

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Article

Neutrophil Lymphocyte Ratio and Platelet Lymphocyte Ratio as a Predictor of Mortality in Severe COVID 19 Cases

Srivatsa R¹, Supriya P S^{2*} and Samaga L N²

¹ Ramaiah Medical College, srivatsa11.r@gmail.com

² Associate Professor, K S Hegde Medical Academy; bl_samaga@yahoo.com (S.L.N.)

*Corresponding Author: drsurpiaps@gmail.com

Abstract: With covid infection having a periodic occurrence and each wave affecting millions of people, there is a urgent need for healthcare providers to develop readily available biological markers to predict the severity and mortality of COVID 19 infection at an early stage of disease to predict the most optimal management.

The Neutrophil – lymphocyte Ratio (NLR) and Platelet-lymphocyte ratio (PLR), are novel inflammatory markers suggested to predict the severity of illness in COVID -19 patients. We evaluated a retrospective cohort of 224 patients with covid 19 illnesses from August 2020 to October 2020. We categorized the patients into 'mild' and 'moderate to severe' as per the severity of illnesses. The optimal cut-off values of the continuous NLR, PLR, and Age were calculated by applying the receiver operating characteristic (ROC) curve analysis. Sensitivity, specificity and likelihood ratios were calculated from ROC analysis. The results showed that Age, Hb and NLR are the significant predictors for the severity of illness. So we quantified the predictive contribution of those variables by its Z-score and showed that NLR is the strongest predictor followed by Age. ROC curve analysis revealed NLR to be an excellent predictor of disease severity (sensitivity 88.30% and specificity 82.60%) at a cut-off of > 4.24 . A cut-off of 165.63 was obtained for PLR, which showed good predictive value for severity of illness. A NLR > 6 was used as a predictor for mortality due to covid illness with good sensitivity and specificity.

Conclusion: NLR and PLR can be used as a prognostic marker to identify the severity of covid illness and probability of mortality in future in low resource settings. Given its low cost, easily available, accessible and reproducible data, it can be used as a useful marker to assist the physician in early referral and treatment of covid 19 infected patients.

Keywords: Covid-19; Neutrophil-Lymphocyte ratio (NLR); severe covid pneumonia

1. Introduction

Coronavirus disease 2019 (COVID 19) is a viral illness which first began in Hubei province, China in November 2019. It is a rapidly spreading disease, involving millions of people – young and old, across all countries. The World Health Organization (WHO) declared it a global pandemic in March 2020. Since then, it has infected millions of people across the globe with clear evidence of person –to-person transmission of the disease. It is expected to rise further due to the possibility of subsequent waves, although the cases with severe illness are dwindling in numbers. Presentation of COVID-19 varies widely among individuals, affecting the upper respiratory tract only in majority of cases, but in few cases like the elderly, un-immunized and immunocompromised individuals; it can progress to involve the lower respiratory tract, worsening to acute respiratory distress syndrome (ARDS), respiratory failure, multiple organ dysfunction syndrome (MODS), and subsequent mortality[1].

Given the rapid disease transmission of the covid-19 virus affecting everyone from newborns to elderly, it's important to continuously improve and enrich its clinical diagnosis and treatment research. This includes defining laboratory results and clinical

characteristics with improved precision and elucidate the risk factors associated with mortality. Studies have shown progression of the disease caused by inflammation. Severe inflammatory responses contribute to weak adaptive immune response, thereby resulting in immune response imbalance. Thus, circulating biomarkers can represent inflammation and immune status, which can be, used as potential predictors for prognosis of COVID-19 patients. Commonly calculated, Neutrophil-to-lymphocyte (NLR) ratio, platelet-to-lymphocyte (PLR) ratios are cheaply available indicators of systemic inflammatory response that is widely investigated as useful predictors for the prognosis of patients with Covid pneumonia[2].

