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Abstract: People with sickle cell disease (SCD) are at greater risk of severe illness and 

death from respiratory infections, including COVID-19 than people without SCD (Cen-

ters for Disease Control and Prevention, USA). Vaso-occlusive crises (VOC) in SCD and 

severe SARS-CoV-2 infection are both characterized by thrombo-inflammation mediated 

by endothelial injury, complement activation, inflammatory lipid storm, platelet activa-

tion, platelet-leukocyte adhesion, and activation of the coagulation cascade. Notably, li-

pid mediators, including thromboxane A2, significantly increase in severe COVID-19 and 

SCD. In addition, the release of thromboxane A2 from endothelial cells and macrophages 

stimulates platelets to release microvesicles which are harbingers of multicellular adhe-

sion and thrombo-inflammation. Currently, there are limited therapeutic strategies tar-

geting platelet-neutrophil activation and thrombo-inflammation in either SCD or 

COVID-19 during acute crisis. However, due to many similarities between the pathobiol-

ogy of thrombo-inflammation in SCD and COVID-19, therapies targeting one disease 

may likely be effective in the other. Therefore, the preclinical and clinical research 

spurred by the COVID-19 pandemic, including clinical trials of anti-thrombotic agents, 

are potentially applicable to VOC. Here, we first outline the parallels between SCD and 

COVID-19; second, review the role of lipid mediators in the pathogenesis of these dis-

eases and lastly, examine the therapeutic targets and potential treatments for the two dis-

eases. 
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C-type-lectin-like receptor; LDH, lactate dehydrogenase; TF, tissue factor; DC-SIGN, 

dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin; L-SIGN, 

liver/lymph node-specific intracellular adhesions molecule-3-grabbing integrin; 

DAMPs, damage-associated molecular patterns; ROS, reactive oxygen species; Tx, 

thromboxane; COX, cyclooxygenase; IL, interleukin; TP receptor, thromboxane pros-

tanoid receptor; DP receptor, D-prostanoid receptor; MASP, mannan-binding lectin-as-

sociated serine protease; MAC, membrane attack complex; PG, prostaglandin; TNF, tumor 

necrosis factor; GSDMD, gasdermin D; S1P, sphingosine-1-phosphate 

 

 

1. Introduction 

During the current COVID-19 pandemic, over 550 million people have been in-

fected with the SARS-CoV-2 virus, and more than 6 million people have died. Investiga-

tors have reported clinical outcomes of SCD patients who developed COVID-19 during 

the current pandemic [1-6]. Some studies have demonstrated a more effective antiviral 

response against SARS-CoV-2 in patients with SCD, leading to a lower incidence of 

COVID-19 complications [7-9]. However, most studies have reported worse outcomes 

with COVID-19 in SCD patients compared to the general population. Among 178 persons 

with SCD in the United States who were reported to an SCD-coronavirus case registry, 

122 (69%) were hospitalized, and 13 (7%) died [2]. A study based on electronic health rec-

ord data from a multisite research network compared outcomes of African Americans 

with COVID-19 with or without SCD or heterozygous states of sickle cell trait (SCT) [1]. 

After 1:1 propensity score matching (based on age, sex, and other preexisting comorbidi-

ties), patients with COVID-19 and SCD remained at a higher risk of hospitalization (rela-

tive risk [RR], 2.0; 95% CI, 1.5-2.7) and development of pneumonia (RR, 2.4; 95% CI, 1.6-

3.4) and pain (RR, 3.4; 95% CI, 2.5-4.8) compared with African Americans without SCD or 

SCT.  

In a prospective study of 3500 pediatric and adult patients with SCD treated at 5 

academic centers in the US, 66 patients developed COVID-19 [10]. During a follow-up 

period of 3 months after diagnosis of SARS-CoV-2 infection,  75% of patients were hos-

pitalized, and the mortality rate was 10.6%. Vaso-occlusive pain was the most common 

presenting symptom. Acute chest syndrome occurred in 60% of hospitalized patients and 

all patients with a fatal outcome. Older age and a history of pulmonary hypertension, 

congestive heart failure, chronic kidney disease, and stroke were risk factors for mortal-

ity. Laboratory parameters in those who died included higher creatinine, lactate dehy-

drogenase, and D-dimer levels. In hospitalized patients, anticoagulant use was twice 

more common in patients who survived. Furthermore, all mortality occurred in patients 

not on disease-modifying therapy for SCD.  

In a genetic association study of 2729 persons with sickle cell trait (SCT) and 129848 

who were SCT negative, individuals with SCT had a number of preexisting kidney con-

ditions that were associated with unfavorable outcomes following COVID-19 [11]. The 
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presence of SCT was associated with increased risk of mortality and acute kidney failure 

following COVID-19, suggesting that SCT is also a prognostic factor for COVID-19 [11].  

Thus, SCD has, in fact, emerged as one of the most important comorbidities confer-

ring a high risk of mortality from COVID 19 that far exceeds the risk associated with 

chronic kidney disease, leukemias and lymphomas,  heart failure,  diabetes, obesity,  

lung cancer, acute myocardial infarction, chronic obstructive pulmonary disease, tobacco 

use, ischemic heart disease and hypertension, in the most extensive comorbidity analysis 

of COVID-19 patients to date [12]. Other adverse outcomes may also include SCD-related 

chronic organ dysfunction such as chronic persistent pain, lung and kidney injury, frag-

mented care, poor access to quality care, and interruptions in care as a result of fear of 

exposure to COVID. 

These case reports, case series, and registry-based cohorts provide evidence of a 

high risk of severe clinical course in SCD patients with COVID-19 and suggest an 

interaction between sickle cell and COVID-19 pathophysiology, while providing criti-

cal insights that may help generate mechanistic hypotheses and design prospective clini-

cal trials. 

It has been proposed that SCD is associated with impaired oxygen exchange, which 

may be further impeded during the inflammatory phase of COVID-19. However, compli-

cations such as cerebrovascular events in SCD patients with COVID-19 have not been 

reported. Therefore, we postulate that endothelial injury, thrombo-inflammation, micro-

vascular thrombosis, and resulting vaso-occlusive disease in SCD may be amplified by 

similar processes initiated by the SARS-CoV-2 virus and vice versa, adding to the risk of 

morbidity and mortality from any single disease. In this review, we examine the two dis-

eases' pathobiological processes and tease out the common pathways that may present a 

therapeutic target, potentially benefiting thousands of SCD patients worldwide during 

the COVID-19 pandemic.  

2. Pathophysiology of Sickle Cell Disease and COVID-19 

SCD affects millions of children and adults globally, including about 100,000 in the 

United States [13]. The average life expectancy of an SCD patient at birth is 42-47 years in 

the United States [14], compared to about 79 years for the general U.S. population. SCD 

has a profound adverse impact on the quality of life. The current therapeutic options for 

SCD include hydration, blood transfusions, hydroxyurea, L-glutamine, crizanlizumab, 

and voxelotor.  

The clinical hallmark of SCD is vaso-occlusive crises (VOCs), also referred to as 

pain crises. Cerebral vasculopathy, in its most devastating form, results in arterial throm-

bosis, which leads to cerebral infarction and stroke in early childhood [15,16]. SCD re-

mains one of the most common causes of stroke in children [17]. The risk of stroke is 

higher during the first decade and is more significant between ages 2 and 5, when it 

reaches about 1% per year [18]. About 10% of SCD patients have a clinically apparent 

stroke before the age of 20, and the risk increases to about 25% by the age of 45 years [18]. 

Thrombotic vasculopathy in SCD is accompanied by significant organ dysfunction, mor-

bidity diminished quality of life, and premature mortality [19,20]. Despite recent 
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therapeutic advances, SCD patients remain at a high risk of developing VOCs and vascu-

lar complications. Thus, it is imperative to address the scientific gaps in our understand-

ing of the mechanisms underlying the thrombo-inflammatory state, which is generally 

characterized by sickle RBC-mediated endothelial inflammation/dysfunction and coagu-

lation activation leading to vessel injury, leakage, and vascular thrombosis [16].  

