϵoR(t), (A3a)
V̇ (t) = ηv + υU(t) − αV (t) − (1 − κ)λo(t)V (t) − µV (t), (A3b)
Ė(t) = λo(t)U(t) + (1 − κ)λo(t)V (t) − (θ+ µ)E(t), (A3c)
İp(t) = θE(t) − (σ+ µ)Ip(t), (A3d)
İa(t) = (1 − τ )(1 − π)σIp(t) − (ρa + γa + µ)Ia(t), (A3e)
İs(t) = τ (1 − π)σIp(t) − (ρs + γs + δs + µ)Is(t), (A3f)
Q̇(t) = πσIp(t) + ρaIa(t) + ρsIs(t) − (γq + δq + µ)Q(t), (A3g)
Ṙ(t) = γaIa(t) + γsIs(t) + γqQ(t) − (ϵo + µ)R(t), (A3h)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 December 2022                   doi:10.20944/preprints202212.0067.v1

https://doi.org/10.20944/preprints202212.0067.v1


19 of 36

with the nonnegative initial conditions U(0) = U0, V (0) = V0, E(0) = E0, Ij(0) = I0j ,
Q(0) = Q0, and R(0) = R0 where (U0,V0,E0,Q0,R0)

⊤ ∈ [0, ∞)5 and I0j ≥ 0 for any
j ∈ {p, a, s}. In System (A3), λo(t) is the force of infection in the completely susceptible
population as given by Equation (2), ηu + ηv = η, and the constant rate parameters are as
described in Table 1. The total population size N(t) is given at time t by

N(t) = U(t) + V (t) +E(t) + Ip(t) + Ia(t) + Is(t) +Q(t) +R(t).

Note that the UVEIQR model (A3) includes the SEIQR model (A2) as a special case when
V0 = υ = ηv = 0 so that V (t) = 0 and S(t) = U(t) for any t ≥ 0. Also, note that for
the general UVEIQR model, the force of infection is reduced by a factor (1 − κ) in the
vaccinated population.

Appendix A.3. Mathematical Properties
Since the SEIQR model (A2) is nested into the UVEIQR model (A3), we restrict

attention to the latter, and then discuss the results in the special case V0 = υ = ηv = 0.
The proofs of the results are given in Appendix C.1.

•Non-negativity and Boundedness

Lemma A1 (Non-negativity and Boundedness). Under the nonnegative initial conditions
U(0) ≥ 0, V (0) ≥ 0, E(0) ≥ 0, Ip(0) ≥ 0, Ia(0) ≥ 0, Is(0) ≥ 0, Q(0) ≥ 0 and R(0) ≥ 0,
all solutions of System (A3) remain nonnegative and are bounded for all t > 0.

•Disease-Free Equilibrium and Reproduction Number

Proposition A1 (Disease-Free Equilibrium & Reproduction Number). Set pv = ηv/η.
The UVEIQR model (A3) admits the unique disease-free equilibrium

Xc = (U c,V c, 0, 0, 0, 0, 0, 0)⊤ where (A4a)

U c =
ηα+ ηuµ

µ(α+ υ+ µ)
and V c =

ηυ+ ηvµ

µ(α+ υ+ µ)
, (A4b)

with the total population size at the carrying capacity N c = U c + V c = η/µ. Moreover, for
a population described by System (A3), the basic reproduction number in a vaccination-free
context (i.e. V0 = ηv = υ = 0) is given by

R0 =
θ

(θ+ µ)(σ+ µ)

[
βp +

(1 − τ )(1 − π)σ

ρa + γa + µ
βa +

τ (1 − π)σ

ρs + γs + δs + µ
βs

]
, (A5a)

and once vaccination is introduced, the control reproduction number is given by

Rc(υ,κ,α) = R0

[
1 − κ(υ+ pvµ)

α+ υ+ µ

]
(A5b)

and satisfies
(1 − κ)R0 ≤ Rc(υ,κ,α) ≤ R0. (A5c)

The time-varying effective reproduction number is given by

R(t, υ,κ,α) = R0

[
U(t) + (1 − κ)V (t)

N(t) −Q(t)

]
. (A5d)

Note that the basic reproduction number R0 (A5) accounts for the implementation
of a disease surveillance mechanism, if any (i.e. the detection rates π, ρa and ρs can be
positive even in a disease-free context). In an emerging disease context (e.g. right before
the report in late December 2020 of the first confirmed COVID-19 case), some symptoms
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might be unknown, and test kits might not be yet developed or available. In the special
case where π ≈ ρa ≈ ρs ≈ 0, the basic reproduction number is

Ro =
θ

(θ+ µ)(σ+ µ)

[
βp +

(1 − τ )σ

γa + µ
βa +

τσ

γs + δs + µ
βs

]
(A6)

which satisfies R0 ≤ Ro ceteris paribus. It appears from Equation (A5b) that, as expected,
Rc decreases with both vaccination rate (υ) and average vaccine efficacy (κ), but increases
with the immunity lost rate (α). The inequality (A5c) recognizes that vaccine efficacy is an
important parameter in disease control: Rc cannot fall under (1 − κ)R0 even for a large
vaccination rate υ. On setting

κ∗ =
R0 − 1

R0
(A7)

for R0 > 1, a necessary condition for disease eradication is that the average vaccine efficacy
must satisfy κ > κ∗ (ensuring (1 − κ)R0 < 1). The following corollary gives the critical
vaccination rate to eradicate the disease for a fixed average vaccine efficacy κ.

Corollary A1 (Critical Vaccination Rate). If R0 > 1 and κ > κ∗, then the critical
(minimal) vaccination rate required to sufficiently lower Rc and ensure disease eradication
in the long run is

υ∗(κ,α) = (α+ µ)(R0 − 1) − κpvµR0
1 − (1 − κ)R0

(A8a)

which increases with the immunity lost rate α, decreases with κ, and satisfies

υ∗ > (α+ µ)(R0 − 1) − pvµR0. (A8b)

Note that υ∗ also decreases with pv, so that a positive net immigration of vaccinated
individuals lowers the minimal required vaccination rate. The following lemma establishes
local asymptotic stability conditions for the disease-free equilibrium point and is further
used to find global asymptotic stability conditions for the disease-free steady-state.

Lemma A2 (Local Asymptotic Stability of the Disease-Free Equilibrium). The disease-free
equilibrium Xc of the UVEIQR model (A3) is locally asymptotically stable if Rc ≤ 1, and
unstable if Rc > 1.

Proposition A2 (Global Asymptotic Stability of the Disease-Free Equilibrium). The
disease-free equilibrium Xc of the UVEIQR model (A3) is globally asymptotically stable, i.e.
limt→∞ X(t) = Xc for any solution X = (U ,V ,E, Ip, Ia, Is,Q,R)⊤, provided that Rc ≤ 1.

By Proposition A2, ensuring Rc < 1 by for instance reducing contacts, susceptibility
and transmissibility, or vaccinating a large part of the population, garrantees that the disease
will die out shortly. If however Rc > 1, then any introduction of infectious individuals has
the potential to kick off and maintain an epidemic outbreak, as per the next lemma.

