

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Szymon Łukaszyk\*  
Łukaszyk Patent Attorneys, ul. Główackiego 8, 40-052 Katowice, Poland

Imaginary dimensions in physics require an imaginary set of base Planck units and some negative parameter  $c_n$  corresponding to the speed of light in vacuum  $c$ . The second, negative fine-structure constant  $\alpha_2^{-1} \approx -140.178$  present in Fresnel coefficients for the normal incidence of electromagnetic radiation on monolayer graphene leads to the imaginary Planck units. Furthermore, it sets  $c_n \approx -3.06 \times 10^8$  [m/s]. It follows that electric charges are the same in real and imaginary dimensions. Neutron stars and white dwarfs, *objects* emitting perfect black-body radiation, need energy exceeding their mass-energy equivalence ratios. Complex energies are defined in terms of real and imaginary Planck units. Their imaginary parts, inaccessible for direct observation, store the excess of these energies. It follows that black holes are fundamentally uncharged, charged micro neutron stars and white dwarfs with masses lower than  $5.7275 \times 10^{-10}$  [kg] are unphysical, and the radii of white dwarfs' cores are limited to  $R_{WD} < 6.7933 GM_{WD}/c^2$ . It is conjectured that the maximum atomic number  $Z = 238$ . A black-body *object* is in the equilibrium of complex energies of masses, charges, and wavelengths if its radius  $R_{eq} \approx 2.7665 GM_{BBO}/c^2$ , which corrects the value of the photon sphere radius  $R_{ps} = 3GM/c^2$ , taking into account the value(s) of the fine-structure constant(s), which is otherwise neglected in general relativity. Complex Newton's law of universal gravitation leads to the black-body object's surface gravity and temperature.

Keywords: emergent dimensionality; imaginary dimensions; Planck units; fine-structure constant; black holes; neutron stars; white dwarfs; patternless binary messages; complex energy; complex force; Hawking radiation; Hagedorn temperature; extended periodic table; photon sphere; general relativity; entropic gravity; holographic principle; mathematical physics

## I. INTRODUCTION

The universe began with the Big Bang, which is a current prevailing scientific opinion. But this Big Bang was not an explosion of 4-dimensional spacetime, which also is a current prevailing scientific opinion, but an explosion of dimensions. More precisely, in the  $-1$ -dimensional void, a 0-dimensional point appeared, inducing the appearance of countably infinitely other points indistinguishable from the first one. The breach made by the first operation of the *dimensional successor function* of the Peano axioms inevitably continued leading to the formation of 1-dimensional, real and imaginary lines allowing for an ordering of points using multipliers of real units (ones) or imaginary units ( $a \in \mathbb{R} \Leftrightarrow a = 1b^1, a \in \mathbb{I} \Leftrightarrow a = ib, b \in \mathbb{R}$ ). Then out of two lines of each kind, crossing each other only at one initial point  $(0, 0)$ , the dimensional successor function formed 2-dimensional  $\mathbb{R}^2, \mathbb{I}^2$ , and  $\mathbb{R} \times \mathbb{I}$  Euclidean planes, with  $\mathbb{I}^2$  being a mirror reflection of  $\mathbb{R}^2$ . And so on, forming  $n$ -dimensional Euclidean spaces  $\mathbb{R}^a \times \mathbb{I}^b$  with  $a \in \mathbb{N}$  real and  $b \in \mathbb{N}$  imaginary lines,  $n := a + b$ , and the scalar product defined by

$$\begin{aligned} \mathbf{x} \cdot \mathbf{y} &= (x_1, \dots, x_a, ix'_1, \dots, ix'_b)(y_1, \dots, y_a, iy'_1, \dots, iy'_b) := \\ &:= \sum_{k=1}^a x_k y_k + \sum_{l=1}^b x'_l \bar{y'_l}, \end{aligned} \quad (1)$$

where  $\mathbf{x}, \mathbf{y} \in \mathbb{R}^a \times \mathbb{I}^b$ .

With the onset of the first 0-dimensional point, information began to evolve [1–6].

However, dimensional properties are not uniform. Concerning regular convex  $n$ -polytopes in natural dimensions, for

example, there are countably infinitely many regular convex polygons, five regular convex polyhedra (Platonic solids), six regular convex 4-polytopes, and only three regular convex  $n$ -polytopes if  $n > 3$  [7]. In particular, 4-dimensional Euclidean space is endowed with a peculiar property known as exotic  $\mathbb{R}^4$  [8]. This property allowed for variation of phenotypic traits within populations of individuals [9] perceiving emergent Euclidean  $\mathbb{R}^3 \times \mathbb{I}$  space of three real and one imaginary (time) dimension observer-dependently [10] and at present [11] when  $i0 = 0$  is *real*. The evolution of information extended into biological evolution.

Each dimension requires certain units of measure. In real dimensions, the *natural units of measure* were derived by Max Planck in 1899 as "independent of special bodies or substances, thereby necessarily retaining their meaning for all times and for all civilizations, including extraterrestrial and non-human ones" [12].

This study derives the complementary set of Planck units applicable for imaginary dimensions, including the imaginary base units, and outlines prospects for their research. As the speed of electromagnetic radiation is the product of its wavelength and frequency and both these quantities are imaginary in imaginary dimensions, some real but negative parameter  $c_n = \nu_i \lambda_i$  corresponding to the speed of light in vacuum  $c$  (i.e., the Planck speed) is also necessary as  $i^2 = -1$ . It turns out that the imaginary Planck energy  $E_{Pi}$  and temperature  $T_{Pi}$  are larger in moduli than the Planck energy  $E_P$  and temperature  $T_P$  setting more favorable conditions for biological evolution to emerge in  $\mathbb{R}^3 \times \mathbb{I}$  Euclidean space than in  $\mathbb{I}^3 \times \mathbb{R}$  Euclidean one due to the minimum energy principle.

The study shows that the energies of neutron stars and white dwarfs exceed their mass-energy equivalences and that excess energy is stored in imaginary dimensions and is inaccessible to direct observations. This corrects the value of the photon sphere radius and results in the upper bound on the slopes of the radii of their cores as a function of their masses, where the

\* [szymon@patent.pl](mailto:szymon@patent.pl)

<sup>1</sup> This is, of course, a circular definition, but it is given for clarity.

Schwarzschild radius sets the lower bound.

The paper is structured as follows. Section II shows that Fresnel coefficients for the normal incidence of electromagnetic radiation on monolayer graphene include the second, negative fine-structure constant  $\alpha_2$  as a fundamental constant of nature. Section III shows that nature endows us with the imaginary base Planck units by this second fine-structure constant. Section IV introduces the concept of a black-body *object* in thermodynamic equilibrium emitting black-body radiation and discusses its necessary properties. Section V introduces two complex energies of masses and charges and applies them to black-body *objects*. Section VI introduces four additional complex energies of masses, charges, and wavelengths to derive the black-body *object* equilibrium, correcting the photon sphere radius of general relativity. Section VII summarizes the findings of this study. Certain prospects for further research are given in the appendices.

## II. THE SECOND FINE-STRUCTURE CONSTANT

Numerous publications provide Fresnel coefficients for the normal incidence of electromagnetic radiation (EMR) on monolayer graphene (MLG), which are remarkably defined only by  $\pi$  and the fine-structure constant  $\alpha$

$$\alpha^{-1} = \left( \frac{q_p}{e} \right)^2 = \frac{4\pi\epsilon_0\hbar c}{e^2} \approx 137.036, \quad (2)$$

where  $\epsilon_0$  is vacuum permittivity (the electric constant),  $\hbar$  is the reduced Planck constant, and  $e$  is the elementary charge.

Transmittance ( $T$ ) of MLG

$$T = \frac{1}{\left(1 + \frac{\pi\alpha}{2}\right)^2} \approx 0.9775, \quad (3)$$

for normal EMR incidence was derived from the Fresnel equation in the thin-film limit [13] (Eq. 3), whereas spectrally flat absorptance ( $A$ )  $A \approx \pi\alpha \approx 2.3\%$  was reported [14, 15] for photon energies between about 0.5 and 2.5 [eV].  $T$  was related to reflectance ( $R$ ) [16] (Eq. 53) as  $R = \pi^2\alpha^2T/4$ , i.e.,

$$R = \frac{\frac{1}{4}\pi^2\alpha^2}{\left(1 + \frac{\pi\alpha}{2}\right)^2} \approx 1.2843 \times 10^{-4}, \quad (4)$$

The above equations for  $T$  and  $R$ , as well as the equation for the absorptance

$$A = \frac{\pi\alpha}{\left(1 + \frac{\pi\alpha}{2}\right)^2} \approx 0.0224, \quad (5)$$

were also derived [17] (Eqs. 29-31) based on the thin film model (setting  $n_s = 1$  for substrate).

The sum of transmittance (3) and the reflectance (4) at normal EMR incidence on MLG was also derived [18] (Eq. 4a) as

$$\begin{aligned} T + R &= 1 - \frac{4\sigma\eta}{4 + 4\sigma\eta + \sigma^2\eta^2 + k^2\chi^2} \\ &= \frac{1 + \frac{1}{4}\pi^2\alpha^2}{\left(1 + \frac{\pi\alpha}{2}\right)^2} \approx 0.9776, \end{aligned} \quad (6)$$

where  $\eta$  is the vacuum impedance

$$\eta = \frac{4\pi\alpha\hbar}{e^2} = \frac{1}{\epsilon_0 c} \approx 376.73 \text{ } [\Omega], \quad (7)$$

$\sigma = e^2/(4\hbar) = \pi\alpha/\eta$  is the MLG conductivity [19], and  $\chi = 0$  is the electric susceptibility of vacuum.

These coefficients are thus well-established theoretically and experimentally confirmed [13–15, 18, 20, 21].

As a consequence of the conservation of energy

$$(T + A) + R = 1. \quad (8)$$

In other words, the transmittance in the Fresnel equation describing the reflection and transmission of EMR at normal incidence on a boundary between different optical media is, in the case of the 2-dimensional (boundary) of MLG, modified to include its absorption.

The reflectance  $R = 0.013\%$  (4) of MLG can be expressed as a quadratic equation with respect to  $\alpha$

$$\frac{1}{4}(R - 1)\pi^2\alpha^2 + R\pi\alpha + R = 0, \quad (9)$$

having two roots with reciprocals

$$\alpha^{-1} = \frac{\pi - \pi\sqrt{R}}{2\sqrt{R}} \approx 137.036, \text{ and} \quad (10)$$

$$\alpha_2^{-1} = \frac{-\pi - \pi\sqrt{R}}{2\sqrt{R}} \approx -140.178. \quad (11)$$

Therefore, the quadratic equation (9) includes the second, negative fine-structure constant  $\alpha_2$ .

The sum of the reciprocals of these fine-structure constants (10) and (11)

$$\alpha^{-1} + \alpha_2^{-1} = \frac{\pi - \pi\sqrt{R} - \pi - \pi\sqrt{R}}{2\sqrt{R}} = -\pi, \quad (12)$$

is remarkably independent of the reflectance  $R$ . The same result can only be obtained for  $T + A$  (cf. Appendix A).

Furthermore, this result is intriguing in the context of a peculiar algebraic expression for the fine-structure constant [22]

$$\alpha^{-1} = 4\pi^3 + \pi^2 + \pi \approx 137.036303776 \quad (13)$$

that contains a *free*  $\pi$  term and is very close to the physical definition (2) of  $\alpha^{-1}$ , which according to the CODATA 2018 value is 137.035999084. Notably, the value of the fine-structure constant is not *constant* but increases with time [23–27]. Thus, the algebraic value given by (13) can be interpreted as the asymptote of the  $\alpha$  increase.

Using relations (12) and (13), we can express the negative reciprocal of the 2<sup>nd</sup> fine-structure constant  $\alpha_2^{-1}$  that emerged in the quadratic equation (9) also as a function of  $\pi$  only

$$\alpha_2^{-1} = -\pi - \alpha_1^{-1} = -4\pi^3 - \pi^2 - 2\pi \approx -140.177896429, \quad (14)$$

and this value can also be interpreted as the asymptote of the  $\alpha_2$  decrease, where the current value would amount to  $\alpha_2^{-1} \approx$

-140.177591737, assuming the rate of change is the same for  $\alpha$  and  $\alpha_2$ .

