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Abstract: People with sickle cell disease (SCD) are at greater risk of severe illness and
death from respiratory infections, including COVID-19 than people without SCD (Cen-
ters for Disease Control and Prevention, USA). Vaso-occlusive crises (VOC) in SCD and
severe SARS-CoV-2 infection are both characterized by thrombo-inflammation mediated
by endothelial injury, complement activation, inflammatory lipid storm, platelet activa-
tion, platelet-leukocyte adhesion, and activation of the coagulation cascade. Notably, li-
pid mediators, including thromboxane Ao, significantly increase in severe COVID-19 and
SCD. In addition, the release of thromboxane A: from endothelial cells and macrophages
stimulates platelets to release microvesicles which are harbingers of multicellular adhe-
sion and thrombo-inflammation. Currently, there are limited therapeutic strategies tar-
geting platelet-neutrophil activation and thrombo-inflammation in either SCD or
COVID-19 during acute crisis. However, due to many similarities between the pathobiol-
ogy of thrombo-inflammation in SCD and COVID-19, therapies targeting one disease
may likely be effective in the other. Therefore, the preclinical and clinical research
spurred by the COVID-19 pandemic, including clinical trials of anti-thrombotic agents,
are potentially applicable to VOC. Here, we first outline the parallels between SCD and
COVID-19; second, review the role of lipid mediators in the pathogenesis of these dis-
eases and lastly, examine the therapeutic targets and potential treatments for the two dis-

eases.
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C-type-lectin-like receptor; LDH, lactate dehydrogenase; TF, tissue factor; DC-SIGN,
dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin; L-SIGN,
liver/lymph node-specific intracellular adhesions molecule-3-grabbing integrin;
DAMPs, damage-associated molecular patterns; ROS, reactive oxygen species; T,
thromboxane; COX, cyclooxygenase; IL, interleukin; TP receptor, thromboxane pros-
tanoid receptor; DP receptor, D-prostanoid receptor; MASP, mannan-binding lectin-as-
sociated serine protease; MAC, membrane attack complex; PG, prostaglandin; TNF, tumor

necrosis factor; GSDMD, gasdermin D; S1P, sphingosine-1-phosphate

1. Introduction

During the current COVID-19 pandemic, over 550 million people have been in-
fected with the SARS-CoV-2 virus, and more than 6 million people have died. Investiga-
tors have reported clinical outcomes of SCD patients who developed COVID-19 during
the current pandemic [1-6]. Some studies have demonstrated a more effective antiviral
response against SARS-CoV-2 in patients with SCD, leading to a lower incidence of
COVID-19 complications [7-9]. However, most studies have reported worse outcomes
with COVID-19 in SCD patients compared to the general population. Among 178 persons
with SCD in the United States who were reported to an SCD-coronavirus case registry,
122 (69%) were hospitalized, and 13 (7%) died [2]. A study based on electronic health rec-
ord data from a multisite research network compared outcomes of African Americans
with COVID-19 with or without SCD or heterozygous states of sickle cell trait (SCT) [1].
After 1:1 propensity score matching (based on age, sex, and other preexisting comorbidi-
ties), patients with COVID-19 and SCD remained at a higher risk of hospitalization (rela-
tive risk [RR], 2.0; 95% CI, 1.5-2.7) and development of pneumonia (RR, 2.4; 95% CI, 1.6-
3.4) and pain (RR, 3.4; 95% CI, 2.5-4.8) compared with African Americans without SCD or
SCT.

In a prospective study of 3500 pediatric and adult patients with SCD treated at 5
academic centers in the US, 66 patients developed COVID-19 [10]. During a follow-up
period of 3 months after diagnosis of SARS-CoV-2 infection, 75% of patients were hos-
pitalized, and the mortality rate was 10.6%. Vaso-occlusive pain was the most common
presenting symptom. Acute chest syndrome occurred in 60% of hospitalized patients and
all patients with a fatal outcome. Older age and a history of pulmonary hypertension,
congestive heart failure, chronic kidney disease, and stroke were risk factors for mortal-
ity. Laboratory parameters in those who died included higher creatinine, lactate dehy-
drogenase, and D-dimer levels. In hospitalized patients, anticoagulant use was twice
more common in patients who survived. Furthermore, all mortality occurred in patients
not on disease-modifying therapy for SCD.

In a genetic association study of 2729 persons with sickle cell trait (SCT) and 129848
who were SCT negative, individuals with SCT had a number of preexisting kidney con-

ditions that were associated with unfavorable outcomes following COVID-19 [11]. The
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presence of SCT was associated with increased risk of mortality and acute kidney failure
following COVID-19, suggesting that SCT is also a prognostic factor for COVID-19 [11].

Thus, SCD has, in fact, emerged as one of the most important comorbidities confer-
ring a high risk of mortality from COVID 19 that far exceeds the risk associated with
chronic kidney disease, leukemias and lymphomas, heart failure, diabetes, obesity,
lung cancer, acute myocardial infarction, chronic obstructive pulmonary disease, tobacco
use, ischemic heart disease and hypertension, in the most extensive comorbidity analysis
of COVID-19 patients to date [12]. Other adverse outcomes may also include SCD-related
chronic organ dysfunction such as chronic persistent pain, lung and kidney injury, frag-
mented care, poor access to quality care, and interruptions in care as a result of fear of
exposure to COVID.

These case reports, case series, and registry-based cohorts provide evidence of a
high risk of severe clinical course in SCD patients with COVID-19 and suggest an
interaction between sickle cell and COVID-19 pathophysiology, while providing criti-
cal insights that may help generate mechanistic hypotheses and design prospective clini-
cal trials.

It has been proposed that SCD is associated with impaired oxygen exchange, which
may be further impeded during the inflammatory phase of COVID-19. However, compli-
cations such as cerebrovascular events in SCD patients with COVID-19 have not been
reported. Therefore, we postulate that endothelial injury, thrombo-inflammation, micro-
vascular thrombosis, and resulting vaso-occlusive disease in SCD may be amplified by
similar processes initiated by the SARS-CoV-2 virus and vice versa, adding to the risk of
morbidity and mortality from any single disease. In this review, we examine the two dis-
eases' pathobiological processes and tease out the common pathways that may present a
therapeutic target, potentially benefiting thousands of SCD patients worldwide during
the COVID-19 pandemic.

2. Pathophysiology of Sickle Cell Disease and COVID-19

SCD affects millions of children and adults globally, including about 100,000 in the
United States [13]. The average life expectancy of an SCD patient at birth is 42-47 years in
the United States [14], compared to about 79 years for the general U.S. population. SCD
has a profound adverse impact on the quality of life. The current therapeutic options for
SCD include hydration, blood transfusions, hydroxyurea, L-glutamine, crizanlizumab,
and voxelotor.

The clinical hallmark of SCD is vaso-occlusive crises (VOCs), also referred to as
pain crises. Cerebral vasculopathy, in its most devastating form, results in arterial throm-
bosis, which leads to cerebral infarction and stroke in early childhood [15,16]. SCD re-
mains one of the most common causes of stroke in children [17]. The risk of stroke is
higher during the first decade and is more significant between ages 2 and 5, when it
reaches about 1% per year [18]. About 10% of SCD patients have a clinically apparent
stroke before the age of 20, and the risk increases to about 25% by the age of 45 years [18].
Thrombotic vasculopathy in SCD is accompanied by significant organ dysfunction, mor-

bidity diminished quality of life, and premature mortality [19,20]. Despite recent
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therapeutic advances, SCD patients remain at a high risk of developing VOCs and vascu-
lar complications. Thus, it is imperative to address the scientific gaps in our understand-
ing of the mechanisms underlying the thrombo-inflammatory state, which is generally
characterized by sickle RBC-mediated endothelial inflammation/dysfunction and coagu-
lation activation leading to vessel injury, leakage, and vascular thrombosis [16].