•Persistence of the Disease and Endemic Equilibrium

Lemma A3 (Persistence of the Disease). Let us consider the UVEIQR model (A3) Let
U = ηu/(υ + µ+ max{βp,βa,βs}). If Rc > 1, then the disease persists uniformly, i.e.
there exists a positive real constant ϱ ∈ (0,U) independent of the initial data, such that any
disease-dependent solution X = (U ,V ,E, Ip, Ia, Is,Q,R)⊤ satisfies:

lim
t→∞

x(t) ≥ ϱ for x ∈ {U ,E, Ip, Ia, Is,Q,R}, (A9a)

lim
t→∞

V (t) ≥ ϱ when ηv > 0 or υ > 0, and (A9b)

lim
t→∞

V (t) = 0 when ηv = υ = 0. (A9c)
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From Equation (A9a), it appears that in both vaccination-free (i.e. ηv = υ = 0) and
vaccination-dependent contexts, the susceptible population size S(t) = U(t) + V (t) satisfies
limt→∞ S(t) ≥ ϱ for any Rc > 0 (since U < N c). This is ensured by the positive rates of
net recruitment (ηu > 0), recovery (γa, γs, γq > 0), and immunity lost (α, ϵo > 0). The
persistence of the disease when Rc > 1 implies positive disease endemism whose equilibrium
is next characterized.

Proposition A3 (Endemic Equilibrium). If Rc ≤ 1, then the UVEIQR model (A3) has
no endemic equilibrium. When Rc > 1, the model admits the unique endemic equilibrium

X⋆ =
(
U⋆,V ⋆,E⋆, I⋆

p , I⋆
a , I⋆

s ,Q⋆,R⋆
)⊤ with (A10a)

U⋆ =
[α+ µ+ (1 − κ)λ⋆

o](ηu + ϵoθdpσdrE
⋆) + αηv

[α+ µ+ (1 − κ)λ⋆
o](υ+ µ+ λ⋆

o) − αυ
, (A10b)

V ⋆ =
ηv + υU⋆

α+ µ+ (1 − κ)λ⋆
o

, (A10c)

E⋆ =
S̄cN c

Rc(θ+ µ) + S̄cθdmλ⋆
o
λ⋆

o, (A10d)

I⋆
p = θdpE

⋆, (A10e)
I⋆

a = θdpσdaE
⋆, (A10f)

I⋆
s = θdpσdsE

⋆, (A10g)
Q⋆ = θdpσdqE

⋆, (A10h)
R⋆ = θdpσdrE

⋆, (A10i)

where we have set dp = 1
σ+µ , da = (1−τ )(1−π)

ρa+γa+µ , ds = τ (1−π)
ρs+γs+δs+µ , dq = π+daρa+dsρs

γq+δq+µ ,

dr =
daγa+dsγs+dqγq

ϵo+µ , dm = dn + dpσdq, dn =
dpσ

µ (dsδs + dqδq), and S̄c = 1 − κ(υ+pvµ)
α+υ+µ ;

the endemic force of infection λ⋆
o is given by

λ⋆
o =

1
2

(√
K2

1 + 4K0 −K1

)
where (A10j)

K0 =
µ(α+ υ+ µ)(θ+ µ)(Rc − 1)

(1 − κ)[(θ+ µ) − θ(dmµ+ dpσdrϵo)]
, and

K1 =
(θ+ µ)[guv + (1 − κ)µ] − θ(dmµ+ dpσdrϵo)guv − (1 − κ)θdpµβσ + κpvθdmµ

2

(1 − κ)[(θ+ µ) − θ(dmµ+ dpσdrϵo)]

with guv = α+ (1 − κ)υ+ µ, and βσ = βp + σdaβa + σdsβs; and the total population size is

N⋆ = N c − θdnE
⋆. (A10k)

The following results establish stability for the endemic equilibrium X⋆.

Lemma A4 (Local Asymptotic Stability of the Endemic Equilibrium). When it exists
(Rc > 1), the endemic equilibrium X⋆ of the UVEIQR model (A3) is locally asymptotically
stable.

Proposition A4 (Global Asymptotic Stability of the Endemic Equilibrium). When it exists,
the endemic equilibrium X⋆ of the UVEIQR model (A3) is globally asymptotically stable,
i.e. limt→∞ X(t) = X⋆ for any disease-dependent solution X = (U ,V ,E, Ip, Ia, Is,Q,R)⊤.

Note from Proposition A4 and Equation (A10k) that the persistence of disease (Rc > 1)
and the positif disease related death rates (δs, δq > 0) reduce the long run population size
below the carrying capacity N c.
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Appendix B. Overview of Fixed-order Saturating Influence Functions
Appendix B.1. Vaccination–free Influence Functions
Plot the 3 influences for w∞ = 1, 2, 3.

Appendix B.2. Influence functions accounting for vaccination

Build 3D plots of influences in terms of P̃ and V to support the claims.

Compare the concavity or convexity of different types of influence functions.

Appendix C. Proofs of Lemmas and Propositions
Appendix C.1. Proofs of Lemmas and Propositions Related to Disease Dynamics Only
Proof of Lemma A1. From Equation (A3a), we have U̇(t) ≥ −(υ + β̃ + µ)U(t) where
β̃ = max{βp,βa,βs} (note from Equation (2) that β̃ is a majorant of λo(t)). This leads to:

U(t) ≥ U0e
−(υ+β̃+µ)t ≥ 0.

The same argument gives V (t) ≥ 0, E(t) ≥ 0, Ip(t) ≥ 0, Ia(t) ≥ 0, Is(t) ≥ 0, Q(t) ≥ 0 and
R(t) ≥ 0 and proves nonnegativity. Next, let N0 = N(0). Then, by the nonnegative initial
conditions and N0 = U0 + V0 + E0 + I0p + I0a + I0s +Q0 +R0, we have N0 ≥ 0. From
Equation (1) and the System (A3), we have

Ṅ(t) = η− µN(t) − δsIs(t) − δqQ(t).

The last equation implies that Ṅ(t) ≤ η− µN(t). Integrating the later yields

N(t) ≤ N c + (N0 −N c)e−µt

with N c = η/µ. It appears that as t increases, the upper bound of N(t) increases (when
N0 ≤ N c) or decreases (when N0 > N c) to eventually approach the carrying capacity N c

as t → ∞. Thus N(t) ≤ max{N0,N c}. Hence we overall have

0 ≤ N(t) ≤ max{N0,N c}.

The nonnegativity of U(t), V (t), E(t), Ip(t), Ia(t), Is(t), Q(t) and R(t) then implies that
these quantities are all bounded, since their sum N(t) is bounded.

Proof of Proposition A1. Adding the disease-free restriction E = Ip = Ia = Is = Q = 0
to System (A3) implies that λo(t) = 0. Setting all the derivatives to zero then gives
Ec = Ic

p = Ic
a = Ic

s = Qc = Rc = 0 and we are left with the system{
ηu − (υ+ µ)U c + αV c = 0
ηv + υU c − (α+ µ)V c = 0

which is solved for U c and V c through substitution, and the disease-free equilibrium (d.f.e.)
in Equation (A4a) is obtained using η = ηu + ηv. Next, let I the vector of the compartments
involved in the production of new infections or receiving new infections: I = (E, Ip, Ia, Is).
The corresponding subset of System (A3) has the form İ = F(I) −W(I) where

F(I)= S̄


βpIp + βaIa + βsIs

0
0
0

 and W(I)=


(θ+ µ)E

−θE + (σ+ µ)Ip

−(1 − τ )(1 − π)σIp + (ρa + γa + µ)Ia

−τ (1 − π)σIp + (ρs + γs + δs + µ)Is
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on setting S̄ = U+(1−κ)V
N−Q . Then, letting ge = θ + µ, gp = σ + µ, ga = ρa + γa + µ,

gs = ρs + γs + δs + µ, fa = (1 − τ )(1 − π)σ, and fs = τ (1 − π)σ, the Jacobian matrices of
F and W evaluated at the d.f.e. are respectively given by

Fc = S̄c


0 βp βa βs

0 0 0 0
0 0 0 0
0 0 0 0

 and W =


ge 0 0 0
−θ gp 0 0
0 −fa ga 0
0 −fs 0 gs

 with S̄c =
U c + (1 − κ)V c

N c −Qc
.