Numerous studies using NLR, PLR ratios as predictors of mortality and morbidity in patients with cancer, cardiac disease and sepsis amongst other conditions have been published worldwide. Several studies have proposed that NLR, PLR ratios can be reliable predictor of COVID-19 progression. It is a reliable, cost effective and easy to calculate laboratory marker[3]. There are very few studies documenting the role of NLR, PLR in covid-19 from this region. This is study of NLR, PLR ratios and its association with severity of covid disease and treatment outcome in a tertiary care centre of south India.

2. Materials and Methods

Study Design: Hospital based retrospective cohort

Study Setting: Justice K.S.Hegde Charitable Hospital attached to K.S.Hegde Medical Academy, a unit of Nitte University, Mangalore – 575018.

Study Population: Patients admitted with COVID 19 illness in the ward/ICU.

Sample Size: 224

Sampling method: Simple Random sampling

Case selection: All patients were selected based upon the inclusion and exclusion criteria as formulated below:

Inclusion criteria:

- All cases considered in the study were confirmed to be COVID-19 positive with at least one nasopharyngeal swab positive for reverse transcription polymerase chain reaction (RT-PCR).

Exclusion criteria:

- Patients aged <18years.
- Patients who were referred from other centers after several days of hospitalization.
- Patients with solid malignancy on chemotherapy and hematological disorders like myeloma, leukemia and lymphoma.
- Patients with documented glucocorticoids exposure before admission.

Methodology:

A total of 224 patients were consecutively enrolled in the study were confirmed to be COVID-19 positive with at least one nasopharyngeal swab positive for reverse transcription polymerase chain reaction (RT-PCR). The patients included in the study were diagnosed and classified into mild disease, moderate and severe disease based on the guidelines given by the department of health and family welfare, government of India and WHO [4].

Mild disease patients: Patients with fever, mild respiratory symptoms without shortness of breath or hypoxia, $\text{SpO}_2 > 94\%$ or CT chest suggestive of mild covid illness.

Moderate – severe disease patients: Patients with one of the following features:

- a. Fever, respiratory tract symptoms (upper and lower)
- b. Respiratory rate > 24cpm, breathlessness at minimal exertion or rest

c. $\text{SpO}_2 < 94\%$ on room air, or requiring supplemental oxygen to maintain saturation (requirement of FM, NRB, NIV or invasive ventilation)

Patients not fulfilling the inclusion criteria were excluded from the study.

After obtaining consent from the patients, detailed clinical history, signs, comorbidities were collected from the patient or reliable attender. Peripheral venous blood samples were collected in EDTA and Plain vaccutainers on the first day of hospitalization. Hematological parameters like total leucocyte count, differential leucocyte count, platelet counts were measured using MindRay auto analyzer BC – 5380. Neutrophil-lymphocyte ratio (NLR) and Platelet-lymphocyte ratio (PLR) were calculated and noted. Their stay in the hospital along with treatment was closely followed up until discharge/death. Patients are classified into mild and moderate-severe as per the ICMR guidelines for classification of severity of Covid-19 pneumonia.

In the study, values obtained will be identified as continuous and categorical variables. Chi-square test will be used for categorical variables and Mann-Whitney U tests will be applied for continuous variables. ROC will be plotted; sensitivity, specificity and likelihood ratios will be calculated. Univariate analysis will be performed using logistic regression analysis.