The SARS-CoV-2 infection causes COVID-19 disease, which in its severe form can
present with thrombotic microangiopathy, pulmonary thrombosis, pedal acro-ischemia
(“COVID-toes”), arterial clots, strokes, cardiomyopathy, coronary and systemic vascu-
litis, bleeding, deep venous thrombosis, pulmonary embolism, and microvascular throm-
bosis in renal, cardiac and brain vasculature [21-26]. Furthermore, necropsies have re-
vealed inflammatory microvascular thrombi containing neutrophils, platelets, and neu-
trophil extracellular traps (NETs) in the pulmonary, hepatic, renal, and cardiac microvas-
culature as the hallmark of severe COVID-19 disease and the underlying cause of multi-
organ failure [25,27,28]. Similar thrombo-inflammatory processes mediated by cell-free
hemoglobin have been observed and proposed in SCD, with emphasis on platelet activa-
tion [16,29], a key driver of thrombo-inflammation in COVID-19 [30]. Therefore, we pro-
pose that the emerging therapies targeting platelet- mediated thrombo-inflammation in
COVID-19 may serve as potential therapies for VOC.

In SCD, VOC often causes acute chest syndrome (ACS), defined as the presence of
fever and/or new respiratory symptoms accompanied by a new pulmonary infiltrate on a
chest X-ray [31]. This is very similar to acute pneumonia in COVID-19. However, there
are significant differences in clinical presentation and underlying pathological basis for
thrombo-inflammation in COVID-19 versus SCD. The incidence rate of ACS is highest at
two to four years of age among children with SCD, with a rate of 25.3 per 100 patient-
years, and decreases to 8.87 per 100 patient-years in adults >20 years of age with HbSS
[32]. On the other hand, acute pneumonia, and respiratory failure are more common in
adults with COVID-19 [33].

Pulmonary complications associated with COVID-19 or SCD reveal similar under-
lying pathobiology and therapeutic targets. Respiratory distress in COVID-19 occurs in
part due to pulmonary platelet microvascular thrombosis [21]. However, the triggering
events of ACS in SCD patients may vary. Although conventional wisdom suggests ACS
occurs secondary to fat embolism in SCD, more recent evidence from CT studies has
demonstrated in situ pulmonary thrombosis in 10-20% of ACS patients [34-41]. Interest-
ingly, in 16% of 538 SCD patients with ACS, pulmonary infarction or thrombosis were
the triggering events rather than infection or fat embolism [42]. Still, fat embolism due to
bone marrow infarction occurs in about 40% of both children [43] and adults [44-46], and
leads to disseminated pulmonary platelet thrombi with a sharp and significant decline in
platelet count prior to death [47]. It has been proposed that platelet inhibition at steady-
state or in the hemodynamically stable acute crisis might be an important therapeutic
addition to prevent the progression of ACS in SCD [47]. A comparative analysis of the
pathobiology of SCD and COVID-19, particularly in the context of endothelial injury,
platelet activation, and multicellular adhesion, may help to identify potential therapies

for the thrombo-inflammation in both diseases.
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3. Mechanisms of multicellular adhesion and thrombo-inflammation in Sickle Cell
Disease and COVID-19

Complications associated with thrombo-inflammation in SCD have uncanny simi-
larities to those in COVID-19. In SCD, injury to the red blood cell (RBC) membrane medi-
ates endothelial damage and inflammation leading to multi-organ vasculopathy. Hemo-
globin S polymerization impairs deformability of the RBC and causes oxidative injury
and destruction of the RBC [48]. RBC injury exposes phosphatidyl serine and releases Hb
and other intracellular contents [48]. This, in turn, depletes NO, increases endothelial ad-
herence, releases pro-inflammatory cytokines, and activates coagulation causing ische-
mia, reperfusion injury, and vascular damage [48-52]. Similar inflammatory processes
observed during SARS-CoV-2 infection are evidenced by elevated expression of leuko-
cyte adhesion molecules in the pulmonary vasculature [21], and the presence of a proin-

flammatory lipid/thromboxane storm [53].

3.1. Endothelial cell injury and activation: role in thrombo-inflammation in SCD and
COVID-19

Endothelial cell injury and activation lie at the heart of the prothrombotic state in
both SCD and COVID-19 (Fig. 1). Vascular endothelium is activated in SCD regardless
of the patient’s clinical status with markedly increased expression of adhesion
molecules, including intercellular adhesion molecule 1 (ICAM-1), vascular-cell
adhesion molecule 1 (VCAM-1), E-selectin and P-selectin [54]. SARS-CoV-2 virus
directly infects and damages the endothelial cells, which initiates a cascade of events
leading to intussusceptive angiogenesis and microvascular thrombosis [21]. SCD and
COVID-19 are characterized by interactions between activated endothelial cells,
platelets, and leukocytes, leading to thrombo-inflammation and vascular occlusion
[55]. Most notably, endothelial inflammation induces surface expression of adhesion
molecules, including P-selectin and release of prothrombotic granule contents (von
Willebrand factor and FVIII), both effects enhancing leukocyte/platelet adhesion [16].
Intravascular release of tissue factor (TF) also contributes to the polarization toward a
prothrombotic state [24,56-58]. Release of cell-free heme activates converging
inflammatory pathways, such as TLR4 signaling [59], formation of neutrophil
extracellular traps (NETs) [25,60] and priming of the inflammasome (NLRP3)
pathway, leading to release of interleukin-1{ (IL-1p) and IL-18 by leukocytes,
platelets, and endothelial cells, which contributes to the development of a sterile
thrombo-inflammatory state in SCD [29,52,61,62].
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Figure 1. Putative mechanism of complement-mediated microvascular thrombosis and
vaso-occlusive disease in SCD and COVID-19: SARS-CoV-2 infection and sickle cell
disease induce compiement activation and formation of membrane attack complex
leading to necrosis and pyroptosis of endothelial cells, platelets and monocytes, and
accumulation of IL-1a. IL-1a stimulates the IL-1 receptor expressed on endothelial cells
leading to thromboxane synthesis. Thromboxane A: via the TP receptor activates
platelets leading to platelet activation, platelet neutrophil partnership, neutrophil
activation, and the release of neutrophil extracellular traps (NETs),
thromboinflammation, oxidative stress, and subsequent end-organ damage and failure.
COX, cyclooxygenase; IL, interleukin; NETs, neutrophil extracellular traps; TP,
thromboxane prostanoid receptor; MAC, membrane attack complex; VTE, venous
thromboembolism; TMA, thrombotic microangiopathy; DIC, disseminated intravascular
thrombosis; ARDS, acute respiratory distress syndrome; AKI, acute kidney injury