Following [63], the basic reproduction number is the spectral radius (largest eigenvalue) of
the next-generation matrix FcW−1:

sρ

(
FcW−1)

=
θ

gegp

[
βp +

fa

ga
βa +

fs

gs
βs

]
S̄c.

Under the restriction V0 = ηv = υ = 0, we have V c = 0 and U c = N c. We
thus have in this case S̄c = 1 (since Qc = 0), and Equation (A5a) follows. Using the
Equations in (A4b) gives S̄c = ηα+ηuµ+(1−κ)(ηυ+ηvµ)

η(α+υ+µ)
and Equation (A5b) follows. The

expression (A5c) results from noting that Rc(υ,κ,α) decreases with κ and evaluating the
limit Rc(υ, 0,α) to get an upper bound, and noting that Rc also decreases with υ since
∂Rc(υ,κ,α)

∂υ = −R0
κ(α+µ(1−pv))

α+υ+µ < 0, and evaluating the limit Rc(∞,κ,α) to obtain a lower
bound. Finally, evaluating the Jacobian matrices of F and W at general values of U , V , Q,
and N instead of the d.f.e. (i.e. replacing S̄c by S̄), results in Equation (A5d).

Proof of Corollary A1. We obtain υ∗(κ,α) by setting the expression (A5b) of Rc to one,
and solving for υ. It is obvious that υ∗ increases with α. From Equation (A8a), we get

∂υ∗(κ,α)
∂κ

= − [α+ µ(1 − pv)](R0 − 1)R0

[1 − (1 − κ)R0]
2 < 0,

hence υ∗(κ,α) decreases with κ ∈ (0, 1), and is lower bounded by υ∗(1,α).

Proof of Lemma A2. A necessary and sufficient condition for an equilibrium to have
local asymptotic stability (l.a.s.) is that all eigenvalues of the Jacobian matrix have negative
real parts [79]. The Jacobian matrix of the model (A3) at the d.f.e. has the block structure

Jc =

JS Jc
SI JSQ

0 Jc
I 0

0 JQI JQ

 where JS =

(
−(υ+ µ) α

υ −(α+ µ)

)
,

Jc
SI = −1

Nc

(
0 βpU

c βaU
c βsU

c

0 (1 − κ)βpV
c (1 − κ)βaV

c (1 − κ)βsV
c

)
, JSQ =

(
0 ϵo
0 0

)
, Jc

I = Fc − W ,

Jc
QI =

(
0 πσ ρa ρs

0 0 γa γs

)
, and JQ =

(
−(γq + δq + µ) 0

γq −(ϵo + µ)

)
. From this structure,

the eigenvalues of Jc are those of JS , Jc
I and JQ (using Schur complements). We get the

eigenvalues d1 = −µ and d2 = −(υ + α + µ) from JS , and d3 = −(γq + δq + µ) and
d4 = −(ϵo + µ) from JQ. Since dk < 0 for k = 1, 2, 3, 4, we can next restrict attention to Jc

I
whose four eigenvalues must have negative real parts to ensure l.a.s.:

Jc
I =


−ge S̄cβp S̄cβa S̄cβs

θ −gp 0 0
0 fa −ga 0
0 fs 0 −gs

.

The characteristic polynomial Pc of Jc
I is

Pc(d) = d4 +K3d
3 +K2d

2 +K1d+ gegpgags(1 − Rc),
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where K3 = ge + gp + ga + gs, K2 = ge(gp + ga + gs) + gp(ga + gs) + gags − θS̄cβp, and
K1 = gegp(ga + gs) + gags(ge + gp) − θS̄c[(ga + gs)βp + faβa + fsβs]. The Routh-Hurwitz
stability conditions (see Equation (A.22) in May [80, page 196]) corresponding to this
polynomial are:

K3 > 0, K1 > 0, and Kc ≥ 0,

where Kc = gegpgags(1 − Rc). Since gj > 0 for any j ∈ {e, p, a, s}, we have (i): K3 > 0
by definition (for any value of Rc). If Rc > 1, then Kc < 0. It follows that at least one
eigenvalue of Jc

I has a positive real part when Rc > 1, and instability is established. When
Rc ≤ 1 on the contrary, we have (ii): Kc ≥ 0. Next, notice that Rc ≤ 1 is equivalent to
1 ≥ θS̄c

gegp

(
βp +

fa
ga
βa +

fs
gs
βs

)
. This implies that 1 > θS̄c

gegp

(
βp +

fa
ga+gs

βa +
fs

ga+gs
βs

)
since

ga > 0 and gs > 0. Writing K1 as

K1 = gegp(ga + gs)

[
1 − θS̄c

gegp

(
βp +

fa

ga + gs
βa +

fs

ga + gs
βs

)]
+ gags(ge + gp),

then shows that (iii): K1 > 0 if Rc ≤ 1. The statements (i), (ii) and (iii) ensure that all the
four eigenvalues of Jc

I have negative real parts when Rc ≤ 1 and l.a.s. is established.

Proof of Proposition A2. The proof uses a global stability result from Castillo-Chavez
et al. [81]. Let Y = (U ,V ,R)⊤ and I = (E, Ip, Ia, Is,Q)⊤ be the vectors of uninfected and
infected classes, respectively, and set G(Y , I) = ∂ I(t)

∂t and Yc = (U c,V c, 0)⊤. To establish
global asymptotic stability (g.a.s.), we first show that the following conditions hold for the
UVEIQR model (A3):

(H1) : lim
t→∞

Y(t) = Yc (i.e. Yc is globally asymptotically stable) when I = 0,

(H2) : G(Y , I) = AcI − Ĝ(Y , I), Ĝ(Y , I) ≥ 0 (i.e. all entries of Ĝ are nonnegative),

where Ac = ∂G(Yc, 0)/∂ I⊤ is a Metzeler matrix (all off-diagonal elements are nonnegative).
To check (H1), we set I = 0 in System (A3) and get the reduced system

U̇ = ηu − (υ+ µ)U + αV + ϵoR,
V̇ = ηv + υU − (α+ µ)V ,
Ṙ = −(ϵo + µ)R.

It comes that R(t) = R0e−(ϵo+µ)t, and N(t) = N c + (N0 −N c)e−µt. Replacing the
expression U(t) = N(t) −R(t) − V (t) in V̇ (t) and integrating the result leads to

V (t) = V0e−(α+υ+µ)t +
ηv + υN c

α+ υ+ µ

[
1 − e−(α+υ+µ)t

]
+
υ(N0 −N c)

α+ υ

[
1 − e−(α+υ)t

]
e−µt

− υR0 · t · e−(α+υ+µ)t if α+ υ = ϵo and

V (t) = V0e−(α+υ+µ)t +
ηv + υN c

α+ υ+ µ

[
1 − e−(α+υ+µ)t

]
+
υ(N0 −N c)

α+ υ

[
1 − e−(α+υ)t

]
e−µt

− υR0
α+ υ− ϵo

[
e−ϵot − e−(α+υ)t

]
e−µt if α+ υ ̸= ϵo.

