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Imaginary dimensions in physics require an imaginary set of base Planck units and some negative parameter c,
corresponding to the speed of light in vacuum c. The second, negative fine-structure constant @;' ~ —140.178
present in Fresnel coefficients for the normal incidence of electromagnetic radiation on monolayer graphene
leads to the imaginary Planck units. Furthermore, it sets ¢, * —3.06 X 108 [my/s]. It follows that electric charges
are the same in real and imaginary dimensions. Neutron stars and white dwarfs, objects emitting perfect black-
body radiation, need energy exceeding their mass-energy equivalence ratios. Complex energies are defined in
terms of real and imaginary Planck units. Their imaginary parts, inaccessible for direct observation, store the
excess of these energies. It follows that black holes are fundamentally uncharged, charged micro neutron stars
and white dwarfs with masses lower than 5.7275 x 10710 [kg] are unphysical, and the radii of white dwarfs’
cores are limited to Rwp < 6.7933 GMyp/c?. It is conjectured that the maximum atomic number Z = 238. A
black-body object is in the equilibrium of complex energies of masses, charges, and wavelengths if its radius
Req = 2.7665 GMgpo /c?, which corrects the value of the photon sphere radius Ry = 3GM/c?, taking into
account the value(s) of the fine-structure constant(s), which is otherwise neglected in general relativity. Complex
Newton’s law of universal gravitation leads to the black-body object’s surface gravity and temperature.
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I. INTRODUCTION example, there are countably infinitely many regular convex

The universe began with the Big Bang, which is a current
prevailing scientific opinion. But this Big Bang was not an
explosion of 4-dimensional spacetime, which also is a current
prevailing scientific opinion, but an explosion of dimensions.
More precisely, in the —1-dimensional void, a 0-dimensional
point appeared, inducing the appearance of countably in-
finitely other points indistinguishable from the first one. The
breach made by the first operation of the dimensional succes-
sor function of the Peano axioms inevitably continued leading
to the formation of 1-dimensional, real and imaginary lines al-
lowing for an ordering of points using multipliers of real units
(ones) or imaginary units (@ € R @ a = 1bl,aecl & a =
ib,b € R). Then out of two lines of each kind, crossing each
other only at one initial point (0, 0), the dimensional succes-
sor function formed 2-dimensional R2, 12, and R x I Euclidean
planes, with I? being a mirror reflection of R?. And so on,
forming n-dimensional Euclidean spaces R* x I’ with a € N
real and b € N imaginary lines, n = a + b, and the scalar
product defined by

) .7 .7 .7 .
X-y= (xl,...,xa,txl,...,lxb)(yl,...,ya,ly],...,lyb) =
a b
. v
= Z Xy + Z XYy
k=1 =1

where x,y € R x IY.

With the onset of the first O-dimensional point, information
began to evolve [1-6].

However, dimensional properties are not uniform. Con-
cerning regular convex n-polytopes in natural dimensions, for

)]
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! This is, of course, a circular definition, but it is given for clarity.

polygons, five regular convex polyhedra (Platonic solids), six
regular convex 4-polytopes, and only three regular convex n-
polytopes if n > 3 [7]. In particular, 4-dimensional euclidean
space is endowed with a peculiar property known as exotic R*
[8]. This property allowed for variation of phenotypic traits
within populations of individuals [9] perceiving emergent Eu-
clidean R? x I space of three real and one imaginary (time) di-
mension observer-dependently [10] and at present [11] when
i0 = 0 is real. The evolution of information extended into
biological evolution.

Each dimension requires certain units of measure. In real
dimensions, the natural units of measure were derived by
Max Planck in 1899 as independent of special bodies or sub-
stances, thereby necessarily retaining their meaning for all
times and for all civilizations, including extraterrestrial and
non-human ones” [12].

This study derives the complementary set of Planck units
applicable for imaginary dimensions, including the imaginary
base units, and outlines prospects for their research. As the
speed of electromagnetic radiation is the product of its wave-
length and frequency and both these quantities are imaginary
in imaginary dimensions, some real but negative parameter
cn = v;d; corresponding to the speed of light in vacuum ¢ (i.e.,
the Planck speed) is also necessary as i*> = —1. It turns out
that the imaginary Planck energy Ep; and temperature Tp; are
larger in moduli than the Planck energy Ep and temperature
Tp setting more favorable conditions for biological evolution
to emerge in R* x I Euclidean space than in I* x R Euclidean
one due to the minimum energy principle.

The study shows that the energies of neutron stars and white
dwarfs exceed their mass—energy equivalences and that excess
energy is stored in imaginary dimensions and is inaccessible
to direct observations. This corrects the value of the photon
sphere radius and results in the upper bound on the slopes of
the radii of their cores as a function of their masses, where the
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Schwarzschild radius sets the lower bound.

The paper is structured as follows. Section II shows that
Fresnel coefficients for the normal incidence of electromag-
netic radiation on monolayer graphene include the second,
negative fine-structure constant @, as a fundamental constant
of nature. Section III shows that nature endows us with the
imaginary base Planck units by this second fine-structure con-
stant. Section IV introduces the concept of a black-body ob-
Jject in thermodynamic equilibrium emitting black-body radi-
ation and discusses its necessary properties. Section V intro-
duces two complex energies of masses and charges and ap-
plies them to black-body objects. Section VI introduces four
additional complex energies of masses, charges, and wave-
lengths to derive the black-body object equilibrium, correct-
ing the photon sphere radius of general relativity. Section VII
summarizes the findings of this study. Certain prospects for
further research are given in the appendices.

II. THE SECOND FINE-STRUCTURE CONSTANT

Numerous publications provide Fresnel coefficients for the
normal incidence of electromagnetic radiation (EMR) on
monolayer graphene (MLG), which are remarkably defined
only by 7 and the fine-structure constant «

4 (qp )2 4neyhc
ol = () =

= 0% < 137.036, )
e e

where ¢ is vacuum permittivity (the electric constant), 7 is
the reduced Planck constant, and e is the elementary charge.
Transmittance (7') of MLG

1
T=—— 3 ~09775, 3)

(1+%)

for normal EMR incidence was derived from the Fresnel equa-
tion in the thin-film limit [13] (Eq. 3), whereas spectrally flat
absorptance (A) A = ma =~ 2.3% was reported [14, 15] for
photon energies between about 0.5 and 2.5 [eV]. T was re-
lated to reflectance (R) [16] (Eq. 53) as R = n%a’T /4, i.e,
17202
R=—""—— ~12843x 107", 4)
(1 + %)

The above equations for T and R, as well as the equation for
the absorptance

A= "2 ~00224, 5)

(1%
were also derived [17] (Eqs. 29-31) based on the thin film
model (setting n; = 1 for substrate).

The sum of transmittance (3) and the reflectance (4) at nor-

mal EMR incidence on MLG was also derived [18] (Eq. 4a)
as

4o
T+R=1-
4+ 4on + on? + k22
1+ %nzaz 6)
= —— =~ 09776,

(%)
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where 7 is the vacuum impedance

dnah 1
n= 2% = — 37673 [Q, 7
€C

e

o = e*/(4h) = na/n is the MLG conductivity [19], and y = 0
is the electric susceptibility of vacuum.