Using relations (13) and (14), transmittance  $T$  (3), reflectance  $R$  (4), and absorptance  $A$  (5) of MLG for normal EMR incidence can be expressed just by  $\pi$ . Moreover, equation (9) includes two  $\pi$ -like constants for two surfaces with positive and negative Gaussian curvatures (cf. Appendix B).

### III. $\alpha_2$ -SET OF PLANCK UNITS

Planck units can be derived from numerous starting points [5, 28] (cf. Appendix C). The definition of the Planck charge  $q_P = \sqrt{4\pi\epsilon_0\hbar c}$  can be solved for the speed of light yielding  $c = q_P^2/(4\pi\epsilon_0\hbar)$ . Furthermore, the ratio of charges definition of the fine-structure constant  $\alpha = e^2/q_P^2$  (2) applied for the negative  $\alpha_2$ , requires an introduction of some imaginary Planck charge  $q_{Pi}$  so that its square would yield a negative value of  $\alpha_2$

$$\frac{q_{Pi}^2}{e^2} = \alpha_2^{-1} \approx -140.178 < 0. \quad (15)$$

Since the elementary charge  $e$  is real

$$q_{Pi} = \pm \sqrt{\frac{e^2}{\alpha_2}} = \pm \sqrt{4\pi\epsilon_0\hbar c_n}. \quad (16)$$

Among the physical constants of the  $\sqrt{4\pi\epsilon_0\hbar c_n}$  term, almost all are positive<sup>2</sup>. Only the  $c_n = \nu_i\lambda_i$  parameter, corresponding to the speed of light, must be negative as both frequency  $\nu_i$  and wavelength  $\lambda_i$  are imaginary in imaginary dimensions. Therefore, equation (16) can be solved for  $c_n$  yielding

$$c_n = q_{Pi}^2/(4\pi\epsilon_0\hbar) \approx -3.066653 \times 10^8 \text{ [m/s]}, \quad (17)$$

which is greater than the speed of light in vacuum  $c$  in modulus<sup>3</sup>. We also note that  $c$  is defined by the electric constant  $\epsilon_0$  and the magnetic constant  $\mu_0$  as  $c = 1/\sqrt{\epsilon_0\mu_0}$ ; a square root is bivalued and the value of  $\mu_0$  depends on  $\alpha$ . Furthermore,  $c$  is defined by  $\alpha$ -dependent vacuum impedance (7).

The negative parameter  $c_n$  (17) leads to the imaginary Planck charge  $q_{Pi}$ , length  $\ell_{Pi}$ , mass  $m_{Pi}$ , time  $t_{Pi}$ , and temperature  $T_{Pi}$  that redefined by square roots containing  $c_n$  raised to an odd (1, 3, 5) power become imaginary and bivalued

$$\begin{aligned} q_{Pi} &= \pm \sqrt{4\pi\epsilon_0\hbar c_n} = \pm q_P \sqrt{\frac{\alpha}{\alpha_2}} \approx \\ &\approx \pm i1.8969 \times 10^{-18} \text{ [C]} \quad (|q_{Pi}| > |q_P|), \end{aligned} \quad (18)$$

<sup>2</sup> Vacuum permittivity  $\epsilon_0$  is the value of the absolute dielectric permittivity of classical vacuum. Thus,  $\epsilon_0$  cannot be negative. The Planck constant  $\hbar$  is the uncertainty principle parameter. Thus, it cannot be negative; negative probabilities do not seem to withstand Occam's razor.

<sup>3</sup> Their average  $(c + c_n)/2 \approx -3.436417 \times 10^6$  [m/s] is in the range of the Fermi velocity.

$$\begin{aligned} \ell_{Pi} &= \pm \sqrt{\frac{\hbar G}{c_n^3}} = \pm \ell_P \sqrt{\frac{\alpha_2^3}{\alpha^3}} \approx \\ &\approx \pm i1.5622 \times 10^{-35} \text{ [m]} \quad (|\ell_{Pi}| < |\ell_P|), \end{aligned} \quad (19)$$

$$\begin{aligned} m_{Pi} &= \pm \sqrt{\frac{\hbar c_n}{G}} = \pm m_P \sqrt{\frac{\alpha}{\alpha_2^2}} \approx \\ &\approx \pm i2.2012 \times 10^{-8} \text{ [kg]} \quad (|m_{Pi}| > |m_P|), \end{aligned} \quad (20)$$

$$\begin{aligned} t_{Pi} &= \pm \sqrt{\frac{\hbar G}{c_n^5}} = \pm t_P \sqrt{\frac{\alpha_2^5}{\alpha^5}} \approx \\ &\approx \pm i5.0942 \times 10^{-44} \text{ [s]} \quad (|t_{Pi}| < |t_P|), \end{aligned} \quad (21)$$

$$\begin{aligned} T_{Pi} &= \pm \sqrt{\frac{\hbar c_n^5}{G k_B^2}} = \pm T_P \sqrt{\frac{\alpha_2^5}{\alpha_2^5}} \approx \\ &\approx \pm i1.4994 \times 10^{32} \text{ [K]} \quad (|T_{Pi}| > |T_P|), \end{aligned} \quad (22)$$

and can be expressed, using the relation (31), in terms of base Planck units  $q_P$ ,  $\ell_P$ ,  $m_P$ ,  $t_P$ , and  $T_P$ .

Planck units derived from the imaginary base units (19)-(21) are generally not imaginary. The  $\alpha_2$  Planck volume

$$\begin{aligned} \ell_{Pi}^3 &= \pm \left( \frac{\hbar G}{c_n^3} \right)^{3/2} = \pm \ell_P^3 \sqrt{\frac{\alpha_2^9}{\alpha^9}} \approx \\ &\approx \pm i3.8127 \times 10^{-105} \text{ [m}^3\text{]} \quad (< |\ell_P^3|), \end{aligned} \quad (23)$$

the  $\alpha_2$  Planck momentum

$$\begin{aligned} p_{Pi} &= \pm m_{Pi} c_n = \pm \sqrt{\frac{\hbar c_n^3}{G}} = \pm m_P c \sqrt{\frac{\alpha^3}{\alpha_2^3}} \approx \\ &\approx \pm i6.7504 \text{ [kg m/s]} \quad (|m_{Pi} c_n| > |m_P c|), \end{aligned} \quad (24)$$

the  $\alpha_2$  Planck energy

$$\begin{aligned} E_{Pi} &= \pm m_{Pi} c_n^2 = \pm \sqrt{\frac{\hbar c_n^5}{G}} = \pm E_P \sqrt{\frac{\alpha_2^5}{\alpha^5}} \approx \\ &\approx \pm i2.0701 \times 10^9 \text{ [J]} \quad (|E_{Pi}| > |E_P|), \end{aligned} \quad (25)$$

and the  $\alpha_2$  Planck acceleration

$$\begin{aligned} a_{Pi} &= \pm \frac{c_n}{t_{Pi}} = \pm \sqrt{\frac{c_n^7}{\hbar G}} = \pm a_P \sqrt{\frac{\alpha^7}{\alpha_2^7}} \approx \\ &\approx \pm i6.0198 \times 10^{51} \text{ [m/s}^2\text{]} \quad (|a_{Pi}| > |a_P|), \end{aligned} \quad (26)$$

are imaginary and bivalued. However, the  $\alpha_2$  Planck force

$$\begin{aligned} F_{P2} &= \pm \frac{E_{Pi}}{\ell_{Pi}} = \pm \frac{c_n^4}{G} = \pm F_P \frac{\alpha^4}{\alpha_2^4} \approx \\ &\approx \pm i1.3251 \times 10^{44} \text{ [N]} \quad (|F_{P2}| > |F_P|), \end{aligned} \quad (27)$$

and the  $\alpha_2$  Planck density

$$\begin{aligned}\rho_{P2} &= \pm \frac{m_{Pi}}{\ell_{Pi}^3} = \pm \frac{c_n^5}{\hbar G^2} = \pm \rho_P \frac{\alpha^5}{\alpha_2^5} \approx \\ &\approx \pm 5.7735 \times 10^{96} [\text{kg/m}^3] \quad (|\rho_{P2}| > |\rho_P|),\end{aligned}\quad (28)$$

are real and bivalued. On the other hand, the  $\alpha_2$  Planck area

$$\begin{aligned}\ell_{Pi}^2 &= \frac{\hbar G}{c_n^3} = \ell_P^2 \frac{\alpha_2^3}{\alpha^3} \approx \\ &\approx -2.4406 \times 10^{-70} [\text{m}^2] \quad (|\ell_{Pi}^2| < |\ell_P^2|),\end{aligned}\quad (29)$$

is strictly negative, while the Planck area  $\ell_P^2$  is strictly positive.

Both  $\alpha_2$  and  $c_n$  lead to the second, negative vacuum impedance

$$\eta_2 = \frac{4\pi\alpha_2\hbar}{e^2} = \frac{1}{\epsilon_0 c_n} \approx -368.29 [\Omega] \quad (|\eta_2| < |\eta|). \quad (30)$$

Solving both impedances (7) and (30) for  $4\pi\hbar\epsilon_0/e^2$  and comparing with each other yields the following important relation between the speed of light in vacuum  $c$ , negative parameter  $c_n$ , and the fine-structure constants  $\alpha, \alpha_2$

$$c\alpha = c_n\alpha_2 \quad (= v_e), \quad (31)$$

where, notably,  $v_e$  is the electron's velocity at the first circular orbit in the Bohr model of the hydrogen atom. This is not the only  $\alpha$  to  $\alpha_2$  relation. Along with the two  $\pi$ -like constants  $\pi_1, \pi_2$  (relations (B8) and (B10), cf. Appendix B)

$$\frac{\alpha_2}{\alpha} = \frac{c}{c_n} = \frac{\pi_1}{\pi} = \frac{\pi}{\pi_2} \approx -0.9776. \quad (32)$$

The relations between time (21) and temperature (22)  $\alpha_2$  Planck units are inverted,  $\alpha^5\ell_{Pi}^2 = \alpha_2^5\ell_P^2$ ,  $\alpha_2^5T_{Pi}^2 = \alpha^5T_P^2$ , and saturate Heisenberg's uncertainty principle (energy-time version) taking energy from the equipartition theorem for one degree of freedom (or one bit of information [5, 29])

$$\frac{1}{2}k_B T_{Pi} = \frac{1}{2}k_B T_P t_{Pi} = \frac{\hbar}{2}. \quad (33)$$

Furthermore, eliminating  $\alpha$  and  $\alpha_2$  from the relations (18)–(20), yield

$$\frac{q_P^2}{m_P^2} = \frac{q_{Pi}^2}{m_{Pi}^2} = 4\pi\epsilon_0 G, \quad (34)$$

and

$$\ell_P m_P^3 = \ell_{Pi} m_{Pi}^3 \quad \text{and} \quad \ell_P q_P^3 = \ell_{Pi} q_{Pi}^3. \quad (35)$$

Base Planck units themselves admit negative values as negative square roots. By choosing complex analysis, within the framework of emergent dimensionality [5, 9, 11, 30, 31], we enter into bivalence by the very nature of this analysis. All geometric *objects* have both positive and negative volumes and surfaces [31] equal in moduli. On the other hand, imaginary and negative physical quantities are the subject of research. In

particular, the subject of scientific research is thermodynamics in the complex plane. Lee–Yang zeros, for example, have been experimentally observed [32, 33].

We note here that the imaginary Planck Units are not imaginary due to being multiplied by the imaginary unit  $i$ . They are imaginary numbers  $\mathbb{I}$  due to the negativity of odd powers of  $c_n$  being the square root argument; thus, they define imaginary physical quantities inaccessible to direct measurements<sup>4</sup>. The complementary Planck units do not apply only to the time dimension but to any imaginary dimension. However, in our four-dimensional Euclidean  $\mathbb{R}^3 \times \mathbb{I}$  space-time, Planck units apply in general to the spatial dimensions, while the imaginary ones in general to the imaginary temporal dimension. All the complementary Planck units have physical meanings. However, some are elusive, like the negative area or imaginary volume, which require two or three orthogonal imaginary dimensions.