It appears that limt→∞ R(t) = 0 = Rc and limt→∞ V (t) = ηv+υNc

α+υ+µ = V c, both when
α+ υ = ϵo (since α+ υ+ µ > 0) and when α+ υ ̸= ϵo. Then, U(t) = N(t) −R(t) − V (t)
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leads to limt→∞ U(t) = N c − V c −Rc = U c, hence (H1) holds. Next, using System (A3)
and Ĝ(Y , I) = AcI − G(Y , I), and setting gq = γq + δq + µ, we get

Ac=


−ge S̄cβp S̄cβa S̄cβs 0
θ −gp 0 0 0
0 fa −ga 0 0
0 fs 0 −gs 0
0 πσ ρa ρs −gq

 and Ĝ(Y , I) = (S̄c − S̄)


βpIp + βaIa + βsIs

0
0
0
0

.

The matrix Ac is obviously Metzeler. Moreover, the whole population is in the susceptible
class S at the d.f.e., hence the maximal value of the average effective susceptibility in
the mixing population S̄ = U+(1−κ)V

N−Q , is S̄c = Uc+(1−κ)V c

Nc . We thus have S̄c ≥ S̄ and
Ĝ(Y , I) ≥ 0 so that (H2) holds. Then, by the Theorem in [81], the validity of the two
conditions ((H1) and (H2)) ensures that the d.f.e. Xc is g.a.s. provided that Xc is l.a.s.,
i.e. Rc ≤ 1 (by Lemma A2).

Proof of Lemma A3. The proof is an adaptation of the proof of Theorem 3.3 in [82],
initially built for dissipative dynamical systems. The primary aim is to find a positive
sub-solution of the UVEIQR model (A3). Let I = (E, Ip, Ia, Is)

⊤ and set G(t, I) = ∂ I(t)
∂t .

Note that the subset of System (A3) corresponding to I (i.e. Equations (A3c)–(A3f)) can
be compactly expressed as İ = G(t, I). We first show the existence of a pair of positive
principal eigenvalue and eigenvector of this subset when Rc > 1. Linearizing the target
subset of the system around the d.f.e. Xc gives İ = AcI, where Ac = ∂G(t, 0)/∂ I⊤, i.e.

Ac =


−ge S̄cβp S̄cβa S̄cβs

θ −gp 0 0
0 fa −ga 0
0 fs 0 −gs

.

Substituting a solution of the form I(t) = Φed×t with d ∈ R, we get dΦ = AcΦ. Note that
Ac is a Metzeler matrix (i.e. (Ac)ij ≥ 0 for i ̸= j). Therefore, Ac is irreducible if and only
if the matrix A+ = Ac + cI6 (with c any large real such that (A+)ij ≥ 0 for 1 ≤ i, j, ≤ 4) is
irreducible [83]. We pick c = ν + max{ge, gp, ga, gs, gq, gr} with ν a positive real, and let
ḡj = c+ gj ≥ ν > 0 for j ∈ {e, p, a, s, q, r}. Then,

A+ =


ḡe S̄cβp S̄cβa S̄cβs

θ ḡp 0 0
0 fa ḡa 0
0 fs 0 ḡs

, and

A2
+
=


ḡ2

e + θS̄cβp S̄cḡeβp + ḡpβp + faβa + fsβs S̄cβa(ḡe + ḡa) S̄cβs(ḡe + ḡs)
θ(ḡe + ḡp) ḡ2

p + θS̄cβp θS̄cβa θS̄cβs

θfa fa(ḡp + ḡa) ḡ2
a 0

θfs fs(ḡp + ḡs) 0 ḡ2
s

.

We observe that (A2
+
)34 = (A2

+
)43 = 0. However, it appears that the corresponding

elements in A3
+

are positive, and therefore A3
+

≫ 0 (all elements are positive), so that A+

is irreducible. It follows that Ac is irreducible, and by Corollary 4.3.2 in [83], there exists
a real eigenvalue d̃ of Ac and a corresponding eigenvector Φ̃ =

(
Ẽ, Ĩp, Ĩa, Ĩs

)⊤ satisfying
Φ̃ ≫ 0. Since Rc > 1, the principal eigenvalue d̃ of Ac is positive (by Lemma A2).

To find a sub-solution of System (A3), notice that by Lemma A2, any solution of
the system satisfies limt→∞ X ̸= Xc (since Rc > 1). Along with the irreducibility of
Ac, this implies that, in the presence of the disease, for a small constant ν > 0, there
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exists a large time T such that 0 < E(t), Ip(t), Ia(t), Is(t) ≤ ν for t ≥ T . On setting
µ̃ = µ+ max{βp,βa,βs} and g̃u = υ+ µ̃, the solution to the Cauchy problem{

∂Ub(t)
∂t = ηu − g̃uUb(t), t ≥ T ,

Ub(T ) = U(T ),

is a sub-solution of Equation (A3a). We find Ub(t) = U + [U(T ) −U ]e−g̃u(t−T ) with
U = ηu/g̃u > 0, hence limt→∞ Ub(t) = U . Similarly, on setting η̃v = ηv + υŨ with
Ũ = min{U ,U(T )}, and g̃v = α+ µ̃, a sub-solution of Equation (A3b) is given by the
solution of the Cauchy problem,{

∂Vb(t)
∂t = η̃v − g̃vVb(t), t ≥ T ,

Vb(T ) = V (T ).

We find limt→∞ Vb(t) = V with V = η̃v/g̃v ≥ 0. Next, let Ĩ(t) = ν̃Φ̃ for t ≥ T and ν̃ > 0
a small constant. Substituting Ĩ(t) into Equations (A3c)–(A3f), exploiting the positivity of
d̃ and Φ̃ =

(
Ẽ, Ĩp, Ĩa, Ĩs

)⊤, and setting ã = Ẽ + Ĩp + Ĩa + Ĩs +R result in:

Ė(t) − ∂(ν̃Ẽ)

∂t
= ν̃(βpĨp + βaĨa + βsĨs)

U + (1 − κ)V

U + V + ν̃(Ẽ + Ĩp + Ĩa + Ĩs +R)
− ν̃geẼ,

= ν̃(βpĨp + βaĨa + βsĨs)
U + (1 − κ)V

U + V + ν̃ã
− ν̃geẼ

+ ν̃
(
βpĨp − βpĨp + βaĨa − βaĨa + βsĨs − βsĨs

)
S̄c,

= ν̃
[
(βpĨp + βaĨa + βsĨs)S̄

c − geẼ
]

+ ν̃(βpĨp + βaĨa + βsĨs)

[
U + (1 − κ)V

U + V + ν̃ã
− S̄c

]
,

= ν̃d̃Ẽ + ν̃(βpĨp + βaĨa + βsĨs)

(
U

U + V + ν̃ã
− Ū c

Ū c + V̄ c

)
+ ν̃(1 − κ)(βpĨp + βaĨa + βsĨs)

(
V

U + V + ν̃ã
− V̄ c

Ū c + V̄ c

)
> 0 for a sufficiently small ν̃ > 0,

İp(t) −
∂(ν̃Ĩp)

∂t
= θν̃Ẽ − gpν̃Ĩp = ν̃d̃Ĩp > 0,

İa(t) − ∂(ν̃Ĩa)

∂t
= faν̃Ĩp − gaν̃Ĩa = ν̃d̃Ĩa > 0,

İs(t) − ∂(ν̃Ĩs)

∂t
= fsν̃Ĩp − gsν̃Ĩs = ν̃d̃Ĩs > 0.