3. Results

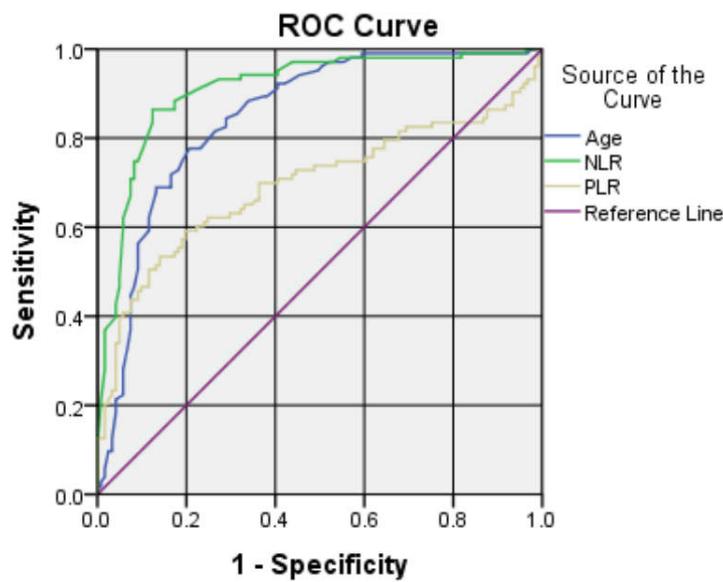
The total study population of 224 patients was divided into 2 groups (mild and moderate-severe) depending of the severity of the illness. The mild case group comprised of 122 subjects (54.22%) and the moderate-severe group consisted of 103 patients (45.7%). Among the 225 patients, 151 (67.11%) of the study patients were males and the mean age of the patients with mild severity was 40.12 ± 16.13 and that of moderate to severe group was 62.27 ± 13.88 years. The mean age of the patients with moderate-severe group was more than that of the patients with mild severity of covid-19 illness.

The laboratory indicators of the patients are also presented in Table 1. Patients in moderate-severe group had a higher leucocyte count of 10934 ± 6327.5 cells/mm³ when compared to the mild severity group whose mean leucocyte count was 7797.5 ± 10986 cells/mm³. About 45.7% of the patients had leucopenia with both the groups having normal platelet counts.

Table 1. The demographic details and clinical parameters of the studied patients.

Characteristics	Mild cases (Mean \pm SD)	Moderate-Severe cases (Mean \pm SD)	P value
Number (n)	122 (54.2%)	103 (45.7%)	
Age (years)	40.12 ± 16.13	62.67 ± 13.88	*<0.001
Male	77 (63.6%)	74 (71.8%)	
Female	44 (36.4%)	29 (28.2%)	0.191
Laboratory parameters (median, IQR)			
Hemoglobin (Hb) g/dL	14.42 \pm 2.12	11.93 \pm 2.50	*<0.001
Total leucocyte count (TLC) number/mm ³	7797.5 \pm 10986.6	10934.9 \pm 6327.57	*<0.01
Neutrophil (%)	70.72 \pm 11.99	88.46 \pm 7.74	*<0.001
Lymphocyte (%)	27.37 \pm 11.35	10.05 \pm 7.4	*0.001
Platelet count (Platelet) number/mm ³	247280.9 \pm 73861.3	204914.5 \pm 96340.9	*0.003
Neutrophil-lymphocyte ratio (NLR)	3.61 \pm 3.34	14.31 \pm 12.35	*<0.001
Platelet-lymphocyte ratio (PLR)	167.57 \pm 90.81	311.10 \pm 242.39	*<0.001

Logistic regression analysis showed age of the patient, NLR and PLR to be significant factors in determining the severity of the illness among patients which attained statistical significance, as shown in Table 2.


Table 2. Association of NLR, PLR and Age of the patient with severity of the illness.