3.2. Platelet activation: role in thrombo-inflammation in SCD and COVID-19

The pathogenesis of platelet activation in COVID-19 and SCD is multifactorial.
COVID-19 and SCD activate platelets by association with the SARS-CoV-2 virus or
direct activation with cell-free hemoglobin. Sickling and vaso-occlusion in SCD lead to
hemolysis and subsequent release of cell-free hemoglobin [16]. Free plasma hemoglobin
generates reactive oxygen species, a potent nitric oxide scavenger [63]. Nitric oxide
scavenging promotes platelet activation and endothelial dysfunction [63]. Under
physiological conditions, free heme is scavenged by the plasma protein hemopexin
and is subsequently catabolized by heme oxygenase-1 into carbon monoxide,
biliverdin, and ferrous iron (Fe?*) [64]. Acute or chronic hemolysis exhausts this
scavenging system for heme leading to an increase in free heme in the blood [64].
Upon release, reduced heme is rapidly and spontaneously oxidized in the blood into
its ferric (Fe3*) form, hemin, with increased levels observed in hemolytic diseases [64].
Hemin has been implicated in the pathogenesis of ACS, one of the leading causes of
death in SCD [65]. Hemin activates platelets as a ligand for C-type-lectin-like receptor
2 (CLEC2) [64]. Hemin-induced aggregation of human platelets is abolished by pre-
incubation of hemin with a recombinant dimeric form of CLEC2 [64]. This indicates a
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role for platelet CLEC2 in sickle cell-mediated platelet activation (Fig. 2). Cell-free
heme also amplifies inflammation [66] by activating inflammatory pathways including
TLR signaling [67], gasdermin D-dependent NET formation [60,62], platelet-
inflammasome activation and generation of IL-1{3 carrying platelet extracellular vesicles
and priming of the inflammasome, leading to platelet-neutrophil aggregation and vaso-
occlusion [29,52]. Consistent with the above, incubation of human peripheral
neutrophils with VOC plasma produced significantly more NETs compared to non-
sickle and steady-state plasma [68]. NET generation in SCD is caused by sterile
inflammation [62]. Additionally, during SCD-induced bone marrow infarction, the bone
marrow undergoes stress reticulocytosis. As a result, it releases immature erythrocyte or
reticulocytes [69] with surface expression of adhesion molecules such CD36 and a4(31
integrin [52,70], which contribute to platelet activation and thrombo-inflammation.
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Figure 2. Mechanisms of heme and thromboxane Az mediated thromboinflammation in COVID-
19 and sickle cell disease (SCD): Vaso-occlusion due to sickling or direct entry by SARS-
CoV-2 virus leads to endothelial cell activation and damage, and hemolysis. COX-2 ex-
pression in endothelial cells promotes thromboxane Az synthesis. Free heme released
from red blood cells is spontaneously oxidized to its ferric form, hemin. Hemin stimu-

lates platelet CLEC2 signaling and thromboxane Az/TP receptor-dependent Syk
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phosphorylation leading to platelet activation, spreading, and degranulation. Platelets
release exosomes and microvesicles, which stimulate the CLEC5A and TLR2 receptors on
neutrophils. Subsequent, NLRP3 activation in neutrophils and monocytes promotes acti-
vation and assembly of gasdermin D, leading to the release of neutrophil extracellular
traps and monocyte pyroptosis. NLRP3 inflammasome activation induces the release of
proinflammatory cytokines, including IL-18 and IL-1f3, thereby fueling thromboinflam-
mation in COVID-19 and SCD. NO, nitric oxide; COX, cyclooxygenase; IL, interleukin;
NETs, neutrophil extracellular traps; TP, thromboxane prostanoid receptor; CLEC, C-
type lectin-like receptor; Syk, spleen tyrosine kinase; PLC, phospholipase C; PKC, protein
kinase C; TLR, toll-like receptor; ADP, adenosine diphosphate; EGF, epidermal growth
factor; PDGEF, platelet-derived growth factor; TGF, transforming growth factor; NLRP3,
NLR family pyrin domain containing 3

SARS-CoV-2 viral hemagglutinins can bind to circulating red blood cells (RBCs)
and induce agglutination and clumping of RBCs [71]. First, SARS-CoV-2 binds to RBCs in
vitro [72] and clinically in COVID-19 patients [71,73]. Second, although fusion and repli-
cation of SARS-CoV-2 occur via ACE2, such hemagglutinating viruses initially attach to
infective targets and clump with blood cells via much more abundantly distributed sialic
acid glycoconjugate binding sites [71]. SARS-CoV-2, in particular, binds to these sialic
acid sites [71]. Third, certain enveloped viruses express an enzyme, hemagglutinin ester-
ase, that counteracts viral-RBC clumping but is lacking in the SARS-CoV-2 virus [71].
These hemagglutinating properties of SARS-CoV-2 establish a framework for “catch and
clump” induction of microvascular occlusion [71].

Subsequent hemolysis marked by elevated levels of LDH and thrombotic microan-
giopathy may play a role in platelet activation in COVID-19. Despite only minimal symp
toms of COVID-19, 13 of the 34 children studied had thrombotic microangiopathy con-

current with complement activation marked by increased plasma sC5b-9 levels [74]. Fur-
thermore, in 181 adults hospitalized for COVID-19, an increased percentage of schisto-
cytes were correlated with decreased platelet count and increased markers of hemolysis,
such as LDH [75]. The percentage of schistocytes was higher in those who died than
those who survived [75]. Thus, thrombotic microangiopathy plays a significant role in
platelet activation and morbidity in COVID-19, potentially through the release of free
heme.

D-dimers are a prognostic marker of COVID-19 [76]. D-dimer levels are more likely
to be abnormal in severely and critically ill patients compared with mild and ordinary
cases. At the same time, D-dimer levels of patients who had died are significantly higher
than those of surviving patients [76]. D-dimer levels are also raised in VOC and in most
SCD patients with an abnormal chest X-ray (Table 1) [77] indicative of a prothrombotic

state.

Table 1: Comparative analysis of Plasma D-dimer levels in SCD during the steady-state and sickle crisis and in
COVID-19 patients

Subjects Age/Reference Plasma D-dimer levels
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P-value compared to

Control Disease State Controls
Steady State SCD
n=25 (Samples=28)
P<0.001
HD (n=35) 566 + 739 ng/ml
Adult[78]
79 25 ng/ml SCD Painful Crisis
n=21 (Samples=40
( P ) P<0.001
Sickle Cell Dis-
1038 + 1010 ng/ml
ease
SCD with pain crisis and  SCD with pain crisis and ab-
normal chest X-ray normal chest X-ray
(n episodes=32) (n episodes=13)
A
12-37 years[77] N/
584.2 ug/L 2117.0 ug/L
(250-3119 pg/L) (250-9143 pg/L)
Hospitalized COVID-19 pa- Hospitalized COVID-19 pa-
Unventilated:  tients did not require artifi-  tients requiring artificial
62.5+84 cial ventilation ventilation P<0.05
Ventilated: (n=18) (n=11)
53.8 £ 9.3[79]
650+ 175 ng/ml 1250 +210 ng/ml
COVID-19
COVID-19 patients without COVID-19 patients with pul-
pulmonary embolism monary embolism
P=0.001
(n=118) (n=44)

65.57+13 years[80]

1310 ng/mL (800-2335) 5364 ng/mL (2928-12275)

Platelet activation plays a crucial role in both SCD and COVID-19. Platelet-de-
rived microparticles are a biomarker of vaso-occlusive events in severe cases of SCD,
while erythrocyte-derived microparticles are higher in non-severe disease [81].
Platelet extracellular vesicles and markers of platelet degranulation, including platelet
factor 4 and serotonin in the blood, are also increased in COVID-19 [82].

In SCD, platelet activation and release of microparticles is likely mediated by
heme-induced platelet CLEC2 receptor or NLRP3 inflammasome activation [29,64].
However, in COVID-19, heme-induced platelet CLEC2 activation has not been re-
ported to the best of our knowledge [83]. On the other hand, SARS-CoV-2 associates
with platelets [82] possibly by binding of SARS-CoV-2 spike receptor binding domain

(5-RBD) to dendritic cell-specific intercellular adhesion molecule-3-grabbing non-
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integrin (DC-SIGN) and liver/lymph node-specific intracellular adhesions molecule-3-
grabbing integrin (L-SIGN) [84]. This is reminiscent of dengue virus-induced activa-
tion of platelets by binding to a DC-SIGN/CLEC2 hetero-multivalent receptor complex
resulting in CLEC2 activation and platelet degranulation with the release of extracel-
lular vesicles including exosomes and microvesicles [85].