The SARS-CoV-2 infection causes COVID-19 disease, which in its severe form can 

present with thrombotic microangiopathy, pulmonary thrombosis, pedal acro-ischemia 

(“COVID-toes”), arterial clots, strokes, cardiomyopathy, coronary and systemic vascu-

litis, bleeding, deep venous thrombosis, pulmonary embolism, and microvascular throm-

bosis in renal, cardiac and brain vasculature [21-26]. Furthermore, necropsies have re-

vealed inflammatory microvascular thrombi containing neutrophils, platelets, and neu-

trophil extracellular traps (NETs) in the pulmonary, hepatic, renal, and cardiac microvas-

culature as the hallmark of severe COVID-19 disease and the underlying cause of multi-

organ failure [25,27,28]. Similar thrombo-inflammatory processes mediated by cell-free 

hemoglobin have been observed and proposed in SCD, with emphasis on platelet activa-

tion [16,29], a key driver of thrombo-inflammation in COVID-19 [30]. Therefore, we pro-

pose that the emerging therapies targeting platelet- mediated thrombo-inflammation in 

COVID-19 may serve as potential therapies for VOC. 

In SCD, VOC often causes acute chest syndrome (ACS), defined as the presence of 

fever and/or new respiratory symptoms accompanied by a new pulmonary infiltrate on a 

chest X-ray [31]. This is very similar to acute pneumonia in COVID-19. However, there 

are significant differences in clinical presentation and underlying pathological basis for 

thrombo-inflammation in COVID-19 versus SCD. The incidence rate of ACS is highest at 

two to four years of age among children with SCD, with a rate of 25.3 per 100 patient-

years, and decreases to 8.87 per 100 patient-years in adults >20 years of age with HbSS 

[32]. On the other hand, acute pneumonia, and respiratory failure are more common in 

adults with COVID-19 [33].  

Pulmonary complications associated with COVID-19 or SCD reveal similar under-

lying pathobiology and therapeutic targets. Respiratory distress in COVID-19 occurs in 

part due to pulmonary platelet microvascular thrombosis [21]. However, the triggering 

events of ACS in SCD patients may vary. Although conventional wisdom suggests ACS 

occurs secondary to fat embolism in SCD, more recent evidence from CT studies has 

demonstrated in situ pulmonary thrombosis in 10-20% of ACS patients [34-41]. Interest-

ingly, in 16% of 538 SCD patients with ACS, pulmonary infarction or thrombosis were 

the triggering events rather than infection or fat embolism [42]. Still, fat embolism due to 

bone marrow infarction occurs in about 40% of both children [43] and adults [44-46], and 

leads to disseminated pulmonary platelet thrombi with a sharp and significant decline in 

platelet count prior to death [47]. It has been proposed that platelet inhibition at steady-

state or in the hemodynamically stable acute crisis might be an important therapeutic 

addition to prevent the progression of ACS in SCD [47]. A comparative analysis of the 

pathobiology of SCD and COVID-19, particularly in the context of endothelial injury, 

platelet activation, and multicellular adhesion, may help to identify potential therapies 

for the thrombo-inflammation in both diseases. 
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3. Mechanisms of multicellular adhesion and thrombo-inflammation in Sickle Cell 

Disease and COVID-19 

 

Complications associated with thrombo-inflammation in SCD have uncanny simi-

larities to those in COVID-19. In SCD, injury to the red blood cell (RBC) membrane medi-

ates endothelial damage and inflammation leading to multi-organ vasculopathy. Hemo-

globin S polymerization impairs deformability of the RBC and causes oxidative injury 

and destruction of the RBC [48]. RBC injury exposes phosphatidyl serine and releases Hb 

and other intracellular contents [48]. This, in turn, depletes NO, increases endothelial ad-

herence, releases pro-inflammatory cytokines, and activates coagulation causing ische-

mia, reperfusion injury, and vascular damage [48-52]. Similar inflammatory processes 

observed during SARS-CoV-2 infection are evidenced by elevated expression of leuko-

cyte adhesion molecules in the pulmonary vasculature [21], and the presence of a proin-

flammatory lipid/thromboxane storm [53].  

3.1. Endothelial cell injury and activation: role in thrombo-inflammation in SCD and 

COVID-19 

Endothelial cell injury and activation lie at the heart of the prothrombotic state in 

both SCD and COVID-19 (Fig. 1). Vascular endothelium is activated in SCD regardless 

of the patient’s clinical status with markedly increased expression of adhesion 

molecules, including intercellular adhesion molecule 1 (ICAM-1), vascular-cell 

adhesion molecule 1 (VCAM-1), E-selectin and P-selectin [54]. SARS-CoV-2 virus 

directly infects and damages the endothelial cells, which initiates a cascade of events 

leading to intussusceptive angiogenesis and microvascular thrombosis [21]. SCD and 

COVID-19 are characterized by interactions between activated endothelial cells, 

platelets, and leukocytes, leading to thrombo-inflammation and vascular occlusion 

[55]. Most notably, endothelial inflammation induces surface expression of adhesion 

molecules, including P-selectin and release of prothrombotic granule contents (von 

Willebrand factor and FVIII), both effects enhancing leukocyte/platelet adhesion [16]. 

Intravascular release of tissue factor (TF) also contributes to the polarization toward a 

prothrombotic state [24,56-58]. Release of cell-free heme activates converging 

inflammatory pathways, such as TLR4 signaling [59], formation of neutrophil 

extracellular traps (NETs) [25,60] and priming of the inflammasome (NLRP3) 

pathway, leading to release of interleukin-1β (IL-1β) and IL-18 by leukocytes, 

platelets, and endothelial cells, which contributes to the development of a sterile 

thrombo-inflammatory state in SCD [29,52,61,62]. 
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Figure 1. Putative mechanism of complement-mediated microvascular thrombosis and 

vaso-occlusive disease in SCD and COVID-19: SARS-CoV-2 infection and sickle cell 

disease induce compiement activation and formation of membrane attack complex 

leading to necrosis and pyroptosis of endothelial cells, platelets and monocytes, and 

accumulation of IL-1α. IL-1α stimulates the IL-1 receptor expressed on endothelial cells 

leading to thromboxane synthesis. Thromboxane A2 via the TP receptor activates 

platelets leading to platelet activation, platelet neutrophil partnership, neutrophil 

activation, and the release of neutrophil extracellular traps (NETs), 

thromboinflammation, oxidative stress, and subsequent end-organ damage and failure. 

COX, cyclooxygenase; IL, interleukin; NETs, neutrophil extracellular traps; TP, 

thromboxane prostanoid receptor; MAC, membrane attack complex; VTE, venous 

thromboembolism; TMA, thrombotic microangiopathy; DIC, disseminated intravascular 

thrombosis; ARDS, acute respiratory distress syndrome; AKI, acute kidney injury  

3.2. Platelet activation: role in thrombo-inflammation in SCD and COVID-19 

The pathogenesis of platelet activation in COVID-19 and SCD is multifactorial. 

COVID-19 and SCD activate platelets by association with the SARS-CoV-2 virus or 

direct activation with cell-free hemoglobin. Sickling and vaso-occlusion in SCD lead to 

hemolysis and subsequent release of cell-free hemoglobin [16]. Free plasma hemoglobin 

generates reactive oxygen species, a potent nitric oxide scavenger [63]. Nitric oxide 

scavenging promotes platelet activation and endothelial dysfunction [63]. Under 

physiological conditions, free heme is scavenged by the plasma protein hemopexin 

and is subsequently catabolized by heme oxygenase-1 into carbon monoxide, 

biliverdin, and ferrous iron (Fe2+) [64]. Acute or chronic hemolysis exhausts this 

scavenging system for heme leading to an increase in free heme in the blood [64]. 

Upon release, reduced heme is rapidly and spontaneously oxidized in the blood into 

its ferric (Fe3+) form, hemin, with increased levels observed in hemolytic diseases [64]. 

