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Abstract—The emergence of unmanned aerial vehicles (UAVs)
raised multiple concerns, given their potential for malicious mis-
use in unlawful acts. Vision-based counter-UAV applications offer
a reliable solution compared to acoustic and radio frequency-
based solutions because of their high detection accuracy in diverse
weather conditions. The existing solutions work well on trained
datasets, but their accuracy is relatively low for real-time detec-
tion. In this paper, we model deep learning-empowered solutions
to improve the multi-class UAV’s classification performance using
single-shot object detection algorithms YOLOvS and YOLOv7.
The transfer learning is employed for performance improvement
and rapid training with improved results. We customized a multi-
class dataset containing multi-rotor, fixed-wing, and single-rotor
UAVs in challenging weather conditions. Experiments show that
the integration of transfer learning has achieved good results,
with an overall best average-classification precision of 94%, an
average recall of 93.1%, a mAP@Q(.5 average of 95.3%, and an
average F1 score of 92.33%. The dataset and code are available
as an open source: https://github.com/ZeeshanKaleem/YOLOV5-
Large-vs-YOLOV7.git

Index Terms—UAY, Drones, YOLOv7, Multiclass classification,

Target detection.
I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have several applications
in mobile communication, academia, and vertical industries.
Besides those applications, the uncontrolled use of UAVs can
pose serious security threats to public and private organizations
[1]. The Federal Aviation Administration (FAA) forecasts that
the fleet of small UAVs should quadruple by 2021, increasing
from 1.1 million units in 2016 to 3.5 million by 2021 [2] [3].
Nonetheless, the availability of drones has posed significant
privacy and secrecy dilemma. Moreover, to emphasize the
significance of the problem, we noticed security threats from
the uncontrolled usage of UAVs that severely damaged the
infrastructure [4]. Drones were initially developed for defense
and counterinsurgency and controlled by the aerospace and
defense industries. Usually, the most common types of UAVs
adopted in global military applications are multi-rotor, fixed-
wing, and single-rotor UAVs, shown in Fig. 1. Based on the
above facts, we conclude that it is critical to have a drone
detection system capable of classifying and localizing types
of drones, particularly those that pose security threats.

UAV detection is an object detection problem that has lately
made significant progress. According to Lykou et al., 6% of

UAV detection systems are based on acoustic sensors, 26%
are radio frequency (RF), 28% are radar-based, and 40% are
visual [5] [6] [7]. YOLO (You Only Look Once) is single-shot
object detection and deep learning algorithm that attracted the
attention because of its durability, validity, quick detection,
and rapidity, which ensures real-time detection [8]. YOLO
consumes fewer computation resources than many deep-CNN
detectors, which often demand 4 GB of RAM and computer
graphics cards [9]. In this paper, we perform a multiclass and
multiscale UAV identification based on the most recent version
of the YOLO detector. Below are the main contributions to this
paper.

o Gathered the customized multi-class UAV dataset with
multi-size, multi-type targets in challenging weather con-
ditions and complex backgrounds.

e Trained YOLOVS5] and v7 model on the custom dataset
with pre-trained weights of coco dataset hence embedded
the transfer learning concept and named those models as
TransLearn-YOLOVS5I1 and TransLearn-YOLOvV7.

o To the best of our knowledge, this is the first effort to
compare YOLOvS with YOLOVS with transfer learning
for the task of multi-class drone detection from visual
images.

AR

Fig. 1: Military UAVs (a) Multi-Rotor [10](b) Fixed-Wing [11]
(c) Single-Rotor [12].