It appears that ν̃Φ̃ is a sub-solution of İ = G(t, I). Next, we consider the Cauchy problem,{
∂Qb(t)

∂t = ν̃
(
πσĨp + ρaĨa + ρsĨs

)
− gqQb(t), t ≥ T ,

Qb(T ) = Q(T ),

whose solution is a sub-solution of Equation (A3g). We find limt→∞ Qb(t) = Q with
Q = ν̃

(
πσĨp + ρaĨa + ρsĨs

)
/gq > 0. Likewise, we set Q̃ = min

{
Q,Q(T )

}
and consider the

Cauchy problem,{
∂Rb(t)

∂t = ν̃
(
γaĨa + γsĨs + γqQ̃

)
− grRb, t ≥ T ,

Rb(T ) = R(T ),
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whose solution is a sub-solution of Equation (A3h). We find limt→∞ Rb(t) = R with
R = ν̃

(
γaĨa + γsĨs + γqQ̃

)
/gr > 0. In a vaccination-dependent situation where ηv > 0 or

υ > 0, we have η̃v = ηv + υŨ > 0, and thus V > 0. This allows picking a ϱ value satisfying

0 < ϱ < min
{
U ,V , ν̃Ẽ, ν̃Ĩp, ν̃Ĩa, ν̃Ĩs,Q,R

}
,

so as to obtain limt→∞ U(t) ≥ ϱ, limt→∞ V (t) ≥ ϱ, limt→∞ E(t) ≥ ϱ, limt→∞ Ip(t) ≥ ϱ,
limt→∞ Ia(t) ≥ ϱ, limt→∞ Is(t) ≥ ϱ, limt→∞ Q(t) ≥ ϱ, and limt→∞ R(t) ≥ ϱ. When ηv = 0
and υ = 0, Equation (A3b) gives V̇ (t) = −[α+ (1 − κ)λo(t) + µ]V (t) ≤ −(α+ µ)V (t).
Any positive solution to v̇(t) = −(α+µ)v(t), i.e. v(t) = V0e−(α+µ)t, is thus a super-solution
to Equation (A3b). We here pick a ϱ value satisfying

0 < ϱ < min
{
U , ν̃Ẽ, ν̃Ĩp, ν̃Ĩa, ν̃Ĩs,Q,R

}
,

as a lower bound for the limits of the state variables, except limt→∞ V (t) = 0.

Proof of Proposition A3. The equilibrium point (A10a) follows from setting all the
derivatives in System (A3) to zero. Given λo and E⋆, we first solve the system for all
other state variables. Indeed, we get Equations (A10e)-(A10i) by solving Equations (A3d)-
(A3h) for Ip, Ia, Is, Q and R. We then solve (A3b) for V to obtain Equation (A10c), i.e.
V ⋆ = ηv+υU⋆

gv+(1−κ)λo
where gv = α+ µ. Substituting V ⋆ for V and the expression (A10i) for

R into Equation (A3a), and solving for U leads to Equation (A10b), i.e.

U⋆ =
[gv + (1 − κ)λo](ηu + ϵoerE

⋆) + αηv

[gv + (1 − κ)λo](gu + λo) − αυ
, and

V ⋆ =
(gu + λo)ηv + υ(ηu + ϵoerE

⋆)

[gv + (1 − κ)λo](gu + λo) − αυ
,

where gu = υ+ µ and er = θdpσdr. The next step consists in solving Equation (A3c), i.e.

[U⋆ + (1 − κ)V ⋆]λo − geE
⋆ = 0,

where ge = θ+ µ, for λo. To this end, we compute:

U⋆ + (1 − κ)V ⋆ =
[gv + (1 − κ)(υ+ λo)](ηu + ϵoerE

⋆) + [α+ (1 − κ)(gu + λo)]ηv

[gv + (1 − κ)λo](gu + λo) − αυ
.

From the definition of λo in Equation (2), we have λo =
θdp[βp+σdaβa+σdsβs]E⋆

N⋆−Q⋆ which
reads λo = Rcge

S̄c
E⋆

N⋆−Q⋆ from using Rc =
θdp

ge
[βp + σdaβa + σdsβs]S̄c, S̄c = Uc+(1−κ)V c

Nc .
Summing all the derivatives in System (A3) gives Ṅ = η − µN⋆ − δsI

⋆
s − δqQ

⋆ = 0 from
which we obtain

N⋆ = N c − 1
µ
(δsI

⋆
s + δqQ

⋆),

giving Equation (A10k). We thus have N⋆ −Q⋆=N c − θdmE
⋆, so that λo=

Rcge

S̄c
E⋆

Nc−θdmE⋆ .
It follows that

E⋆ =
S̄cN c

Rcge + S̄cθdmλo
λo,

resulting in Equation (A10d). Equation (A3c) then reads

[U⋆ + (1 − κ)V ⋆]λo − S̄cN cge

Rcge + S̄cθdmλo
λo = 0.
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The obvious solution λo = 0 corresponds to the d.f.e., and we here consider λo > 0 as
implied by the presence of disease. Hence we have

[gv + (1 − κ)(υ+ λo)](ηu + ϵoerE
⋆) + [α+ (1 − κ)(gu + λo)]ηv

[gv + (1 − κ)λo](gu + λo) − αυ
− S̄cN cge

Rcge + S̄cθdmλo
= 0.

Using the identity ηu[gv + (1 − κ)υ] + ηv [α+ (1 − κ)gu] = S̄cN c(gugv − αυ) and setting
L1 = S̄cN c

[
θ[dmµ+ dpσdrϵo]guv − κpvθdmµ

2 + (1 − κ)θdpµβσ − (θ+ µ)[guv + (1 − κ)µ]
]
,

and L2 = (1 − κ)S̄cN c[θ(dmµ+ dpσdrϵo) − (θ+ µ)] with guv = α + (1 − κ)υ + µ, and
βσ = βp + σdaβa + σdsβs, we get the quadratic equation

L2λ
2
o + L1λo + S̄cN cge(gugv − αυ)(Rc − 1) = 0,

Note that the definitions of dp, dm, and dr imply that:

dmµ+ dpσdrϵo = dpσ

[
daγa

ϵo
ϵo + µ

+ ds

(
δs + γs

ϵo
ϵo + µ

)
+ dq

(
µ+ δq + γq

ϵo
ϵo + µ

)]
,

< dpσ[daγa + ds(δs + γs) + dq(µ+ δq + γq)],
< dpσ[da(γa + ρa) + ds(δs + γs + ρs) + π],
< dpσ[(1 − τ )(1 − π) + τ (1 − π) + π],
< dpσ,
< 1.

It follows that L2 < 0. For Rc ≤ 1, on using S̄c ≥ 1 − κ, we have (1 − κ)θdpβσ ≤ ge

which implies that L1 ≤ 0, and since (gugv − αυ) = µ(α+ υ+ µ) > 0, the constant term
L0 = S̄cN cge(gugv − αυ)(Rc − 1) also satisfies L0 ≤ 0. Therefore, the above quadratic
equation in λo has no positive solution when Rc ≤ 1. As a result, a positive endemic
equilibrium exists only if Rc > 1. Since L0 > 0 when Rc > 1, the quadratic then has a
unique positive root λ⋆

o given by

λ⋆
o =

1
2

(
−K1 +

√
K2

1 + 4K0

)
where K0 = −L0/L2 and K1 = L1/L2.