Planck charge relations (2) and (16) imply that the elementary charge  $e$  is the same both in real and imaginary dimensions since

$$e^2 = \alpha q_P^2 = \alpha_2 q_{Pi}^2. \quad (36)$$

But there is no physically meaningful *elementary mass*  $M_e = \pm 1.8592 \times 10^{-9} [\text{kg}]$  that would satisfy the relation (20)

$$M_e^2 = \alpha m_P^2 = \alpha_2 m_{Pi}^2. \quad (37)$$

Neither is there a physically meaningful *elementary* (and imaginary) *length*  $L_e \approx \pm i9.7382 \times 10^{-39} [\text{m}]$  satisfying the relation (29)

$$L_e^2 = \alpha^3 \ell_{Pi}^2 = \alpha_2^3 \ell_P^2, \quad (38)$$

(which in modulus is almost 1660 times smaller than the Planck length), or an *elementary temperature*  $T_e \approx \pm 6.4450 \times 10^{26} [\text{K}]$  abiding to (22)

$$T_e^2 = \alpha^5 T_P^2 = \alpha_2^5 T_{Pi}^2, \quad (39)$$

close to the Hagedorn temperature of grand unified string models.

Thus, as to the modulus, charges are the same in real and imaginary dimensions, while masses, lengths, temperatures, and other derived quantities that can vary with time, differ. We note that the same form of the relations (36) and (37) reflect the same form of Coulomb's law and Newton's law of gravity, which are inverse-square laws.

#### IV. BLACK BODY OBJECTS

There seem to be only three observable *objects* in nature that emit perfect black-body radiation: unsupported black holes (BH, the densest), neutron stars (NS), supported, as it is

<sup>4</sup> Quantum measurement outcomes are *real* eigenvalues of hermitian operators.

accepted, by neutron degeneracy pressure, and white dwarfs (WD), supported by electron degeneracy pressure (the least dense). We shall collectively call them black-body *objects* (BBO). It has recently been experimentally confirmed that the so-called *accretion instability* is a fundamental physical process [34] common for all BBOs.

As black-body radiation is radiation emitted by a body in global thermodynamic equilibrium, it is patternless (thermal noise) radiation and depends only on the temperature of this body. In the case of BHs, this is known as Hawking radiation, wherein the BH temperature  $T_{\text{BH}} = T_{\text{P}}/(2\pi d_{\text{BH}})$ , where  $T_{\text{P}}$  is the Planck temperature, is a function of the BH diameter [5]  $D_{\text{BH}} = d_{\text{BH}}\ell_{\text{P}}$ , where  $d_{\text{BH}} \in \mathbb{R}$ . It was shown, for example, that the spectral density in the phenomenon of sonoluminescence, light emission by sound-induced collapsing gas bubbles in fluids, has the same frequency dependence as black-body radiation [35, 36]. Thus, the sonoluminescence, and in particular *shrimpoluminescence* [37], must be emitted by collapsing BBOs.

As Hawking radiation depends only on the diameter of a BH, it must be the same for a given BH, even though it is momentary as it fluctuates (cf. Appendix E). As the interiors of the BBOs are inaccessible to an exterior observer [38], BBOs do not have interiors and can only be defined by their diameters (cf. [5] Fig. 2(b)). The term *object* as a collection of *matter* is a misnomer in general, as it neglects quantum non-locality that is independent of the entanglement among the *particles* [39]. But it is a particularly staring misnomer if applied to BBOs. Thus we use emphasis for (indistinguishable) *particle* and (distinguishable) *object*, as well as for *matter* and *distance*, as these terms have no absolute meaning in emergent dimensionality. In particular, given the recent observation of *quasiparticles* in classical systems [40].

But not only BBOs are perfectly spherical. Also, the early epochs of their collisions are perfectly spherical, as it has been recently, experimentally confirmed [41] for NSs based on the AT2017gfo kilonova data. One can hardly expect a collision of two perfectly spherical, patternless thermal noises to produce some aspherical pattern instead of another perfectly spherical patternless noise. Where would the information about this pattern come from at the moment of the collision? From the point of impact? No point of impact is distinct on a patternless surface.

As black-body radiation is patternless, the triangulated [5] BBOs, as well as their early epoch collisions, must contain a balanced number of Planck area triangles, each carrying binary potential  $\delta\varphi_k = -c^2 \cdot \{0, 1\}$ , as it has been shown for BHs [5], based on Bekenstein-Hawking entropy

$$S_{\text{BH}} = \frac{1}{4}k_{\text{B}}N_{\text{BH}}, \quad (40)$$

where  $N_{\text{BH}} := 4\pi R_{\text{BH}}^2/\ell_{\text{P}}^2 = \pi d_{\text{BH}}^2$  is the BH information capacity (i.e., the number of the triangular Planck areas at the BH horizon, corresponding to bits of information [29, 38, 42] and the fractional part triangle  $\{\pi d_{\text{BH}}^2\}$  to small to carry a single bit),  $R_{\text{BH}} = 2GM_{\text{BH}}/c^2$  is the BH (Schwarzschild) radius, and  $k_{\text{B}}$  is the Boltzmann constant. The BH entropy (40) can

be derived from the Bekenstein bound

$$S \leq \frac{2\pi k_{\text{B}}RE}{\hbar c}, \quad (41)$$

an upper limit on the thermodynamic entropy  $S$  that can be contained within a sphere of radius  $R$  having energy  $E$  after plugging the BH radius  $R_{\text{BH}}$  and mass-energy equivalence  $E_{\text{BH}} = M_{\text{BH}}c^2$  into the bound (41).

Since the patternless nature of the perfect black-body radiation was derived [5] by comparing BH entropy (40) with the binary entropy variation  $\delta S = k_{\text{B}}N_1/2$  ([5] Eq. (55)), which is valid for any holographic sphere, where  $N_1 \in \mathbb{N}$  denotes the number of active Planck areas with binary potential  $\delta\varphi_k = -c^2$ , the BH entropy (40) must be valid also for NSs and WDs. Thus, defining the generalized radius of a holographic sphere of mass  $M$  as a function of  $GM/c^2$  multiplier  $k \in \mathbb{R}$  [5]

$$R := k \frac{GM}{c^2}, \quad (42)$$

and the generalized energy  $E$  of this sphere as a function of  $Mc^2$  multiplier  $a \in \mathbb{R}$

$$E := aMc^2, \quad (43)$$

the generalized Bekenstein bound (41) becomes

$$S \leq \frac{1}{2}k_{\text{B}}\frac{a}{k}N, \quad (44)$$

where  $N := 4\pi R^2/\ell_{\text{P}}^2$  is the information capacity of this sphere, the surface of which contains  $\lfloor N \rfloor$  Planck triangles, where " $\lfloor x \rfloor$ " is the floor function that yields the greatest integer less than or equal to its argument  $x$ .

The generalized Bekenstein bound (44) equals the BH entropy (40) if  $\frac{a}{2k} = \frac{1}{4} \Rightarrow a = \frac{k}{2}$ . Thus, the energy of all BBOs having a radius (42) is

$$E_{\text{BBO}} = \frac{k}{2}M_{\text{BBO}}c^2, \quad (45)$$

with  $k = 2$  in the case of BHs and  $k > 2$  for NSs and WDs.

Schwarzschild BHs are fundamentally uncharged, contrary to NSs and WDs, since the entropy (40) of any conceivable BH is equal to that of the uncharged Schwarzschild BH with the same area by the Penrose process. It is accepted that in the case of NSs, electrons combine with protons to form neutrons so that NSs are composed almost entirely of neutrons. But it is never the case that all electrons and all protons of an NS become neutrons. WDs are charged by definition as they are composed mostly of electron-degenerate *matter*.

Furthermore, uncharged, interior-less BHs are like a mathematical interior-less point. Yet, a BH can embrace one parameter (real number): its diameter, mass, temperature, energy, etc., each corresponding to one another. That means that three points forming a Planck triangle corresponding to a bit of information on a BH horizon can store this parameter and this is intuitively comprehensible: the area of a spherical triangle is larger than that of a flat triangle defined by the same vertices, providing the curvature is nonvanishing, and depends on this

curvature, i.e., it is defined by this additional parameter. But how can a charged BBO other than a BH store the curvature and an additional parameter corresponding to its charge?

Fortunately, the relation (36) ensures that charges are the same in real and imaginary dimensions. Therefore each charged Planck triangle in  $\mathbb{R}^2$  on a charged BBO horizon is associated with three  $\mathbb{R} \times \mathbb{I}$  Planck triangles, each sharing a vertex or two vertices with the triangle in  $\mathbb{R}^2$ . And this configuration must be capable of storing the charge associated with this triangle. The difference between the Planck area  $\ell_p^2$  and the  $\alpha_2$  Planck area  $\ell_{p_i}^2$  (29), which is lower in modulus, can be considered in a polyspherical coordinate system, in which gravitation/acceleration act in a radial direction (with the entropic gravitation acting inwardly, and acceleration acting in both radial directions), while electrostatics act in a tangential direction.

As the entropy of independent systems is additive, a collision of two BBOs,  $BBO_1$  and  $BBO_2$ , having entropies  $S_{BBO_1} = \frac{1}{4}k_B N_{BBO_1} = \frac{1}{4}k_B \pi d_{BBO_1}^2$  and  $S_{BBO_2} = \frac{1}{4}k_B \pi d_{BBO_2}^2$ , produces another  $BBO_C$  having entropy

$$S_{BBO_C} = S_{BBO_1} + S_{BBO_2} \Rightarrow d_{BBO_C}^2 = d_{BBO_1}^2 + d_{BBO_2}^2. \quad (46)$$

This shows that a collision of two primordial BHs, each having the Planck length diameter, the reduced Planck temperature  $\frac{T_p}{2\pi}$  (which is the largest physically significant temperature [11]), and no tangential acceleration  $a_{LL}$  [5, 11], produces a BH having  $d_{BH} = \pm \sqrt{2}$  which represents the minimum BH diameter allowing for the notion of time [11], while a collision of the latter two BHs produces a BH having  $d_{BH} = \pm 2$  having the triangulation defining only one precise diameter between its poles (cf. [5] Fig. 3(b)). Diameter  $d_{BH} = \pm 2$  is also recovered [5] from Heisenberg's Uncertainty Principle (cf. Appendix C).

The hitherto considerations may be unsettling for the reader, as the energy (45) of BBOs other than BHs exceeds mass-energy equivalence  $E = kMc^2/2$  for  $k > 2$ , which is the limit of the maximum *real* energy. Thus, a part of the energy of NSs and WDs must be imaginary and thus unmeasurable. We shall consider this question in the subsequent section.

## V. COMPLEX ENERGIES

A complex energy formula

$$E_R := E_{M_R} + iE_{Q_R} = (1 + i\beta_R) M_R c^2, \quad (47)$$

where  $E_{M_R} = M_R c^2$  and  $iE_{Q_R}$  represent respectively real and imaginary energy of an *object* having mass  $M_R$  and charge  $Q_R$ <sup>5</sup>, and

$$\beta_R := \frac{E_{Q_R}}{E_{M_R}} = \frac{Q_R}{2M_R \sqrt{\pi \epsilon_0 G}}, \quad (48)$$

is the imaginary-real energy ratio<sup>6</sup>, was proposed in [43] (Eqs. (1), (3), and (4)). Equations (47) and (48) consider real (physically measurable) masses  $M_R$  and charges  $Q_R$ .

In the following, where deemed appropriate, dimensional quantities were discretized using Planck units as

$$\begin{aligned} Q &:= qe, & Q_i &:= iQ = iqe, & q \in \mathbb{Z} \\ M &:= mm_p, & M_i &:= m_i m_{p_i}, & m, m_i \in \mathbb{R}, \\ \lambda &:= l\ell_p, & \lambda_i &:= l_i \ell_{p_i}, & l, l_i \in \mathbb{R}, \\ R &:= r\ell_p, & R_i &:= r_i \ell_{p_i}, & r, r_i \in \mathbb{R}, \end{aligned} \quad (49)$$

although the discretization of charges by integer multipliers  $q$  of the elementary charge  $e$  is far-fetched, considering the fractional charge of *quasiparticles*.