These coefficients are thus well-established theoretically
and experimentally confirmed [13-15, 18, 20, 21].

As a consequence of the conservation of energy

(T+A)+R=1. (®)

In other words, the transmittance in the Fresnel equation de-
scribing the reflection and transmission of EMR at normal in-
cidence on a boundary between different optical media is, in
the case of the 2-dimensional (boundary) of MLG, modified
to include its absorption.

The reflectance R = 0.013% (4) of MLG can be expressed
as a quadratic equation with respect to «

1
Z(R—l)n2a/2+R7ra/+R=O, 9)

having two roots with reciprocals

—7VR
ot =T VR 137.036, and (10)
2VR
—7—7VR
o' = —r-nVR ~140.178. (11)
2VR

Therefore, the quadratic equation (9) includes the second,
negative fine-structure constant ;.

The sum of the reciprocals of these fine-structure constants
(10) and (11)

PO S B Sk R-n-nVR _
’ 2VR

is remarkably independent of the reflectance R. The same re-

sult can only be obtained for 7' + A (cf. Appendix A).
Furthermore, this result is intriguing in the context of a pe-

culiar algebraic expression for the fine-structure constant [22]

—, (12)

ol = 47° + 12 + 1 ~ 137.036303776 (13)

that contains a free m term and is very close to the physi-
cal definition (2) of @~!, which according to the CODATA
2018 value is 137.035999084. Notably, the value of the fine-
structure constant is not constant but increases with time [23—
27]. Thus, the algebraic value given by (13) can be interpreted
as the asymptote of the « increase.

Using relations (12) and (13), we can express the negative
reciprocal of the 2" fine-structure constant a, ! that emerged
in the quadratic equation (9) also as a function of  only

@' = —n—a]' = -4r — 1% - 21 ~ —140.177896429, (14)

and this value can also be interpreted as the asymptote of the

@, decrease, where the current value would amount to a; Iy
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—140.177591737, assuming the rate of change is the same for
a and a,.

Using relations (13) and (14), transmittance 7 (3), re-
flectance R (4), and absorptance A (5) of MLG for normal
EMR incidence can be expressed just by . Moreover, equa-
tion (9) includes two m-like constants for two surfaces with
positive and negative Gaussian curvatures (cf. Appendix B).

III.  a,-SET OF PLANCK UNITS

Planck units can be derived from numerous starting points
[5, 28] (cf. Appendix C). The definition of the Planck charge
gp = V4neyhic can be solved for the speed of light yielding ¢ =
qlz, /(4rmegh). Furthermore, the ratio of charges definition of the
fine-structure constant a = ¢*/ q}% (2) applied for the negative
a3, requires an introduction of some imaginary Planck charge
gp; so that its square would yield a negative value of a;

2
qp; _
e—l; = a/zl ~ —140.178 < 0. (15)

Since the elementary charge e is real

2
= £1] = = + Varehe,. (16)
@

Among the physical constants of the V4neyfic, term, almost
all are positive’. Only the ¢, = v;; parameter, correspond-
ing to the speed of light, must be negative as both frequency
v; and wavelength A; are imaginary in imaginary dimensions.
Therefore, equation (16) can be solved for ¢, yielding

cn = g5/ (4negh) ~ =3.066653 x 10% [m/s],  (17)
which is greater than the speed of light in vacuum c¢ in modu-
lus®. We also note that c is defined by the electric constant &
and the magnetic constant pg as ¢ = 1/ y/éoflo; a square root is
bivalued and the value of iy depends on @. Furthermore, c is
defined by a-dependent vacuum impedance (7).

The negative parameter ¢, (17) leads to the imaginary
Planck charge gp;, length {p;, mass mp;, time #p;, and tempera-
ture Tp; that redefined by square roots containing c, raised to
an odd (1, 3, 5) power become imaginary and bivalued

a
gpi = = V4nehc, = iQP,/a—z ~

~ +i1.8969 x 1073 [C]

(18)
(Igpil > lgeD) ,

2 Vacuum permittivity e is the value of the absolute dielectric permittivity
of classical vacuum. Thus, € cannot be negative. The Planck constant / is
the uncertainty principle parameter. Thus, it cannot be negative; negative
probabilities do not seem to withstand Occam’s razor.

3 Their average (c + ¢,)/2 ~ —3.436417 x 10° [m/s] is in the range of the
Fermi velocity.
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hG @
e T Ne T (19)

~ +i1.5622 x 107 [m]  (|tpil < |€p]),

/hcn a
= + — = xtmp — X
G a; (20)

~ +i2.2012 x 1078 [kg]  (Imp;| > |mpl),

"G _ \/07
c,, e 1)

~ +i5.0942 x 107 [s]  (|tei] < Itp]),

3 he, a®
=*\oe TP g ® (22)
B 2

~ +i1.4994 x 102 [K]  (|Tpi| > |T5)),

and can be expressed, using the relation (31), in terms of base
Planck units gp, €p, mp, tp, and Tp.

Planck units derived from the imaginary base units (19)-
(21) are generally not imaginary. The a, Planck volume

32 9
PSP L5 I Y L B
Pi P\ (23)

~ £i3.8127x 107" m*] (< 4)).

n

the a, Planck momentum

N N i) N a’
i = £mpiCp = £\|—= = £MpC|— =
pPp P, G P a; (24)

~ +i6.7504 [kg m/s]  (|mp;c,| > |mpc]),

a,S
G @)

the @, Planck energy

fhcn
Ep; = _mp,C =+

~ +i2.0701 x 10° [J1  (Epi > |Ep|),
and the a, Planck acceleration
S n o’
ap; = xx— ==+ — = *+qa —_—_ =
T G~ '\ (26)
~ +i6.0198 x 10! [m/s®]  (lapi| > lap)),

are imaginary and bivalued. However, the @, Planck force

i G Tad 27)
~ +£1.3251 x 10 [N]  (|Fpa| > |Fp)),
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and the @, Planck density

0 +I’l’lp,' 4 C,51 +p a5
P2 =3 == =xpp—< =
6.~ T hG? a3 (28)

~ +5.7735 x 10% [kg/m’]  (lppa| > |op))

are real and bivalued. On the other hand, the a, Planck area

» _hG 2“3
€Pi = —3 = fp—3 =~
Cn @ (29)

~ 24406 x 1070 m?] (13 < I3]).
is strictly negative, while the Planck area 512, is strictly positive.