Hemin has been implicated in the pathogenesis of ACS, one of the leading causes of 

death in SCD [65]. Hemin activates platelets as a ligand for C-type-lectin-like receptor 

2 (CLEC2) [64]. Hemin-induced aggregation of human platelets is abolished by pre-

incubation of hemin with a recombinant dimeric form of CLEC2 [64]. This indicates a 
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role for platelet CLEC2 in sickle cell-mediated platelet activation (Fig. 2). Cell-free 

heme also amplifies inflammation [66] by activating inflammatory pathways including 

TLR signaling [67], gasdermin D-dependent NET formation [60,62], platelet-

inflammasome activation and generation of IL-1β carrying platelet extracellular vesicles 

and priming of the inflammasome, leading to platelet-neutrophil aggregation and vaso-

occlusion [29,52]. Consistent with the above, incubation of human peripheral 

neutrophils with VOC plasma produced significantly more NETs compared to non-

sickle and steady-state plasma [68]. NET generation in SCD is caused by sterile 

inflammation [62]. Additionally, during SCD-induced bone marrow infarction, the bone 

marrow undergoes stress reticulocytosis. As a result, it releases immature erythrocyte or 

reticulocytes [69] with surface expression of adhesion molecules such CD36 and α4β1 

integrin [52,70], which contribute to platelet activation and thrombo-inflammation. 

 
Figure 2. Mechanisms of heme and thromboxane A2 mediated thromboinflammation in COVID-

19 and sickle cell disease (SCD): Vaso-occlusion due to sickling or direct entry by SARS-

CoV-2 virus leads to endothelial cell activation and damage, and hemolysis. COX-2 ex-

pression in endothelial cells promotes thromboxane A2 synthesis. Free heme released 

from red blood cells is spontaneously oxidized to its ferric form, hemin. Hemin stimu-

lates platelet CLEC2 signaling and thromboxane A2/TP receptor-dependent Syk 
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phosphorylation leading to platelet activation, spreading, and degranulation. Platelets 

release exosomes and microvesicles, which stimulate the CLEC5A and TLR2 receptors on 

neutrophils. Subsequent, NLRP3 activation in neutrophils and monocytes promotes acti-

vation and assembly of gasdermin D, leading to the release of neutrophil extracellular 

traps and monocyte pyroptosis. NLRP3 inflammasome activation induces the release of 

proinflammatory cytokines, including IL-18 and IL-1β, thereby fueling thromboinflam-

mation in COVID-19 and SCD. NO, nitric oxide; COX, cyclooxygenase; IL, interleukin; 

NETs, neutrophil extracellular traps; TP, thromboxane prostanoid receptor; CLEC, C-

type lectin-like receptor; Syk, spleen tyrosine kinase; PLC, phospholipase C; PKC, protein 

kinase C; TLR, toll-like receptor; ADP, adenosine diphosphate; EGF, epidermal growth 

factor; PDGF, platelet-derived growth factor; TGF, transforming growth factor; NLRP3, 

NLR family pyrin domain containing 3 

 

SARS-CoV-2 viral hemagglutinins can bind to circulating red blood cells (RBCs) 

and induce agglutination and clumping of RBCs [71]. First, SARS-CoV-2 binds to RBCs in 

vitro [72] and clinically in COVID-19 patients [71,73]. Second, although fusion and repli-

cation of SARS-CoV-2 occur via ACE2, such hemagglutinating viruses initially attach to 

infective targets and clump with blood cells via much more abundantly distributed sialic 

acid glycoconjugate binding sites [71]. SARS-CoV-2, in particular, binds to these sialic 

acid sites [71]. Third, certain enveloped viruses express an enzyme, hemagglutinin ester-

ase, that counteracts viral-RBC clumping but is lacking in the SARS-CoV-2 virus [71]. 

These hemagglutinating properties of SARS-CoV-2 establish a framework for “catch and 

clump” induction of microvascular occlusion [71]. 

Subsequent hemolysis marked by elevated levels of LDH and thrombotic microan-

giopathy may play a role in platelet activation in COVID-19. Despite only minimal symp-

toms of COVID-19, 13 of the 34 children studied had thrombotic microangiopathy con-

current with complement activation marked by increased plasma sC5b-9 levels [74]. Fur-

thermore, in 181 adults hospitalized for COVID-19, an increased percentage of schisto-

cytes were correlated with decreased platelet count and increased markers of hemolysis, 

such as LDH [75]. The percentage of schistocytes was higher in those who died than 

those who survived [75]. Thus, thrombotic microangiopathy plays a significant role in 

platelet activation and morbidity in COVID-19, potentially through the release of free 

heme.  

D-dimers are a prognostic marker of COVID-19 [76]. D-dimer levels are more likely 

to be abnormal in severely and critically ill patients compared with mild and ordinary 

cases. At the same time, D-dimer levels of patients who had died are significantly higher 

than those of surviving patients [76]. D-dimer levels are also raised in VOC and in most 

SCD patients with an abnormal chest X-ray (Table 1) [77] indicative of a prothrombotic 

state. 

 

Table 1: Comparative analysis of Plasma D-dimer levels in SCD during the steady-state and sickle crisis and in 

COVID-19 patients 

Subjects Age/Reference Plasma D-dimer levels 
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Control Disease State 
P-value compared to 

Controls 

Sickle Cell Dis-

ease 

Adult[78] 

HD (n=35) 

 

79 ± 25 ng/ml 

Steady State SCD 

n=25 (Samples=28) 

 

566 ± 739 ng/ml 

 

P<0.001 

 

SCD Painful Crisis 

n=21 (Samples=40) 

 

1038 ± 1010 ng/ml 

P<0.001 

 

 

12-37 years[77] 

 

SCD with pain crisis and 

normal chest X-ray 

(n episodes=32) 

 

584.2 µg/L 

(250-3119 µg/L) 

 

 

SCD with pain crisis and ab-

normal chest X-ray 

(n episodes=13) 

 

2117.0 µg/L 

(250-9143 µg/L) 

 

 

N/A 

COVID-19 

Unventilated: 

62.5 ± 8.4 

Ventilated: 

53.8 ± 9.3[79] 

Hospitalized COVID-19 pa-

tients did not require artifi-

cial ventilation 

(n=18) 

 

650 ± 175 ng/ml 

Hospitalized COVID-19 pa-

tients requiring artificial 

ventilation 

(n=11) 

 

1250 ± 210 ng/ml 

P<0.05 

 

 

 

65.57±13 years[80] 

 

COVID-19 patients without 

pulmonary embolism 

(n=118) 

 

1310 ng/mL (800-2335) 

 

COVID-19 patients with pul-

monary embolism 

(n=44) 

 

5364 ng/mL (2928-12275) 

P=0.001 

 

Platelet activation plays a crucial role in both SCD and COVID-19. Platelet-de-

rived microparticles are a biomarker of vaso-occlusive events in severe cases of SCD, 

while erythrocyte-derived microparticles are higher in non-severe disease [81].  

Platelet extracellular vesicles and markers of platelet degranulation, including platelet 

factor 4 and serotonin in the blood, are also increased in COVID-19 [82].  

In SCD, platelet activation and release of microparticles is likely mediated by 

heme-induced platelet CLEC2 receptor or NLRP3 inflammasome activation [29,64]. 

However, in COVID-19, heme-induced platelet CLEC2 activation has not been re-

ported to the best of our knowledge [83]. On the other hand, SARS-CoV-2 associates 

with platelets [82] possibly by binding of SARS-CoV-2 spike receptor binding domain 

(S-RBD) to dendritic cell-specific intercellular adhesion molecule-3-grabbing non-
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integrin (DC-SIGN) and liver/lymph node-specific intracellular adhesions molecule-3-

grabbing integrin (L-SIGN) [84]. This is reminiscent of dengue virus-induced activa-

tion of platelets by binding to a DC-SIGN/CLEC2 hetero-multivalent receptor complex 

resulting in CLEC2 activation and platelet degranulation with the release of extracel-

lular vesicles including exosomes and microvesicles [85].  

Upon activation, the CLEC2 receptor undergoes tyrosine phosphorylation medi-

ated by thromboxane A2 (TxA2) [86]. This leads to downstream phosphorylation of 

spleen tyrosine kinase and phospholipase γ2, potentiated by TxA2 [86]. This coopera-

tion between CLEC2 and TxA2 signaling is critical for platelet activation (Fig. 2) [86]. 