II. LITERATURE REVIEW

Drones have been adopted for both educational and com-
mercial purposes in a wide range of disciplines. The last
decade has seen a surge in research for effective and precise
methods for UAV recognition. However, due to the nature of
the locations in which drones often operate, identification can
be a challenge. As a result, sophisticated methods are required
for UAV identification, whether they are flying alone or in a
swarm. Singha et al. developed a YOLOv4-based auto-drone
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detection system and tested it on drone and bird footage. This
architecture was trained using 479 bird and 1916 drone images
from publicly available sources. The achieved F1 score, mAP,
recall, and precision values were 79%, 74.36%, 68%, and 95%,
respectively, in [13]. YOLOv4 is used to detect and identify
UAVs in visual images of helicopters, multirotor, and birds.
This network has an mAP of 84% and an accuracy of 83%.
This paper excellently addressed the detection problem but
only identified multirotor and helicopter drones; it does not
perform well for other UAV types [10].

In [14], researchers solved the problem of drones versus
birds by proposing a visual drone detector based on YOLOVS
and an air-to-air UAV dataset containing small objects and
complex backgrounds. They additionally trained a model us-
ing faster region convolutional neural network (R-CNN) and
feature pyramid network (FPN) techniques. YOLOVS outper-
formed the faster R-CNN + FPN in both simple cases and
complex settings, with a 0.96 recall and a 0.98 mAP. Coluccia
et al. classified multirotor and fixed-wing UAVs present in
video clips using the YOLOv3 and YOLOVS architectures. The
monitoring system linked to a warning algorithm that triggers
the alarm whenever it detects a drone. The detection rate and
average accuracy showed performance improvement, but it
still needs additional data in complex weather conditions for
further improvements [15]. The neural network was trained,
tested, and evaluated using datasets containing different kinds
of UAVs (multirotor, fixed-wing aircraft, helicopters, and ver-
tical takeoff landing aircraft) and birds and achieved an 83%
mAP [16].

The authors in [12] proposed Yolov5-based multirotor UAV
target detection. They replaced the baseline model’s backbone
with EfficientLite for parameter reduction and computation,
introduced adaptive feature fusion to facilitate the fusion
of feature maps at various scales, and added angle as a
constraint to the baseline loss function. The results showed
that EfficientLite struck an optimal balance between the
number of parameters and detection accuracy, with enhanced
target identification compared to the baseline model. In [17],
the authors proposed one-stage detector-based deep learning
with simplified filtering layers. For lower complexity, SSD-
AdderNet was proposed to reduce multiplications operations
performed in the convolutional layer. The video data contained
varying sizes of drones. The AdderNet’s accuracy was lower
than other well-known methods for training on RGB images,
but it achieved noteworthy complexity reduction. However,
when tested on IR pictures, the SSD performance of AdderNet
is much higher than that of competing algorithms. Here, real-
time image classification was performed by training a deep
learning model on stereoscopic images [18]. This research
confirmed that synthetic images could be used to speed up
the image classification issues for imbalanced, skewered, or
no-image dataset problems.

A convolutional neural network (CNN) based model pre-
sented in [19] detected UAVs present in video footage. This
model was trained with computer-generated visuals and tested
using a real-world drone dataset. Drones were categorized as
either DJI Mavics, DJI Phantoms, or DJI Inspires, with an
average accuracy of 92.4%. In [11], researchers used multi-
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stage feature fusion utilizing multi-cascaded auto-encoders to
eliminate rain patterns in input pictures and used ResNet as
a feature extractor. This system can successfully block the
entry of UAVs into the airspace with an average identification
accuracy of 82% and 24 frames per second (FPS).

After screaming through the literature, we notice that signif-
icant improvement in drone detection technology and solutions
is required. Multirotor UAVs (quadcopters) have a substantial
market share, so these UAVs need to be closely watched for
safe operation, as small drone detection has multiple difficul-
ties. Consumer-grade UAVs often fly at low altitudes, produc-
ing complex and changeable backgrounds and frequently being
obscured by things like trees and homes. Regular aircraft, such
as planes and helicopters, may often fly over a location like
an airport or a hospital. The detection technique should be
capable of distinguishing between them and different types of
UAVs. UAVs may emerge from all directions, so monitoring
systems should be capable of detecting drones in multiple
directions simultaneously. Our problem statement is the multi-
class detection and classification of UAVs under complex
weather conditions. Therefore, we adopted the two latest and
fastest object detection algorithms,YOLOvS5 and YOLOv7, by
combining the transfer learning technique.