Upon activation, the CLEC2 receptor undergoes tyrosine phosphorylation medi-
ated by thromboxane Az (TxAz) [86]. This leads to downstream phosphorylation of
spleen tyrosine kinase and phospholipase V2, potentiated by TxA: [86]. This coopera-
tion between CLEC2 and TxA: signaling is critical for platelet activation (Fig. 2) [86].
Platelet activation leads to release of exosomes and microvesicles that further activate
CLEC5A and TLR2 receptors on neutrophils and macrophages, thereby inducing NET
formation and proinflammatory cytokine release [85]. Therefore, CLEC2 signaling is a
potential therapeutic target in both SCD and COVID-19 (Fig. 2).

3.3. P-selectin: role in thrombo-inflammation in SCD and COVID-19

Upregulation of P-selectin in endothelial cells and platelets contributes to the cell-
cell interactions involved in vaso-occlusion and sickle cell-related pain crisis [87,88], and
plasma levels of soluble P-selectin are markedly increased in vaso-occlusive SCD [89]. P-
selectin is a well-recognized therapeutic target in SCD and its inhibition by crizanli-
zumab, a humanized monoclonal antibody, significantly lowers rates of sickle cell-re-
lated pain crises [87]. Similarly, plasma levels of soluble P-selectin are markedly in-
creased in COVID-19 [90]. Platelet P-selectin surface expression is upregulated in
COVID-19 and positively correlates with platelet-monocyte aggregates in infected sub-
jects [24]. In a randomized, placebo, controlled clinical trial amongst 54 hospitalized
COVID-19 patients, crizanlizumab reduced P-selectin levels by 89% while promoting
thrombolysis as suggested by a 77% increase in D-dimers and decreased prothrombin
fragments, but there was no difference in the clinical outcomes (the CRITICAL study)
[91].

3.4. Tissue Factor: role in thrombo-inflammation in SCD and COVID-19

TF is a transmembrane protein that functions as a high-affinity receptor for factors
VII and Vlla and is the primary cellular initiator of blood coagulation during endothelial
injury [92,93]. Formation of the TF: factor Vlla (FVIla) complex leads to the activation of
both FX and FIX, with subsequent thrombin generation, fibrin deposition, and activation
of platelets [94]. Under normal conditions, endothelial cells and blood cells, such as mon-
ocytes, do not express TF. On the other hand, total circulating microparticles expressing
TF, mainly derived from monocytes and endothelial cells, are elevated in sickle cell crisis
compared to steady-state and healthy controls [56]. Interestingly, TF inhibition in trans-
genic SCD mice significantly attenuates heme-induced microvascular stasis and prevents
lung vaso-occlusion mediated by arteriolar neutrophil-platelet microemboli [95]. In se-
vere COVID-19, platelet activation and TF expression by monocytes leading to platelet-

monocyte interaction are associated with COVID-19 severity and mortality [24].
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3.5. CD40L: role in thrombo-inflammation in SCD and COVID-19

CD40L is a type II transmembrane protein expressed primarily by activated T cells,
activated B-cells, and platelets; and under inflammatory conditions is also induced on
monocytic cells, natural killer cells, mast cells, and basophils [96,97]. CD40L binds to
CD40 expressed on a variety of cells including dendritic cells, monocytes, platelet, and
macrophages [97]. CD40L/CD40 interactions are pivotal in different cellular immune pro-
cesses [97]. Notably, platelets release CD40L, which contributes to chronic inflammation
in SCD.[98] Elevated levels of circulating CD40L have been associated with acute chest
syndrome (ACS) in SCD [98,99]. Platelets from SARS-CoV-2 patients are also more prone
to release of soluble CD40L upon exposure to thrombin compared to healthy controls
[82].

Activated platelets are also a significant source of thrombospondin-1, another pro-
tein related to the incidence of ACS and vaso-occlusive episodes [100]. However, throm-

bospondin has not been examined in COVID-19 to the best of our knowledge.

3.6. NLRP3 Inflammasome: role in thromboinflammation in SCD and COVID-19

Platelets are known to play a role in the detection and regulation of infection [101].
Viruses such as the dengue virus lead to platelet activation [101]. Platelets sense patho-
gens and host damage through recognition of pathogen-associated molecular patterns or
damage-associated molecular patterns (DAMPs) using receptors [101]. C-type lectin re-
ceptors DC-SIGN and CLEC2 are involved in the binding of different viruses, as well as
the recognition of DAMPs such as hemin and mitochondrial DNA [101]. Platelets are
highly activated in COVID-19. They are likely involved in boosting the inflammasome
capacity of innate immune cells, including human macrophages and neutrophils, and IL-
1 production by monocytes [25,102-104]. An unknown platelet-derived soluble factor en-
hances NLRP3 transcription and inflammasome activation [104]. We postulate that
CLEC2-induced platelet activation leads to the release of exosomes and microvesicles,
which stimulate the CLEC5A and TLR2 receptors on innate immune cells, leading to
NLRP3 inflammasome activation and pyroptosis [85].

SARS-CoV-2 virus also induces inflammasome activation and cell death by pyrop-
tosis in human monocytes, hematopoietic stem/progenitor cells, and endothelial progeni-
tor cells [105,106]. Pyroptosis was dependent on caspase-1 engagement, before IL-1£3 pro-
duction and inflammatory cell death [105]. Furthermore, examination of the whole blood
transcriptome in COVID-19 patients has revealed that the dysregulated immune system
is COVID-19 is characterized by highly specific neutrophil activation associated signa-
tures [107], with an increase in immature neutrophils with NLRP3 inflammasome activa-
tion [103].

NLRP3 inflammasome is also upregulated in SCD patients under steady state con-
ditions compared with healthy controls, and is further upregulated when patients experi-
ence an acute pain crisis [108]. Platelet-inflammasome activation led to the generation of
IL-1p and caspase-1-carrying platelet extracellular vesicles that bind to neutrophils and
promote platelet-neutrophil aggregation in lung arterioles of SCD mice in vivo and SCD

human blood in microfluidics in vitro [29]. Inhibition of the inflammasome effector
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caspase-1 or IL-1p pathway attenuated platelet extracellular vesicle generation, pre-
vented platelet-neutrophil aggregation, and restored microvascular blood flow [29].
More recent findings show that sterile inflammation in SCD promotes caspase-11/4-de-
pendent activation (cleavage) of pyroptotic effector gasdermin-D (GSDMD) in neutro-
phils, which leads to generation of NETs in the liver [62]. These NETs embolize from the
liver to the lung to promote P-selectin-independent lung vaso-occlusion in SCD [62]. In-
terestingly, GSDMD is highly expressed on the BALF and blood neutrophils of COVID-
19 patients.[109] Image analysis of lung autopsies of patients who died from COVID-19
revealed the presence of NET structures associated with activated GSDMD-NT fraction
[109]. In cell cultures of neutrophils from COVID-19 patients, disulfiram, a GSDMD in-
hibitor, inhibited release of NETSs in a concentration-dependent manner [109]. Therefore,
in both SCD and COVID-19, activation of inflammasome in platelets, monocytes and
neutrophils, and GSDMD-dependent NETosis plays a key role in initiating inflammation
and tissue injury (Fig. 2).

3.7. Nitric oxide: role in thrombo-inflammation in SCD and COVID-19

Both COVID-19 and SCD are associated with endothelial injury and activation. Fol-
lowing endothelial injury, nitric oxide (NO) has been shown to serve many vasoprotec-
tive roles, including inhibition of platelet aggregation and adherence to the site of injury,
inhibition of leukocyte adherence, inhibition of vascular smooth muscle cell proliferation
and migration, and stimulation of endothelial cell growth [52,63,110-112].

In SCD, cell-free plasma hemoglobin resulting from intravascular hemolysis con-
sumes NO very rapidly [113], dramatically limiting NO bioavailability [114,115]. Inhaled
NO has shown evidence of efficacy in mouse models of SCD, but in a phase II placebo-
controlled trial of inhaled NO gas in SCD patients with VOC, NO did not improve time
to crisis resolution [116].