Platelet activation leads to release of exosomes and microvesicles that further activate 

CLEC5A and TLR2 receptors on neutrophils and macrophages, thereby inducing NET 

formation and proinflammatory cytokine release [85]. Therefore, CLEC2 signaling is a 

potential therapeutic target in both SCD and COVID-19 (Fig. 2). 

 

3.3. P-selectin: role in thrombo-inflammation in SCD and COVID-19 

Upregulation of P-selectin in endothelial cells and platelets contributes to the cell-

cell interactions involved in vaso-occlusion and sickle cell-related pain crisis [87,88], and 

plasma levels of soluble P-selectin are markedly increased in vaso-occlusive SCD [89]. P-

selectin is a well-recognized therapeutic target in SCD and its inhibition by crizanli-

zumab, a humanized monoclonal antibody, significantly lowers rates of sickle cell-re-

lated pain crises [87]. Similarly, plasma levels of soluble P-selectin are markedly in-

creased in COVID-19 [90]. Platelet P-selectin surface expression is upregulated in 

COVID-19 and positively correlates with platelet-monocyte aggregates in infected sub-

jects [24]. In a randomized, placebo, controlled clinical trial amongst 54 hospitalized 

COVID-19 patients, crizanlizumab reduced P-selectin levels by 89% while promoting 

thrombolysis as suggested by a 77% increase in D-dimers and decreased prothrombin 

fragments, but there was no difference in the clinical outcomes (the CRITICAL study) 

[91].  

 

     3.4. Tissue Factor: role in thrombo-inflammation in SCD and COVID-19 

TF is a transmembrane protein that functions as a high-affinity receptor for factors 

VII and VIIa and is the primary cellular initiator of blood coagulation during endothelial 

injury [92,93]. Formation of the TF: factor VIIa (FVIIa) complex leads to the activation of 

both FX and FIX, with subsequent thrombin generation, fibrin deposition, and activation 

of platelets [94]. Under normal conditions, endothelial cells and blood cells, such as mon-

ocytes, do not express TF. On the other hand, total circulating microparticles expressing 

TF, mainly derived from monocytes and endothelial cells, are elevated in sickle cell crisis 

compared to steady-state and healthy controls [56]. Interestingly, TF inhibition in trans-

genic SCD mice significantly attenuates heme-induced microvascular stasis and prevents 

lung vaso-occlusion mediated by arteriolar neutrophil-platelet microemboli [95]. In se-

vere COVID-19, platelet activation and TF expression by monocytes leading to platelet-

monocyte interaction are associated with COVID-19 severity and mortality [24]. 
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3.5. CD40L: role in thrombo-inflammation in SCD and COVID-19 

CD40L is a type II transmembrane protein expressed primarily by activated T cells, 

activated B-cells, and platelets; and under inflammatory conditions is also induced on 

monocytic cells, natural killer cells, mast cells, and basophils [96,97]. CD40L binds to 

CD40 expressed on a variety of cells including dendritic cells, monocytes, platelet, and 

macrophages [97]. CD40L/CD40 interactions are pivotal in different cellular immune pro-

cesses [97]. Notably, platelets release CD40L, which contributes to chronic inflammation 

in SCD.[98] Elevated levels of circulating CD40L have been associated with acute chest 

syndrome (ACS) in SCD [98,99]. Platelets from SARS-CoV-2 patients are also more prone 

to release of soluble CD40L upon exposure to thrombin compared to healthy controls 

[82].  

Activated platelets are also a significant source of thrombospondin-1, another pro-

tein related to the incidence of ACS and vaso-occlusive episodes [100]. However, throm-

bospondin has not been examined in COVID-19 to the best of our knowledge. 

      

     3.6. NLRP3 Inflammasome: role in thromboinflammation in SCD and COVID-19 

Platelets are known to play a role in the detection and regulation of infection [101]. 

Viruses such as the dengue virus lead to platelet activation [101]. Platelets sense patho-

gens and host damage through recognition of pathogen-associated molecular patterns or 

damage-associated molecular patterns (DAMPs) using receptors [101]. C-type lectin re-

ceptors DC-SIGN and CLEC2 are involved in the binding of different viruses, as well as 

the recognition of DAMPs such as hemin and mitochondrial DNA [101]. Platelets are 

highly activated in COVID-19. They are likely involved in boosting the inflammasome 

capacity of innate immune cells, including human macrophages and neutrophils, and IL-

1 production by monocytes [25,102-104]. An unknown platelet-derived soluble factor en-

hances NLRP3 transcription and inflammasome activation [104]. We postulate that 

CLEC2-induced platelet activation leads to the release of exosomes and microvesicles, 

which stimulate the CLEC5A and TLR2 receptors on innate immune cells, leading to 

NLRP3 inflammasome activation and pyroptosis [85]. 

SARS-CoV-2 virus also induces inflammasome activation and cell death by pyrop-

tosis in human monocytes, hematopoietic stem/progenitor cells, and endothelial progeni-

tor cells [105,106]. Pyroptosis was dependent on caspase-1 engagement, before IL-1ß pro-

duction and inflammatory cell death [105]. Furthermore, examination of the whole blood 

transcriptome in COVID-19 patients has revealed that the dysregulated immune system 

is COVID-19 is characterized by highly specific neutrophil activation associated signa-

tures [107], with an increase in immature neutrophils with NLRP3 inflammasome activa-

tion [103]. 

NLRP3 inflammasome is also upregulated in SCD patients under steady state con-

ditions compared with healthy controls, and is further upregulated when patients experi-

ence an acute pain crisis [108]. Platelet-inflammasome activation led to the generation of 

IL-1β and caspase-1-carrying platelet extracellular vesicles that bind to neutrophils and 

promote platelet-neutrophil aggregation in lung arterioles of SCD mice in vivo and SCD 

human blood in microfluidics in vitro [29]. Inhibition of the inflammasome effector 
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caspase-1 or IL-1β pathway attenuated platelet extracellular vesicle generation, pre-

vented platelet-neutrophil aggregation, and restored microvascular blood flow [29]. 

More recent findings show that sterile inflammation in SCD promotes caspase-11/4-de-

pendent activation (cleavage) of pyroptotic effector gasdermin-D (GSDMD) in neutro-

phils, which leads to generation of NETs in the liver [62]. These NETs embolize from the 

liver to the lung to promote P-selectin-independent lung vaso-occlusion in SCD [62]. In-

terestingly, GSDMD is highly expressed on the BALF and blood neutrophils of COVID-

19 patients.[109] Image analysis of lung autopsies of patients who died from COVID-19 

revealed the presence of NET structures associated with activated GSDMD-NT fraction 

[109]. In cell cultures of neutrophils from COVID-19 patients, disulfiram, a GSDMD in-

hibitor, inhibited release of NETs in a concentration-dependent manner [109]. Therefore, 

in both SCD and COVID-19, activation of inflammasome in platelets, monocytes and 

neutrophils, and GSDMD-dependent NETosis plays a key role in initiating inflammation 

and tissue injury (Fig. 2).  

 

3.7. Nitric oxide: role in thrombo-inflammation in SCD and COVID-19 

Both COVID-19 and SCD are associated with endothelial injury and activation. Fol-

lowing endothelial injury, nitric oxide (NO) has been shown to serve many vasoprotec-

tive roles, including inhibition of platelet aggregation and adherence to the site of injury, 

inhibition of leukocyte adherence, inhibition of vascular smooth muscle cell proliferation 

and migration, and stimulation of endothelial cell growth [52,63,110-112].  

In SCD, cell-free plasma hemoglobin resulting from intravascular hemolysis con-

sumes NO very rapidly [113], dramatically limiting NO bioavailability [114,115]. Inhaled 

NO has shown evidence of efficacy in mouse models of SCD, but in a phase II placebo-

controlled trial of inhaled NO gas in SCD patients with VOC, NO did not improve time 

to crisis resolution [116]. 

NO deficiency has also been observed among COVID-19 patients, and it may cause 

vascular smooth muscle contractions [117], reducing the ability to neutralize ROS and 

NO-mediated antiviral capability [118-120]. Nitric oxide has been widely proposed as a 

potential treatment for COVID-19 [121]. However, inhaled NO gas may be rapidly se-

questered by superoxide, forming peroxynitrite, which is known to cause lung dam-

age and cell death [122]. It is plausible that NO in SCD [123] and COVID-19 [124] 

could lack therapeutic benefit in an environment of oxidative stress or in the absence 

of sufficient L-arginine bioavailability [122]. 