We shall now modify the equation (47) to a form involving imaginary masses  $M_i$  and charges  $Q_i$  by defining the following two complex energies, the complex energy of real mass  $M$  and imaginary charge

$$\begin{aligned} E_{MQ_i} &:= E_M + E_{Q_i} = (1 + \beta_{Q_i}) M c^2 = \\ &= (M + iq \sqrt{\alpha} m_p) c^2 = (m + iq \sqrt{\alpha}) E_p, \end{aligned} \quad (50)$$

and the complex energy of real charge  $Q$  and imaginary mass

$$\begin{aligned} E_{QM_i} &:= E_Q + E_{M_i} = (\beta_Q + 1) M_i c_n^2 = \\ &= (q \sqrt{\alpha_2} m_{p_i} + M_i) c_n^2 = \frac{\alpha^2}{\alpha_2^2} \left( q \sqrt{\alpha} + \sqrt{\frac{\alpha}{\alpha_2}} m_i \right) E_p, \end{aligned} \quad (51)$$

where

$$\beta_{Q_i} := \frac{Q_i}{2M \sqrt{\pi \epsilon_0 G}} = \frac{iq \sqrt{\alpha} m_p}{M} \in \mathbb{I}, \quad (52)$$

$$\beta_Q := \frac{Q}{2M_i \sqrt{\pi \epsilon_0 G}} = \frac{q \sqrt{\alpha_2} m_{p_i}}{M_i} \in \mathbb{I}. \quad (53)$$

We note in passing that using the different speed of light parameters in energies  $E_{MQ_i}$  (51) and  $E_{QM_i}$  (50) yields a contradiction (cf. Appendix D).

Equations (50)-(53) yield two different quanta of the charge-dependent energies corresponding to the elementary charge, the imaginary quantum

$$E_{Q_i}(q = \pm 1) = \pm i \sqrt{\alpha} E_p \approx \pm i 1.6710 \times 10^8 \text{ [J]}, \quad (54)$$

and the - larger in modulus - real quantum

$$E_Q(q = \pm 1) = \pm \sqrt{\alpha_2} E_p \approx \pm 1.7684 \times 10^8 \text{ [J]}. \quad (55)$$

Furthermore,  $\forall q, \alpha^2 E_{Q_i} = i \alpha_2^2 E_Q$ .

The squared moduli of the energies (50) and (51) can be expressed as

$$|E_{MQ_i}|^2 = M^2 c^4 (1 - \beta_{Q_i}^2) = (M^2 + q^2 \alpha m_p^2) c^4, \quad (56)$$

<sup>5</sup> Charges in the cited study are defined in CGS units; here we adopt SI.

<sup>6</sup> In the cited study it is called  $\alpha$ , so we shall call it  $\beta$  to avoid confusion with the fine-structure constant.

and (using relations (31) and (20))

$$\begin{aligned} |E_{QM_i}|^2 &= M_i^2 c_n^4 (\beta_{Mi}^2 - 1) = (q^2 \alpha_2 m_P^2 - M_i^2) c_n^4 = \\ &= \frac{\alpha^4}{\alpha_2^4} (q^2 \alpha m_P^2 - M_i^2) c^4. \end{aligned} \quad (57)$$

Postulating that the squared moduli (56) and (57) are equal

$$\begin{aligned} |E_{MQ_i}|^2 &= |E_{QM_i}|^2, \\ \alpha_2^4 (M^2 + q^2 \alpha m_P^2) &= \alpha^4 (q^2 \alpha m_P^2 - M_i^2), \end{aligned} \quad (58)$$

we demand a mass-charge equilibrium condition from which we can obtain the value of the imaginary mass  $M_i$  of an *object* having mass  $M$  and charge  $Q$  in this equilibrium

$$M_i = \pm \sqrt{q^2 \alpha m_P^2 \left(1 - \frac{\alpha_2^4}{\alpha^4}\right) - \frac{\alpha_2^4}{\alpha^4} M^2}. \quad (59)$$

In particular for an uncharged mass  $M$  ( $q = 0$ ) this yields

$$M_i \alpha^2 = \pm i M \alpha_2^2 \quad \text{or} \quad M_i = \pm i \frac{\alpha_2^2}{\alpha^2} M \approx \pm 0.9557 i M. \quad (60)$$

Since mass  $M_i$  is imaginary by definition, the argument of the square root in the relation (59) must be negative

$$M > |q| m_P \sqrt{\alpha \left( \frac{\alpha^4}{\alpha_2^4} - 1 \right)} \approx |q| 5.7275 \times 10^{-10} \text{ [kg]}. \quad (61)$$

This means that masses of uncharged micro BHs ( $q = 0$ ) in thermodynamic equilibrium can be arbitrary. However, micro NSs and micro WDs, also in thermodynamic equilibrium, cannot be observed, as they cannot achieve a net charge  $Q = 0$ . Even a single elementary charge of a white dwarf renders its mass  $M_{WD} = 5.7275 \times 10^{-10}$  [kg] comparable to the mass of a grain of sand.

We note here that only the masses satisfying  $M < 2\pi m_P \approx 1.3675 \times 10^{-7}$  [kg] have Compton wavelengths larger than the Planck length [5] and thus can interfere with each other. Comparing this with the bound (61) yields the charge multiplier  $q$  corresponding to an atomic number

$$Z = \left| \frac{2\pi}{\sqrt{\alpha \left( \frac{\alpha^4}{\alpha_2^4} - 1 \right)}} \right| = 238, \quad (62)$$

of a hypothetical element, which - as we conjecture - sets the limit on an extended periodic table and is a little higher than the accepted limit of  $Z = 184$  (unoctquadium).

We can interpret the modulus of the generalized energy of BBOs (45) as the modulus of the complex energy of real mass (56), taking the observable real energy  $E_{BBO} = M_{BBO} c^2$  of the BBO as the real part of this energy. Thus

$$\left( \frac{k}{2} M_{BBO} c^2 \right)^2 = (M_{BBO}^2 + q_{BBO}^2 \alpha m_P^2) c^4, \quad (63)$$

leads to

$$q_{BBO} = \pm \frac{M_{BBO}}{m_P} \sqrt{\frac{1}{\alpha} \left( \frac{k^2}{4} - 1 \right)}, \quad (64)$$

representing a charge surplus energy exceeding  $M_{BBO} c^2$  which is no longer available. For  $k = 2$   $q_{BBO}$  vanishes, confirming the vanishing net charge of BHs. Similarly, we can interpret the modulus of the generalized energy of BBOs (45) as the modulus of the complex energy of real charge (57). Thus

$$\begin{aligned} \frac{k^2}{4} M_{BBO}^2 &= \frac{\alpha^4}{\alpha_2^4} (q_{BBO}^2 \alpha m_P^2 - M_{iBBO}^2), \\ M_{iBBO}^2 &= q_{BBO}^2 \alpha m_P^2 - \frac{\alpha_2^4}{\alpha^4} \frac{k^2}{4} M_{BBO}^2. \end{aligned} \quad (65)$$

Substituting  $q_{BBO}^2$  from the relation (64) into the relation (65) turns the equilibrium condition (59) into a function of  $k$  instead of  $q$

$$\begin{aligned} M_{iBBO}^2 &= \left[ \frac{k^2}{4} \left( 1 - \frac{\alpha_2^4}{\alpha^4} \right) - 1 \right] M_{BBO}^2, \\ M_{iBBO} &= \pm M_{BBO} \sqrt{\frac{k^2}{4} \left( 1 - \frac{\alpha_2^4}{\alpha^4} \right) - 1}, \end{aligned} \quad (66)$$

which for BHs ( $k = 2$ ) also corresponds to the relation (60) between uncharged masses  $M$  and  $M_i$ , where no assumptions concerning the BBO energy were made.

Furthermore, the argument of the square root in the relation (66) must be negative, as mass  $M_i$  is imaginary by definition. This leads to the maximum  $GM/c^2$  multiplier

$$k_{\max} = \pm \frac{2}{\sqrt{1 - \frac{\alpha_2^4}{\alpha^4}}} \approx 6.7933, \quad (67)$$

where  $k < |k_{\max}|$  satisfies the mass equilibrium (66). Relations (64) and (66) are shown in Fig 1.

The multiplier  $k_{\max}$  (67) sets the bounds on the BBO energy (45), mass, and radius (42)

$$R_{BH} = \frac{2GM_{BBO}}{c^2} \leq R_{BBO} < \frac{k_{\max} GM_{BBO}}{c^2}. \quad (68)$$

In particular, using discretizations (49),  $2m_{BBO} \leq r_{BBO} < k_{\max} m_{BBO}$  or  $r_{BBO}/k_{\max} < m_{BBO} \leq r_{BBO}/2$ . As WDs are the least dense BBOs, this bound defines the maximum radius of a WD core.

Furthermore, discretized relations (61) and (67) set the bound on the BBO minimum mass in the equilibrium (58)

$$m_{BBO} > \max \left\{ q_{BBO} \sqrt{\alpha \left( \frac{\alpha^4}{\alpha_2^4} - 1 \right)}, \frac{d_{BBO}}{4} \sqrt{1 - \frac{\alpha^4}{\alpha_2^4}} \right\}, \quad (69)$$

where

$$q_{BBO} = \frac{1}{4} \sqrt{\frac{\alpha_2^4}{\alpha^5}} d_{BBO}. \quad (70)$$

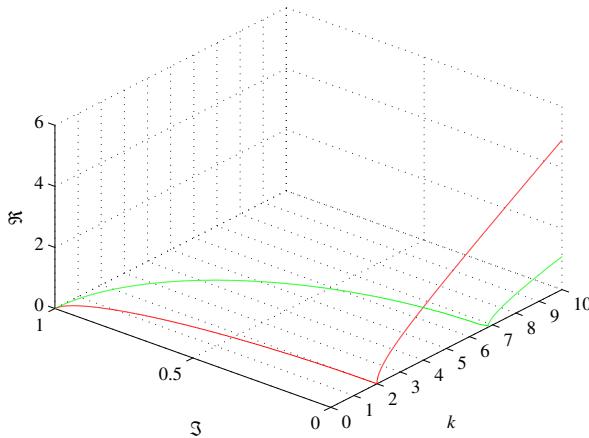


Figure 1. Ratios of imaginary mass  $M_{iBBO}$  to real mass  $M_{BBO}$  (green) and real charge  $q_{BBO} m_p \sqrt{\alpha}$  to  $M_{BBO}$  (red) of a BBO as a function of  $GM/c^2$  multiplier  $k$  :  $0 \leq k \leq 10$ . Mass  $M_{iBBO}$  is imaginary for  $k \lesssim 6.79$ . Charge  $q_{BBO}$  is real for  $k \geq 2$ .

defines a condition in which neither  $q_{BBO}$  nor  $d_{BBO}$  can be further increased to reach its counterpart (defined respectively by  $d_{BBO}$  and  $q_{BBO}$ ) in the bound (69). Thus, for example, 1-bit BBO ( $d_{BBO} = 1/\sqrt{\pi}$ ) corresponds to  $q_{BBO} > 1.5780$ ,  $\pi$ -bit BBO ( $d_{BBO} = 1$ ) corresponds to  $q_{BBO} > 2.7969$ , while the maximum atomic number  $q_{BBO}$  (62) corresponds to

$$d_{BBO} = \pm \frac{8\pi}{\sqrt{1 - \frac{\alpha_2^4}{\alpha^4}}} \approx 85.3666. \quad (71)$$

These results show that the radius (42) of charged BBOs (i.e., BBOs other than BHs) is a continuous function of  $k \in \mathbb{R} : 2 < k < k_{\max}$ ; the largest  $k$  satisfying the BBO entropy relation (40), a necessary condition of patternless perfect black body radiation [5]. We shall consider this question in the subsequent section.

## VI. MASS, CHARGE, EMR - PHOTON SPHERE RADIUS

Besides complex energies of masses and charges (50), (51) we can also define the complex energies of real wavelength  $\lambda$  and imaginary mass  $M_i$

$$\begin{aligned} E_{RM_i} &:= \frac{hc}{\lambda} + M_i c_n^2 = \frac{2\pi E_p}{l} + m_i E_{Pi} = \\ &= \left( \frac{2\pi}{l} + \sqrt{\frac{\alpha^5}{\alpha_2^5} m_i} \right) E_p, \end{aligned} \quad (72)$$

real wavelength  $\lambda$  and imaginary charge  $Q_i$

$$E_{RQ_i} := \frac{hc}{\lambda} + \frac{Q_i c^2}{2\sqrt{\pi\epsilon_0 G}} = \left( \frac{2\pi}{l} + iq\sqrt{\alpha} \right) E_p, \quad (73)$$

real mass  $M$  and imaginary wavelength  $\lambda_i$

$$\begin{aligned} E_{MR_i} &:= Mc^2 + \frac{hc_n}{\lambda_i} = mE_p + \frac{2\pi E_{Pi}}{l_i} = \\ &= \left( m + \sqrt{\frac{\alpha^5}{\alpha_2^5} \frac{2\pi}{l_i}} \right) E_p, \end{aligned} \quad (74)$$

and of real charge  $Q$  and imaginary wavelength  $\lambda_i$

$$\begin{aligned} E_{QR_i} &:= \frac{Qc_n^2}{2\sqrt{\pi\epsilon_0 G}} + \frac{hc_n}{\lambda_i} = \frac{\alpha^2}{\alpha_2^2} q \sqrt{\alpha} E_p + \frac{2\pi}{l_i} E_{Pi} = \\ &= \frac{\alpha^2}{\alpha_2^2} \left( q \sqrt{\alpha} + \sqrt{\frac{\alpha}{\alpha_2} \frac{2\pi}{l_i}} \right) E_p, \end{aligned} \quad (75)$$

where we applied discretizations (49). We note that other discretization of the photon energy  $h\nu = \frac{2\pi}{l} E_p$  is  $E_\nu E_p, E_\nu \in \mathbb{R}$ .