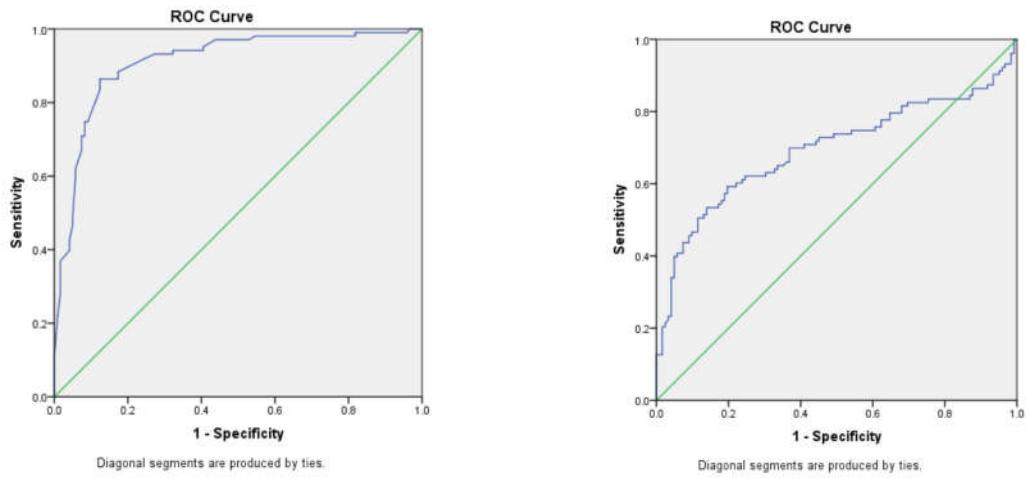
Characteristics	Categories	Severity		Total	Odds Ra-tio	95% C.I.	P value
		Mild (N=121)	Moderate to se-vere (N=103)				
NLR	<4.2	93 (76.9%)	9 (8.7%)	102 (45.5%)	Ref.		<0.001
	≥4.2	28 (23.1%)	94 (91.3%)	122 (54.5%)	34.69	15.527 - 77.504	
PLR	<165.63	74 (61.2%)	31 (30.1%)	105 (46.9%)	Ref.		<0.001
	≥165.63	47 (38.8%)	72 (69.9%)	119 (53.1%)	3.657	2.094-6.387	
Age	<51.5 Yrs.	96 (79.3%)	23 (22.3%)	119 (53.1%)	Ref.		<0.001
	≥51.5 Yrs.	25 (20.7%)	80 (77.7%)	105 (46.9%)	13.357	7.048 -25.313	

ROC curve analysis revealed NLR to be an excellent predictor of disease severity (sensitivity 88.30% and specificity 82.60%) at a cut-off of > 4.24 with corresponding positive and negative likelihood ratios being 5.07 and 0.24 as shown in Table 3 and Figure 1. ROC curve was drawn and AUC was also calculated for PLR and Age of the patient which revealed to be good predictors of severity of covid illness in the patient. A cut-off of 165.63 was obtained for PLR, which showed a sensitivity of 69.90% and specificity of 61.20% with a positive likelihood ratio of 1.80 to predict disease severity. Age of 51.5 years was obtained as a cut-off, beyond which indicated increased severity of covid illness with a sensitivity of 77.70% and specificity of 79.30%.

Table 3. Cut-off values obtained from ROC analysis for NLR, PLR and Age of the patient as predictors of severity of Illness.

Cut off values	NLR	PLR	Age (Yrs.)
4.24	165.63	51.5	
AUC	0.911, 95% C.I (0.871-0.951), p<0.001	0.695, 95% C.I (0.622- 0.769), p<0.001	0.849, 95% C.I. (0.798- 0.9), p<0.001
Sensitivity	88.30%	69.90%	77.70%
Specificity	82.60%	61.20%	79.30%
Positive Likelihood Ratio	5.07	1.80	3.75
Negative Likelihood Ratio	0.14	0.49	0.28

Diagonal segments are produced by ties.


Figure 1. ROC curves of all variables (Age of the patient, NLR and PLR) in predicting severity of covid-19 illness among patients.

Predictive contributions of Age, PLR and NLR was quantified by their Z scores which showed NLR to be the strongest predictor of severity of illness in these patients, as shown in Table 4.

Table 4. Significant predictors of severity of covid illness.