Fig. 2: Block Diagram of Single Stage Object Detector Algo-
rithms.

IIT. PROPOSED TRANSLEARN-YOLOX: IMPROVED-YOLO
WITH TRANSFER LEARNING

A. YOLOvS

YOLOVS is one of the most recent versions of the YOLO
family, presented in Fig. 2 is distinct from earlier releases
because it integrated PyTorch instead of Darknet. It uses
CSPDarknet53 as its structural support in the backbone block,
which eliminates the redundant gradient information present
in large backbones. It also incorporates gradient change into
feature maps, which speeds up the inference rate, improves
accuracy, and shrinks the size of the model by reducing the
number of parameters. It boosts the information flow by using
the path aggregation network (PANet) in the neck block. A
feature pyramid network (FPN) with bottom-up and top-down
layers is adopted by the PANet architecture, which enhances
the model’s transmission of low-level features [20].
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TABLE I: Detailed comparison of evaluation metrics

Class TransLearn-YOLOV5I TransLearn-YOLOv7
Precision Recall mAP@0.5 | Fl-score Precision Recall mAP@0.5 | Fl-score
Fixed wing 90.6 91.7 93.7 91.15 92.2 92.8 94.3 90.65
Multi-rotor 94 98 929 95.96 93.5 95.7 97.1 93.12
Single-rotor 95.7 86.6 90.9 90.92 96.4 90.8 94.4 93.50
All 93.4 92.1 94.5 92.75 94 93.1 95.3 92.44
B. YOLOv7 object loss gain is 1, the focal loss gamma is 0, the anchor-

YOLOV7 is a real-time, single-stage object detection algo-
rithm that claims to outperform all YOLO models in precision
and speed, with a maximum average precision of 56.8% on the
COCO dataset [8]. It has a head, a neck, and a backbone, as
shown in Fig2. The projected model outputs are located in the
head. YOLOV7 is not constrained to just one head because it
was inspired by Deep Supervision. The lead head is in charge
of producing the ultimate product, while the auxiliary head
is utilized to support middle-layer training. A label assigner
is also embedded in it that assigns soft labels after taking
ground truth and network prediction outcomes. The extended
efficient layer aggregation network (E-ELAN) performs the
main computation in the YOLOvV7 backbone. By employing
“expand, shuffle, and merge cardinality” to accomplish the
capacity to constantly increase the learning capability of the
network without breaking the original gradient route, the
YOLOvV7 E-ELAN architecture helps the network improve its
learning.

C. Transfer learning

Transfer learning is a method for using a trained model
as a starting point to train a model to handle a different
but related job [21]. On our unique UAV dataset, we trained
the YOLOvSI and YOLOv7 models with three classes using
pre-trained YOLOVS and v7 weights with 80 classes. With
minimal training time, this approach successfully converges
the model’s weight and optimizes model loss.

IV. DATASET AND MODEL TRAINING

In this paper, we evaluated the two most recent models
of YOLO, named YOLOv5] and YOLOv7, with a trans-
fer learning approach, TransLearn-YOLOvSI and TransLearn-
YOLOV7. Both of these models require the dataset to be avail-
able with the class category, bounding boxes, and annotation
files. We used Roboflow an open-sourced dataset platform,
to create a customized dataset of 11733 images that had
three different classes of UAV, i.e., multi-rotor (3911 images),
single-rotor (3911 images), and fixed-wing (3911 images). We
use 93% of the dataset for training (11,000 images), 3% for
validation (343 images), and 4% for testing (423 images). Be-
fore training, the images underwent pre-processing, resizing,
saturation + exposure adjustment, and then model training. For
smooth data training, we set the initial learning rate (Ir0) for
the SGD optimizer at 0.01. For TransLearn-YOLOV7, the one-
cycle learning rate (Irf) is 0.1, and for TransLearn-YOLOVS,
it is 0.01 at the end. with a weight decay of 0.0005 and an
optimizer momentum of 0.937. The first warmup momentum
is 0.8 and the initial warmup bias is 0.1 at 3.0 warmup
epochs. The box loss gain is 0, the class loss gain is 0, the