Complex energies (50), (51), (72)-(75) define complex forces acting over real and imaginary distances  $R, R_i$ . Complex forces lead to the BBO surface gravity (G8), and thus also the BBO temperature (G12), that equal in moduli to their BH counterparts, reduce to the BH surface gravity and temperature for  $k = 2$ , and – in the case of  $k = k_{\text{eq}}$  and  $k = k_{\max}$  – for  $\alpha_2 = 0$  (cf. Appendix G).

Postulating again that the squared moduli of the complex energies (50), (51), (72)-(75) are equal to some constant energy

$$\begin{aligned} |E_{MQ_i}|^2 &= |E_{QM_i}|^2 = |E_{RM_i}|^2 = \\ &= |E_{RQ_i}|^2 = |E_{MR_i}|^2 = |E_{QR_i}|^2 := AE_p^2, \quad A \in \mathbb{R}, \end{aligned} \quad (76)$$

we demand a mass-charge-wavelength equilibrium condition, which can be solved for  $A$  (cf. Appendix F).

In the case of a BBO, we obtain the equilibrium condition (76) by comparing the squared moduli of the energies (50), (51), (72)-(75) with the squared BBO energy (45) which yields a solvable system of six nonlinear equations with six unknowns  $k, q, m, m_i, l, l_i$

$$\begin{aligned} |E_{MQ_i}|^2 &\Rightarrow q^2 \alpha = m^2 \left( \frac{k^2}{4} - 1 \right), \\ |E_{QM_i}|^2 &\Rightarrow \frac{\alpha^4}{\alpha_2^4} q^2 \alpha - \frac{\alpha^5}{\alpha_2^5} m_i^2 = \frac{k^2}{4} m^2, \\ |E_{RM_i}|^2 &\Rightarrow \frac{4\pi^2}{l^2} - \frac{\alpha^5}{\alpha_2^5} m_i^2 = \frac{k^2}{4} m^2, \\ |E_{RQ_i}|^2 &\Rightarrow \frac{4\pi^2}{l^2} + q^2 \alpha = \frac{k^2}{4} m^2, \\ |E_{MR_i}|^2 &\Rightarrow m^2 \left( 1 - \frac{k^2}{4} \right) = \frac{\alpha^5}{\alpha_2^5} \frac{4\pi^2}{l_i^2}, \\ |E_{QR_i}|^2 &\Rightarrow \frac{\alpha^4}{\alpha_2^4} q^2 \alpha - \frac{4\pi^2}{l_i^2} \frac{\alpha^5}{\alpha_2^5} = \frac{k^2}{4} m^2. \end{aligned} \quad (77)$$

Substituting  $q^2 \alpha = m^2 \left( \frac{k^2}{4} - 1 \right)$  from  $|E_{MQ_i}|^2$  to  $|E_{RQ_i}|^2$  recovers the Compton wavelength of the BBO,  $\lambda_{BBO} = \frac{h}{M_{BBO} c}$ , in its discrete form  $l^2 = \frac{4\pi^2}{m^2}$ . Furthermore, by substituting  $q^2 \alpha$

and the Compton mass  $m^2 = \frac{4\pi^2}{\rho}$  into  $|E_{QM_i}|^2$ , and comparing the LHSs of  $|E_{QM_i}|^2$  and  $|E_{RM_i}|^2$  we obtain the BBO equilibrium multiplier

$$\frac{k_{\text{eq}}^2}{4} = \frac{\alpha_2^4}{\alpha^4} + 1 \Rightarrow k_{\text{eq}} = \pm 2 \sqrt{1 + \frac{\alpha_2^4}{\alpha^4}} \approx 2.7665, \quad (78)$$

where  $k = k_{\text{eq}}$  satisfies the equilibrium condition (76) for

$$A = \frac{1}{4} k_{\text{eq}}^2 m_{\text{BBO}} = \left(1 + \frac{\alpha_2^4}{\alpha^4}\right) m_{\text{BBO}} \approx 1.9133 m_{\text{BBO}}. \quad (79)$$

The equilibrium multiplier  $k_{\text{eq}}$  (78) is related to the bound  $k_{\text{max}}$  (67) by  $k_{\text{eq}}^2 + 16/k_{\text{max}}^2 = 8$ . Also, the following relations can be derived from the relations (77) for the BBO in the equilibrium  $k_{\text{eq}}$  (78)

$$m_i^2 = -\frac{\alpha_2^9}{\alpha^9} m^2 \Leftrightarrow M_{i\text{BBO}_{\text{eq}}} = \pm i \frac{\alpha_2^4}{\alpha^4} M_{\text{BBO}_{\text{eq}}}, \quad (80)$$

$$l_i^2 = -\frac{\alpha_2^9}{\alpha^9} l^2 \Leftrightarrow \lambda_{i\text{BBO}_{\text{eq}}} = \pm i \frac{\alpha^3}{\alpha_2^3} \lambda_{\text{BBO}_{\text{eq}}}, \quad (81)$$

$$l^2 = \frac{4\pi^2}{m^2} \Leftrightarrow \lambda_{\text{BBO}_{\text{eq}}} = \frac{h}{M_{\text{BBO}_{\text{eq}}} c} \quad (82)$$

$$q^2 \alpha = \frac{\alpha_2^4}{\alpha^4} m^2 \Leftrightarrow \frac{\alpha_2^4}{\alpha^4} = -\beta_{Q\text{BBO}_{\text{eq}}}^2 = \pm i \frac{M_{i\text{BBO}_{\text{eq}}}}{M_{\text{BBO}_{\text{eq}}}}, \quad (83)$$

where in the last relation, we used the definition (52) and applied the relation (80). The BBO in the energy equilibrium bearing the elementary charge ( $q^2 = 1$ ) would have mass  $M_{\text{BBO}_{\text{eq}}} \approx \pm 1.9455 \times 10^{-9}$  [kg], imaginary mass  $M_{i\text{BBO}_{\text{eq}}} \approx \pm i 1.7768 \times 10^{-9}$  [kg], wavelength  $\lambda_{\text{BBO}_{\text{eq}}} \approx \pm 1.1361 \times 10^{-33}$  [m], and imaginary wavelength  $\lambda_{i\text{BBO}_{\text{eq}}} \approx \pm i 1.2160 \times 10^{-33}$  [m]. Fluctuations of the BBOs for  $k_{\text{eq}}$  and  $k_{\text{max}}$  are briefly discussed in Appendix E.

Notably,  $2.25 < k_{\text{eq}} < 3$ , where  $9/4$  is the multiplier of a radius of the maximal sustainable density for gravitating spherical *matter* given by Buchdahl's theorem, and  $3$  is the multiplier of a BH photon sphere radius. This shows that  $k_{\text{eq}} \approx 2.766$  is a true photon sphere radius, where BBO gravity, charge, and photon energies remain at equilibrium<sup>7</sup>. Aside from the Schwarzschild radius (derivable from escape velocity  $v_{\text{esc}}^2 = 2GM/R$  of mass  $M$  by setting  $v_{\text{esc}}^2 = c^2$ ), all the remaining thresholds of general relativity, such as Buchdahl's threshold ( $k = 9/4$ ) or a photon sphere radius ( $k = 3$ ), are only crude approximations. It must be so, since general relativity neglects the value of the fine-structure constants  $\alpha$  and  $\alpha_2$ , which, similarly as  $\pi$  or the base of the natural logarithm, are the fundamental constants of nature.

<sup>7</sup> In which, according to an accepted photon sphere definition, the strength of gravity forces photons to travel in orbits. The author wonders why photons would not travel in orbits at radius  $R = GM/c^2$  corresponding to the orbital velocity  $v_{\text{orb}}^2 = GM/R$ ? Obviously, photons do not travel.

## VII. DISCUSSION

The reflectance of graphene under the normal incidence of electromagnetic radiation expressed as the quadratic equation for the fine-structure constant  $\alpha$  includes the 2<sup>nd</sup> negative fine-structure constant  $\alpha_2$ . The sum of the reciprocal of this 2<sup>nd</sup> fine-structure constant  $\alpha_2$  with the reciprocal of the fine-structure constant  $\alpha$  (2) is independent of the reflectance value  $R$  and remarkably equals simply  $-\pi$ . Particular algebraic definition of the fine-structure constant  $\alpha^{-1} = 4\pi^3 + \pi^2 + \pi$ , containing the free  $\pi$  term, can be interpreted as the asymptote of the CODATA value  $\alpha^{-1}$ , the value of which varies with time. The negative fine-structure constant  $\alpha_2$  leads to the complementary set of Planck units applicable to imaginary dimensions, including imaginary Planck units (18)-(26). Real and imaginary mass and charge units (34), length and mass units (35) units, and temperature and time units (33) are directly related to each other. Also, the elementary charge  $e$  is common for real and imaginary dimensions (36).

Applying the complementary Planck units to a complex energy formula [43] yields complex energies (50), (51) setting the atomic number  $Z = 238$  as the limit on an extended periodic table. The generalized energy (45) of all perfect black-body *objects* (black holes, neutron stars, and white dwarfs) having the generalized radius  $R_{\text{BBO}} = kGM/c^2$  exceed mass-energy equivalence if  $k > 2$ . Complex energies (50), (51) allow for storing the excess of this energy in their imaginary parts, inaccessible for direct observation. The results show that the perfect black-body *objects* other than black holes cannot have masses lower than  $5.7275 \times 10^{-10}$  [kg] and that the maximum slope of the radius of their cores as a function of mass is defined, as  $k_{\text{max}} \approx 6.7933$ , by the relation (67). It is further shown that a black-body *object* is in the equilibrium of complex energies if its radius  $R_{\text{eq}} \approx 2.7665 GM_{\text{BBO}}/c^2$  (78). It is conjectured that this is the correct value of the photon sphere radius.

In the context of the results of this study, monolayer graphene, a truly 2-dimensional material with no thickness<sup>8</sup>, is a *keyhole* to other, unperceivable [5], dimensionalities. Graphene history is also instructive. Discovered in 1947 [45], graphene was long considered an *academic material* until it was eventually pulled from graphite in 2004 [46] by means of ordinary Scotch tape<sup>9</sup>. These fifty-seven years, along with twenty-nine years (1935-1964) between the condemnation of quantum theory as *incomplete* [47] and Bell's mathematical theorem [48] asserting that it is not true, and the fifty-eight years (1964-2022) between the formulation of this theorem and 2022 Nobel prize in physics for its experimental *loophole-free* confirmation, should remind us that Max Planck, the genius who discovered Planck units, has also dis-

<sup>8</sup> Thickness of MLG is reported [44] as 0.37 [nm] with other reported values up to 1.7 [nm]. However, considering that 0.335 [nm] is the established inter-layer *distance* and consequently the thickness of bilayer graphene, these results do not seem credible: the thickness of bilayer graphene is not  $2 \times 0.37 + 0.335 = 1.075$  [nm].

<sup>9</sup> Introduced into the market in 1932.

covered Planck's principle.

### ACKNOWLEDGMENTS

I truly thank my wife for her support when this research [49, 50] was conducted. I thank Wawrzyniec Bieniawski for inspiring discussions and constructive ideas concerning the layout of this paper. I thank Andrzej Tomski for the definition of the scalar product for Euclidean spaces  $\mathbb{R}^a \times \mathbb{I}^b$  (1).