NO deficiency has also been observed among COVID-19 patients, and it may cause
vascular smooth muscle contractions [117], reducing the ability to neutralize ROS and
NO-mediated antiviral capability [118-120]. Nitric oxide has been widely proposed as a
potential treatment for COVID-19 [121]. However, inhaled NO gas may be rapidly se-
questered by superoxide, forming peroxynitrite, which is known to cause lung dam-
age and cell death [122]. It is plausible that NO in SCD [123] and COVID-19 [124]
could lack therapeutic benefit in an environment of oxidative stress or in the absence

of sufficient L-arginine bioavailability [122].

3.8. TGEB: role in thromboinflammation in SCD and COVID-19

The transforming growth factor (TGF-{) superfamily is composed of a large group
of proteins that are fundamental in regulating various biological processes, such as extra-
cellular deposition, cell differentiation and growth, tissue homeostasis and repair, and
immune and inflammatory responses [125]. The TGF-f subfamily is a central mediator of
fibrogenesis and a crucial regulator of fibroblast phenotype and function. There are three
known isoforms of TGF-f3 expressed in mammalian tissue, including TGF-f31, 2, and 3.

TGF-pB1 is the most abundant and ubiquitously expressed isoform and is associated with
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the development of tissue fibrosis [125-127]. Various animal models support the role of
TGF-B1 in mediating hepatic, renal, pulmonary and cardiac fibrosis [128-131]. Interest-
ingly, platelets contain 40 to 100 times more TGF-31 than other cells and rapidly release
TGF-B1 upon activation [132]. This is consistent with the positive correlation between
plasma TGF-p1 and platelet and white blood cell counts in patients with steady-state
SCD [133,134]. Interestingly, early, untimely TGF-f3 responses in SARS-CoV-2 infection
limit the antiviral function of natural killer (NK) cells [135]. Therefore, TGF-{ has been
proposed as a therapeutic target in both SCD and COVID-19 [133,135].

4. Thromboxane A:- a key mediator of thromboinflammation by regulation of platelet

activation, NO synthesis, and expression of P-selectin, CD40L, tissue factor, and TGF-

Thromboxane Az (TxA:z), a key mediator of thrombosis, is released by platelets, en-
dothelial cells, macrophages, and neutrophils.[136] TxAz binds to the thromboxane-pros-
tanoid (TP) receptor on platelets, thereby stimulating activation and aggregation of plate-
lets [136]. Cooperation between TxA:/TP receptor and CLEC2 receptor signaling path-
ways is critical for CLEC2-induced platelet activation [86].

Thromboxane A: generation is markedly stimulated in both SCD and COVID-19. In
SCD, TxB:and 2,3-dinor-TxBz, a terminal metabolite of TxB: were significantly elevated
in the urine and plasma of steady-state SCD patients compared to healthy HbAA con-
trols (Table 2) [137,138]. Moreover, in isolated rat lungs co-perfused with sickle (HbSS)
erythrocytes and platelet-rich plasma, TxA: levels increased over 10-fold more than with
normal (HbAA) erythrocytes [139]. In severe COVID-19 patients, bronchoalveolar lavage
fluid presents a picture of an inflammatory lipid storm with marked increases in fatty
acid levels and a predominance of cyclooxygenase metabolites notably thromboxane
B2 >> PGE2> PGD: [53]. Plasma levels of TxBz, a stable metabolite of TxA>, are also mark-
edly increased in severe COVID-19 patients [24]. Considering the marked increase of
TxA:z in both SCD and COVID-19, we postulate the potential role of TxA:z in the patho-
genesis of the proinflammatory state that contributes to thrombo-inflammation observed

in both diseases.

Table 2. Comparative analysis of thromboxane levels in SCD, COVID-19, and asthmatics

Thromboxane levels P-value compared to

Subjects  Source and Analyte

Control Disease State Controls
Plasma
HD (n=12) Steady State SCD (n=15)
2,3 dinor-TxB2[137]
ol P<0.001
ug
2.75+0.83 21.53 +5.10
Sickle Cell Dis-  (Mean + SEM) * i
ease Plasma HD (n=12) Steady State SCD (n=15)
TxB2[137]
P<0.05
(ng/L) <0.005 0.543 + 0.101

(Mean + SEM)
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Urinary
TxB2[137] HD (n=12) Steady State SCD (n=15)
(pg/mg creatinine) P<0.05
(Mean + SEM) 0.41 +0.30 0.91+0.13
Urinary HD (n=12) Steady State SCD (n=15)
2,3 dinor-TxB2 [137) P<0.01
(pg/mg creatinine) 1.70 £ 0.032 2.81+0.13
(mean + SEM)
Steady State SCD (n=49)
. P=0.0002
Urinary
11-dehydro-TxB: HD (n=33) 1,227 £ 191
[138]
(pg/mg creatinine) 299 +20
(Mean + SEM) Vaso-Occlusive SCD (n=15) P=0.0005
1,836 + 536
BALF TxB2[53] HD (n=25) Severe COVID-19 (n=33) P<0.0001
(nmol/L)
(Means) <0.250 12.0
Plasma TxB-2 [24] HD (n=11) Severe COVID-19 (n=35)
P<0.05
(ng/mL)
(Median) 4.0 7.5
Without Events (n=47) With Events (n=18) P—0.002
<10 d of hospitalization >10 d of hospitalization
Urinary (n=35) (n=30) P=0.02
11-dehydro-TxB2 4801 (3817-9196) 8614 (7990-14316)
[140]
(pg/mg creatinine)
(Median (95% CI)) No death (n=48) Death (n=6)
P=0.004

5360 (5907-10038)

15069 (1915-42007)
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No Mechanical Ventilation
Mechanical Ventilation (n=9)

(n=56) P<0.001
5137 (4498-7512) 20121 (5364-41015)
After Allergen
Atopic Asth- BALF TxB:[141]  Before Allergen Challenge
Challenge
matics (nmol/L) (n=8) (n=8) P<0.05
(Mean = SEM) 0.130 £ 0.021
0.430 + 0.108

HD, healthy donor; BALF, bronchoalveolar lavage fluid

There is growing evidence that cyclooxygenase enzymes, COX-1 and COX-2 medi-
ate the thromboxane generation underlying thrombo-inflammation in SCD and COVID-
19 [83]. COX-2 is an inducible enzyme, while COX-1 is constitutive. COX-2 expression is
stimulated by inflammation, a cardinal feature of both VOC and COVID-19. Endothelial
COX-2 expression was markedly increased in transgenic BERK SCD mice [142]. SARS-
CoV-2 infection of iPSC-derived cardiomyocyte cells led to > 50-fold increase in COX-2
gene expression (Dr. S. T. Reddy, UCLA, personal communication based on analysis of
the supplemental material in reference 143) [143]. In addition to upregulating COX-2 in
living human lung slices, the SARS-CoV-2 virus reduces the prostaglandin-degrading
enzyme 15-hydroxyprostaglandin-dehydrogenase [144]. TxA:z generation is COX-2 medi-
ated in states of high TxA: generation, such as in inflammation, infection, and obesity
[145]. Low-dose aspirin is unable to inhibit COX-2, and hence aspirin resistance is com-
mon in states with COX-2-dependent TxA: generation [146]. TxA2 generation by platelets
and endothelial cells stimulates expression of P-selectin, ICAM-1, and VCAM-1 on endo-
thelial cells and release of tissue factor [147-149].

4.1. Thromboxane A:-mediated P-selectin expression

TxA:z plays a role in the platelet expression of P-selectin. It was demonstrated that
the percentage of P-selectin-positive platelets in TP receptor knockout mice on day 1 was
significantly reduced compared with that in wild-type mice [148]. Therefore, TxA2 block-
ade may be another effective method to target P-selectin without the need for IV admin-

istration of anti-P-selectin Ab [87].