Both @; and ¢, lead to the second, negative vacuum
impedance

drarh 1
e? €Cy,

m ~ 36829 [Q]  (Im2| <Inl).  (30)

Solving both impedances (7) and (30) for 4rfiey/e* and com-
paring with each other yields the following important relation
between the speed of light in vacuum ¢, negative parameter
¢,,, and the fine-structure constants «, a,

(=ve), 31D

ca = c,an

where, notably, v, is the electron’s velocity at the first circular
orbit in the Bohr model of the hydrogen atom. This is not the
only a to @, relation. Along with the two n-like constants
1y (relations (B8) and (B10), cf. Appendix B)

(0%} C T

=T 09776. (32)
[0 Cn T o

The relations between time (21) and temperature (22) a;
Planck units are inverted, o°13, = a3t3, o375, = T2, and
saturate Heisenberg’s uncertainty principle (energy-time ver-
sion) taking energy from the equipartition theorem for one de-

gree of freedom (or one bit of information [5, 29])

1 1 hi
—kgTptp = —kgTpitp; = —. 33
2BPP 2BPP 2 ( )

Furthermore, eliminating @ and a, from the relations (18)-
(20), yield

2 2
q—f; = q—‘;" = 476G, (34)
mp - Ny,
and
fpm% = fp,-mf)i and qu;, = fpiqgi. (35)

Base Planck units themselves admit negative values as neg-
ative square roots. By choosing complex analysis, within the
framework of emergent dimensionality [5, 9, 11, 30, 31], we
enter into bivalence by the very nature of this analysis. All ge-
ometric objects have both positive and negative volumes and
surfaces [31] equal in moduli. On the other hand, imaginary
and negative physical quantities are the subject of research. In

d0i:10.20944/preprints202212.0045.v9

particular, the subject of scientific research is thermodynam-
ics in the complex plane. Lee—Yang zeros, for example, have
been experimentally observed [32, 33].

We note here that the imaginary Planck Units are not imag-
inary due to being multiplied by the imaginary unit i. They
are imaginary numbers I due to the negativity of odd powers
of ¢, being the square root argument; thus, they define imagi-
nary physical quantities inaccessible to direct measurements®.
The complementary Planck units do not apply only to the time
dimension but to any imaginary dimension. However, in our
four-dimensional Euclidean R3 x I space-time, Planck units
apply in general to the spatial dimensions, while the imag-
inary ones in general to the imaginary temporal dimension.
All the complementary Planck units have physical meanings.
However, some are elusive, like the negative area or imaginary
volume, which require two or three orthogonal imaginary di-
mensions.

Planck charge relations (2) and (16) imply that the elemen-
tary charge e is the same both in real and imaginary dimen-
sions since

e = agh = g, (36)
But there is no physically meaningful elementary mass M, =
+1.8592 x 1077 [kg] that would satisfy the relation (20)

Mz = a'mlz, = azmlz)i. 37

Neither is there a physically meaningful elementary (and
imaginary) length L, ~ +i9.7382 x 107 [m] satisfying the
relation (29)

=t =

_—

a3, (38)

(which in modulus is almost 1660 times smaller than the
Planck length), or an elementary temperature T, ~ £6.4450 X
10?® [K] abiding to (22)

77 =T = a5Th;, (39)

close to the Hagedorn temperature of grand unified string
models.

Thus, as to the modulus, charges are the same in real and
imaginary dimensions, while masses, lengths, temperatures,
and other derived quantities that can vary with time, differ. We
note that the same form of the relations (36) and (37) reflect
the same form of Coulomb’s law and Newton’s law of gravity,
which are inverse-square laws.

IV. BLACK BODY OBJECTS

There seem to be only three observable objects in nature
that emit perfect black-body radiation: unsupported black
holes (BH, the densest), neutron stars (NS), supported, as it is

4 Quantum measurement outcomes are real eigenvalues of hermitian opera-
tors.
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accepted, by neutron degeneracy pressure, and white dwarfs
(WD), supported by electron degeneracy pressure (the least
dense). We shall collectively call them black-body objects
(BBO). It has recently been experimentally confirmed that the
so-called accretion instability is a fundamental physical pro-
cess [34] common for all BBOs.

As black-body radiation is radiation emitted by a body in
global thermodynamic equilibrium, it is patternless (thermal
noise) radiation and depends only on the temperature of this
body. In the case of BHs, this is known as Hawking radiation,
wherein the BH temperature Tgy = Tp/(2ndpy), where Tp is
the Planck temperature, is a function of the BH diameter [5]
Dgy = dpulp, where dgy € R. It was shown, for example,
that the spectral density in the phenomenon of sonolumines-
cence, light emission by sound-induced collapsing gas bub-
bles in fluids, has the same frequency dependence as black-
body radiation [35, 36]. Thus, the sonoluminescence, and in
particular shrimpoluminescence [37], must be emitted by col-
lapsing BBOs.

As Hawking radiation depends only on the diameter of a
BH, it must be the same for a given BH, even though it is mo-
mentary as it fluctuates (cf. Appendix E). As the interiors of
the BBOs are inaccessible to an exterior observer [38], BBOs
do not have interiors and can only be defined by their diam-
eters (cf. [5] Fig. 2(b)). The term object as a collection of
matter is a misnomer in general, as it neglects quantum non-
locality that is independent of the entanglement among the
particles [39]. But it is a particularly staring misnomer if ap-
plied to BBOs. Thus we use emphasis for (indistinguishable)
particle and (distinguishable) object, as well as for matter and
distance, as these terms have no absolute meaning in emergent
dimensionality. In particular, given the recent observation of
quasiparticles in classical systems [40].

But not only BBOs are perfectly spherical. Also, the early
epochs of their collisions are perfectly spherical, as it has
been recently, experimentally confirmed [41] for NSs based
on the AT2017gfo kilonova data. One can hardly expect a
collision of two perfectly spherical, patternless thermal noises
to produce some aspherical pattern instead of another per-
fectly spherical patternless noise. Where would the informa-
tion about this pattern come from at the moment of the colli-
sion? From the point of impact? No point of impact is distinct
on a patternless surface.

As black-body radiation is patternless, the triangulated [5]
BBOs, as well as their early epoch collisions, must contain a
balanced number of Planck area triangles, each carrying bi-
nary potential dg; = —c? - {0, 1}, as it has been shown for BHs
[5], based on Bekenstein-Hawking entropy

1
SgH = ZkBNBH, (40)

where Npy := 4nR3, /(3 = ndy, is the BH information ca-
pacity (i.e., the number of the triangular Planck areas at the
BH horizon, corresponding to bits of information [29, 38, 42]
and the fractional part triangle {ﬂdéH} to small to carry a sin-
gle bit), Rgy = 2GMgy/c? is the BH (Schwarzschild) radius,
and kg is the Boltzmann constant. The BH entropy (40) can

d0i:10.20944/preprints202212.0045.v9

be derived from the Bekenstein bound

S < 27TkBRE’ (41)
hc

an upper limit on the thermodynamic entropy S that can be

contained within a sphere of radius R having energy E af-

ter plugging the BH radius Rpy and mass-energy equivalence

Epn = Mpyc? into the bound (41).