### Appendix A: Other quadratic equations

The quadratic equation for the sum of transmittance (3) and absorptance (5), putting  $C_{TA} := T + A$ , is

$$\frac{1}{4}C_{TA}\pi^2\alpha^2 + (C_{TA} - 1)\pi\alpha + (C_{TA} - 1) = 0, \quad (\text{A1})$$

and has two roots with reciprocals

$$\alpha^{-1} = \frac{C_{TA}\pi}{2(1 - C_{TA} + \sqrt{1 - C_{TA}})} \approx 137.036, \quad (\text{A2})$$

and

$$\alpha_2^{-1} = \frac{C_{TA}\pi}{2(1 - C_{TA} - \sqrt{1 - C_{TA}})} \approx -140.178, \quad (\text{A3})$$

whereas their sum  $\alpha^{-1} + \alpha_2^{-1} = -\pi$  is, similarly as the relation (12), also independent of  $T$  and  $A$ .

Other quadratic equations do not feature this property. For example, the sum of  $T + R$  (6) expressed as the quadratic equation and putting  $C_{TR} := T + R$ , is

$$\frac{1}{4}(C_{TR} - 1)\pi^2\alpha^2 + C_{TR}\pi\alpha + (C_{TR} - 1) = 0, \quad (\text{A4})$$

and has two roots with reciprocals

$$\alpha^{-1} = \frac{\pi(C_{TR} - 1)}{-2C_{TR} + 2\sqrt{2C_{TR} - 1}} \approx 137.036, \quad (\text{A5})$$

and

$$\alpha_{TR}^{-1} = \frac{\pi(C_{TR} - 1)}{-2C_{TR} - 2\sqrt{2C_{TR} - 1}} \approx 0.0180, \quad (\text{A6})$$

whereas their sum

$$\alpha_{TR_1}^{-1} + \alpha_{TR_2}^{-1} = \frac{-\pi C_{TR}}{C_{TR} - 1} \approx 137.054 \quad (\text{A7})$$

is dependent on  $T$  and  $R$ .

### Appendix B: Two $\pi$ -like constants

With algebraic definitions of  $\alpha$  (13) and  $\alpha_2$  (14), transmittance  $T$  (3), reflectance  $R$  (4) and absorptance  $A$  (5) of MLG

for normal EMR incidence can be expressed just by  $\pi$ . For  $\alpha^{-1} = 4\pi^2 + \pi^2 + \pi$  (13) they become

$$T(\alpha) = \frac{4(4\pi^2 + \pi + 1)^2}{(8\pi^2 + 2\pi + 3)^2} \approx 0.9775, \quad (\text{B1})$$

$$A(\alpha) = \frac{4(4\pi^2 + \pi + 1)}{(8\pi^2 + 2\pi + 3)^2} \approx 0.0224, \quad (\text{B2})$$

while for  $\alpha_2^{-1} = -4\pi^2 - \pi^2 - 2\pi$  (14) they become

$$T(\alpha_2) = \frac{4(4\pi^2 + \pi + 2)^2}{(8\pi^2 + 2\pi + 3)^2} \approx 1.0228, \quad (\text{B3})$$

$$A(\alpha_2) = -\frac{4(4\pi^2 + \pi + 2)}{(8\pi^2 + 2\pi + 3)^2} \approx -0.0229, \quad (\text{B4})$$

with

$$R(\alpha) = R(\alpha_2) = \frac{1}{(8\pi^2 + 2\pi + 3)^2} \approx 1.2843 \times 10^{-4}. \quad (\text{B5})$$

$(T(\alpha) + A(\alpha)) + R(\alpha) = (T(\alpha_2) + A(\alpha_2)) + R(\alpha_2) = 1$  as required by the law of conservation of energy (8), whereas each conservation law is associated with a certain symmetry, as asserted by Noether's theorem.  $A(\alpha) > 0$  and  $A(\alpha_2) < 0$  imply respectively a *sink* and a *source*, while the opposite holds true for the transmittance  $T$ , as illustrated schematically in Fig 2. Perhaps, the negative absorptance and transmittance exceeding 100% for  $\alpha_2$  (11) or (14) could be explained in terms of graphene spontaneous emission.

The quadratic equation (9) describing the reflectance  $R$  of MLG under normal incidence of EMR (or alternatively (A1)) can also be solved for  $\pi$  yielding two roots

$$\pi(R, \alpha_*)_1 = \frac{2\sqrt{R}}{\alpha_*(1 - \sqrt{R})}, \quad \text{and} \quad (\text{B6})$$

$$\pi(R, \alpha_*)_2 = \frac{-2\sqrt{R}}{\alpha_*(1 + \sqrt{R})}, \quad (\text{B7})$$

dependent on  $R$  and  $\alpha_*$ , where  $\alpha_*$  indicates  $\alpha$  or  $\alpha_2$ . This can be further evaluated using the MLG reflectance  $R$  (4) or (B5) (which is the same for both  $\alpha$  and  $\alpha_2$ ), yielding four, yet only three distinct, possibilities

$$\pi_1 = \pi(\alpha)_1 = -\pi \frac{4\pi^2 + \pi + 1}{4\pi^2 + \pi + 2} = \pi \frac{\alpha_2}{\alpha} \approx -3.0712, \quad (\text{B8})$$

$$\pi(\alpha)_2 = \pi(\alpha_2)_1 = \pi \approx 3.1416, \quad \text{and} \quad (\text{B9})$$

$$\pi_2 = \pi(\alpha_2)_2 = -\pi \frac{4\pi^2 + \pi + 2}{4\pi^2 + \pi + 1} = \pi \frac{\alpha}{\alpha_2} \approx -3.2136. \quad (\text{B10})$$

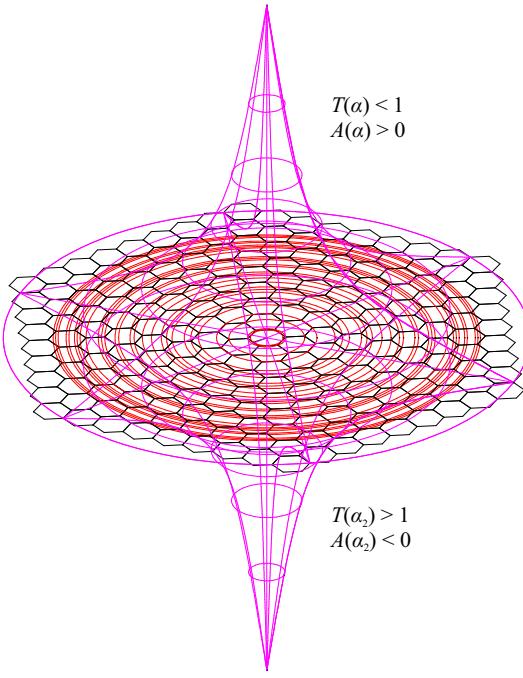


Figure 2. Illustration of the concepts of negative absorptance and excessive transmittance of EMR under normal incidence on MLG.

The modulus of  $\pi_1$  (B8) corresponds to a convex surface having a positive Gaussian curvature, whereas the modulus of  $\pi_2$  (B10) - to a negative Gaussian curvature. Their product  $\pi_1\pi_2 = \pi^2$  is independent of  $\alpha_*$ , and their quotient  $\pi_1/\pi_2 = \alpha_2^2/\alpha^2$  is independent of  $\pi$ . It remains to be found, whether each of them describes the ratio of circumference of a circle drawn on the respective surface to its diameter ( $\pi_c$ ) or the ratio of the area of this circle to the square of its radius ( $\pi_a$ ). These definitions produce different results on curved surfaces, whereas  $\pi_a > \pi_c$  on convex surfaces, while  $\pi_a < \pi_c$  on saddle surfaces [51].

### Appendix C: Planck units and HUP

Perhaps the simplest derivation of the squared Planck length is based on Heisenberg's uncertainty principle

$$\delta P_{\text{HUP}}\delta R_{\text{HUP}} \geq \frac{\hbar}{2} \quad \text{or} \quad \delta E_{\text{HUP}}\delta t_{\text{HUP}} \geq \frac{\hbar}{2}, \quad (\text{C1})$$

where  $\delta P_{\text{HUP}}$ ,  $\delta R_{\text{HUP}}$ ,  $\delta E_{\text{HUP}}$ , and  $\delta t_{\text{HUP}}$  denote momentum, position, energy, and time uncertainties, by replacing energy uncertainty  $\delta E_{\text{HUP}} = \delta M_{\text{HUP}}c^2$  with mass uncertainty and time uncertainty with position uncertainty, using mass-energy equivalence and  $\delta t_{\text{HUP}} = \delta R/c_{\text{HUP}}$  [28], which yields

$$\delta M_{\text{HUP}}\delta R_{\text{HUP}} \geq \frac{\hbar}{2c}. \quad (\text{C2})$$

Plugging  $\delta M_{\text{HUP}} = \delta R_{\text{HUP}}c^2/(2G)$  for BH mass into (C2) we arrive at  $\delta R_{\text{HUP}}^2 = \ell_P^2 \Rightarrow \delta D_{\text{HUP}} = \pm 2\ell_P$  and recover BH diameter  $d_{\text{BH}} = \pm 2$ .

However, using the same procedure but inserting the BH radius, instead of the BH mass, into the uncertainty principle (C2) leads to  $\delta M_{\text{HUP}}^2 = \frac{1}{4}\hbar c/G = \frac{1}{4}m_P^2$ . In general, using the generalized radius (42) in both procedures, one obtains

$$\delta M_{\text{HUP}}^2 = \frac{1}{2k}m_P^2 \quad \text{and} \quad \delta R_{\text{HUP}}^2 = \frac{k}{2}\ell_P^2. \quad (\text{C3})$$

Thus, if  $k$  increases mass  $\delta M_{\text{HUP}}$  decreases, and  $\delta R_{\text{HUP}}$  increases and the factor is the same for  $k = 1$  i.e., for *orbital speed radius*  $\delta R = G\delta M/c^2$  or the *orbital speed mass*  $\delta M = \delta R c^2/G$ .

### Appendix D: A mixed speeds hypothesis

Let us define the mass/charge energies with different speeds of light, i.e., the charge part of the energy  $E_{MQ_i}$  with  $c_n$  and the charge part of the energy  $E_{QM_i}$  with  $c$

$$\begin{aligned} \hat{E}_{MQ_i} &:= Mc^2 + \frac{Q_i c_n^2}{2\sqrt{\pi\epsilon_0 G}} = Mc^2 \pm iq\sqrt{\alpha}m_P \frac{\alpha^2}{\alpha_2^2}c^2, \\ \hat{E}_{QM_i} &:= \frac{Q_i c^2}{2\sqrt{\pi\epsilon_0 G}} + M_i c_n^2 = \pm q\sqrt{\alpha}m_P c^2 + M_i \frac{\alpha^2}{\alpha_2^2}c^2, \end{aligned} \quad (\text{D1})$$

If their moduli are equal, then

$$\begin{aligned} M^2 + q^2\alpha m_P^2 \frac{\alpha^4}{\alpha_2^4} &= q^2\alpha m_P^2 - M_i^2 \frac{\alpha^4}{\alpha_2^4}, \\ M_i &= \pm \sqrt{q^2\alpha m_P^2 \left( \frac{\alpha_2^4}{\alpha^4} - 1 \right) - \frac{\alpha_2^4}{\alpha^4}M^2}. \end{aligned} \quad (\text{D2})$$

For an uncharged mass  $M$ , this relation corresponds to (60). However, since mass  $M_i$  is imaginary, the argument of the square root in the relation (D2) must be negative, i.e.,

$$|M| > |q|m_P \sqrt{\alpha \left( 1 - \frac{\alpha^4}{\alpha_2^4} \right)}. \quad (\text{D3})$$

But  $\alpha^4 > \alpha_2^4$ , yielding imaginary  $M$ , while  $M$  is real by definition. Therefore, complex energies  $E_{MQ_i}$  (50) and  $E_{QM_i}$  (51) must be parametrized respectively by  $c$  and  $c_n$ .