Proof of Lemma A4. Let Ū⋆ = U⋆

N⋆−Q⋆ , V̄ ⋆ = V ⋆

N⋆−Q⋆ , V̄ ⋆
κ = (1 − κ)V̄ ⋆, S̄⋆ = Ū⋆ + V̄ ⋆

κ ,
υ⋆ = υ + V̄ ⋆

κ λ
⋆
o, α⋆ = α + Ū⋆λ⋆

o, ϵ⋆o = ϵo + Ū⋆λ⋆
o, h⋆

u = 1 − S̄⋆, h⋆
v = 1 − κ − S̄⋆,

g⋆
u = υ + µ + (1 − Ū⋆)λ⋆

o, g⋆
v = α + µ + (1 − κ)(1 − V̄ )λ⋆

o, g⋆
e = θ + µ + S̄⋆λ⋆

o, and
gr = ϵo + µ. Then, the Jacobian matrix J⋆ of the UVEIQR model (A3) evaluated at
the endemic equilibrium (e.e.) point X⋆ has the block structure

J⋆=

(
J⋆
11 J⋆

12
J⋆
21 J⋆

22

)
, J⋆

11=

 −g⋆
u α⋆ Ū⋆λ⋆

o

υ⋆ −g⋆
v V̄ ⋆

κ λ
⋆
o

h⋆
uλ

⋆
o h⋆

vλ
⋆
o −g⋆

e

, J⋆
22=


−gp 0 0 0 0
fa −ga 0 0 0
fs 0 −gs 0 0
πσ ρa ρs −gq 0
0 γa γs γq −gr

,

J⋆
21=


0 0 θ

0 0 0
0 0 0
0 0 0
0 0 0

 and J⋆
12=

Ū⋆(λ⋆
o − βp) Ū⋆(λ⋆

o − βa) Ū⋆(λ⋆
o − βs) 0 ϵ⋆o

V̄ ⋆
κ (λ

⋆
o − βp) V̄ ⋆

κ (λ
⋆
o − βa) V̄ ⋆

κ (λ
⋆
o − βs) 0 V̄ ⋆

κ λ
⋆
o

S̄⋆(βp − λ⋆
o) S̄⋆(βa − λ⋆

o) S̄⋆(βs − λ⋆
o) 0 −S̄⋆λ⋆

o

.

Let k be an arbitrary complex number and Z = (z1, · · · , z8)
⊤ be a nonzero complex vector.

To establish l.a.s. for the e.e. point X⋆, we use Krasnoselskii [84]’s sublinearity trick, a
technique described for stability analysis in Hethcote and Thieme [85], to show that any
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solution of the form Z0 = Zekt for System (A3) linearized around X⋆ (i.e. Ẋ = J⋆X)
satisfies Re(k) < 0. Substituting Z0 into the linear system results in kZ = J⋆Z. Following
Hethcote and Thieme [85], we use contradiction to show that Re(k) < 0 for any Z solution
of kZ = J⋆Z.

First assume that k = 0. Then J⋆Z = 0 and the system has a nonzero solution Z
only if det(J⋆) = 0. From the block structure of J⋆, we have det(J⋆) = det(J22) × det(C⋆)
where C⋆ is the Schur complement of J⋆

22 in J⋆: C⋆ = J⋆
11 − J⋆

12[J
⋆
22]

−1 J⋆
21. We obtain

det(J22) = −gpgagsgqgr and

C⋆ =

 −g⋆
u α⋆ Ū⋆λ⋆

o − g−1
p θ

(
Ū⋆y⋆

0 + fr(0)g−1
r ϵo

)
υ⋆ −g⋆

v V̄ ⋆
κ λ

⋆
o − g−1

p θV̄ ⋆
κ y

⋆
0

h⋆
uλ

⋆
o h⋆

vλ
⋆
o −g⋆

e + g−1
p θS̄⋆y⋆

0


where we have set y⋆

0 = λ⋆
o

(
1 + fag

−1
a + fsg

−1
s + fr(0)g−1

r

)
−

(
βp + fag

−1
a βa + fsg

−1
s βs

)
,

and fr(k) =
πσ

k+gq
γq +

fa
k+ga

(
γa +

ρaγq

k+gq

)
+ fs

k+gs

(
γs +

ρsγq

k+gq

)
. It turns out that

det(C⋆) = (g⋆
ug

⋆
v − α⋆υ⋆)

(
g−1

p θS̄⋆y⋆
0 − g⋆

e

)
− θg−1

p fr(0)g−1
r λ⋆

o(h
⋆
vυ

⋆ + h⋆
ug

⋆
v)ϵo

+ [(h⋆
vυ

⋆ + h⋆
ug

⋆
v)Ū

⋆ + (h⋆
uα

⋆ + h⋆
vg

⋆
u)V̄

⋆
κ ]λ

⋆
o

(
λ⋆

o − θg−1
p y⋆

0
)
,

hence det(C⋆) < 0 and det(J⋆) > 0. Therefore k ̸= 0. Next, assume that Re(k) > 0. The
Eigen equation kZ = J⋆Z reads

kz1=−g⋆
uz1 + α⋆z2 + Ū⋆λ⋆

oz3 + Ū⋆(λ⋆
o −βp)z4 + Ū⋆(λ⋆

o −βa)z5 + Ū⋆(λ⋆
o −βs)z6 + ϵ⋆oz8,

kz2=υ
⋆z1 − g⋆

vz2 + V̄ ⋆
κ λ

⋆
oz3 + V̄ ⋆

κ (λ
⋆
o −βp)z4 + V̄ ⋆

κ (λ
⋆
o −βa)z5 + V̄ ⋆

κ (λ
⋆
o −βs)z6 + V̄ ⋆

κ λ
⋆
oz8,

kz3=h
⋆
uλ

⋆
oz1 + h⋆

vλ
⋆
oz2 − g⋆

ez3 + S̄⋆(βp −λ⋆
o)z4 + S̄⋆(βa −λ⋆

o)z5 + S̄⋆(βs −λ⋆
o)z6 −S̄⋆λ⋆

oz8,
kz4=θz3 − gpz4,
kz5=faz4 − gaz5,
kz6=fsz4 − gsz6,
kz7=πσz4 + ρaz5 + ρsz6 − gqz7,
kz8=γaz5 + γsz6 + γqz7 − grz8.

Subsequently solving the last five equations of the previous system for zj (j = 4, · · · , 8) leads
to z8 = θ(k+ gp)

−1fr(k)(k+ gr)
−1z3. Then, setting zm = z8 +

∑6
j=1 zj , and rearranging

the first three equations yields:

(k+ gu + λ⋆
o)z1 = αz2 + Ū⋆λ⋆

ozm − Ū⋆(βpz4 + βaz5 + βsz6) + ϵoz8, (A13)
[k+ gv + (1 − κ)λ⋆

o]z2 = υz1 + V̄ ⋆
κ λ

⋆
ozm − V̄ ⋆

κ (βpz4 + βaz5 + βsz6), (A14)
(k+ ge)z3 = λ⋆

o[z1 + (1 − κ)z2] − S̄⋆λ⋆
ozm + S̄⋆(βpz4 + βaz5 + βsz6). (A15)

Summing Equations (A13)-(A15) leads after some additional algebra to

(k+ µ)(z1 + z2) = −(k+ µ+ θ)z3 + ϵo(k+ gp)
−1fr(k)(k+ gr)

−1θz3, (A16)

zm = (k+ gp)
−1

(
1 + fa

k+ ga
+

fs

k+ gs
+

fr(k)

k+ gr

)
θz3

− (k+ µ)−1
[
1 − ϵofr(k)

(k+ gp)(k+ gr)

]
θz3, and

[z1 + (1 − κ)z2] = S̄⋆zm +
κ(1 − κ)V̄ ⋆

k+ g⋆
uv

(βpz4 + βaz5 + βsz6) −
(

1 − κυ

k+ g⋆
uv

)
z3

−
[
1 − ϵofr(k)