	Odds ratio	C.I (95%)	p value	Z Score
Hb	.765	0.626-0.934	0.009	-2.629
Age	1.073	1.044-1.103	<0.001	4.977
NLR	1.356	1.216-1.512	<0.001	5.488

Regarding on the impact of NLR on serious clinical complication including mortality due to covid-19 illness , patients were further divided patients into two groups using NLR greater or lesser than 6 as the criterion to compared, therefore those patients who had NLR of greater than 6 were significantly higher rate of mortality as compared with those with NLR < 6 ($p < 0.001$). ROC analysis also predicted NLR to be an excellent prognostic marker for risk of death which showed (sensitivity 86.7% and specificity 84.4%) at a cut-off of > 6 as shown in figure 2 and Table 5,6.

Figure 2. ROC curve of NLR (Cut-off 6) and PLR (cut-off 165.63) ratios in predicting mortality in covid-19 illness.

Table 5. Crosstabulation of NLR and impact of NLR cut-off value (6) on mortality in covid-19 illness.

Group		NLR		Total
		less than 6	more than 6	
Mild	Count	106	15	121
	% within Group	88.1%	11.9%	100.0%
	% within NL_C	86.7%	15.2%	55.5%
Moderate and severe	Count	17	86	103
	% within Group	16.8%	83.2%	100.0%
	% within NL_C	13.3%	84.8%	44.5%
Total	Count	123	101	224
	% within Group	56.4%	43.6%	100.0%
	% within NL_C	100.0%	100.0%	100.0%

Table 6. Impact of NLT cut-off value (6) on mortality in covid-19 illness.

Statistic	Value	95% CI
Sensitivity	86.72%	79.59% to 92.07%
Specificity	84.85%	76.24% to 91.26%
Positive Likelihood Ratio	5.72	3.57 to 9.17
Negative Likelihood Ratio	0.16	0.10 to 0.25
Disease prevalence (*)	56.39%	49.67% to 62.94%
Positive Predictive Value (*)	88.10%	82.21% to 92.22%
Negative Predictive Value (*)	83.17%	75.90% to 88.57%
Accuracy (*)	85.90%	80.69% to 90.15%

(*) These values are dependent on disease prevalence.

4. Discussion

In this study, we conducted a retrospective cohort study to evaluate the predictive potential of NLR and PLR as a predictor of severity of disease and mortality among 225 COVID-19 patients who were admitted to Justice K.S.Hegde Hospital, Mangalore in Karnataka. Of the 225 patients studied, almost half of the patients (55%) had mild disease and the rest (47%) had moderate-severe disease.

Demographic data from our study showed that COVID-19 patients who had severe covid-19 illness and mortality were significantly older compared to the ones to had lower severity of illness and survivors. Similar to our reports, several reports from previous studies have showed that the severity of COVID-19 illness was significantly related to age [5]. Studies in the western population however, showed no age difference between COVID-19 patients in ICU and general population with mild covid infection suggesting that age alone is not a risk factor for ICU admission and to develop severe covid infection [6].

Regarding laboratory tests, several abnormalities have been reported in covid-19 patients like leucocytosis, lymphopenia and dysfunction in renal and liver parameters. Our data showed significant differences in the mean leucocyte count, lymphocyte and neutrophil counts between the mild and moderate-severe at the time of admission to the hospital. In severe covid-19 cases, the lymphocyte count decreases progressively while the neutrophil counts gradually increases. This may be due to the excessive inflammation and immune suppression caused by SARS-CoV-2 infection which triggers release of inflammatory markers such as IL-6 and IL-8 [7,8]. This also brought about changes in the NLR and PLR ratios. NLR is defined as the ratio between absolute neutrophil count/absolute lymphocyte count. Since the beginning of the pandemic, efforts have been made to search for ideal markers that can predict the severity and mortality due to the illness. NLR and PLR have been reported to prognosticate severity of the disease, mortality, days in ICU and days on ventilator[9,10]. We found significant difference in NLR levels between the mild and moderate-severe cases. Statistical significance was also found with age of the patient and PLR for the above two groups. The NLR ratios resulted from increased neutrophil count and reduced lymphocyte counts reflecting the changes between innate (neutrophil) and adaptive immunity (Lymphocytes). The increased NLR reflects dysregulated immune system. The overactive inflammatory responses in covid-19 illness leads to cytokine storm and worsen the tissue damage and multi-organ failure which is one of the proposed pathogenesis related to the mortality in patients infected with covid-19 .