### Appendix E: Fluctuations of the BBOs

A relation describing a BH information capacity after absorption (+) or emission (-) of a *particle* having the wavelength  $l$  can be generalized (cf. [5], Appendix 3), using the generalized radius (42), to all holographic spheres, including BBOs as

$$N^{A/E}(d, l) = 16k^2\pi^3 \frac{1}{l^2} \pm 8k\pi^2 \frac{d}{l} + \pi d^2. \quad (\text{E1})$$

The wavelength of a *particle* emitted from a BH that does not change the BH diameter corresponds to half of the BH

Compton wavelength ( $l_{\text{BH}} = 8\pi/d_{\text{BH}}$ ). Accordingly, the wavelength of a *particle* absorbed by a BH that does not change its diameter is  $l_{\text{BHconst}} = -4\pi/d_{\text{BH}}$ . We note in passing that three spatial dimensions set the minimum for such conditions to occur (cf. [5], Table III). In general,  $l_{\text{BBOconst}} = \pm 2k\pi/d_{\text{BBO}}$ . In particular, for  $k_{\text{eq}}$  the relation (E1) yields

$$\begin{aligned} 4\pi \left(1 + \frac{\alpha_2^4}{\alpha^4}\right) &= \mp dl_{\text{const}} \sqrt{1 + \frac{\alpha_2^4}{\alpha^4}}, \quad B := \frac{\alpha_2^4}{\alpha^4}, \\ 16\pi^2 B^2 + (32\pi^2 - d^2 l_{\text{const}}^2)B + 16\pi^2 - d^2 l_{\text{const}}^2 &= 0, \quad (\text{E2}) \\ \sqrt{\Delta} = \pm d^2 l_{\text{const}}, \quad B_{1,2} &= \frac{d^2 l_{\text{const}}^2 - 32\pi^2 \pm d^2 l_{\text{const}}^2}{32\pi^2}. \end{aligned}$$

The second solution is contradicting, as  $\alpha_2^4 \neq -\alpha^4$ . But the first one

$$l_{\text{const}} = \mp \frac{4\pi \sqrt{1 + \frac{\alpha_2^4}{\alpha^4}}}{d} \approx \mp 1.3832 \frac{4\pi}{d}, \quad (\text{E3})$$

(with “-” for absorption and “+” for emission) reduces to  $l_{\text{BHconst}}$  for  $\alpha_2 = 0$ . For  $k_{\text{max}}$  the relation (E1) yields

$$\begin{aligned} \frac{4\pi}{\left(1 - \frac{\alpha_2^4}{\alpha^4}\right)} &= \mp \frac{dl_{\text{const}}}{\sqrt{1 - \frac{\alpha_2^4}{\alpha^4}}}, \quad B := \frac{\alpha_2^4}{\alpha^4}, \\ d^2 l_{\text{const}}^2 B^2 + (16\pi^2 - 2d^2 l_{\text{const}}^2)B + d^2 l_{\text{const}}^2 - 16\pi^2 &= 0, \quad (\text{E4}) \\ \sqrt{\Delta} = \pm 16\pi^2, \quad B_{1,2} &= \frac{2d^2 l_{\text{const}}^2 - 16\pi^2 \pm 16\pi^2}{2d^2 l_{\text{const}}^2}. \end{aligned}$$

The first solution is contradicting, but the second one

$$l_{\text{const}} = \mp \frac{4\pi}{d \sqrt{1 - \frac{\alpha_2^4}{\alpha^4}}} \approx \mp 3.3966 \frac{4\pi}{d}, \quad (\text{E5})$$

also reduces to  $l_{\text{BHconst}}$  for  $\alpha_2 = 0$ .

The relation (E1) is remarkably similar to the algebraic definitions of the inverses of  $\alpha$  (13) and  $\alpha_2$  (14) also containing  $\pi^3$ ,  $\pi^2$ , and  $\pi$  terms. This raises the question of whether the fine-structure constants’ inverses correspond to the number of bits<sup>10</sup>. Recently the fine-structure constant has been reported as the quantum of rotation [52]. Two *alphas* between  $\alpha^{-1} \approx 137.0363$  and  $\alpha_2^{-1} \approx -140.1779$  hinted by the relations (13), (14), and (E1)

$$\begin{aligned} \tilde{\alpha}^{-1} &= 4\pi^3 - \pi^2 + \pi \approx 117.2971, \\ \tilde{\alpha}_2^{-1} &= -4\pi^3 + \pi^2 - 2\pi \approx -120.4387, \end{aligned} \quad (\text{E6})$$

are thus intriguing.

<sup>10</sup> The floor function of the inverse of the fine-structure constant  $\alpha$  represents the threshold on the atomic number (137) of a hypothetical element *feynmanium* that, in the Bohr model of the atom, still allows the 1s orbital electrons to travel slower than the speed of light

## Appendix F: Moduli of complex energies

The moduli of the complex energies (50), (51), (72)-(75) are

$$|E_{MQ_i}|^2 = (m^2 + q^2 \alpha) E_P^2, \quad (\text{F1})$$

$$|E_{QM_i}|^2 = \left( \frac{\alpha^4}{\alpha_2^4} q^2 \alpha - \frac{\alpha^5}{\alpha_2^5} m_i^2 \right) E_P^2, \quad (\text{F2})$$

$$|E_{RM_i}|^2 = \left( \frac{4\pi^2}{l^2} - \frac{\alpha^5}{\alpha_2^5} m_i^2 \right) E_P^2, \quad (\text{F3})$$

$$|E_{RQ_i}|^2 = \left( \frac{4\pi^2}{l^2} + q^2 \alpha \right) E_P^2, \quad (\text{F4})$$

$$|E_{MR_i}|^2 = \left( m^2 - \frac{\alpha^5}{\alpha_2^5} \frac{4\pi^2}{l_i^2} \right) E_P^2. \quad (\text{F5})$$

$$|E_{QR_i}|^2 = \left( \frac{\alpha^4}{\alpha_2^4} q^2 \alpha - \frac{\alpha^5}{\alpha_2^5} \frac{4\pi^2}{l_i^2} \right) E_P^2, \quad (\text{F6})$$

We assume that the moduli (F1)-(F6) are equal to an energy  $E^2 := AE_P^2$ ,  $A \in \mathbb{R}$ . Subtracting moduli (F1) and (F4) yields  $m^2 = 4\pi^2/l^2$ , and similarly subtracting moduli (F2) and (F6) yields  $m_i^2 = 4\pi^2/l_i^2$ . This equates moduli (F3) and (F5). Substituting  $m^2 = 4\pi^2/l^2$  into the modulus (F6) and subtracting from the modulus (F1) yields

$$m^2 + \frac{\alpha}{\alpha_2} m_i^2 = A - A \frac{\alpha_2^4}{\alpha^4}. \quad (\text{F7})$$

Subtracting this from (F3) or (F5) yields

$$m_i^2 = \frac{4\pi^2}{l_i^2} = \frac{-A\alpha_2^9}{\alpha^5(\alpha^4 + \alpha_2^4)}, \quad (\text{F8})$$

which substituted into the relation (F7) yields

$$m^2 = \frac{4\pi^2}{l^2} = \frac{A\alpha^4}{\alpha^4 + \alpha_2^4}. \quad (\text{F9})$$

Finally, substituting the relation (F9) into the modulus (F1) yields

$$q^2 \alpha = \frac{A\alpha_2^4}{\alpha^4 + \alpha_2^4}. \quad (\text{F10})$$

## Appendix G: Complex forces

Complex energies (50)-(75) define complex forces (similarly to the complex energy of real masses and charges (47), [43] Eq. (7)) between two *objects*, real  $R$  or imaginary  $R_i$

distance apart. We exclude mixed forces (of real and imaginary masses/charges/wavelengths) as real and imaginary dimensions are orthogonal. Using discretizations (49), we obtain the following products

$$\begin{aligned} E_{1mq_i}E_{2mq_i} &:= E_{1MQ_i}E_{2MQ_i}/E_P^2 = \\ &= m_1m_2 - q_1q_2\alpha + i\sqrt{\alpha}(m_1q_2 + m_2q_1), \\ E_{1qm_i}E_{2qm_i} &:= E_{1QM_i}E_{2QM_i}/E_P^2 = \\ &= \frac{\alpha^5}{\alpha_2^4} \left( q_1q_2 + \frac{1}{\alpha_2}m_{i1}m_{i2} + \frac{1}{\sqrt{\alpha_2}}(q_1m_{i2} + q_2m_{i1}) \right), \end{aligned} \quad (G1)$$

$$\begin{aligned} E_{1rm_i}E_{2rm_i} &:= E_{1RM_i}E_{2RM_i}/E_P^2 = \\ &= \frac{4\pi^2}{l_1l_2} + \frac{\alpha^5}{\alpha_2^5}m_{i1}m_{i2} + 2\pi\sqrt{\frac{\alpha^5}{\alpha_2^5}} \left( \frac{m_{i2}}{l_1} + \frac{m_{i1}}{l_2} \right), \\ E_{1mr_i}E_{2mr_i} &:= E_{1MR_i}E_{2MR_i}/E_P^2 = \\ &= m_1m_2 + \frac{\alpha^5}{\alpha_2^5}\frac{4\pi^2}{l_{i1}l_{i2}} + 2\pi\sqrt{\frac{\alpha^5}{\alpha_2^5}} \left( \frac{m_1}{l_{i2}} + \frac{m_2}{l_{i1}} \right), \end{aligned} \quad (G2)$$

$$\begin{aligned} E_{1qr_i}E_{2qr_i} &:= E_{1QR_i}E_{2QR_i}/E_P^2 = \\ &= \frac{\alpha^4}{\alpha_2^4}q_1q_2\alpha + \frac{4\pi^2}{l_1l_2}\frac{\alpha^5}{\alpha_2^5} + 2\pi\frac{\alpha^5}{\sqrt{\alpha_2^9}} \left( \frac{q_1}{l_2} + \frac{q_2}{l_1} \right), \\ E_{1rq_i}E_{2rq_i} &:= E_{1RQ_i}E_{2RQ_i}/E_P^2 = \\ &= \frac{4\pi^2}{l_1l_2} - q_1q_2\alpha + i2\pi\sqrt{\alpha} \left( \frac{q_2}{l_1} + \frac{q_1}{l_2} \right), \end{aligned} \quad (G3)$$

defining six complex forces; between two *particles* or *objects* acting over a real *distance*  $R$

$$F_{AB_i} = \frac{G}{c^4R^2}E_{1AB_i}E_{2AB_i} = \frac{F_P}{r_i^2}E_{1ab_i}E_{2ab_i}, \quad (G4)$$

and six complex forces; between two *particles* or *objects* acting over an imaginary *distance*  $R_i$

$$\tilde{F}_{AB_i} = \frac{G}{c_n^4R_i^2}E_{1AB_i}E_{2AB_i} = \frac{\alpha_2}{\alpha}\frac{F_P}{r_i^2}E_{1ab_i}E_{2ab_i}, \quad (G5)$$

where  $A, B \in \{M, Q, R\}$  and  $a, b \in \{m, q, r\}$ , and

$$\alpha_2r^2F_{AB_i} = \alpha r_i^2\tilde{F}_{AB_i}. \quad (G6)$$

Under a simplifying assumption of  $r^2 = r_i^2$ , the forces acting over a real *distance*  $R$  are stronger and opposite to the corresponding forces acting over an imaginary *distance*  $R_i$  even though the Planck force is lower in modulus than the complementary (real) Planck force (27).