(k+ gp)(k+ gr)

][
1 − κ[υ+ (1 − κ)V̄ ⋆]

k+ g⋆
uv

− S̄⋆

]
θ

k+ µ
z3

− S̄⋆

(
1 + fa

k+ ga
+

fs

k+ gs
+

fr(k)

k+ gr

)
θ

k+ gp
z3,
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where g⋆
uv = α+ υ+ µ+ (1 − κ)λ⋆

o. Equation (A15) then becomes:

[ge + k+ a3(k)]z3 =

[
S̄⋆ +

κV̄ ⋆(1 − κ)λ⋆
o

k+ g⋆
uv

]
(βpz4 + βaz5 + βsz6) where

a3(k) =

[
1 − ϵofr(k)

(k+ gp)(k+ gr)

][
1 − κ[υ+ (1 − κ)V̄ ⋆]

k+ g⋆
uv

− S̄⋆

]
λ⋆

oθ

k+ µ

+

(
1 + fa

k+ ga
+

fs

k+ gs
+

fr(k)

k+ gr

)
S̄⋆λ⋆

oθ

k+ gp
+

(
1 − κυ

k+ g⋆
uv

)
λ⋆

o.

On defining Z = (z3, · · · , z8)
⊤, we obtain the system

[bj + Fj(k)](Z)j−2 =
(

HZ
)

j−2 for j = 3, 4, · · · , 8,

where we have set F3(k) = g−1
e b3[k+ a3(k)], F4(k) = g−1

p k, F5(k) = g−1
a k, F6(k) = g−1

s k,

F7(k) = g−1
q k, F8(k) = g−1

r k, b3 = S̄⋆
[
S̄⋆ + κV̄ ⋆(1−κ)λ⋆

o
k+g⋆

uv

]−1
, bj = 1 for j = 4, · · · , 8, and

H =



0 g−1
e S̄⋆βp g−1

e S̄⋆βa g−1
e S̄⋆βs 0 0

g−1
p θ 0 0 0 0 0
0 g−1

a fa 0 0 0 0
0 g−1

s fs 0 0 0 0
0 g−1

q πσ g−1
q ρa g−1

q ρs 0 0
0 0 g−1

r γa g−1
r γs g−1

r γq 0

.

Note that the matrix H is nonnegative and satisfies HE⋆ = E⋆ where E⋆ contains the endemic
sizes of infected classes, i.e. E⋆ =

(
E⋆, I⋆

p , I⋆
a , I⋆

s ,Q⋆,R⋆
)⊤. Taking norms elementwise and

setting F (k) = inf
{
Re(Fj(k)), j = 3, · · · , 8

}
and b0 = Re(b3), we get

[b0 + F (k)]|Z| ≤ H|Z| (A17)

where |Z| = (|z3|, · · · , |z8|)⊤. It appears that Re(a3(k)) > 0 and b0 ∈ (0, 1] for Re(k) > 0.
Therefore, Re(Fj(k)) > 0 for all j = 3, · · · , 8, hence F (k) > 0. Let r0 denote the minimum
number such that |Z| ≤ r0b0E⋆. The positivity of b0E⋆ ensures that r0 is positive and
finite, and r = r0b0 is the minimum number such that |Z| ≤ rE⋆. The inequality (A17)
then implies that [b0 + F (k)]|Z| ≤ H|Z| ≤ rHE⋆ = r0b0E⋆ which leads to |Z| ≤ r0b0

b0+F (k)
E⋆.

From b0 > 0 and F (k) > 0, we have b0
b0+F (k)

< b0, hence |Z| ≤ r0b0
b0+F (k)

E⋆ < rE⋆ contradicts
the minimality of r. Therefore, Re(k) < 0 (i.e. all eigenvalues of J⋆ have negative real
parts) and l.a.s. is established for X⋆.

Proof of Proposition A4. Let X = (U ,V ,E, Ip, Ia, Is,Q,R)⊤ be the vector of the states
of the model (A3). For simplicity, we relabel the state variables xj (j = 1, 2, · · · , 8) such
that X = (x1,x2, · · · ,x8)

⊤. Let us define the function L given for t ≥ 0 by

L(t) =
8∑

j=1

(
xj − x⋆

j log xj

)
.

We claim that L is a strict Lyapunov function [86] as we next show. It first appears that
L is continuous everywhere and has first order partial derivatives with respect to X (i.e.
system (A3)). Thus, we are only required to show that the first derivative L̇ of L with
respect to time satisfies L̇(t) ≤ 0 for any solution X as t → ∞. To this end, we have

L̇(t) =
8∑

j=1

(
xj − x⋆

j

) ẋj

xj
.
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Note that L̇(t) = 0 for X = X⋆. By Lemma (A3), each xj is bounded and there exists
x = min xj such that x > 0 as t → ∞ (in the vaccination-free context where ηv = υ = 0,
the same argument holds by ignoring the state V which satisfies V (t) → V ⋆ = 0 as t → ∞).
This implies that

L̇(t) ≤ x−1
8∑

j=1

(
xj − x⋆

j

)
ẋj .

Since the derivatives ẋj in system (A3) are additive functions of constant parameters and
bounded variables xj , it also follows that each ẋj is bounded so that there exists x > 0 such
that ẋj < x for j = 1, 2, · · · , 8. This implies that

L̇(t) < xx−1
8∑

j=1

(
xj − x⋆

j

)
for X ̸= X⋆.

Since N is bounded, it follows from Barbalat’s lemma [87] that Ṅ(t) → 0 as t → ∞, so that
we have from Ṅ(t) = η− µN(t) − δsIs(t) − δqQ(t):

lim
t→∞

N(t) = N c − 1
µ

lim
t→∞

[δsIs(t) + δqQ(t)].

We also have limt→∞ İs(t) = limt→∞ Q̇(t) = 0 by Barbalat’s lemma and the boundedness
of Is(t) and Q(t), so that limt→∞ Is(t) and limt→∞ Q(t) are stationary points for Equa-
tions (A3f) and (A3g). Since these limits are nonzero when Rc > 1 (by Lemma (A3)), the
d.f.e. (Ic

s = 0 and Qc = 0) is excluded, and limt→∞ Is(t) = I⋆
s and limt→∞ Q(t) = Q⋆ (the

unique e.e. alternative). It follows, by Equation (A10k), that limt→∞ N(t) = N⋆, so that
limt→∞

∑8
j=1

(
xj − x⋆

j

)
= limt→∞ N(t) −N⋆ = 0. As a result, L̇(t) < 0 for X ̸= X⋆ as

t → ∞, hence L is a strict Lyapunov function, and by Proposition (A3), X⋆ is its unique
stationary point: X⋆ is a global minimum and therefore g.a.s. when Rc > 1.

Appendix C.2. Proofs of Lemmas and Propositions Related to Disease-Opinion Dynamics
Proof of Lemma 1. A proof of Lemma 1 is straightforward following the argument de-
tailled in the proof of Lemma A1 (see Appendix C.1). Each compartment size xj(t) satisfies
∂xj (t)

∂t ≥ −z0jxj(t) where z0j is a positive real constant. This gives xj(t) ≥ x0je
−z0jt, which

establishes nonnegativity from x0j ≥ 0. This implies that the total population size N(t) =∑
j xj(t) satisfies N(t) ≥ 0. Then, ∂N(t)

∂t ≤ η − µN(t) leads to 0 ≤ N(t) ≤ max{N0,N c}
where N c = η/µ is the carrying capacity of the biological system. This finally results in
0 ≤ xj(t) ≤ max{N0,N c}.