Based on the ROC curve analysis, the optimal cut-off level for severity of the illness was 4.2 with a sensitivity of 88.3% and specificity of 82.6% which was in concordance with other national and international studies where the optimal cut-off ranged between 3.3 to 6.5 [11,12,13]. The difference in the cut-offs maybe due to the use of different dependent variables and study population. Optimal cut-off values may vary from one population to another and a lack of data on the reference range in a specific population may also contribute to these differences. Hence, determining the cut-off value is essential for NLR to be used in clinical settings specific to a specific locality [12]. Similarly, a cut-off for PLR of 165.3 was identified as an optimal cut-off value for severity of illness.

The current study identified the optimal cutoff level of NLR for mortality was 6, with a sensitivity of 86.4% and specificity of 84.8% which was comparable to studies done in China, Pakistan, Northern India. However, few previous studies done in China, Romania, Srilanka, parts of Africa recommended a higher cut-off for NLR with good sensitivity and specificity. This wide range between 6-12 of variability is due to different conditions of patients, different study population and different coomorbidities among the study population [12,14-18].

The results in our study have several clinical implications and strengths. Our data confirms and expands the range of cut-off values used to predict severity and mortality of the disease. This predictive ability increases for a few days after admission when NLR reaches its peak, following which it tends to drop with recovery from the illness. It also confirms and emphasizes the relevance of routine hematologic tests and provides a simple way, cheap and widely available test to determine the prognosis the patients infected with Covid-19 illness, which is conducive to the allocation of medical resources in our limited resource setup.

With these notable advantages, the limitations in the study include,

- Due to single centre and limited population of 224 patients in the study group, the real value of NLR and PLR might be underestimated or overestimated in predicting severity and prognosis of patients affected with Covid-19.

- Confounders associated with the study which includes smoking, BMI, prior exposure to steroids, hematological malignancies, sepsis due to the retrospective nature of the study.

- NLR, PLR were analysed only at admission. However, there maybe need for serial monitoring of NLR, PLR throughout the disease course which could have been more specific in predicting mortality and severity of the disease.

5. Conclusions

High NLR, better than PLR and age of the patient, can be used as a predictive marker associated with the disease severity and mortality in covid-19 patients in our study. NLR is a simple, easily available, cost effective investigation which can be used as a risk stratification tool to identify patients with severe illness that helps in early decision making in patients management and allocation of limited resources like oxygen support and ventilators, however further studies are required to validate this finding.