 

3.8. TGFβ: role in thromboinflammation in SCD and COVID-19 

The transforming growth factor (TGF-β) superfamily is composed of a large group 

of proteins that are fundamental in regulating various biological processes, such as extra-

cellular deposition, cell differentiation and growth, tissue homeostasis and repair, and 

immune and inflammatory responses [125]. The TGF-β subfamily is a central mediator of 

fibrogenesis and a crucial regulator of fibroblast phenotype and function. There are three 

known isoforms of TGF-β expressed in mammalian tissue, including TGF-β1, 2, and 3. 

TGF-β1 is the most abundant and ubiquitously expressed isoform and is associated with 
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the development of tissue fibrosis [125-127]. Various animal models support the role of 

TGF-β1 in mediating hepatic, renal, pulmonary and cardiac fibrosis [128-131]. Interest-

ingly, platelets contain 40 to 100 times more TGF-β1 than other cells and rapidly release 

TGF-β1 upon activation [132]. This is consistent with the positive correlation between 

plasma TGF-β1 and platelet and white blood cell counts in patients with steady-state 

SCD [133,134]. Interestingly, early, untimely TGF-β responses in SARS-CoV-2 infection 

limit the antiviral function of natural killer (NK) cells [135]. Therefore, TGF-β has been 

proposed as a therapeutic target in both SCD and COVID-19 [133,135]. 

 

4. Thromboxane A2- a key mediator of thromboinflammation by regulation of platelet 

activation, NO synthesis, and expression of P-selectin, CD40L, tissue factor, and TGF-β 

 

Thromboxane A2 (TxA2), a key mediator of thrombosis, is released by platelets, en-

dothelial cells, macrophages, and neutrophils.[136] TxA2 binds to the thromboxane-pros-

tanoid (TP) receptor on platelets, thereby stimulating activation and aggregation of plate-

lets [136]. Cooperation between TxA2/TP receptor and CLEC2 receptor signaling path-

ways is critical for CLEC2-induced platelet activation [86].  

Thromboxane A2 generation is markedly stimulated in both SCD and COVID-19. In 

SCD, TxB2 and 2,3-dinor-TxB2, a terminal metabolite of TxB2 were significantly elevated 

in the urine and plasma of steady-state SCD patients compared to healthy HbAA con-

trols (Table 2) [137,138]. Moreover, in isolated rat lungs co-perfused with sickle (HbSS) 

erythrocytes and platelet-rich plasma, TxA2 levels increased over 10-fold more than with 

normal (HbAA) erythrocytes [139]. In severe COVID-19 patients, bronchoalveolar lavage 

fluid presents a picture of an inflammatory lipid storm with marked increases in fatty 

acid levels and a predominance of cyclooxygenase metabolites notably thromboxane 

B2 >> PGE2 > PGD2 [53]. Plasma levels of TxB2, a stable metabolite of TxA2, are also mark-

edly increased in severe COVID-19 patients [24]. Considering the marked increase of 

TxA2 in both SCD and COVID-19, we postulate the potential role of TxA2 in the patho-

genesis of the proinflammatory state that contributes to thrombo-inflammation observed 

in both diseases.  

 

Table 2. Comparative analysis of thromboxane levels in SCD, COVID-19, and asthmatics 

Subjects Source and Analyte 
Thromboxane levels 

P-value compared to 

Controls Control Disease State 

Sickle Cell Dis-

ease 

Plasma 

2,3 dinor-TxB2 [137] 

(µg/L) 

(Mean ± SEM)  

HD (n=12) 

 

2.75 ± 0.83 

Steady State SCD (n=15) 

 

21.53 ± 5.10 

 

P<0.001 

 

Plasma 

TxB2 [137] 

(µg/L) 

(Mean ± SEM) 

HD (n=12) 

 

<0.005 

Steady State SCD (n=15) 

 

0.543 ± 0.101 

 

P<0.05 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 December 2022                   doi:10.20944/preprints202212.0066.v1

https://doi.org/10.20944/preprints202212.0066.v1


 

 

Urinary 

TxB2 [137]  

(pg/mg creatinine)  

(Mean ± SEM) 

 

HD (n=12) 

 

0.41 ± 0.30 

Steady State SCD (n=15) 

 

0.91 ± 0.13 

P<0.05 

 

Urinary 

2,3 dinor-TxB2 [137]  

(pg/mg creatinine) 

 (mean ± SEM) 

 

HD (n=12) 

 

1.70 ± 0.032 

Steady State SCD (n=15) 

 

2.81 ± 0.13 

P<0.01 

Urinary 

11-dehydro-TxB2 

[138] 

(pg/mg creatinine)  

(Mean ± SEM) 

HD (n=33) 

 

299 ± 20 

 

Steady State SCD (n=49) 

 

1,227 ± 191 

 

P=0.0002 

 

 

Vaso-Occlusive SCD (n=15) 

 

1,836 ± 536 

P=0.0005 

 

COVID-19 

 

BALF TxB2 [53] 

(nmol/L) 

(Means) 

 

HD (n=25) 

 

<0.250 

 

Severe COVID-19 (n=33) 

 

12.0 

P<0.0001 

 

 

Plasma TxB2 [24] 

(ng/mL) 

(Median) 

 

HD (n=11) 

 

4.0 

 

Severe COVID-19 (n=35) 

 

7.5 

P<0.05 

 

 

 

 

Urinary 

11-dehydro-TxB2 

[140] 

(pg/mg creatinine) 

(Median (95% CI)) 

 

Without Events (n=47) 

4890 (5049-8290) 

 

With Events (n=18) 

7603 (7541-19791) 
P=0.002 

<10 d of hospitalization 

(n=35) 

4801 (3817-9196) 

 

≥10 d of hospitalization 

(n=30) 

8614 (7990-14316) 

 

P=0.02 

 

No death (n=48) 

5360 (5907-10038) 

 

Death (n=6) 

15069 (1915-42007) 
P=0.004 
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No Mechanical Ventilation 

(n=56) 

5137 (4498-7512) 

Mechanical Ventilation (n=9) 

20121 (5364-41015) 
P<0.001 

Atopic Asth-

matics 

 

BALF TxB2 [141] 

(nmol/L) 

(Mean ± SEM) 

Before Allergen Challenge 

(n=8) 

0.130 ± 0.021 

 

After Allergen 

Challenge 

(n=8) 

0.430 ± 0.108 

 

P<0.05 

HD, healthy donor; BALF, bronchoalveolar lavage fluid 

 

There is growing evidence that cyclooxygenase enzymes, COX-1 and COX-2 medi-

ate the thromboxane generation underlying thrombo-inflammation in SCD and COVID-

19 [83]. COX-2 is an inducible enzyme, while COX-1 is constitutive. COX-2 expression is 

stimulated by inflammation, a cardinal feature of both VOC and COVID-19. Endothelial 

COX-2 expression was markedly increased in transgenic BERK SCD mice [142]. SARS-

CoV-2 infection of iPSC-derived cardiomyocyte cells led to > 50-fold increase in COX-2 

gene expression (Dr. S. T. Reddy, UCLA, personal communication based on analysis of 

the supplemental material in reference 143) [143]. In addition to upregulating COX-2 in 

living human lung slices, the SARS-CoV-2 virus reduces the prostaglandin-degrading 

enzyme 15-hydroxyprostaglandin-dehydrogenase [144]. TxA2 generation is COX-2 medi-

ated in states of high TxA2 generation, such as in inflammation, infection, and obesity 

[145]. Low-dose aspirin is unable to inhibit COX-2, and hence aspirin resistance is com-

mon in states with COX-2-dependent TxA2 generation [146]. TxA2 generation by platelets 

and endothelial cells stimulates expression of P-selectin, ICAM-1, and VCAM-1 on endo-

thelial cells and release of tissue factor [147-149]. 