Since the patternless nature of the perfect black-body ra-
diation was derived [5] by comparing BH entropy (40) with
the binary entropy variation 8S = kgN;/2 ([5] Eq. (59)),
which is valid for any holographic sphere, where N; € N de-
notes the number of active Planck areas with binary potential
S¢r = —c?, the BH entropy (40) must be valid also for NSs and
WDs. Thus, defining the generalized radius of a holographic
sphere of mass M as a function of GM/c? multiplier k € R [5]

R=k (42)

2
and the generalized energy E of this sphere as a function of
Mc? multiplier a € R

E = aMcz, (43)
the generalized Bekenstein bound (41) becomes

1 a
S < —kg—N, 44
< Skey (44)

where N := 47R? /€3 is the information capacity of this sphere,
the surface of which contains |N] Planck triangles, where
”|x]” is the floor function that yields the greatest integer less
than or equal to its argument x.

The generalized Bekenstein bound (44) equals the BH en-
tropy (40) if & = 1 = a = . Thus, the energy of all BBOs
having a radius (42) is

k
Egpo = EMBBOC27 (45)

with k = 2 in the case of BHs and k > 2 for NSs and WDs.
Schwarzschild BHs are fundamentally uncharged, contrary
to NSs and WDs, since the entropy (40) of any conceivable
BH is equal to that of the uncharged Schwarzschild BH with
the same area by the Penrose process. It is accepted that in the
case of NSs, electrons combine with protons to form neutrons
so that NSs are composed almost entirely of neutrons. But it
is never the case that all electrons and all protons of an NS
become neutrons. WDs are charged by definition as they are
composed mostly of electron-degenerate matter.
Furthermore, uncharged, interior-less BHs are like a mathe-
matical interior-less point. Yet, a BH can embrace one param-
eter (real number): its diameter, mass, temperature, energy,
etc., each corresponding to one another. That means that three
points forming a Planck triangle corresponding to a bit of in-
formation on a BH horizon can store this parameter and this is
intuitively comprehensible: the area of a spherical triangle is
larger than that of a flat triangle defined by the same vertices,
providing the curvature is nonvanishing, and depends on this
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curvature, i.e., it is defined by this additional parameter. But
how can a charged BBO other than a BH store the curvature
and an additional parameter corresponding to its charge?

Fortunately, the relation (36) ensures that charges are the
same in real and imaginary dimensions. Therefore each
charged Planck triangle in R? on a charged BBO horizon is
associated with three R x I Planck triangles, each sharing a
vertex or two vertices with the triangle in R?. And this config-
uration must be capable of storing the charge associated with
this triangle. The difference between the Planck area 512, and
the a, Planck area 512,1. (29), which is lower in modulus, can
be considered in a polyspherical coordinate system, in which
gravitation/acceleration act in a radial direction (with the en-
tropic gravitation acting inwardly, and acceleration acting in
both radial directions), while electrostatics act in a tangential
direction.

As the entropy of independent systems is additive, a col-
lision of two BBOs, BBO; and BBO,, having entropies
SBBo, = %kBNBBo1 = %kBﬂ'd%BOl and Sgpo, = %kBﬂdlngoz,
produces another BBO¢ having entropy

SBBOc = SBBO, + SBBO, = dipo, = dipo, + dipo,- (46)
This shows that a collision of two primordial BHs, each hav-
ing the Planck length diameter, the reduced Planck tempera-
ture g—; (which is the largest physically significant temperature
[11]), and no tangential acceleration az; [S, 11], produces a
BH having dgyy = + V2 which represents the minimum BH
diameter allowing for the notion of time [11], while a colli-
sion of the latter two BHs produces a BH having dgy = +2
having the triangulation defining only one precise diameter
between its poles (cf. [5] Fig. 3(b)). Diameter dgy = +2
is also recovered [5] from Heisenberg’s Uncertainty Principle
(cf. Appendix C).

The hitherto considerations may be unsettling for the
reader, as the energy (45) of BBOs other than BHs exceeds
mass-energy equivalence E = kMc?/2 for k > 2, which is the
limit of the maximum real energy. Thus, a part of the energy
of NSs and WDs must be imaginary and thus unmeasurable.
We shall consider this question in the subsequent section.

V. COMPLEX ENERGIES

A complex energy formula
Eg = Ey, +iEg, = (1 + ifg) Mgc?, 47)

where Ej;, = Mgc? and iE ¢, represent respectively real and
imaginary energy of an object having mass Mg and charge
Qg’, and

— EQR _ Or
Eyv, 2Mg V&G

Br (48)

5 Charges in the cited study are defined in CGS units; here we adopt SI.
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is the imaginary-real energy ratio®, was proposed in [43] (Egs.
(1), (3), and (4)). Equations (47) and (48) consider real (phys-
ically measurable) masses My and charges Qg.

In the following, where deemed appropriate, dimensional
quantities were discretized using Planck units as

0 = ge, Qi=i0Q=ige, q€Z
M = mmp, M;:=mmp;, m,m;€R,
(49)
A= Ibp, A= Litp;, Ll €R,
R = rtp, Ri = rilpi, r,ri€R,

although the discretization of charges by integer multipliers
q of the elementary charge e is far-fetched, considering the
fractional charge of quasiparticles.

We shall now modify the equation (47) to a form involving
imaginary masses M; and charges Q; by defining the following
two complex energies, the complex energy of real mass M and
imaginary charge

Emo, =Ey+Eg, =(1 +,3Ql-)M02 =
= (M + ig \/Emp) = (m +iq \/E) Ep,

and the complex energy of real charge Q and imaginary mass

(50)

Eom, = Eg+Ey, = (Bo + 1) Mic: =
2 51
= (qvazmpi+Mi)Ci = a—z(fl\/aJr 1/£mi)EP, Gb
az (0%

where
Qi iq \amp
= = el, 52
Po 2M \renG M 52)
fo= — & _avmm (53)
ZM,' Vﬂ'EoG Mi

We note in passing that using the different speed of light pa-
rameters in energies Eyg, (51) and Egy, (50) yields a contra-
diction (cf. Appendix D).

Equations (50)-(53) yield two different quanta of the
charge-dependent energies corresponding to the elementary
charge, the imaginary quantum

Ep(q = +1) = i VaEp ~ +i1.6710 x 10°® [J], (54)
and the - larger in modulus - real quantum
Eo(q = 1) = + \ayEp; = £1.7684 x 10° [J]. (55)

Furthermore, Vg, a’Ey; = ia3Eo.
The squared moduli of the energies (50) and (51) can be
expressed as

Euo [ = M (1 _'BZQi) - (MZ + qzamﬁ) ¢, (56)

% In the cited study it is called «, so we shall call it 8 to avoid confusion with
the fine-structure constant.
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and (using relations (31) and (20))

Equ,P* = Mics (B3 — 1) = (¢Pamiy;, - M} ) ¢ =

a? (57)

=— (qzaml% - Mlz) ct
@,

Postulating that the squared moduli (56) and (57) are equal

2 2
|Epol” = |Eoumls

a (M2 + qzamlz,) =a* (qzam%, - M-Z) ,

l

(58)

we demand a mass-charge equilibrium condition from which
we can obtain the value of the imaginary mass M; of an object
having mass M and charge Q in this equilibrium

a’4 (14
M= \/qzamg(1 _ —i) “Dyp, (59)
a (04

In particular for an uncharged mass M (g = 0) this yields

2
(02

Mio? = £iMa5 or  M; = +i—=M ~ +0.9557iM.  (60)
a

Since mass M; is imaginary by definition, the argument of the
square root in the relation (59) must be negative

4
M > |glmp a(“—4 - 1) ~ |g|5.7275 x 10719 [kg].  (61)
@,

This means that masses of uncharged micro BHs (¢ = 0) in
thermodynamic equilibrium can be arbitrary. However, micro
NSs and micro WDs, also in thermodynamic equilibrium, can-
not be observed, as they cannot achieve a net charge Q = 0.
Even a single elementary charge of a white dwarf renders its
mass Myp = 5.7275 x 107'° [kg] comparable to the mass of
a grain of sand.