multiple threshold is 4.0, and the IoU training threshold is
0.20. The dataset was trained on Google Colab with a python-
3.8.16 and torch-1.13.0 environment and a Tesla T4 GPU.
TransLearn-YOLOVS5 took 1 hour, 49 minutes, and 22 seconds
and TransLearn-YOLOvV7 took 3 hours, and 3 minutes with the
transfer learning approach. After training, we evaluated the
models’ performance using standard evaluation metrics like
precision, recall, mAP, fl-score, and detection accuracy. The
box loss of TransLearn-YOLOvVS during training went from
0.06-0.02, while for TransLearn-YOLOV7 it was 0.05-0.021,
as shown in Fig. 3. TransLearn-YOLOvV7 has low box loss,
which means that it has excellent capability to locate an ob-
ject’s center point and a predicted bounding box that covers the
specific object quite well. The objectness loss for TransLearn-
YOLOVS! is 0.016-0.006 during training, and TransLearn-
YOLOV7 has 0.006-0.003. Each box has an associated predic-
tion called “objectivity.” TransLearn-YOLOV7 performs quite
well in scoring objects with high precision values. That’s
why its object loss is quite low as compared to YOLOVS.
A classification loss is applied to train the classifier head to
determine the type of target object. Its values are 0.020-0.000
for TransLearn-YOLOvSI and 0.015-0.000 for TransLearn-
YOLOV7. TransLearn-YOLOVS] shows an increased classifi-
cation loss as compared to TransLearn-YOLOv7, which means
that YOLOv7 will have high threshold detection accuracy
in unknown scenarios. The precision, recall, mAP@0.5, and
mAP@0.5:0.95 graphs over 50 epochs for both models show
an increasing trend, which implies that both models’ learning
patterns are going well with the transfer learning approach.
These results still have room for improvement, which will be
addressed in future work.

V. EVALUATION AND COMPARISON

Table I gives us a detailed performance evaluation of
each target class. TransLearn-YOLOVS5I achieved the highest
precision of 95.7% for single-rotor UAVs, the highest recall
of 98% with the highest mAP of 99%, and the highest
flscore of 95.96% for multi-rotor UAVs. This means that
YOLOVS has the best capability for real-time multi-rotor UAV
detection in challenging conditions, as shown in Fig. 3-b.
TransLearn-YOLOV7 achieved the highest precision of 96.4%
and the highest flscore of 93.50% for single-rotor UAVs. It
achieved the highest recall of 95.7% and the highest mAP
of 97.1% for multi-rotor UAVs. This means that YOLOV7 has
improved detection competence for both single and multi-rotor
UAVs in challenging and complex conditions. For fixed-wing
UAVs, TransLearn-YOLOVSI] achieved 90.6% precision, and
TransLearn-YOLOV7 achieved 92.2% precision, which proved
the fact that fixed-wing UAVs are the hardest to detect by both
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Fig. 3: Training Performance w.r.t epochs (a) TransLearn-YOLOVSI (b) TransLearn-YOLOV7.