4.2. Thromboxane Ax-mediated tissue factor expression

TxA2 has been shown to mediate TF expression on endothelial cells and monocytes
[149]. TP receptor agonism induced TF expression in endothelial cells. In contrast, a TP
receptor antagonist reduced endothelial expression of TF after TNF-a induction
[149,150]. Similarly, lipopolysaccharide-induced TF expression on human monocytes was

abrogated by a TP receptor antagonist [151].

4.3. Thromboxane Ax-mediated CD40L expression
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Plasma CD40L has been correlated with urinary 11-dehydro-TxB, a stable metabo-
lite of TxAzin diabetic patients [152]. Upon treatment with low dose aspirin (100
mg/day), plasma CD40L decreased along with a reduction in urinary 11-dehydro-TxB:
and whole blood TxB2 production [152]. Patients with higher excretion of 11-dehydro-
TxB2 had increased levels of CD40L [152]. Therefore, targeting TxAz may reduce the re-
lease of CD40L, potentially preventing ACS and vaso-occlusion in SCD.

4.4. Thromboxane Ax-induced suppression of NO synthesis

NO inhibits platelet activation via phosphorylation of the thromboxane prostanoid
(TP) receptor [153]. In both vascular smooth muscle cells and platelets, the vasodilatory
and platelet inhibitory effects of NO are known to be mediated by cGMP, which inhibits
phospholipase C activation, inositol 1,4,5-triphosphate generation, and [Ca?]; mobiliza-
tion [154]. NO stimulates cGMP production and activates cGMP-dependent protein ki-
nase or G kinase [154]. TxA: also directly inhibits nitric oxide synthase [155]. Nitrite accu-
mulation was enhanced by TP receptor antagonists, seratrodast or ramatroban, in a
model of IL-1f3 stimulated rat aortic smooth muscle cells [155]. Therefore, TxA2 may play
a role in NO deficiency in SCD, which would be alleviated by TP receptor blockade.

4.5. Thromboxane Az-induced TGF-f release

TxA:z / TP receptor signaling stimulates activation of the TGF-3 pathway [156,157].
Hypertensive PGI: receptor knockout mice fed a high-salt diet exhibited elevated urinary
TxA2 metabolites and left ventricular TP receptor overexpression, which accompanied
cardiac collagen deposition and profibrotic TGF- gene expression [158]. Inhibition of
TxA:2 biosynthesis with low-dose aspirin mitigated the increase in blood pressure, cardiac
fibrosis, and left ventricular TGF- gene expression [158]. Moreover, the number of myo-
fibroblasts and extravasated platelets in the heart were also reduced [158]. This is con-

sistent with TxAz induced TGF-f gene expression in myofibroblasts [158].

5. Thromboxane A: in post-capillary venoconstriction in SCD and COVID-19
5.1. Post-capillary Pulmonary Venous Constriction

Cardiopulmonary complications are the leading cause of death in patients with
SCD, primarily resulting from diastolic heart failure (HF) and/or pulmonary hyperten-
sion (PH) [159]. From a hemodynamic standpoint, almost half of cases of SCD pulmonary
hypertension reported in the literature have postcapillary or venous pulmonary hyper-
tension [160]. Interestingly, U-46619, a TxA2 mimetic in a concentration of 1 nM, is suffi-
cient to reduce the guinea-pig pulmonary venous luminal area by 50% [161]. A 50% re-
duction in luminal area increases vascular resistance by 4-fold, indicating that sub-nano-
molar concentrations of thromboxane Az could produce meaningful increases in pulmo-
nary venous resistance [161]. This is consistent with the measured effect of selective TP
receptor antagonism in reducing pulmonary venous resistance and capillary pressure in
patients with acute lung injury [162]. Moreover, TP receptor antagonism prevented right
ventricular fibrosis and arrhythmias in a mouse model of pulmonary arterial hyperten-

sion [163]. Therefore, TxA:z released from platelets and pulmonary venous endothelial
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cells may cause: first, pulmonary venous hypertension and, second, left ventricular fibro-
sis secondary to elevated TGF-p levels and diastolic dysfunction.

TP receptor antagonism has also been shown to attenuate airway mucus hyperpro-
duction induced by cigarette smoke [164] and reduce tissue edema in mouse models of
acute lung injury [165]. In COVID-19, TP receptor blockade may rapidly reduce pulmo-
nary capillary pressures, improve ventilation-perfusion matching, promote resolution of
edema, reduce bronchoconstriction and airway mucus hyperproduction, improve lung
compliance and gas exchange, and thereby mitigate respiratory distress and hypoxemia
[166].

5.2. Post-capillary efferent arteriole constriction in kidney injury

Glomerular involvement is one of the most prominent renal manifestations ob-
served in SCD. It is characterized by an early increase in glomerular filtration rate (GFR)
associated with micro- or macroalbuminuria, followed by a gradual decline in GFR and
chronic renal failure [167,168]. This is consistent with underlying vasculopathy in sickle
cell nephropathy associated with cortical hyperperfusion, medullary hypoperfusion, and
an increased stress-induced vasoconstrictive response [167]. Renal involvement is usually
more severe in homozygous than heterozygous SCD. It contributes to diminished life
expectancy and 16-18% of mortality in patients with SCD [167,169,170]. Acute kidney
injury is emerging as a common and important sequelae of COVID-19, with rates as high
as 33%-43% in hospitalized patients [171-174]. In a prospective cohort study of 701
COVID-19 patients, proteinuria was reported in 43.9% of patients on admission to the
hospital [175]. However, the involvement of hyperfiltration in COVID-19-associated kid-
ney injury remains to be elicited.

Glomerular hyperfiltration is caused by either a net reduction of afferent (pre-capil-
lary) arteriolar resistance or a net increase in efferent arteriolar (post-capillary) arteriolar
resistance [176]. Thromboxane synthase inhibition or TP receptor antagonism in un-
treated streptozotocin-induced diabetic rats was shown to decrease renal blood flow, in-
crease renal vascular resistance and ameliorate renal hyperperfusion [177]. This is con-
sistent with reduced microalbuminuria in diabetic patients treated with a TxA2 synthase
inhibitor, likely due to a vasodilating effect predominantly exerted on the efferent arteri-
ole [178,179]. However, this contrasts in vitro findings that treatment of isolated perfused
hydronephrotic rat kidney with TxA2 mimetic leads to preferential constriction of affer-
ent arterioles [180]. Therefore, further studies are needed to clarify the role of TxA:z in
post-capillary efferent arteriole constriction and glomerular involvement associated with
vascular diseases, including SCD and COVID-19.

6. Complement activation as an inducer of thrombo-inflammation in SCD and
COVID-19

The complement system is a critical innate immune defense against infections and
an important driver of inflammation [181]. Activated complement can produce direct

effector functions by target opsonization with cleaved complement component 3 (C3)
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and C4 fragments, promotion of inflammation with C3a and C5a, and direct cell lysis
with the assembly of MAC C5b-9 complex [181]. Plasma concentrations of sC5b-9 are
elevated in steady-state SCD patients [182]. Complement deposition is also increased in
cultured human endothelial cells incubated with SCD serum [182]. In SCD, levels of IL-
la were significantly higher in those with a history of acute splenic sequestration, a com-
mon feature of homozygous SCD, compared with matched normal controls [183]. The
effect of complement activation on IL-1a and COX-2/TxA:z axes has been studied by treat-
ing porcine endothelial cells with human plasma containing xenoreactive antibodies and
complement [184]. In this model, there is markedly increased expression of IL-1a, COX-2,
and thromboxane synthase leading to the generation of TxA:. The role of IL-1a in medi-
ating the effect of complement activation was confirmed by the addition of an IL-1 recep-
tor antagonist to the human serum, which prevented the release of PGE2 and TxA2 [184].
Therefore, complement activation can induce a prothrombotic state via the expression of
IL-1a and COX-2 leading to generation of TxA:z (Fig. 1).