We note here that only the masses satisfying M < 2wmp =~
1.3675 x 1077 [kg] have Compton wavelengths larger than the
Planck length [5] and thus can interfere with each other. Com-
paring this with the bound (61) yields the charge multiplier g
corresponding to an atomic number

7| |, (62)

4
@

of a hypothetical element, which - as we conjecture - sets the
limit on an extended periodic table and is a little higher than
the accepted limit of Z = 184 (unoctquadium).

We can interpret the modulus of the generalized energy of
BBOs (45) as the modulus of the complex energy of real mass
(56), taking the observable real energy Epgo = Mpgoc? of the
BBO as the real part of this energy. Thus

r 2
(EMBBOCZ) = (M]%BO + qéBoamlz,) ct, (63)
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leads to

M, 1(k?
gBBO = * rZBO p (Z - 1), (64)
p

representing a charge surplus energy exceeding Mppoc?
which is no longer available. For k = 2 ggpo vanishes, con-
firming the vanishing net charge of BHs. Similarly, we can in-
terpret the modulus of the generalized energy of BBOs (45) as
the modulus of the complex energy of real charge (57). Thus

k? ot
2 2 2 2
— Mo = 3 (4B @p — Miggo)
4 a
2
4 (65)
a, k
2 _ 2 2 2 2
Mipso = qzpo@Mp — aT;ZMBBo-

Substituting ‘112330 from the relation (64) into the relation
(65) turns the equilibrium condition (59) into a function of k
instead of ¢

(o
Mi2BB0 = [Z (1 - a_“ -1 M]23BO’

2 at
Mo = £Mggo %(1 - —2) -1,
which for BHs (k = 2) also corresponds to the relation (60)
between uncharged masses M and M;, where no assumptions
concerning the BBO energy were made.
Furthermore, the argument of the square root in the relation
(66) must be negative, as mass M; is imaginary by definition.
This leads to the maximum GM/c? multiplier

2
— ~ 6.7933, (67)
Vi

where k < |knyax| satisfies the mass equilibrium (66). Relations
(64) and (66) are shown in Fig 1.

The multiplier k¢ (67) sets the bounds on the BBO energy
(45), mass, and radius (42)

kmax = £

ZGMBBO < kmaxGMBBO
c? '

< Rggo =

Rpu = (68)

In particular, using discretizations (49), 2mpgo < rgpo <
kmaxMBBO OF 7BBO/kmax < Mo < rgpo/2. As WDs are the
least dense BBOs, this bound defines the maximum radius of
a WD core.

Furthermore, discretized relations (61) and (67) set the

bound on the BBO minimum mass in the equilibrium (58)

4 d 4
mpgo > max {QBBO \,a(a—él - 1), % ‘/1 - a_4}, (69)
@, @,
where
L2, 70
qsBO = 7\ 75 BBO- (70)
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Figure 1. Ratios of imaginary mass M;gpo to real mass Mppo (green)
and real charge gppomp Va to Mgpo (red) of a BBO as a function of
GM/c* multiplier k : 0 < k < 10. Mass Mg, is imaginary for
k < 6.79. Charge gggpo is real for k > 2.

defines a condition in which neither gggo nor dgpo can be
further increased to reach its counterpart (defined respectively
by dgpo and gppo) in the bound (69). Thus, for example, 1-
bit BBO (dgpo = 1/ +/xr) corresponds to ggpo > 1.5780, n-bit
BBO (dggo = 1) corresponds to gggo > 2.7969, while the
maximum atomic number gggo (62) corresponds to

8w

dpgpo = £ ~ 85.3666. (71)

These results show that the radius (42) of charged BBOs
(i.e., BBOs other than BHs) is a continuous function of k €
R : 2 < k < kmax; the largest k satisfying the BBO entropy re-
lation (40), a necessary condition of patternless perfect black
body radiation [5]. We shall consider this question in the sub-
sequent section.

VI. MASS, CHARGE, EMR - PHOTON SPHERE RADIUS

Besides complex energies of masses and charges (50), (51)
we can also define the complex energies of real wavelength A
and imaginary mass M;

ﬂ'Ep

h 2
ERMi = 76' + MiCi =

2n a’ (72)
==+t —m; EP:
l a;

real wavelength A and imaginary charge Q;

+m;Ep; =

hc 0:c? 2
Erpp = —+ ——=|—+1i E 73
RO; /l+2\/m (l +1q\/5) Ps (73)
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real mass M and imaginary wavelength 4;
h 2nEp;
Eug, = M+ % =mkEp + nl L

i i

4
N a’ 2r E 74
=\m S

and of real charge Q and imaginary wavelength A;

oc2 he, o’ 2
Epp, = —2— + = —gVaEp + —Ep; =
T ) reG A oz%q Pt

) (75)
@ a 2r

-2 (oo 2
a'2 (0%) li

where we applied discretizations (49). We note that other dis-
cretization of the photon energy hy = 27”Ep isE,Ep,E, €R.

Complex energies (50), (51), (72)-(75) define complex
forces acting over real and imaginary distances R, R;. Com-
plex forces lead to the BBO surface gravity (G8), and thus
also the BBO temperature (G12), that equal in moduli to their
BH counterparts, reduce to the BH surface gravity and tem-
perature for k = 2, and — in the case of k = keq and k = kpax —
for a; = 0 (cf. Appendix G).

Postulating again that the squared moduli of the complex
energies (50), (51), (72)-(75) are equal to some constant en-

ergy

|Emo,l* = 1Eom,|* = |Erul* =

76
= Exol = |Euaf = [Equl = AEL Aer, 0
we demand a mass-charge-wavelength equilibrium condition,
which can be solved for A (cf. Appendix F).