models. If we compare the overall/average metrics evaluation,
then YOLOV7 achieved the best average precision of 94%, best
average recall of 93.1%, best average mAP of 95.3%, and the
best average flscore of 92.44% for multi-class detection and
classification of UAVs. This makes YOLOV7 the best model
for anyone wanting to perform multi-sized and multi-class
UAV target detection in challenging backgrounds and complex
weather conditions. In real-time, whenever we want a model
to recognize UAVs operating inside the specified territory,
then, by seeing the overall precision performance, [22] we
suggest that YOLOv7 be used. The recall score indicates
the model’s learning ability to properly identify positives.
It also assesses the effectiveness of the algorithm based on
the correctness of all positive predictions [23]. YOLOvV7 has
a higher overall recall score, which indicates that it has an
increased and efficient ability to perform classification. Multi-

rotor has the highest true positive rate (TPR) of 98% for the
YOLOVS model, while single-rotor has the highest TPR of
92% for the YOLOv7 model, while fixed-wing UAV showed
the highest TPR of 93% during YOLOvV7 model training.
TRP is also called “’sensitivity.” That means that the YOLOv7
model is most sensitive to single-rotor and fixed-wing UAVs.
Fig. 4 shows the results of the models when they were
tested with very small targets for detection and classification.
YOLOV7 achieved the best test accuracy of 98% for single-
rotor UAVs and the best test accuracy of 90% for fixed-wing
UAVs, while YOLOVS achieved the best test accuracy of 87%
for multi-rotor UAVs. YOLOVSI has 468 layers, 46149064
training parameters, and 46149064 training gradients with
108.3 GFLOPs, while YOLOvV7 utilized 415 layers total and
extracted 37207344 training parameters and 37207344 training
gradients with 105.1 GFLOPs for 50 epochs.
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VI. COMPARISON WITH STATE-OF-THE ART

The state-of-the-art comparison of the TransLearn-
YOLOv51 and TransLearn-YOLOv7 with the schemes
mentioned in the literature is shown in Table II. It is evident
that the mAP of YOLOvV5 and v7 with transfer learning
approach has outperformed the work given in [13], [10],
[14], [15] and [16] with reduced amount of training. The
TransLearn-YOLOv7 also performed well in terms of Fl
score and yielded the highest value compared to both the
YOLOv4 and YOLOVS5 existing schemes. Moreover, we
identified that no prior work has considered YOLOV7 transfer
learning for drone detection and classification.

VII. CONCLUSION

In this paper, we show how a single-stage object detector
(YOLOVS5/vT) with transfer learning approach can detect and
identify multi-rotor, fixed-wing, and single-rotor UAVs. That’s

why we grounded a multi-class UAV dataset with automatic
annotation, and then we made sure that all classes had the
same number of images for model training. This step removed
the problems of data imbalance and model over-fitting. This
dataset contained images with varied, complex, and chal-
lenging backgrounds, which increased the trained model’s
credibility for real-time detection. The results showed that
the trained models can perform multiclass classification and
detection with high precision and mAP. In our future study, we
intend to prove the feasibility of detecting small flying objects
through camera images using our improved drone detector in
real-time with implementation on leading-edge devices.
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TABLE II: Comparison with Start-of-the-art.

Reference Dataset YOLO model mAPQ0.5 (%) Recall(%) F1 (%)
TransLearn;: Self Customized TransLearn- 95.3 93.1 92.44
YOLOv7! YOLOV7
TransLearn: Self Customized TransLearn- 94.5 92.1 92.75
YOLO5I? YOLOV5I
[13] Self Collected YOLOv4 7436 (I 20.94)T (1 | 68() 25.0)T 179 (J 13.44)T (]
20.14)2 (1 24.1)2 13.75)2
[10] Drone-Data-Set YOLOv4 84 (| 11.3)({ 10.5)2 84 (1 9.1)1(] 8.1)? 83 (Qi 9.44)1(]
9.75)
[16] Self Collected YOLOv4 83 (§ 12.3)' (] 11.5)? 83 (1 10.1)T({ 9.1)? | 83 (Qi 9.44)1(]
9.75)
[14] Det-fly & Competition YOLOVS 71 (] 24.3)1(] 23.5)? 96 (12.9)1(1 3.9)? Not mentioned
[15] Little Birds in Aerial Im- | YOLOVS 93.55 (1 1.75)1(1 0.95)2 | 874 5.1)I(r4.7)% | 78 ( 14.44)T (|
ages, Competition Wind- 14.75)2
mills dataset
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