 

4.1. Thromboxane A2-mediated P-selectin expression 

TxA2 plays a role in the platelet expression of P-selectin. It was demonstrated that 

the percentage of P-selectin-positive platelets in TP receptor knockout mice on day 1 was 

significantly reduced compared with that in wild-type mice [148]. Therefore, TxA2 block-

ade may be another effective method to target P-selectin without the need for IV admin-

istration of anti-P-selectin Ab [87].  

 

4.2. Thromboxane A2-mediated tissue factor expression 

TxA2 has been shown to mediate TF expression on endothelial cells and monocytes 

[149]. TP receptor agonism induced TF expression in endothelial cells. In contrast, a TP 

receptor antagonist reduced endothelial expression of TF after TNF-α induction 

[149,150]. Similarly, lipopolysaccharide-induced TF expression on human monocytes was 

abrogated by a TP receptor antagonist [151].  

 

4.3. Thromboxane A2-mediated CD40L expression 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 December 2022                   doi:10.20944/preprints202212.0066.v1

https://doi.org/10.20944/preprints202212.0066.v1


 

Plasma CD40L has been correlated with urinary 11-dehydro-TxB2, a stable metabo-

lite of TxA2 in diabetic patients [152]. Upon treatment with low dose aspirin (100 

mg/day), plasma CD40L decreased along with a reduction in urinary 11-dehydro-TxB2 

and whole blood TxB2 production [152]. Patients with higher excretion of 11-dehydro-

TxB2 had increased levels of CD40L [152]. Therefore, targeting TxA2 may reduce the re-

lease of CD40L, potentially preventing ACS and vaso-occlusion in SCD.   

 

4.4. Thromboxane A2-induced suppression of NO synthesis 

NO inhibits platelet activation via phosphorylation of the thromboxane prostanoid 

(TP) receptor [153]. In both vascular smooth muscle cells and platelets, the vasodilatory 

and platelet inhibitory effects of NO are known to be mediated by cGMP, which inhibits 

phospholipase C activation, inositol 1,4,5-triphosphate generation, and [Ca2+]i mobiliza-

tion [154]. NO stimulates cGMP production and activates cGMP-dependent protein ki-

nase or G kinase [154]. TxA2 also directly inhibits nitric oxide synthase [155]. Nitrite accu-

mulation was enhanced by TP receptor antagonists, seratrodast or ramatroban, in a 

model of IL-1β stimulated rat aortic smooth muscle cells [155]. Therefore, TxA2 may play 

a role in NO deficiency in SCD, which would be alleviated by TP receptor blockade. 

 

4.5. Thromboxane A2-induced TGF-β release 

TxA2 / TP receptor signaling stimulates activation of the TGF-β pathway [156,157]. 

Hypertensive PGI2 receptor knockout mice fed a high-salt diet exhibited elevated urinary 

TxA2 metabolites and left ventricular TP receptor overexpression, which accompanied 

cardiac collagen deposition and profibrotic TGF-β gene expression [158]. Inhibition of 

TxA2 biosynthesis with low-dose aspirin mitigated the increase in blood pressure, cardiac 

fibrosis, and left ventricular TGF-β gene expression [158]. Moreover, the number of myo-

fibroblasts and extravasated platelets in the heart were also reduced [158]. This is con-

sistent with TxA2 induced TGF-β gene expression in myofibroblasts [158]. 

 

5. Thromboxane A2 in post-capillary venoconstriction in SCD and COVID-19 

5.1. Post-capillary Pulmonary Venous Constriction  

Cardiopulmonary complications are the leading cause of death in patients with 

SCD, primarily resulting from diastolic heart failure (HF) and/or pulmonary hyperten-

sion (PH) [159]. From a hemodynamic standpoint, almost half of cases of SCD pulmonary 

hypertension reported in the literature have postcapillary or venous pulmonary hyper-

tension [160]. Interestingly, U-46619, a TxA2 mimetic in a concentration of 1 nM, is suffi-

cient to reduce the guinea-pig pulmonary venous luminal area by 50% [161]. A 50% re-

duction in luminal area increases vascular resistance by 4-fold, indicating that sub-nano-

molar concentrations of thromboxane A2 could produce meaningful increases in pulmo-

nary venous resistance [161]. This is consistent with the measured effect of selective TP 

receptor antagonism in reducing pulmonary venous resistance and capillary pressure in 

patients with acute lung injury [162]. Moreover, TP receptor antagonism prevented right 

ventricular fibrosis and arrhythmias in a mouse model of pulmonary arterial hyperten-

sion [163]. Therefore, TxA2 released from platelets and pulmonary venous endothelial 
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cells may cause: first, pulmonary venous hypertension and, second, left ventricular fibro-

sis secondary to elevated TGF-β levels and diastolic dysfunction.   

TP receptor antagonism has also been shown to attenuate airway mucus hyperpro-

duction induced by cigarette smoke [164] and reduce tissue edema in mouse models of 

acute lung injury [165]. In COVID-19, TP receptor blockade may rapidly reduce pulmo-

nary capillary pressures, improve ventilation-perfusion matching, promote resolution of 

edema, reduce bronchoconstriction and airway mucus hyperproduction, improve lung 

compliance and gas exchange, and thereby mitigate respiratory distress and hypoxemia 

[166]. 

 

5.2. Post-capillary efferent arteriole constriction in kidney injury 

Glomerular involvement is one of the most prominent renal manifestations ob-

served in SCD. It is characterized by an early increase in glomerular filtration rate (GFR) 

associated with micro- or macroalbuminuria, followed by a gradual decline in GFR and 

chronic renal failure [167,168]. This is consistent with underlying vasculopathy in sickle 

cell nephropathy associated with cortical hyperperfusion, medullary hypoperfusion, and 

an increased stress-induced vasoconstrictive response [167]. Renal involvement is usually 

more severe in homozygous than heterozygous SCD. It contributes to diminished life 

expectancy and 16-18% of mortality in patients with SCD [167,169,170]. Acute kidney 

injury is emerging as a common and important sequelae of COVID-19, with rates as high 

as 33%-43% in hospitalized patients [171-174]. In a prospective cohort study of 701 

COVID-19 patients, proteinuria was reported in 43.9% of patients on admission to the 

hospital [175]. However, the involvement of hyperfiltration in COVID-19-associated kid-

ney injury remains to be elicited.  

Glomerular hyperfiltration is caused by either a net reduction of afferent (pre-capil-

lary) arteriolar resistance or a net increase in efferent arteriolar (post-capillary) arteriolar 

resistance [176]. Thromboxane synthase inhibition or TP receptor antagonism in un-

treated streptozotocin-induced diabetic rats was shown to decrease renal blood flow, in-

crease renal vascular resistance and ameliorate renal hyperperfusion [177]. This is con-

sistent with reduced microalbuminuria in diabetic patients treated with a TxA2 synthase 

inhibitor, likely due to a vasodilating effect predominantly exerted on the efferent arteri-

ole [178,179]. However, this contrasts in vitro findings that treatment of isolated perfused 

hydronephrotic rat kidney with TxA2 mimetic leads to preferential constriction of affer-

ent arterioles [180]. Therefore, further studies are needed to clarify the role of TxA2 in 

post-capillary efferent arteriole constriction and glomerular involvement associated with 

vascular diseases, including SCD and COVID-19.  

 

6. Complement activation as an inducer of thrombo-inflammation in SCD and 

COVID-19 

 

The complement system is a critical innate immune defense against infections and 

an important driver of inflammation [181]. Activated complement can produce direct 

effector functions by target opsonization with cleaved complement component 3 (C3) 
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and C4 fragments, promotion of inflammation with C3a and C5a, and direct cell lysis 

with the assembly of MAC C5b-9 complex [181]. Plasma concentrations of sC5b-9 are 

elevated in steady-state SCD patients [182]. Complement deposition is also increased in 

cultured human endothelial cells incubated with SCD serum [182]. In SCD, levels of IL-

1α were significantly higher in those with a history of acute splenic sequestration, a com-

mon feature of homozygous SCD, compared with matched normal controls [183]. The 

effect of complement activation on IL-1α and COX-2/TxA2 axes has been studied by treat-

ing porcine endothelial cells with human plasma containing xenoreactive antibodies and 

complement [184]. In this model, there is markedly increased expression of IL-1α, COX-2, 

and thromboxane synthase leading to the generation of TxA2. The role of IL-1α in medi-

ating the effect of complement activation was confirmed by the addition of an IL-1 recep-

tor antagonist to the human serum, which prevented the release of PGE2 and TxA2 [184]. 