In the case of a BBO, we obtain the equilibrium condi-
tion (76) by comparing the squared moduli of the energies
(50), (51), (72)-(75) with the squared BBO energy (45) which
yields a solvable system of six nonlinear equations with six
unknowns k, g, m, m;, L, [;

k2
|EMQ,~|2 = qza =m? (— - 1),

4
4 5 2
a k
|[Eom|” = 4q2a/ ;ml = Zmz,
2 2
2 5 2
T a k
|Erm > = - —m; = —m’,
! 2 a; 4
5 5 a7
2 2 ko,
|ERQ,| zl—2+qa— Zm .
K2 @ 4n?
Evgl? = m?* (1 -=|= ,
|Emr,| ( 1 ) 5P
4 2 5 2
a 4 k
Egrl* = —q’a - —— =
2 Loy 4
Substituting ¢’ = m? (%2 - 1) from |EMQ[|2 to IERQ[l2 re-
covers the Compton wavelength of the BBO, Aggp = #Boc,

in its discrete form /> = ‘:nif. Furthermore, by substituting ¢*«
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and the Compton mass m?> = 41—’52 into |Egy;,|*, and comparing
the LHSs of |Egy;,|* and |Egy,|> we obtain the BBO equilib-
rium multiplier

kgq a/g a‘z‘
_ _ - 78
T_—4+1:>keq—12 1+ — ~ 2.7665, (78)

where k = kg satisfies the equilibrium condition (76) for

1, ;
A= ZkequBo =1+ ? MBBO ~ 1.91331713]30. (79)

The equilibrium multiplier ke, (78) is related to the bound kyax
(67) by k2, +16/k2.. = 8. Also, the following relations can be

q ‘max
derived from the relations (77) for the BBO in the equilibrium
keq (78)

2 _ @ , _ @
m; = ——sm = MiBBoM1 = il—4MBBGC, (80)
1% 07
9 3
0% (07
2 2 ;
li = ——9l = /liBBOcq = il—S/lBBOcq, (1)
0% [07
2 2
472
2
IF = — = /?.]3]30eq (82)
m Msggo,,¢
4 4
o a Migpo
qza = —imZ < —i = _ﬁzngBO =+ = (83)
a o * Mggo,,

where in the last relation, we used the definition (52) and ap-
plied the relation (80). The BBO in the energy equilibrium
bearing the elementary charge (¢> = 1) would have mass
Mpggo,, ® £1.9455 x 10~ [kg], imaginary mass Mggo,, ~
+i1.7768 x 107° [kgl, wavelength Appo,, = +1.1361 x
10~ [m], and imaginary wavelength A;ggo,, ~ +i1.2160 X
1072 [m]. Fluctuations of the BBOs for keq and kmax are
briefly discussed in Appendix E.

Notably, 2.25 < keq < 3, where 9/4 is the multiplier of
a radius of the maximal sustainable density for gravitating
spherical matter given by Buchdahl’s theorem, and 3 is the
multiplier of a BH photon sphere radius. This shows that
keq = 2.766 is a true photon sphere radius, where BBO grav-
ity, charge, and photon energies remain at equilibrium’. Aside
from the Schwarzschild radius (derivable from escape veloc-
ity v2,, = 2GM/R of mass M by setting 2. = ¢?), all the
remaining thresholds of general relativity, such as Buchdahl’s
threshold (k = 9/4) or a photon sphere radius (k = 3), are
only crude approximations. It must be so, since general rela-
tivity neglects the value of the fine-structure constants @ and
a», which, similarly as 7 or the base of the natural logarithm,
are the fundamental constants of nature.

7 In which, according to an accepted photon sphere definition, the strength of
gravity forces photons to travel in orbits. The author wonders why photons
would not travel in orbits at radius R = GM/c? corresponding to the orbital
velocity Vc2>rb = GM/R? Obviously, photons do not travel.
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VII. DISCUSSION

The reflectance of graphene under the normal incidence
of electromagnetic radiation expressed as the quadratic equa-
tion for the fine-structure constant @ includes the 2" negative
fine-structure constant @,;. The sum of the reciprocal of this
2™ fine-structure constant e, with the reciprocal of the fine-
structure constant @ (2) is independent of the reflectance value
R and remarkably equals simply —n. Particular algebraic defi-
nition of the fine-structure constant &~! = 47> +72+7, contain-
ing the free 7 term, can be interpreted as the asymptote of the
CODATA value o', the value of which varies with time. The
negative fine-structure constant a, leads to the complemen-
tary set of Planck units applicable to imaginary dimensions,
including imaginary Planck units (18)-(26). Real and imagi-
nary mass and charge units (34), length and mass units (35)
units, and temperature and time units (33) are directly related
to each other. Also, the elementary charge e is common for
real and imaginary dimensions (36).

Applying the complementary Planck units to a complex en-
ergy formula [43] yields complex energies (50), (51) setting
the atomic number Z = 238 as the limit on an extended peri-
odic table. The generalized energy (45) of all perfect black-
body objects (black holes, neutron stars, and white dwarfs)
having the generalized radius Rggo = kGM/ ¢? exceed mass-
energy equivalence if k > 2. Complex energies (50), (51)
allow for storing the excess of this energy in their imaginary
parts, inaccessible for direct observation. The results show
that the perfect black-body objects other than black holes can-
not have masses lower than 5.7275 x 10710 [kg] and that the
maximum slope of the radius of their cores as a function of
mass is defined, as kp.x ~ 6.7933, by the relation (67). It is
further shown that a black-body object is in the equilibrium of
complex energies if its radius R.q ~ 2.7665 GMppo /c2 (78).
It is conjectured that this is the correct value of the photon
sphere radius.

In the context of the results of this study, monolayer
graphene, a truly 2-dimensional material with no thickness®,
is a keyhole to other, unperceivable [5], dimensionalities.
Graphene history is also instructive. Discovered in 1947
[45], graphene was long considered an academic material
until it was eventually pulled from graphite in 2004 [46] by
means of ordinary Scotch tape’. These fifty-seven years,
along with twenty-nine years (1935-1964) between the con-
demnation of quantum theory as incomplete [47] and Bell’s
mathematical theorem [48] asserting that it is not true, and
the fifty-eight years (1964-2022) between the formulation of
this theorem and 2022 Nobel prize in physics for its experi-
mental loophole-free confirmation, should remind us that Max
Planck, the genius who discovered Planck units, has also dis-

8 Thickness of MLG is reported [44] as 0.37 [nm] with other reported values
up to 1.7 [nm]. However, considering that 0.335 [nm] is the established
inter-layer distance and consequently the thickness of bilayer graphene,
these results do not seem credible: the thickness of bilayer graphene is not
2x%0.37 +0.335 = 1.075 [nm].

9 Introduced into the market in 1932.
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covered Planck’s principle.
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Appendix A: Other quadratic equations

The quadratic equation for the sum of transmittance (3) and
absorptance (5), putting C74 =T + A, is

1
ZCTAnzaZ +(Cra— Dra+(Crqa—1) =0, (A1)

and has two roots with reciprocals

C
ol = raT ~ 137.036, (A2)
2(1=Cra+ VT=Cra)
and
c
o' = rAT ~—140.178,  (A3)
2(1=Cra— VT=Cra)
whereas their sum o' + @;' = - is, similarly as the relation

(12), also independent of 7" and A.