Proof of Proposition 1. Adding the disease-free restriction E = Ip = Ia = Is = Q = 0
to System (7) implies that λi(t) = 0. Setting all the derivatives to zero then gives
Ec = Ic

p = Ic
a = Ic

s = Qc = Rc = 0. Since wo > 0, we are left with the system

η̄1 − Sc
−1S

c
1 − µ̄Sc

1 = 0,
η̄0 + 2Sc

−1S
c
1 − µ̄Sc

0 = 0,
η̄−1 − Sc

1S
c
−1 − µ̄Sc

−1 = 0,

where η̄i = ηi
Nc

wo
, µ̄ = µNc

wo
with N c = Sc

−1 + Sc
0 + Sc

1. Summing the three equations gives
η − µN c = 0, i.e. N c = η/µ. Solving the third equation for Sc

−1 gives Sc
−1 = η̄−1

Sc
1+µ̄ , and

inserting this in the first equation yields the quadratic µ̄(Sc
1)

2 −
(
η̄1 − η̄−1 − µ̄2)

Sc
1 − η̄1µ̄

which has the unique positive solution

Sc
1 =

1
2µ̄

[√
(η̄1 − η̄−1 − µ̄2)2 + 4η̄1µ̄2 + η̄1 − η̄−1 − µ̄2

]
.
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Further simplifications yield Equation (25c), and Equations (25a) and (25b) follow. The
computations of the reproduction numbers (16a) and (16b) follow the steps in the proof of
Proposition A1 (see Appendix C.1), except that F(I) and Fc are here defined as

F(I)=
1

N −Q

∑
i∈P

Si


∑

j=p,a,s βijIj

0
0
0

 and Fc=
1
N c

1∑
i=−1

Sc
i


0 βip βia βis

0 0 0 0
0 0 0 0
0 0 0 0

.

To obtain the direction of variation of the basic reproduction number R0 (16a) as a
function of the baseline influence rate wo, we find its derivative with respect to wo. To
this end, the derivatives of Sc

−1 and Sc
1 with respect to wo are the same as we next explain.

First, we obtain after basic algebra ∂Sc
1

∂wo
= η

2wo

[
1 − (µ+wo)η−woη0

2woµ
√

∆1

]
< 0 where we have set

∆1 = ηη1
µwo

+
(

η1−η−1
2µ − η

2wo

)2
. We next notice that Sc

−1 is given by Equation (25c) on

switching the roles of η−1 and η1. It then follows that ∂Sc
−1

∂wo
= η

2wo

[
1 − (µ+wo)η−woη0

2woµ
√

∆−1

]
< 0

with ∆−1 = ηη−1
µwo

+
(

η−1−η1
2µ − η

2wo

)2
. Writing ∆1 = η(η−1+η1)

2µwo
+

(
η1−η−1

2µ

)2
+

(
η

2wo

)2

finally shows that ∆1 = ∆−1 hence ∂Sc
−1

∂wo
=

∂Sc
1

∂wo
. This implies that ∂Sc

0
∂wo

= −2∂Sc
−1

∂wo
and

∂R0
∂wo

= R00
(
ς2
o − 2ςo + 1

) ∂Sc
1

∂wo
< 0 with R00 = θ

(θ+µ)(σ+µ)
µ
η

∑
j=p,a,s βjmj .

Proof of Proposition 2. Adding the disease-free restriction E = Ip = Ia = Is = Q = 0
to System (14) implies that λi(t) = 0. Setting all the derivatives to zero then gives
Ec = Ic

p = Ic
a = Ic

s = Qc = Rc = 0 and we are left with the system

MSc = η

where Sc, M, and η are as defined in Equation (19b). Summing the partial derivatives for all
Si individuals gives U̇iu + U̇iv + V̇i = Ṡi, i.e. the susceptible states in the SEIQR-Opinion
model (7). It follows that Sc

1, Sc
−1, and Sc

0 are given by Equations (25c)–(25b). Likewise,
summing the first three equations, the fourth to sixth equations, and the seventh to last
equations results in the system

η̄uu + U c
uU

c
v − (U c

v + V c)U c
u − µ̄U c

u = 0 (a),
η̄uv − U c

uU
c
v + (U c

v + V c)U c
u + ᾱV c − ῡUv − µ̄U c

v = 0 (b),
η̄v − ᾱV c + ῡUv − µ̄V c = 0 (c),

where η̄uu =
∑

i ∈P η̄iu, η̄uv =
∑

i ∈P η̄iuv, η̄v =
∑

i ∈P η̄iv, η̄il = ηil
Nc

wo
, µ̄ = µNc

wo
,

ᾱ = αNc

wo
, ῡ = υNc

wo
, U c

u =
∑

i ∈P U
c
iu, U c

v =
∑

i ∈P U
c
iv, and V c =

∑
i ∈P V

c
i . From (c),

we have V c = η̄c
v+ῡUv
ᾱ+µ̄ , and from (a) we get U c

u = η̄uu
V c+µ̄ = η̄uu(ᾱ+µ̄)

η̄v+µ̄(ᾱ+µ̄)+ῡUc
v

. Inserting

these results in (b) leads to the quadratic A(U c
v )

2 +BU c
v −C = 0 where A = υ

(
1 + υ

α+µ

)
,

B = ηu

(
α+υ+µ

wo
− υ

µ

)
+ ηv

(
1 + α+υ+µ

wo
+ υ(µ−α)

µ(α+µ)

)
, C = ηηuv

α+µ
woµ + ηv

µ

(
ηu + αηv

α+µ + αη
wo

)
.

We thus have the constants U c
u, U c

v and V c, and in consequence, the matrix M. It follows
that MSc = η is a linear system in Sc. The step-wise resolution of the system MSc = η
in Appendix D proves that the matrix M is non-singular, and Equation (19b) follows.
The computations of the reproduction numbers (20a) and (20c) follow the steps in the
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proof of Proposition A1 (see Appendix C.1), except that F(I) and Fc are defined with
S̄i =

Ui+(1−κ)Vi
N−Q and S̄c

i =
Uc

i +(1−κ)V c
i

Nc as

F(I)=
∑
i∈P

S̄i


∑

j=p,a,s βijIj

0
0
0

 and Fc=
∑
i∈P

S̄c
i


0 βip βia βis

0 0 0 0
0 0 0 0
0 0 0 0

.

The derivatives of gi(M) = U c
i + (1 − κ)V c

i with respect to υ is by the Chain rule given by
∂gi(M)

∂υ = trace

{(
∂gi(M)

∂M

)⊤
∂M
∂υ

}
. Note that gi(M) = E⊤

i Sc, where Ei = Eiu + (1 − κ)Eiv,

E⊤
iu =

(
e⊤

3,i+2, e⊤
3,i+2, 0⊤

3

)
and E⊤

iv =
(

0⊤
6 , e⊤

3,i+2

)
, and em,k is the single-entry m-vector

with one at position k and zeros elsewhere. From writing gi(M) = E⊤
i M−1η, it follows that

∂gi(M)
∂M = −

(
M−1)⊤Eiη

⊤(
M−1)⊤, thus

(
∂gi(M)

∂M

)⊤
= −ScE⊤

i M−1.

Appendix D. Details on the Disease–free State of the UVEIQR-Opinion Model
We provide a formula for each of the nine elements of the susceptibles states of the

disease-free equilibrium Xc (19a) of the UVEIQR-Opinion Model (14), i.e. the expression
of Sc given in matrix notation by Equation (19b) is developed here.
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