In particular, we can use the complex force  $F_{MQ_i}$  (G4) with (G1) (i.e., complex Newton's law of universal gravitation) to calculate the BBO surface gravity  $g_{\text{BBO}}$ , assuming an uncharged ( $q_2 = 0$ ) test mass  $m_2$

$$\begin{aligned} \frac{F_P}{r_{\text{BBO}}^2}(m_{\text{BBO}}m_2 + i\sqrt{\alpha}m_2q_{\text{BBO}}) &= M_2g_{\text{BBO}} = \\ &= m_2m_P\hat{g}_{\text{BBO}}a_P, \\ \hat{g}_{\text{BBO}} &= \frac{1}{r_{\text{BBO}}^2}(m_{\text{BBO}} + i\sqrt{\alpha}q_{\text{BBO}}), \end{aligned} \quad (G7)$$

where  $g_{\text{BBO}} = \hat{g}_{\text{BBO}}a_P$ ,  $\hat{g}_{\text{BBO}} \in \mathbb{R}$ . Substituting the relation (64) and the generalized radius (42)  $r_{\text{BBO}} = km_{\text{BBO}}$  into the relation (G7) yields

$$g_{\text{BBO}} = \frac{a_P}{kr_{\text{BBO}}}\left(1 \pm i\sqrt{\frac{k^2}{4} - 1}\right), \quad (G8)$$

which reduces to BH surface gravity for  $k = 2$ , in modulus

$$\hat{g}_{\text{BBO}}^2 = \frac{1}{k^2r_{\text{BBO}}^2}\left(1 + i\sqrt{\frac{k^2}{4} - 1}\right)\left(1 - i\sqrt{\frac{k^2}{4} - 1}\right) = \frac{1}{4r_{\text{BBO}}^2}, \quad (G9)$$

equals to a squared BH surface gravity for all  $k$ , and in particular,

$$g_{\text{BBO}}(k_{\max}) = \pm \frac{a_P}{d_{\text{BBO}}}(0.2944 \pm 0.9557i), \quad (G10)$$

$$g_{\text{BBO}}(k_{\text{eq}}) = \pm \frac{a_P}{d_{\text{BBO}}}(0.7229 \pm 0.6909i). \quad (G11)$$

Using the BBO surface gravity (G8), the BBO temperature can be obtained from Hawking blackbody-radiation equation

$$T_{\text{BBO}} = \frac{\hbar}{2\pi ck_B}g_{\text{BBO}} = \frac{T_P}{k\pi d_{\text{BBO}}}\left(1 \pm i\sqrt{\frac{k^2}{4} - 1}\right), \quad (G12)$$

which also in modulus equals squared BH temperature  $\forall k$ . In particular,

$$T_{\text{BBO}}(k_{\max}) = \pm \frac{T_P}{2\pi d_{\text{BBO}}}\left(\frac{\sqrt{\alpha^4 - \alpha_2^4}}{\alpha^2} \pm i\frac{\alpha_2^2}{\alpha^2}\right), \quad (G13)$$

$$T_{\text{BBO}}(k_{\text{eq}}) = \pm \frac{T_P}{2\pi d_{\text{BBO}}}\frac{\alpha^2 \pm i\alpha_2^2}{\sqrt{\alpha^4 + \alpha_2^4}}, \quad (G14)$$

reduce to a BH temperature for  $\alpha_2 = 0$ . We note that for  $d_{\text{BBO}} = 1$ ,  $\text{Re}(T_{\text{BBO}}(k_{\max})) = 6.6387 \times 10^{30}$  [K] has the magnitude of the Hagedorn temperature of strings.

It seems, therefore, that a universe without imaginary dimensions (i.e., with  $\alpha_2 = 0$ ) would be a black hole. Hence, the evolution of information [1–6] requires imaginary time.

[1] P. T. de Chardin, *The Phenomenon of Man*. Harper, New York, 1959.

[2] I. Prigogine and I. Stengers, *Order out of Chaos: Man's New Dialogue with Nature*. 1984.

[3] R. Melamede, "Dissipative structures and the origins of life," in *Unifying Themes in Complex Systems IV* (A. A. Minai and Y. Bar-Yam, eds.), (Berlin, Heidelberg), pp. 80–87, Springer Berlin Heidelberg, 2008.

[4] V. Vedral, *Decoding Reality: The Universe as Quantum Information*. Oxford University Press, 2010.

[5] S. Łukaszyk, *Black Hole Horizons as Patternless Binary Messages and Markers of Dimensionality*. Nova Science Publishers, 2023.

[6] M. M. Vopson and S. Lepadatu, "Second law of information dynamics," *AIP Advances*, vol. 12, p. 075310, July 2022.

[7] "Platonic Solids in All Dimensions."

[8] C. H. Taubes, "Gauge theory on asymptotically periodic {4}-manifolds," *Journal of Differential Geometry*, vol. 25, Jan. 1987.

[9] S. Łukaszyk, "Four Cubes," Feb. 2021. arXiv:2007.03782 [math].

[10] Č. Brukner, "A No-Go Theorem for Observer-Independent Facts," *Entropy*, vol. 20, no. 5, 2018.

[11] S. Łukaszyk, "Life as the Explanation of the Measurement Problem," 2018.

[12] M. Planck, "Über irreversible Strahlungsvorgänge," 1899.

[13] A. B. Kuzmenko, E. van Heumen, F. Carbone, and D. van der Marel, "Universal dynamical conductance in graphite," *Physical Review Letters*, vol. 100, p. 117401, Mar. 2008. arXiv:0712.0835 [cond-mat].

[14] K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, "Measurement of the Optical Conductivity of Graphene," *Physical Review Letters*, vol. 101, p. 196405, Nov. 2008.

[15] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Universal Dynamic Conductivity and Quantized Visible Opacity of Suspended Graphene," *Science*, vol. 320, pp. 1308–1308, June 2008. arXiv:0803.3718 [cond-mat].

[16] T. Stauber, N. M. R. Peres, and A. K. Geim, "Optical conductivity of graphene in the visible region of the spectrum," *Physical Review B*, vol. 78, p. 085432, Aug. 2008.

[17] X. Wang and B. Chen, "Origin of Fresnel problem of two dimensional materials," *Scientific Reports*, vol. 9, p. 17825, Dec. 2019.

[18] M. Merano, "Fresnel coefficients of a two-dimensional atomic crystal," *Physical Review A*, vol. 93, p. 013832, Jan. 2016.

[19] T. Ando, Y. Zheng, and H. Suzuura, "Dynamical Conductivity and Zero-Mode Anomaly in Honeycomb Lattices," *Journal of the Physical Society of Japan*, vol. 71, pp. 1318–1324, May 2002.

[20] S.-E. Zhu, S. Yuan, and G. C. A. M. Janssen, "Optical transmittance of multilayer graphene," *EPL (Europhysics Letters)*, vol. 108, p. 17007, Oct. 2014.

[21] I. G. Ivanov, J. U. Hassan, T. Iakimov, A. A. Zakharov, R. Yakimova, and E. Janzén, "Layer-number determination in graphene on SiC by reflectance mapping," *Carbon*, vol. 77, pp. 492–500, Oct. 2014.

[22] P. Varlaki, L. Nadai, and J. Bokor, "Number Archetypes in System Realization Theory Concerning the Fine Structure Constant," in *2008 International Conference on Intelligent Engineering Systems*, (Miami, FL), pp. 83–92, IEEE, Feb. 2008.

[23] J. K. Webb, V. V. Flambaum, C. W. Churchill, M. J. Drinkwater, and J. D. Barrow, "Search for Time Variation of the Fine Structure Constant," *Physical Review Letters*, vol. 82, pp. 884–887, Feb. 1999.

[24] M. T. Murphy, J. K. Webb, V. V. Flambaum, V. A. Dzuba, C. W. Churchill, J. X. Prochaska, J. D. Barrow, and A. M. Wolfe, "Possible evidence for a variable fine-structure constant from QSO absorption lines: motivations, analysis and results," *Monthly Notices of the Royal Astronomical Society*, vol. 327, pp. 1208–1222, Nov. 2001.

[25] J. K. Webb, M. T. Murphy, V. V. Flambaum, V. A. Dzuba, J. D. Barrow, C. W. Churchill, J. X. Prochaska, and A. M. Wolfe, "Further Evidence for Cosmological Evolution of the Fine Structure Constant," *Physical Review Letters*, vol. 87, p. 091301, Aug. 2001.

[26] M. T. Murphy, J. K. Webb, and V. V. Flambaum, "Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra," *Monthly Notices of the Royal Astronomical Society*, vol. 345, pp. 609–638, Oct. 2003.

[27] T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, "Frequency Ratio of Al<sup>+</sup> and Hg<sup>+</sup> Single-Ion Optical Clocks; Metrology at the 17th Decimal Place," *Science*, vol. 319, pp. 1808–1812, Mar. 2008.

[28] F. Scardigli, "Some heuristic semi-classical derivations of the Planck length, the Hawking effect and the Unruh effect," *Il Nuovo Cimento B (1971-1996)*, vol. 110, no. 9, pp. 1029–1034, 1995.

[29] E. Verlinde, "On the origin of gravity and the laws of Newton," *Journal of High Energy Physics*, vol. 2011, p. 29, Apr. 2011.

[30] S. Łukaszyk, "Novel Recurrence Relations for Volumes and Surfaces of n-Balls, Regular n-Simplices, and n-Orthoplices in Real Dimensions," *Mathematics*, vol. 10, p. 2212, June 2022.

[31] S. Łukaszyk and A. Tomski, "Omnidimensional Convex Polytopes," *Symmetry*, vol. 15, Mar. 2023.

[32] X. Peng, H. Zhou, B.-B. Wei, J. Cui, J. Du, and R.-B. Liu, "Experimental Observation of Lee-Yang Zeros," *Physical Review Letters*, vol. 114, p. 010601, Jan. 2015.

[33] K. Gnatenko, A. Kargol, and V. Tkachuk, "Lee-Yang zeros and two-time spin correlation function," *Physica A: Statistical Mechanics and its Applications*, vol. 509, pp. 1095–1101, Nov. 2018.

[34] F. M. Vincentelli, J. Neilsen, A. J. Tetarenko, Y. Cavecchi, N. Castro Segura, S. Del Palacio, J. Van Den Eijnden, G. Vasilopoulos, D. Altamirano, M. Armas Padilla, C. D. Bainlyn, T. Belloni, D. J. K. Buisson, V. A. Cúneo, N. Degehaar, C. Knigge, K. S. Long, F. Jiménez-Ibarra, J. Milburn, T. Muñoz Darias, M. Özbeý Arabacı, R. Remillard, and T. Russell, "A shared accretion instability for black holes and neutron stars," *Nature*, vol. 615, pp. 45–49, Mar. 2023.

[35] R. Hiller, S. J. Putterman, and B. P. Barber, "Spectrum of synchronous picosecond sonoluminescence," *Physical Review Letters*, vol. 69, pp. 1182–1184, Aug. 1992.

[36] C. Eberlein, "Theory of quantum radiation observed as sonoluminescence," *Physical Review A*, vol. 53, pp. 2772–2787, Apr. 1996.

[37] D. Lohse, B. Schmitz, and M. Versluis, "Snapping shrimp make flashing bubbles," *Nature*, vol. 413, pp. 477–478, Oct. 2001.

[38] J. D. Bekenstein, "Black Holes and Entropy," *Phys. Rev. D*, vol. 7, pp. 2333–2346, Apr 1973.

[39] K. Qian, K. Wang, L. Chen, Z. Hou, M. Krenn, S. Zhu, and X.-s. Ma, "Multiphoton non-local quantum interference controlled by an undetected photon," *Nature Communications*, vol. 14, p. 1480, Mar. 2023.

[40] I. Saeed, H. K. Pak, and T. Tlusty, "Quasiparticles, flat bands and the melting of hydrodynamic matter," *Nature Physics*, Jan. 2023.

[41] A. Sneppen, D. Watson, A. Bauswein, O. Just, R. Kotak, E. Nakar, D. Poznanski, and S. Sim, "Spherical symmetry in the kilonova AT2017gfo/GW170817," *Nature*, vol. 614, pp. 436–439, Feb. 2023.

[42] G. t. Hooft, "Dimensional Reduction in Quantum Gravity," 1993.

[43] T. Zhang, "Electric Charge as a Form of Imaginary Energy," Apr. 2008.

[44] H. Jussila, H. Yang, N. Granqvist, and Z. Sun, "Surface plasmon resonance for characterization of large-area atomic-layer graphene film," *Optica*, vol. 3, p. 151, Feb. 2016.

[45] P. R. Wallace, "Erratum: The Band Theory of Graphite [Phys. Rev. 71, 622 (1947)]," *Physical Review*, vol. 72, pp. 258–258, Aug. 1947.

[46] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," *Science*, vol. 306, pp. 666–669, Oct. 2004.

[47] A. Einstein, B. Podolsky, and N. Rosen, "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?," *Physical Review*, vol. 47, pp. 777–780, May 1935.

[48] J. S. Bell, "On the Einstein Podolsky Rosen paradox," *Physics Physique Fizika*, vol. 1, pp. 195–200, Nov. 1964.

[49] S. Łukaszyk, "A short note about graphene and the fine structure constant," 2020.

[50] S. Łukaszyk, "A short note about the geometry of graphene," 2020.

[51] S. Mahajan, "Calculation of the pi-like circular constants in curved geometry." ResearchGate, Nov. 2013.

[52] A. Shubaev, L. Pan, L. Tai, P. Zhang, K. L. Wang, and A. Pimenov, "Universal rotation gauge via quantum anomalous Hall effect," *Applied Physics Letters*, vol. 121, p. 193101, Nov. 2022.