Other quadratic equations do not feature this property. For
example, the sum of 7+ R (6) expressed as the quadratic equa-
tion and putting Crg :=T + R, is

1
I (Crg — D 2* + Crrra + (Cyg — 1) = 0, (A4)

and has two roots with reciprocals

1 m(Crr— 1)
a = ~ 137.036, (AS5)
—ZCTR +2 V2CTR -1
and
O a(Crgr — 1)

a;l = ~ 0.0180, (A6)
R 2Cr—2V2Crr =1

whereas their sum

_ _ -nCrg
7R, + Ok, = i’ 137.054 (A7)

is dependent on 7 and R.

Appendix B: Two r-like constants

With algebraic definitions of « (13) and @, (14), transmit-
tance T (3), reflectance R (4) and absorptance A (5) of MLG

d0i:10.20944/preprints202212.0045.v9
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for normal EMR incidence can be expressed just by n. For
o' = 4n% + 1% + 7 (13) they become
2
4 (4712 +r+ 1)
T (@) =

= ) L0775, (B1)
(872 + 27 + 3)

4(47r2+7r+ 1)

Al@)= — 2
@ (872 + 27 + 3)°

~ 0.0224, (B2)

while for a; V= 47 — 7% - 27 (14) they become

4(4r? + x4 2)

T (@) = — 5 ~ 1.0228, (B3)

(872 + 27 + 3)°

4(4n> +7+2)
A(w) = ———5 ~ -0.0229, (B4)

(872 + 27 + 3)

with
1

R(a) =R(x) = ~ 12843 x 10™*. (B5)

(872 + 27 + 3)°

(T(a) + A(@)) + R(a@) = (T(p) + A(ap)) + R(ap) =1 as re-
quired by the law of conservation of energy (8), whereas each
conservation law is associated with a certain symmetry, as as-
serted by Noether’s theorem. A(a) > 0 and A(@;) < 0 imply
respectively a sink and a source, while the opposite holds true
for the transmittance 7', as illustrated schematically in Fig 2.
Perhaps, the negative absorptance and transmittance exceed-
ing 100% for a, (11) or (14) could be explained in terms of
graphene spontaneous emission.

The quadratic equation (9) describing the reflectance R of
MLG under normal incidence of EMR (or alternatively (A1))
can also be solved for r yielding two roots

2VR
Ra) = —— | d B6
(R, @) al— VR an (B6)
-2vR
Ra)=——"——, B7
(R, a.): ol VD (B7)

dependent on R and «., where «, indicates « or ;. This can
be further evaluated using the MLG reflectance R (4) or (B5)
(which is the same for both @ and «,), yielding four, yet only
three distinct, possibilities

4r? 1
M=) = T a2 30712, (BS)
42 + 1+ 2 a
(@), = n(ap); = 7~ 3.1416, and (B9)
A2 4742
7o = m(an) = e L @ 32136, (BIO)

T—— =
42+ + 1 s
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T(a) < 1

Figure 2. Illustration of the concepts of negative absorptance and
excessive transmittance of EMR under normal incidence on MLG.

The modulus of 7; (B8) corresponds to a convex surface hav-
ing a positive Gaussian curvature, whereas the modulus of
my (B10) - to a negative Gaussian curvature. Their product
T, = nt s independent of a., and their quotient 7y /7, =
0/% Ja? is independent of 7. It remains to be found, whether
each of them describes the ratio of circumference of a circle
drawn on the respective surface to its diameter (;.) or the ra-
tio of the area of this circle to the square of its radius (r,).
These definitions produce different results on curved surfaces,
whereas 7, > 7. on convex surfaces, while 7, < 7. on saddle
surfaces [51].

Appendix C: Planck units and HUP

Perhaps the simplest derivation of the squared Planck
length is based on Heisenberg’s uncertainty principle

h h
0 PuupORuup 2 ) or O0Equpdtaup 2 > (CD)

where dPyup, ORyup, 0Enqup, and Stgup denote momentum,
position, energy, and time uncertainties, by replacing energy
uncertainty Egup = SMyyupc? with mass uncertainty and
time uncertainty with position uncertainty, using mass-energy
equivalence and étgyp = OR/chup [28], which yields

i
OMuupoRuup > 2% (C2)

Plugging 6Myyup = SRyupc?/(2G) for BH mass into (C2) we
arrive at 6R%IUP = 512, = 0Dyup = +2¢p and recover BH diam-
eter dgy = +2.
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However, using the same procedure but inserting the BH
radius, instead of the BH mass, into the uncertainty principle
(C2) leads to 6M£IUP = %hc/G = zllml%. In general, using the
generalized radius (42) in both procedures, one obtains

k

1
SMiup = ==mp and  ORjp = 3

o . (C3)

Thus, if k increases mass dMyyp decreases, and SRyyp in-
creases and the factor is the same for k = 1 i.e., for or-
bital speed radius 6R = GSM/c* or the orbital speed mass
M = 6Rc?/G.

Appendix D: A mixed speeds hypothesis

Let us define the mass/charge energies with different speeds
of light, i.e., the charge part of the energy Ejo, with ¢, and
the charge part of the energy Egy, with ¢

2 2
L iC 1%
Eumg, = M+ Qi =Mc* +ig \/Emp—zc2,
nenG a;
oc? a? b
EQM,. = ——— + Mic? = g Vampc® + M;— ¢,
2\VneG ! @
If their moduli are equal, then
4 4
a a
M? + qza/mf,—4 = qzami - Ml-2—4,
@, @,
(D2)

4 4

a a
= 2am2| =2 1= Z2Mm2
M; = J_r\/q amP(a4 1) a/4M'

For an uncharged mass M, this relation corresponds to (60).
However, since mass M; is imaginary, the argument of the
square root in the relation (D2) must be negative, i.e.,

4
|M| # |glmp a'(l - 3—4]. (D3)

2

But o* > @3, yielding imaginary M, while M is real by defi-
nition. Therefore, complex energies Eyg, (50) and Egyy, (51)
must be parametrized respectively by ¢ and c,,.

Appendix E: Fluctuations of the BBOs

A relation describing a BH information capacity after ab-
sorption (+) or emission (—) of a particle having the wave-
length [ can be generalized (cf. [5], Appendix 3), using the
generalized radius (42), to all holographic spheres, including
BBOs as

1 d
NAE(, 1) = 16k2n3l—2 + 81m27 + nd>. (ED)

The wavelength of a particle emitted from a BH that does
not change the BH diameter corresponds to half of the BH
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Compton wavelength (/gy = 87/dpy). Accordingly, the wave-
length of a particle absorbed by a BH that does not change its
diameter iS Igpconst = —47/dpy. We note in passing that three
spatial dimensions set the minimum for such conditions to oc-
cur (cf. [5], Table III). In general, lggoconst = F2km/dppo- In
particular, for kq the relation (E1) yields

4 4

4
G| @ _ %
47T(1 + Q/_4J = +dlconst 1+ J’ B = 0—4,
16778 + (327 = L) B+ 167 — Py =0, (B2
\/Z _ +d212 By, = dzlgonst B 32”2 + dzlgonst
- = const? e

3272

The second solution is contradicting, as a‘z‘ + —a*. But the

first one
4
dr 1+ Z—ﬁ An
Leonst = ¢T ~ ¢1.38327, (E3)
(with 7= for absorption and ”+” for emission) reduces to

IsHconst for @ = 0. For kp, the relation (E1) yields

47[ =F dlconsl o é
at -
Py B + (167 = 2Ly B + & — 167 = 0, (Y
\/K = +167° By, = 2d21§onst — 162% + 1677
o 24212

const

The first solution is contradicting, but the second one

4 4
leonet = F— X » ¢3.3966§, (ES)

@
dy1-%

also reduces to IgHeonst for an = 0.