Therefore, complement activation can induce a prothrombotic state via the expression of 

IL-1α and COX-2 leading to generation of TxA2 (Fig. 1).  

Complement activation is also thought to play a critical role in immune-thrombosis 

and end-organ damage in COVID-19 [26]. Nucleocapsid protein of SARS-CoV-2 virus 

binds to the Mannan-binding lectin-associated serine protease-2 (MASP-2), the lectin 

pathway’s effector enzyme, resulting in complement activation [185,186]. Lung tissue 

from deceased COVID-19 patients showed components of the lectin and terminal com-

plement pathways, specifically MASP-2, complement factor 4d (C4d), and C5b-9 (i.e., the 

membrane attack complex) [185,186]. Activation of C4d (classical lectin pathway) and 

sC5b-9 (membrane attack complex) are also associated with respiratory failure in hospi-

talized adults with COVID-19 [187]. Furthermore, in children with COVID-19, there is 

evidence of complement activation with an increase in plasma sC5b-9 levels even with 

only minimal symptoms of COVID-19, and 13 of the 34 children had thrombotic microan-

giopathy [74]. Most importantly, IL-1α is also released from necrotic and pyroptotic cells, 

including pneumocytes and endothelial cells, the primary site of an attack by SARS-CoV-

2 [188]. 

 

7. Thromboxane A2 is enzymatically converted into 11-dehydro-thromboxane A2, a full 

agonist of the prostaglandin D2/DP2 receptor leading to fibrosis and inflammation 

 

TxA2 is short-lived and rapidly transformed nonenzymatically in an aqueous solu-

tion to TxB2. TxB2 is further metabolized enzymatically to a series of compounds, of 

which 11-dehydro-TxB2 (11dhTxB2) is the major product found both in plasma and urine 

[189]. The dehydrogenase catalyzing the formation of 11dhTxB2 was tissue bound with 

the highest activity in the lung [190]. Urinary excretion of 11dhTxB2 is markedly in-

creased in recently hospitalized patients with COVID-19; and was predictive of plasma 

D-dimer levels, renal ischemia, the need for mechanical ventilation, and mortality [140]. 

Urinary 11dhTxB2 is also significantly elevated in SCD compared to healthy controls 

[138]. Interestingly, 11-dehydro-TxB2 is a full agonist of the D-prostanoid receptor 2 

(DP2) for prostaglandin D2 (PGD2) [189].  
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PGD2/DP2 receptor signaling is known to mediate Th2 immune responses that are 

classically directed against extracellular non-phagocytosable pathogens, for instance, hel-

minths [191-193]. The effectors for PGD2/DP2 receptor-mediated Th2 immune response 

are eosinophils, basophils, and mastocytes, as well as B cells (humoral immunity), and 

these are consistently elevated in COVID-19 [194]. IL-13, a type 2 cytokine released dur-

ing PGD2/DP2 receptor signaling, increases hyaluronan accumulation in mouse lungs 

[195], and is universally correlated with ARDS, AKI, and morality [196], and need for 

mechanical ventilation in COVID-19 [195]. IL-13 is also known to upregulate monocyte-

macrophage-derived suppressor cells (MDSC), which play a role in immune suppression 

and lymphopenia, a hallmark of severe COVID-19 disease [197-200]. 

PGD2 /DP2 receptor signaling is thought to play a role in fibrosis. PGD2 /DP2 recep-

tor signaling exerts direct pro-apoptotic and pro-fibrotic actions on various cells, includ-

ing islet cells, cardiomyocytes, and osteoclasts [201-203]. Moreover, PGD2/DP2 receptor-

mediated IL-13 release is a significant inducer of fibrosis by stimulating the IL-13Rα2 re-

ceptor expressed on macrophages to release TGF-β1 [204]. Therefore, elevated levels of 

TxA2 in COVID-19 and SCD may be rapidly converted to 11dhTxB2 in the lungs, thereby 

leading to DP2 receptor signaling and fibrosis in the lungs and heart. 

 

8. Therapeutic Options for thromboinflammation in COVID-19 and SCD: Past, Pre-

sent, and Future 

 

Blood transfusion is the only treatment for SCD-associated vaso-occlusive crises or 

thrombotic events such as acute painful episodes, cerebral infarction, and acute chest 

syndrome [205]. Widely varying anticoagulants, including heparin and its analogs, are 

used in both arterial and venous thrombosis associated with SCD, but they have proven 

ineffective in preventing acute pain episodes [206,207]. As a treatment of acute pain crisis 

in SCD, tinzaparin, low molecular weight heparin, was shown to reduce the severity and 

crisis duration in a double-blind, randomized, controlled trial [208]. 

Antiplatelet agents such as aspirin, prasugrel and ticagrelor have also been tested 

in SCD (Table 3). In a double-blind crossover study of children with SCD, low-dose aspi-

rin, an inhibitor of COX-1 action, did not affect the frequency and severity of vaso-occlu-

sive crises compared to placebo [209]. Prasugrel and ticagrelor are P2Y12 receptor antago-

nists that block platelet stimulation induced by ADP. In a double-blind, randomized, pla-

cebo-controlled trial of prasugrel in children and adolescents with SCD, prasugrel was 

found to be safe but did not reduce the rate of vaso-occlusive crisis or diary-reported 

events over a 9 to 24-month period [210]. Ticagrelor demonstrated no effect on diary-

reported pain in young adults with SCD [211]. However, as discussed above, heme-

driven CLEC2 induced platelet activation is dependent on ADP stimulation of platelet 

P2Y1 receptor, but not the P2Y12 receptor [86], while prasugrel only blocks the latter [212]. 

The failure of prasugrel and ticagrelor may also indicate that other P2Y12 antagonists may 

not be effective in SCD [211,212]. Unfortunately, there are no approved P2Y1 antagonists 

to our knowledge. Moreover, other antiplatelet therapies have been tested in clinical tri-

als, including eptifibatide, a platelet αIIbβ3 receptor blocker, which failed to improve 
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time to crisis resolution or hospital discharge in SCD patients, though only thirteen pa-

tients were enrolled in the study [213]. Meanwhile, targeting IL-1β downstream of in-

flammasome activation with canakinumab led to improved thrombo-inflammation and 

quality of life, including reduced days of hospitalization and pain [214]. P-selectin anti-

body (Crizanlizumab) is the only targeted therapy against thrombo-inflammation in 

SCD. However, prophylactic P-selectin inhibition by crizanlizumab led to only ~50% re-

duction in hospitalization related to VOC, suggesting that P-selectin-independent path-

ways contribute to the remaining morbidity of VOC [87]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Efficacy trials of antiplatelet therapies in SCD 

Study Design Study Population Intervention 
Primary Outcome 

Measure and Result 

Phase IIb 

 

Multicentre, 

double-blind, 

double-dummy, 

randomized, 

placebo-controlled, 

parallel-group[211] 

• Have SCD [homozygous sickle cell (HbSS) 

or sickle beta-zero thalassemia (HbSβ0)] 

• Ages 18-30 years (mean 22.2 years old) 

• Have ≥4 days of pain during the 4-week sin-

gle-blind placebo baseline period prior to 

randomization 

• If on hydroxycarbamide, a stable dose for 3 

months prior to enrollment required 

• If on erythropoietin, drug must have been 

prescribed 6 months before and at a stable 

dose for ≥3 months prior to randomization 

(n=194) 

• Ticagrelor 10 mg plus 

matching placebo for 

ticagrelor 45 mg 

• Ticagrelor 45 mg plus 

matching placebo for 

ticagrelor 10 mg 

• Matching placebo for 

ticagrelor 10 and 45 

mg 

 

Duration: 12 weeks 

Proportions of days 

with diary-reported 

SCD pain 

 

No significant differ-

ence between placebo 

and ticagrelor treatment 

groups 
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Phase III 

 

Multinational, 

double-blind, randomized, 

placebo-controlled, paral-

lel-group[210] 