Complement activation is also thought to play a critical role in immune-thrombosis
and end-organ damage in COVID-19 [26]. Nucleocapsid protein of SARS-CoV-2 virus
binds to the Mannan-binding lectin-associated serine protease-2 (MASP-2), the lectin
pathway’s effector enzyme, resulting in complement activation [185,186]. Lung tissue
from deceased COVID-19 patients showed components of the lectin and terminal com-
plement pathways, specifically MASP-2, complement factor 4d (C4d), and C5b-9 (i.e., the
membrane attack complex) [185,186]. Activation of C4d (classical lectin pathway) and
sC5b-9 (membrane attack complex) are also associated with respiratory failure in hospi-
talized adults with COVID-19 [187]. Furthermore, in children with COVID-19, there is
evidence of complement activation with an increase in plasma sC5b-9 levels even with
only minimal symptoms of COVID-19, and 13 of the 34 children had thrombotic microan-
giopathy [74]. Most importantly, IL-1a is also released from necrotic and pyroptotic cells,
including pneumocytes and endothelial cells, the primary site of an attack by SARS-CoV-
2[188].

7. Thromboxane A: is enzymatically converted into 11-dehydro-thromboxane Az, a full

agonist of the prostaglandin D2/DP2 receptor leading to fibrosis and inflammation

TxA:z is short-lived and rapidly transformed nonenzymatically in an aqueous solu-
tion to TxB2. TxB2 is further metabolized enzymatically to a series of compounds, of
which 11-dehydro-TxB:z (11dhTxB:) is the major product found both in plasma and urine
[189]. The dehydrogenase catalyzing the formation of 11dhTxB2 was tissue bound with
the highest activity in the lung [190]. Urinary excretion of 11dhTxB: is markedly in-
creased in recently hospitalized patients with COVID-19; and was predictive of plasma
D-dimer levels, renal ischemia, the need for mechanical ventilation, and mortality [140].
Urinary 11dhTxB: is also significantly elevated in SCD compared to healthy controls
[138]. Interestingly, 11-dehydro-TxB: is a full agonist of the D-prostanoid receptor 2
(DP2) for prostaglandin D2 (PGDz) [189].
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PGD2/DP2 receptor signaling is known to mediate Th2 immune responses that are
classically directed against extracellular non-phagocytosable pathogens, for instance, hel-
minths [191-193]. The effectors for PGD2/DP2 receptor-mediated Th2 immune response
are eosinophils, basophils, and mastocytes, as well as B cells (humoral immunity), and
these are consistently elevated in COVID-19 [194]. IL-13, a type 2 cytokine released dur-
ing PGD2/DP2 receptor signaling, increases hyaluronan accumulation in mouse lungs
[195], and is universally correlated with ARDS, AKI, and morality [196], and need for
mechanical ventilation in COVID-19 [195]. IL-13 is also known to upregulate monocyte-
macrophage-derived suppressor cells (MDSC), which play a role in immune suppression
and lymphopenia, a hallmark of severe COVID-19 disease [197-200].

PGD: /DP2 receptor signaling is thought to play a role in fibrosis. PGD2 /DP2 recep-
tor signaling exerts direct pro-apoptotic and pro-fibrotic actions on various cells, includ-
ing islet cells, cardiomyocytes, and osteoclasts [201-203]. Moreover, PGD2/DP2 receptor-
mediated IL-13 release is a significant inducer of fibrosis by stimulating the IL-13Ro re-
ceptor expressed on macrophages to release TGF-p1 [204]. Therefore, elevated levels of
TxAz in COVID-19 and SCD may be rapidly converted to 11dhTxBz2 in the lungs, thereby

leading to DP2 receptor signaling and fibrosis in the lungs and heart.

8. Therapeutic Options for thromboinflammation in COVID-19 and SCD: Past, Pre-

sent, and Future

Blood transfusion is the only treatment for SCD-associated vaso-occlusive crises or
thrombotic events such as acute painful episodes, cerebral infarction, and acute chest
syndrome [205]. Widely varying anticoagulants, including heparin and its analogs, are
used in both arterial and venous thrombosis associated with SCD, but they have proven
ineffective in preventing acute pain episodes [206,207]. As a treatment of acute pain crisis
in SCD, tinzaparin, low molecular weight heparin, was shown to reduce the severity and
crisis duration in a double-blind, randomized, controlled trial [208].

Antiplatelet agents such as aspirin, prasugrel and ticagrelor have also been tested
in SCD (Table 3). In a double-blind crossover study of children with SCD, low-dose aspi-
rin, an inhibitor of COX-1 action, did not affect the frequency and severity of vaso-occlu-
sive crises compared to placebo [209]. Prasugrel and ticagrelor are P2Y12receptor antago-
nists that block platelet stimulation induced by ADP. In a double-blind, randomized, pla-
cebo-controlled trial of prasugrel in children and adolescents with SCD, prasugrel was
found to be safe but did not reduce the rate of vaso-occlusive crisis or diary-reported
events over a 9 to 24-month period [210]. Ticagrelor demonstrated no effect on diary-
reported pain in young adults with SCD [211]. However, as discussed above, heme-
driven CLEC2 induced platelet activation is dependent on ADP stimulation of platelet
P2Y1receptor, but not the P2Y12receptor [86], while prasugrel only blocks the latter [212].
The failure of prasugrel and ticagrelor may also indicate that other P2Y12 antagonists may
not be effective in SCD [211,212]. Unfortunately, there are no approved P2Y1 antagonists
to our knowledge. Moreover, other antiplatelet therapies have been tested in clinical tri-

als, including eptifibatide, a platelet allb33 receptor blocker, which failed to improve
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time to crisis resolution or hospital discharge in SCD patients, though only thirteen pa-
tients were enrolled in the study [213]. Meanwhile, targeting IL-13 downstream of in-
flammasome activation with canakinumab led to improved thrombo-inflammation and
quality of life, including reduced days of hospitalization and pain [214]. P-selectin anti-
body (Crizanlizumab) is the only targeted therapy against thrombo-inflammation in
SCD. However, prophylactic P-selectin inhibition by crizanlizumab led to only ~50% re-
duction in hospitalization related to VOC, suggesting that P-selectin-independent path-
ways contribute to the remaining morbidity of VOC [87].

Table 3. Efficacy trials of antiplatelet therapies in SCD

Primary Outcome

Study Design Study Population Intervention Measure and Result
e Have SCD [homozygous sickle cell (HbSS) )
. . e Ticagrelor 10 mg plus
or sickle beta-zero thalassemia (HbSB?)] .
Phase IIb Ades 18.30 992 I matching placebo for
ase . ngs 4'd yea;s (r_nezn - tzef:rs 0 )k _ ticagrelor 45 mg Proportions of days
o ave >4 days of pain during the 4-week sin- Y
_ =" Gays of pain uring fe - e Ticagrelor 45 mg plus  With diary-reported
Multicentre, gle-blind placebo baseline period prior to

double-blind,
double-dummy,
randomized,

placebo-controlled,
parallel-group[211]

matching placebo for SCD pain

randomization )
) ticagrelor 10 mg
e If on hydroxycarbamide, a stable dose for 3

e Matching placebo for No significant differ-

months prior to enrollment required
o If on erythropoietin, drug must have been
prescribed 6 months before and at a stable
dose for >3 months prior to randomization
(n=194)

ence between placebo
and ticagrelor treatment
mg groups

ticagrelor 10 and 45

Duration: 12 weeks
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e Have SCD [homozygous sickle cell Prasugrel 0.08 mg/kg-

(HDbSS) or sickle beta-zero thalassemia

(HbSf)]