The relation (E1) is remarkably similar to the algebraic def-
initions of the inverses of @ (13) and a; (14) also containing
73, n%, and & terms. This raises the question of whether the
fine-structure constants’ inverses correspond to the number
of bits'?. Recently the fine-structure constant has been re-
ported as the quantum of rotation [52]. Two alphas between
a™' ~ 137.0363 and @, ~ —140.1779 hinted by the relations
(13), (14), and (E1)

a ' =478 —2® + 1~ 117.2971,

E6
sz‘l = 4 + % =21 ~ —-120.4387, (E6)

are thus intriguing.

10 The floor function of the inverse of the fine-structure constant @ represents
the threshold on the atomic number (137) of a hypothetical element feyn-
manium that, in the Bohr model of the atom, still allows the 1s orbital
electrons to travel slower than the speed of light
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Appendix F: Moduli of complex energies

The moduli of the complex energies (50), (51), (72)-(75)
are

|Eyg,* = (m* + ¢*a) E}, (F1)
0’4 as
|Eom,* = (0—4420/ - a_5mi2 Ey, (F2)
2 2
4> &
|Erm,|” = (Tz - a—sm%) E}, (F3)
2
4 2
Eral = (5 + o) 25 (Fa)
@ 4n?
|Evg, = |m* — = — | E3. (F5)
12
2
o @ 4n?
|Egr|® = (—46126K TSR Eg, (F6)
@ @ 4

We assume that the moduli (F1)-(F6) are equal to an energy
E? = AEIZ,,A € R. Subtracting moduli (F1) and (F4) yields
m? = 4n*/1?, and similarly subtracting moduli (F2) and (F6)
yields ml2 = 4n2/ lt.z. This equates moduli (F3) and (F5). Sub-
stituting m? = 47%/1? into the modulus (F6) and subtracting
from the modulus (F1) yields

a
m A=A - A2, (F7)
(0%) 04
Subtracting this from (F3) or (F5) yields
472 —AQ)
oo AG F8)
A a’(a* + a3)

which substituted into the relation (F7) yields

4n? Aa*

2

=—=— F9
" 2 at +a )
Finally, substituting the relation (F9) into the modulus (F1)
yields

Add
qza _ 2

= . F10
a?t +a‘2t (F10)

Appendix G: Complex forces

Complex energies (50)-(75) define complex forces (simi-
larly to the complex energy of real masses and charges (47),
[43] Eq. (7)) between two objects, real R or imaginary R;
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distance apart. We exclude mixed forces (of real and imag-
inary masses/charges/wavelengths) as real and imaginary di-
mensions are orthogonal. Using discretizations (49), we ob-
tain the following products

EtmgEamg, = Evmo,Eamo, | Ef =
= mm; — q1qa + i Va(miqz + maqy),

ErgnEzgm; = Erom,E20m,/ Ep = (G
@ N 1 N 1 ( N )
— —mymp + —— (q1m; mj)|,
g q192 o i1mp N qimp + gam;)

. 2 _
Elrm,-EZrm,- = EIRM,-EZRM,-/EP =

47T2 as 05 mp  mj
—mimp + 2n +—,
AN a b

(G2)
Enr Eopyr, = ElMR,EZMR,-/Ep =
5 4 2 5
—m1m2+——+27r ar_s(@+ @),
3 lali ay \ln I
EigrEngr, = Err Eaor, | Ep =
4 42 o 5
= a,—4q1q2a/+ e + 2 ¢ (ﬂ + 2),
a; Lhb o [o\bLh L
a
2 (G3)

E\yg,Engr, = Eiro, Earo,/ Ep =

_ 47 9
=L _q1q20+12ﬂ\/_(l_+z)

defining six complex forces; between two particles or objects
acting over a real distance R

F)
Fap E\ap,Erap, = r_;ElabiEZabi’ (G4

i T AR2
and six complex forces; between two particles or objects act-
ing over an imaginary distance R;

a Fp

Fap = 3 E1as,Eaap, = oy 5 Etrab, E2ab;» (G35)

/] i
where A, B € {M, Q,R} and a, b € {m, g, r}, and
2 _2F
arr FAB,~ = ar; FAB,w (G6)

Under a simplifying assumption of ? = r?, the forces acting
over a real distance R are stronger and opposite to the cor-
responding forces acting over an imaginary distance R; even
though the Planck force is lower in modulus than the comple-
mentary (real) Planck force (27).
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In particular, we can use the complex force Fyg, (G4) with
(G1) (i.e., complex Newton’s law of universal gravitation)
to calculate the BBO surface gravity gggo, assuming an un-
charged (g, = 0) test mass m;,

Fp .
5 (mBBomz + l\/amz%so) = M>gpBo =
"BBO

= mympgRROAP, (G7)

. 1 .
8BBO = &5 — (mBBO +1 \/ECIBBO),

’
BBO
where gggo = &BBodp, 280 € R. Substituting the relation

(64) and the generalized radius (42) rggo = kmppo into the
relation (G7) yields

_ dp . k2
gBBO = p— [1 tiqf 1 1), (G8)

which reduces to BH surface gravity for k = 2, in modulus

1 [Kk2 k2 1
52 . .
8o = (1+, __1](1_, __1)
k2r 123130 4 4

4350 BBO
(G9)

equals to a squared BH surface gravity for all &, and in partic-
ular,

8BBO(Kmax) = id (0.2944 + 0.95571),

BBO

(G10)

gBBo(keq) = * (G11)

Using the BBO surface gravity (G8), the BBO temperature
can be obtained from Hawking blackbody-radiation equation

fi Tp k2
T = 1+ — -1 G12
BBO = 5 8BBO = 71— dono [ i 1 ), (G12)

which also in modulus equals squared BH temperature Vk. In
particular,

4_ 4 2
TP a CYZ a2
Trpo(kmax) = * +i— |, G13
BBO (Kmax) Indsno e i (G13)
T, a@? + ia?
Togo(keg) = 25— = (G14)

2rd, ’
BBO o4 + ‘73

reduce to a BH temperature for @, = 0. We note that for
dpgo = 1, Re(Tepo(kmax)) = 6.6387 x 10°° [K] has the mag-
nitude of the Hagedorn temperature of strings.

It seems, therefore, that a universe without imaginary di-
mensions (i.e., with @, = 0) would be a black hole. Hence,
the evolution of information [1-6] requires imaginary time.
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