• Have SCD [homozygous sickle cell 

(HbSS) or sickle beta-zero thalassemia 

(HbSβ0)] 

• Are participants with SCD who have 

had ≥2 episodes of vaso-occlusive crisis 

(VOC) in the past year 

• Have a body weight ≥19 kilograms (kg) 

and are ≥2 and <18 years of age, inclu-

sive at the time of screening 

• If participants are ≥2 and ≤16 years of 

age, they must have had a transcranial 

Doppler within the last year 

(n=341) 

• Prasugrel 0.08 mg/kg-

0.12 mg/kg po once 

daily 

• Placebo 

 

 

 

 

 

 

 

 

 

Duration: 9-24 months 

Number of Vaso-Occlu-

sive Crisis (VOC) 

Events Per Participant 

Per Year (Rate of VOC) 

 

Terminated due to lack 

of efficacy 

Phase III 

 

Double-blind crossover 

study[209] 

• Have sickle hemoglobinopathy observed 

regularly 

• Ages 2-17 years old (mean 7.7 years old) 

• The hematologic diagnosis was confirmed 

by cellulose acetate electrophoresis at pH 

8.6 and citrate agar electrophoresis at pH 6.4 

• At least 50% compliant 

(n=49) 

• Low dose aspirin 

• Placebo 
 

Frequency and severity 

of VOC 

 

No significant differ-

ence between placebo 

and aspirin treatment 

groups 

 

 

Therapies targeting thrombo-inflammation in patients with COVID-19 are in clini-

cal trials [215]. In a necropsy study of 68 COVID-19 patients, nearly 70% (48 out of 68) 

were treated with anticoagulants; and of those treated with anticoagulants, almost 50% 

had large thrombi, and nearly 90% had microvascular thrombi of arterioles and capillar-

ies (42 out of 48). This demonstrates the lack of efficacy of anticoagulation in severe 

COVID-19 [216]. Furthermore, prohibitive signal for bleeding risk, in addition to futility, 

has recently led to the discontinuation of high-dose heparin arm in REMAP-CAP, AC-

TIV-4, and ATTACC studies in severe COVID-19 [216-218]. The momentum seems to be 

finally shifting to antiplatelet agents, both for prevention and treatment even though the 

efficacy of these or other agents remains to be demonstrated in preclinical models of 

COVID-19.  

Numerous clinical trials have been initiated to investigate the benefits of antiplate-

let therapy in COVID-19. In the NIH ACTIV-4 trial, amongst 657 symptomatic outpa-

tients with COVID-19, the major adverse cardiovascular or pulmonary outcomes were 

not significantly different for patients randomized to low dose aspirin, apixaban (2.5 mg 

twice daily), apixaban (5.0 mg twice daily) or placebo [219]. However, the median time 

from diagnosis to randomization and from randomization to initiation of study treatment 

were 7 days and 3 days, respectively, suggesting that survival bias may account for a 

very low event rate in both placebo and treatment groups. Early administration of aspirin 

in ambulatory COVID-19 patients appears to provide significant benefit and correlates 

with a decrease in overall mortality [220], but was not effective in reducing progression 
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to invasive mechanical ventilation or death in hospitalized patients, as reported in the 

Randomized Evaluation of COVid-19 thERapY (RECOVERY) trial, the world’s largest 

clinical trial of treatments for patients hospitalized with COVID-19 [221,222]. Aspirin ir-

reversibly inhibits both COX enzymes (COX-1 >> COX-2), preventing prostaglandin pro-

duction by cells until the new enzyme is produced [223]. Low doses of aspirin, typically 

75 to 81 mg/day, are sufficient to irreversibly acetylate serine 530 of COX-1 but have little 

effect on COX-2 [223]. Therefore, the lack of efficacy of aspirin in hospitalized patients 

with COVID-19 may be due to inducible COX-2 mediated TxA2 generation and failure of 

aspirin to inhibit the effects of TxA2 once synthesized. Moreover, the well-known phe-

nomenon of aspirin resistance in the obese or the elderly has been attributed to increased 

expression of cytosolic phospholipase A2, and COX-2, which leads to increased genera-

tion of TxA2 [224]. Marked increase in TxA2 generation and COX-2 expression in severe 

COVID-19 raises the specter of aspirin resistance, especially in the elderly or obese pa-

tients, as in the general population [225,226]. Plasma from patients with COVID-19 trig-

gered platelet and neutrophil activation and NET formation in vitro; the latter was 

blocked by therapeutic-dose low-molecular-weight heparin but not by aspirin [227]. Fur-

thermore, the use of aspirin in children with COVID-19 is relatively contraindicated due 

to the risk of Reye’s syndrome [228]. 

Furthermore, COX-2 inhibitors are known to increase the risk of cardiovascular 

events and, therefore, not advised in SCD or COVID-19 [229,230]. Blocking COX-1 or 

COX-2 may result in more challenges than cures because of their broad inhibition of sev-

eral essential prostanoids other than TxA2 [231]. Although TxA2 synthase inhibitors sup-

press TxA2 formation, accumulation of the substrate prostaglandin (PG)H2 stimulates TP 

receptor on platelets and endothelium, thereby inhibiting the antiplatelet action of TxA2 

synthase inhibitors [232]. TP receptor antagonists block the activity of both TxA2 and 

PGH2 on platelets and endothelium. Thus, early administration of well-tolerated TP re-

ceptor antagonists may limit progression to severe COVID-19 [83] and may also be effec-

tive in SCD considering the common pathobiology of thrombo-inflammation in the two 

disease states.  

It has been proposed that blocking the deleterious effects of PGD2 and TxA2 with a 

dual DP2/TP receptor antagonist ramatroban might be beneficial in COVID-19 [233,234]. 

Ramatroban is a surmountable and potent antagonist of TP receptors. Ramatroban is 

orally bioavailable and has been used in Japan for the past 20 years as a treatment for 

allergic rhinitis. Ramatroban has been shown to provide rapid relief of symptoms and 

successfully treat 4 patients with severe COVID-19 [166]. This is consistent with the role 

of TP receptor antagonism in relieving postcapillary pressures, promoting resolution of 

edema, and improving lung compliance and gas exchange [162,166]. Notably, patients 

treated with ramatroban did not develop overt long-haul COVID symptoms after recov-

ery from acute illness, supporting the anti-fibrotic effect of ramatroban as demonstrated 

in a mouse model of silicosis [166,235]. 

Ramatroban is 100-150 times more potent than aspirin in inhibiting platelet aggre-

gation, P-selectin expression, and sphingosine-1-phosphate (S1P) release from platelets 

[236-238]. S1P is chemotactic for monocytes and inhibition of S1P release reduces 
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monocyte infiltration [238]. Ramatroban also decreases macrophage infiltration by inhib-

iting endothelial surface expression of ICAM-1 and VCAM-1, and inhibiting MCP-1 ex-

pression on endothelial cells in response to TNF-α or platelet-activating factor [236]. Ad-

ditionally, the potentiation of CLEC2 signaling by TxA2 was abolished by 10 µM 

ramatroban, while 1 mM aspirin was only partially effective [86]. In addition to its anti-

platelet action, ramatroban also improves vascular responsiveness [236]. With a plasma 

half-life of about 2 hours, the antiplatelet action of ramatroban is reversible [236]. This is 

of advantage in the event of bleeding complications following anticoagulation in criti-

cally ill COVID-19 patients [239], and SCD patients with venous thromboembolism [240]. 

 

9. Conclusions 

Thrombo-inflammation is a classic feature of both SCD-associated vaso-occlusive 

crisis and severe COVID-19. Thrombo-inflammation leads to microvascular thrombosis 

and thrombotic microangiopathy. Both diseases share the pathobiology of endothelial 

cell injury and activation, platelet activation, and platelet-leukocyte partnership culmi-

nating in thrombo-inflammation. COX-2-mediated increase in TxA2 signaling may play 

an important role in platelet activation, leading to thrombo-inflammation in both SCD 

and COVID-19. The failure of the previous anticoagulant and antiplatelet strategies in 

both SCD and COVID-19 underlines the importance of identifying new therapeutic tar-

gets such as TxA2 and/or PGD2 for the resolution of acute crisis in both diseases.  
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