0.12 mg/kg po once

daily
e Are participants with SCD who have e Placebo Number of Vaso-Occlu-
Phase III had >2 episodes of vaso-occlusive crisis sive Crisis (VOC)
o (VOC) in the past year Events Per Participant
Multinational, e Have a body weight >19 kilograms (kg) Per Year (Rate of VOC)
double-blind, randomized, .
and are >2 and <18 years of age, inclu-
placebo-controlled, paral-
lel-group[210] sive at the time of screening Term.inated due to lack
e If participants are >2 and <16 years of of efficacy
age, they must have had a transcranial
Doppler within the last year
(n=341) Duration: 9-24 months
e Have sickle hemoglobinopathy observed Frequency and severity
regularly of VOC

Phase III e Ages 2-17 years old (mean 7.7 years old)

e The hematologic diagnosis was confirmed Low dose aspirin

No significant differ-

_ by cellulose acetate electrophoresisat pH o  placebo ence between placebo
Double-blind crossover 8.6 and ci | horesi H 64 4 asiri
study[209] .6 and citrate agar electrophoresis at pH 6. and aspirin treatment
e At least 50% compliant groups
(n=49)

Therapies targeting thrombo-inflammation in patients with COVID-19 are in clini-
cal trials [215]. In a necropsy study of 68 COVID-19 patients, nearly 70% (48 out of 68)
were treated with anticoagulants; and of those treated with anticoagulants, almost 50%
had large thrombi, and nearly 90% had microvascular thrombi of arterioles and capillar-
ies (42 out of 48). This demonstrates the lack of efficacy of anticoagulation in severe
COVID-19 [216]. Furthermore, prohibitive signal for bleeding risk, in addition to futility,
has recently led to the discontinuation of high-dose heparin arm in REMAP-CAP, AC-
TIV-4, and ATTACC studies in severe COVID-19 [216-218]. The momentum seems to be
finally shifting to antiplatelet agents, both for prevention and treatment even though the
efficacy of these or other agents remains to be demonstrated in preclinical models of
COVID-19.

Numerous clinical trials have been initiated to investigate the benefits of antiplate-
let therapy in COVID-19. In the NIH ACTIV-4 trial, amongst 657 symptomatic outpa-
tients with COVID-19, the major adverse cardiovascular or pulmonary outcomes were
not significantly different for patients randomized to low dose aspirin, apixaban (2.5 mg
twice daily), apixaban (5.0 mg twice daily) or placebo [219]. However, the median time
from diagnosis to randomization and from randomization to initiation of study treatment
were 7 days and 3 days, respectively, suggesting that survival bias may account for a
very low event rate in both placebo and treatment groups. Early administration of aspirin
in ambulatory COVID-19 patients appears to provide significant benefit and correlates

with a decrease in overall mortality [220], but was not effective in reducing progression
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to invasive mechanical ventilation or death in hospitalized patients, as reported in the
Randomized Evaluation of COVid-19 thERapY (RECOVERY) trial, the world’s largest
clinical trial of treatments for patients hospitalized with COVID-19 [221,222]. Aspirin ir-
reversibly inhibits both COX enzymes (COX-1 >> COX-2), preventing prostaglandin pro-
duction by cells until the new enzyme is produced [223]. Low doses of aspirin, typically
75 to 81 mg/day, are sufficient to irreversibly acetylate serine 530 of COX-1 but have little
effect on COX-2 [223]. Therefore, the lack of efficacy of aspirin in hospitalized patients
with COVID-19 may be due to inducible COX-2 mediated TxA: generation and failure of
aspirin to inhibit the effects of TxA2 once synthesized. Moreover, the well-known phe-
nomenon of aspirin resistance in the obese or the elderly has been attributed to increased
expression of cytosolic phospholipase Az and COX-2, which leads to increased genera-
tion of TxA:z [224]. Marked increase in TxA2 generation and COX-2 expression in severe
COVID-19 raises the specter of aspirin resistance, especially in the elderly or obese pa-
tients, as in the general population [225,226]. Plasma from patients with COVID-19 trig-
gered platelet and neutrophil activation and NET formation in vitro; the latter was
blocked by therapeutic-dose low-molecular-weight heparin but not by aspirin [227]. Fur-
thermore, the use of aspirin in children with COVID-19 is relatively contraindicated due
to the risk of Reye’s syndrome [228].

Furthermore, COX-2 inhibitors are known to increase the risk of cardiovascular
events and, therefore, not advised in SCD or COVID-19 [229,230]. Blocking COX-1 or
COX-2 may result in more challenges than cures because of their broad inhibition of sev-
eral essential prostanoids other than TxA2 [231]. Although TxA: synthase inhibitors sup-
press TxAz formation, accumulation of the substrate prostaglandin (PG)H2 stimulates TP
receptor on platelets and endothelium, thereby inhibiting the antiplatelet action of TxA2
synthase inhibitors [232]. TP receptor antagonists block the activity of both TxA2 and
PGH:z on platelets and endothelium. Thus, early administration of well-tolerated TP re-
ceptor antagonists may limit progression to severe COVID-19 [83] and may also be effec-
tive in SCD considering the common pathobiology of thrombo-inflammation in the two
disease states.

It has been proposed that blocking the deleterious effects of PGD2 and TxA: with a
dual DP2/TP receptor antagonist ramatroban might be beneficial in COVID-19 [233,234].
Ramatroban is a surmountable and potent antagonist of TP receptors. Ramatroban is
orally bioavailable and has been used in Japan for the past 20 years as a treatment for
allergic rhinitis. Ramatroban has been shown to provide rapid relief of symptoms and
successfully treat 4 patients with severe COVID-19 [166]. This is consistent with the role
of TP receptor antagonism in relieving postcapillary pressures, promoting resolution of
edema, and improving lung compliance and gas exchange [162,166]. Notably, patients
treated with ramatroban did not develop overt long-haul COVID symptoms after recov-
ery from acute illness, supporting the anti-fibrotic effect of ramatroban as demonstrated
in a mouse model of silicosis [166,235].

Ramatroban is 100-150 times more potent than aspirin in inhibiting platelet aggre-
gation, P-selectin expression, and sphingosine-1-phosphate (S1P) release from platelets

[236-238]. S1P is chemotactic for monocytes and inhibition of S1P release reduces
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monocyte infiltration [238]. Ramatroban also decreases macrophage infiltration by inhib-
iting endothelial surface expression of ICAM-1 and VCAM-1, and inhibiting MCP-1 ex-
pression on endothelial cells in response to TNF-« or platelet-activating factor [236]. Ad-
ditionally, the potentiation of CLEC2 signaling by TxAz was abolished by 10 uM
ramatroban, while 1 mM aspirin was only partially effective [86]. In addition to its anti-
platelet action, ramatroban also improves vascular responsiveness [236]. With a plasma
half-life of about 2 hours, the antiplatelet action of ramatroban is reversible [236]. This is
of advantage in the event of bleeding complications following anticoagulation in criti-
cally ill COVID-19 patients [239], and SCD patients with venous thromboembolism [240].

9. Conclusions

Thrombo-inflammation is a classic feature of both SCD-associated vaso-occlusive
crisis and severe COVID-19. Thrombo-inflammation leads to microvascular thrombosis
and thrombotic microangiopathy. Both diseases share the pathobiology of endothelial
cell injury and activation, platelet activation, and platelet-leukocyte partnership culmi-
nating in thrombo-inflammation. COX-2-mediated increase in TxA:z signaling may play
an important role in platelet activation, leading to thrombo-inflammation in both SCD
and COVID-19. The failure of the previous anticoagulant and antiplatelet strategies in
both SCD and COVID-19 underlines the importance of identifying new therapeutic tar-

gets such as TxA:2 and/or PGD: for the resolution of acute crisis in both diseases.
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