Author Contributions: Dr. Srivatsa R was involved in conceptualization of the study. He was also involved in collection of the data, formal analysis, editing and original draft preparation. Dr. Supriya P S was involved in conceptualization of the study and editing the article. The study was done under the supervision of Dr. L N Samaga. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration of Helsinki, and approved by the Institutional Review Board (or Ethics Committee) of K S HEGDE MEDICAL ACADEMY (INST. EC/EC/2020-2021)." for studies involving humans.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bulut C, Kato Y. Epidemiology of COVID-19. *Turk J Med Sci*. 2020 Apr 21;50(SI-1):563-570. doi: 10.3906/sag-2004-172. PMID: 32299206; PMCID: PMC7195982.
2. Aimrane A, Laaradia MA, Sereno D, et al. Insight into COVID-19's epidemiology, pathology, and treatment. *Heliyon*. 2022 Jan;8(1):e08799. doi: 10.1016/j.heliyon.2022.e08799. Epub 2022 Jan 19. PMID: 35071819; PMCID: PMC8767941.
3. Rathod BD, Amle D, et al. Neutrophil-to-Lymphocyte Ratio as a Predictor of Disease Severity and Mortality in Coronavirus Disease 2019: Prospective Study From Central India. *Cureus*. 2022 Mar 31;14(3):e23696. doi: 10.7759/cureus.23696. PMID: 35519791; PMCID: PMC9064266.
4. *National Clinical Management protocol COVID-19 - Ministry of Health and ...* (n.d.). Retrieved November 27, 2022, from <https://www.mohfw.gov.in/pdf/UpdatedDetailedClinicalManagementProtocolforCOVID19adultsdated24052021.pdf>
5. Zhou F, Yu T, Du R, et al. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. *Lancet* 2020, 395, 1054–1062.
6. Grasselli, G.; Zangrillo, A.; Zanella, A et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. *JAMA* 2020, 323, 1574.
7. Khourssaji M, Chapelle V, Evenepoel A, et al. A biological profile for diagnosis and outcome of COVID-19 patients. *Clin Chem Lab Med*. 2020;58:2141–2150
8. Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: the current evidence and treatment strategies. *Front Immunol*. 2020;11:1–13
9. Liao D, Zhou F, Luo L, et al. Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: a retrospective cohort study. *Lancet Haematol*. 2020;7:0–8.
10. Singh Y, Singh A, et al. Neutrophil-to-lymphocyte Ratio and Platelet-to-lymphocyte Ratio as Markers for Predicting the Severity in COVID-19 Patients: A Prospective Observational Study. *Indian J Crit Care Med*. 2021 Aug;25(8):847–852. doi: 10.5005/jp-journals-10071-23906. PMID: 34733022; PMCID: PMC8559739.
11. Ma A, Cheng J, Yang J, Dong M, et al. Neutrophil-to-lymphocyte ratio as a predictive biomarker for moderate-severe ARDS in severe COVID-19 patients. *Crit Care*. 2020;24:1–4.
12. Pirsalehi A, Salari S, Baghestani A, et al. Neutrophil-to-lymphocyte ratio (NLR) greater than 6.5 May reflect the progression of COVID-19 towards an unfavorable clinical outcome. *Iran J Microbiol*. 2020;12(5):466–474. doi:10.18502/ijm.v12i5.4609.
13. Tadesse Z, Bekele Bayissa A, Diriba T, et al. Neutrophil-to-Lymphocyte Ratio and Cut-off Values as Predictor of Severity and Mortality in COVID-19 Patients in Millennium COVID-19 Care Center, Addis Ababa, Ethiopia. *Int J Gen Med*. 2022;15:6739–6755. <https://doi.org/10.2147/IJGM.S375565>
14. Yan X, Li F, Wang X, et al. Neutrophil to lymphocyte ratio as prognostic and predictive factor in patients with coronavirus disease 2019: a retrospective cross-sectional study. *J Med Virol*. 2020;92(11):2573–2581. doi:10.1002/jmv.26061.
15. Citu C, Gorun F, Motoc A, et al. The Predictive Role of NLR, d-NLR, MLR, and SIRI in COVID-19 mortality. *Diagnostics*. 2022;12(1):2–11. doi:10.3390/diagnostics12010122.
16. Ma Y, Shi N, Fan Y. Predictive Value of the Neutrophil-to-Lymphocyte Ratio(NLR) for Diagnosis and Worse Clinical Course of the COVID-19: Findings from Ten Provinces in China. *The Lancet*. 2020[Preprint]. doi:10.2139/ssrn.3569838.
17. Pervaiz A, Pasha U, Bashir S, Arshad R, Waseem M, Qasim O. Original article neutrophil to lymphocyte ratio (Nlr) can be a predictor of the outcome and the need for mechanical ventilation in patients with Covid-19 in Pakistan. *Pak J Pathol*. 2020;31(2):38–41
18. Perera N, de Silva A, Kumbukage M, Rambukwella R, Indrakumar J. Neutrophil lymphocyte ratio as a marker of in-hospital deterioration in COVID-19: observations from a resource constraint setting. *Clin Pathol*. 2022;15:2632010X2210908. doi:10.1177/2632010X22109089.